UNIVERSITY

of
GLASGOW

Bani-Mohammad, S. and Ould-Khaoua, M. and Abaneh, I. and
Mackenzie, L. (2007) An efficient processor allocation strategy that
maintains a high degree of contiguity among processors in 2D mesh
connected multicomputers. In, ACS/IEEE International Conference on
Computer Systems and Applications, AICCSA 2007, 13-16 May 2007,
pages pp. 934-941, Amman, Jordan.

http://eprints.gla.ac.uk/3496/

An Efficient Processor Allocation Strategy that Maintains a High Degr ee of
Contiguity among Processorsin 2D M esh Connected M ulticomputers

S. Bani-Mohammad M. Ould-Khaoua I. Ababneh Lewis M. Mackenzie
Glasgow University, Glasgow University, Al al-Bayt University, Glasgow University,
Computing Science, = Computing Science, = Computing Science, Computing Science,
Glasgow G12 8RZ, Glasgow G12 8RZ, Mafraq 25113, Glasgow G12 8RZ,
UK. UK. Jordan. UK.
saad@dcs.gla.ac.uk mohamed@dcs.gla.ac.ukismail@aabu.edu.jo lewis@dcs.gla.ac.uk

Abstract allocated to a parallel job are physically contiguous and
have the same topology as that of the interconnection

Two strategies are used for the allocation of jobs to network of the multicomputer [1, 3, 4, 5, 7, 13, 22].
processors connected by mesh topologies: contiguouscontiguous strategies often result in high external
allocation and non-contiguous allocation. In non- Processor fragmentation, as has been shown in [22].
contiguous allocation, a job request can be split into External processor fragmentation occurs when there are
smaller parts that are allocated to non-adjacent free sub- free processors sufficient in number to satisfy the number
meshes rather than always waiting until a single sub- requested by a parallel job, but they are not allocated to it
mesh of the requested size and shape is available. Liftind?ecause the free processors are not contiguous or they do
the contiguity condition is expected to reduce processornot have the same topology as the multicomputer.
fragmentation and increase system utilization. However, Several studies have attempted to reduce external
the distances traversed by messages can be long, and asR{ocessor fragmentation [2, 8, 10, 15, 17, 19]. One
result the communication overhead, especially Suggested solution is to adapon-contiguousallocation
contention, is increased. The extra communication[2, 8, 15, 19]. In non-contiguous allocation, a job can
overhead depends on how the allocation request is€Xecute on multiple disjoint smaller sub-networks rather
partitioned and assigned to free sub-meshes. This papefhan always waiting until a single sub-network of the
presents a new Non-contiguous allocation algorithm, requested size and shape is available. Although non-
referred to as Greedy-Available-Busy-List (GABL for contiguous allocation increases message contention in the
short), which can decrease the communication overheadnetwork, lifting the contiguity condition is expected to
among processors allocated to a given job. The reduce processor fragmentation and increase processor
simulation results show that the new strategy can reduceutilization [2, 15, 19]. It is the introduction of wohuole
the communication overhead and substantially improve routing [18] that has lead researchers to consider non-
performance in terms of parameters such as job contiguous allocation on multicomputer networks with a
turnaround time and system utilization. Moreover, the long communication distances, such as the 2D mesh [2,
results reveal that the Shortest-Service-Demand-First15, 19]. This is due to the fact that one of main
(SSD) scheduling strategy is much better than the First-advantages —of wormhole routing over earlier

Come-First-Served (FCFS) Schedu"ng strategy. communication schemes, e.g. store-and-forward, is that
message latency depends less on the distance the message

travels from source to destination [2, 18]. Nonetheless,
1. Introduction most existing research studies have been conducted in the
context of contiguous allocation [1, 3, 4, 5, 7, 13,27,
There has been comparatively very little work on non-

for selecting the set of processors on which parallel jobsc?nt_lgutous aIIociatu;n. Whereas c:)hntlguous aIIocat|onf
are executed, while job scheduling is responsible for &liMINates —contention - among € messages o
determining the order in which the jobs are executed.Concurr.en.tly executing jobs, non-contiguous al_locat|on
Most allocation strategies employed in a multicomputer cant. eI|m|nat”e et>_<ternalﬁ prc;cessor fragmentation - that
are based onontiguousallocation, where the processors contiguous aflocation sufters from.

