698 research outputs found

    An efficient processor allocation strategy that maintains a high degree of contiguity among processors in 2D mesh connected multicomputers

    Get PDF
    Two strategies are used for the allocation of jobs to processors connected by mesh topologies: contiguous allocation and non-contiguous allocation. In non-contiguous allocation, a job request can be split into smaller parts that are allocated to non-adjacent free sub-meshes rather than always waiting until a single sub-mesh of the requested size and shape is available. Lifting the contiguity condition is expected to reduce processor fragmentation and increase system utilization. However, the distances traversed by messages can be long, and as a result the communication overhead, especially contention, is increased. The extra communication overhead depends on how the allocation request is partitioned and assigned to free sub-meshes. This paper presents a new Non-contiguous allocation algorithm, referred to as Greedy-Available-Busy-List (GABL for short), which can decrease the communication overhead among processors allocated to a given job. The simulation results show that the new strategy can reduce the communication overhead and substantially improve performance in terms of parameters such as job turnaround time and system utilization. Moreover, the results reveal that the Shortest-Service-Demand-First (SSD) scheduling strategy is much better than the First-Come-First-Served (FCFS) scheduling strategy

    Advanced software techniques for space shuttle data management systems Final report

    Get PDF
    Airborne/spaceborn computer design and techniques for space shuttle data management system

    A performance comparison of the contiguous allocation strategies in 3D mesh connected multicomputers

    Get PDF
    The performance of contiguous allocation strategies can be significantly affected by the distribution of job execution times. In this paper, the performance of the existing contiguous allocation strategies for 3D mesh multicomputers is re-visited in the context of heavy-tailed distributions (e.g., a Bounded Pareto distribution). The strategies are evaluated and compared using simulation experiments for both First-Come-First-Served (FCFS) and Shortest-Service-Demand (SSD) scheduling strategies under a variety of system loads and system sizes. The results show that the performance of the allocation strategies degrades considerably when job execution times follow a heavy-tailed distribution. Moreover, SSD copes much better than FCFS scheduling strategy in the presence of heavy-tailed job execution times. The results also show that the strategies that depend on a list of allocated sub-meshes for both allocation and deallocation have lower allocation overhead and deliver good system performance in terms of average turnaround time and mean system utilization

    Hypercube algorithms on mesh connected multicomputers

    Get PDF
    A new methodology named CALMANT (CC-cube Algorithms on Meshes and Tori) for mapping a type of algorithm that we call CC-cube algorithm onto multicomputers with hypercube, mesh, or torus interconnection topology is proposed. This methodology is suitable when the initial problem can be expressed as a set of processes that communicate through a hypercube topology (a CC-cube algorithm). There are many important algorithms that fit into the CC-cube type. CALMANT is based on three different techniques: (a) the standard embedding to assign the processes of the algorithm to the nodes of the mesh multicomputer; (b) the communication pipelining technique to increase the level of communication parallelism inherent in the CC-cube algorithms; and (c) optimal message-scheduling algorithms proposed in this work in order to avoid conflicts and minimizing in this way the communication time. Although CALMANT is proposed for multicomputers with different interconnection network topologies, the paper only focuses on the particular case of meshes.Peer ReviewedPostprint (published version

    Optimizing hardward granularity in parallel systems

    Get PDF

    Reconfigurable G and C computer study for space station use. Volume 1 - Technical summary Final report, 29 Dec. 1969 - 31 Jan. 1971

    Get PDF
    Technical summary of reconfigurable guidance and control computer for space station application - Vol.

    Static allocation of computation to processors in multicomputers

    Get PDF

    State-of-the-Art in Parallel Computing with R

    Get PDF
    R is a mature open-source programming language for statistical computing and graphics. Many areas of statistical research are experiencing rapid growth in the size of data sets. Methodological advances drive increased use of simulations. A common approach is to use parallel computing. This paper presents an overview of techniques for parallel computing with R on computer clusters, on multi-core systems, and in grid computing. It reviews sixteen different packages, comparing them on their state of development, the parallel technology used, as well as on usability, acceptance, and performance. Two packages (snow, Rmpi) stand out as particularly useful for general use on computer clusters. Packages for grid computing are still in development, with only one package currently available to the end user. For multi-core systems four different packages exist, but a number of issues pose challenges to early adopters. The paper concludes with ideas for further developments in high performance computing with R. Example code is available in the appendix
    • …
    corecore