In a multicomputer, processor allocation is responsible

Most existing research on contiguous and non- 2.1 Non-Contiguous Allocation Strategies
contiguous allocation has been carried out in the context
of the 2D mesh [1, 2, 3, 4, 5, 7, 8, 10, 13, 15,197,22]. Advances in routing techniques such as wormhole
The mesh network has been used as the underlyingouting [18], has made communication latency less
network in a number of practical and experimental sensitive to the distance between communicating nodes
parallel machines, such as IBM BlueGene/L [11, 21] and[2]. This has made allocating a job to non-contiguous
Delta Touchstone [6]. The method used for decomposingprocessors plausible in networks characterised by a long-
allocation requests in existing non-contiguous allocation diameter, such the 2D mesh. Non-contiguous allocation
schemes are not based on free contiguous sub-mesheallows jobs to be executed without waiting if the number
For example, allocation requests are subdivided into twoof available processors is sufficient [2, 15, 19]. Below, we
equal parts in [2]. The subparts are successivelydescribe some non-contiguous strategies that have been
subdivided in a similar fashion if allocation fails for any suggested in the literature.
of them. In the study of [19], a promising strategy (MBS Paging In the Paging strategy [19], the entire 2D
expresses the allocation request as a base-4 number, amdesh is divided into pages that are sub-meshes with equal
bases allocation on this expression. In this study, Wegijes’ length of osize_index \yhere size_index is a

propose a new non-contiguous allocation strategy, L))
referred to here as Greedy-Available-Busy-List (GABL), POsitive integer. The pages are indexed accordmng t
several indexing schemes (row-major, shuffled row-

for the 2D mesh. GABL strategy combines the desirable>*" : S)
features of both contiguous and non-contiguous strategie"&Or, snake-like, and shuffled snake-like indeirithe

and partitions requests based on the sub-meshes availabfy'Mmber of pages a job requests is computed by:
for allocation. A major goal of the partitioning process is axb)/ Psize|, where Psizeis the size of the pages, and

to maintain a high degree of contiguity among the a andb are the side lengths of the requested sub-mesh.
processors allocated to a given parallel job. The In this paper, we only consider the row-major indgx
performance of GABL is compared against the scheme because using the remaining indexing schemes
performance of the non-contiguous allocation strategieshas only a slight impact on the performance of Rgaghs
Paging(0) and MBS [19]. These two strategies have beerhas been demonstrated in [19].

selected because they have been shown to perform well in Multiple Buddy System (MBS)n MBS, the mesh
[19]. Furthermore, GABL is also compared against the network is divided into non-overlapped square sub-
contiguous First Fit strategy [22] as this has been used irmeshes with side lengths that are powers of 2. The

several previous related studies [2, 3, 19]. number of processorsp, requested by an incoming job
In addition to suggested allocation strategy, we Usejs factorized into a base-4 representation of the
two job scheduling strategies, notably First-Come-First- lloga p|

Served (FCFS) and Shortest-Service-Demand-First (SSD}q - zd_ ><(2i xzi), where0<d. < 3 The request is
to compare the performance of allocation strategies. In = ! !

FCF.S’ the aIIocatlon request that. arrived first is then considered for allocation according to thediazed
considered for allocation first. Allocation attempts stop ST)
when they fail for the current FIFO queue head, while in number, whered; blocks of size2' x2' are required. If a
SSD, the job with the shortest service demand isrequired block is unavailable, MBS recursively sbas
scheduled first [12]. for a larger block and repeatedly breaks it dovtn four
The rest of the paper is organized as follows. Section 2buddies until it produces blocks of the desire@ sizthat
contains a brief summary of previous allocation fails, the requested block is broken into four et for
strategies. Section 3 describes our proposed nonsmaller blocks and the searching process is regh§b®.
contiguous allocation strategy. Section 4 compares the Adaptive Non-Contiguous Allocation (ANCANCA
performance of the contiguous and non-contiguousfirst attempts to allocate a job contiguously. When
allocation strategies. Finally, Section 5 concludes this contiguous allocation fails, it breaks the reque&i two

study. equal-sized sub-frames. These sub-frames are then
allocated to available locations, if possible; otfise,
2. Related Work each of these sub-frames is broken into two eqaatls

sub-frames, then ANCA tries to assign these suinds
To conserve space, this section provides a briefto available locations and thus take advantage oof n

overview of some existing non-contiguous allocation contiguous allocation, and so on [2].

strategies, the existing contiguous allocation strategies are [N Paging, there is some degree of contiguity bseau

not included in this paper, but appear in [16]. of the indexing schemes used. Contiguity can also b
increased by increasing the parametsize index.

However, there is internal processor fragmentafion
size_index=1, and it increases wittsize_index [19].

An issue with MBS is that it may fail to allocate a

contiguous sub-mesh although one exists. In fact,

contiguous allocation is explicitly sought in MB8lyp for

requests with sizes of the for@®", where n is a
positive integer. As for ANCA, it can disperse the
allocated sub-meshes more than it is necessamquires
that allocation to all sub-frames occur in the same
decomposition and allocation iteration, skippingiothe
possibility of allocating larger sub-meshes foaeyk part

of the request in a previous iteration. MoreoveNG®
halts the decomposition and search processes whiele a
length reaches 1, which can cause external fragriient
The main goal of our proposed strategy is to achiav
larger degree of contiguity than the previous non-
contiguous allocation strategies. This is so thae t
communication overhead is lower and the overaltesys
performance is superior.

3. The Proposed Allocation Strategy

In the following, we present the system model
assumed in this paper. The target system VgL 2D
mesh, whereW is the width of the mesh and is its
length. Every processoris denoted by a pair of
coordinates &,y), where0< x<W andO<y<L [15].
Each processor is connected by bidirectional
communication links to its neighbour processorse Th
following definitions have been adopted from [15].

Definition 1: A sub-meshS(w,l) of width w and length
I, where 0sw<W and 0<l| <L is specified by the
coordinates k,y) and (X,y'), where §,y) is the lower
left corner of S and (X, y') is its upper right corner. The

lower left corner node is called the base nodéhefdub-
mesh, whereas the upper right corner node is tlik en
node.

Definition 2: The size ofS(w,1) is wxlI .

Definition 3: An allocated sub-mesh is one whose
processors are all allocated to a parallel job.

Definition 4: A free sub-mesh is one whose processors

loss due to blocking [12]. In the next sub-sectiorg
describe the non-contiguous allocation strategy.

3.1 Greedy-Available-Busy-List Strategy (GABL)

The GABL strategy combines the desirable featufes o
both contiguous and non-contiguous allocation, and
partitions requests based on the sub-meshes aeaftab
allocation. In implementing GABL, we exploit an
efficient approach, the Right of Busy Sub-mesheBIR
approach proposed in [3], for the detection of such
available sub-meshes. The basic idea of RBS is to
maintain a list of the allocated sub-meshes saireithe
non-increasing order of the second coordinate efrth
upper right corners. The list is used to determéfle
forbidden regions consisting of the nodes that oainn
serve as base nodes for the requested sub-mesh. The
forbidden regions are then subtracted from the trigh
border lines of the allocated sub-meshes so ascdaid
nodes that could be used as base nodes for theegqu
sub-mesh.

In GABL strategy, when a parallel job is selected f
allocation a sub-mesh suitable for the entire jagb i
searched for. If such a sub-mesh is found it izcalied to
the job and the allocation is done. Otherwise,|#ingest
free sub-mesh that can fit insid8(a,b i} allocated.

Then, the largest free sub-mesh whose side lermigtimot
exceed the corresponding side lengths of the pusvio
allocated sub-mesh is searched for under the constr
that the number of processors allocated does rueeek
axb. This last step is repeated undikb processors are
allocated. Allocated sub-meshes are kept in a sty
Each element in this list includes thé of the job the
sub-mesh is allocated to. When a job departs tle su
meshes it is allocated are removed from the bissyahd
the number of free processors is updated.

Allocation in GABL strategy is implemented by the
algorithm outlined in Fig. 1, while the deallocatio
algorithm is outlined in Fig. 2. Note that allocatialways
succeeds if the number of free processaraxb.
Moreover, it can be noticed that the methodologduer
maintaining contiguity is greedy. GABL strategyeatipts
to allocate large sub-meshes first.

are all not allocated.

An allocation request can be accommodated
contiguously if and only if a suitable sub-mesh is
available [3]. In this study, it is assumed thatgtial jobs
are selected for allocation and execution using $@rd
SSD scheduling strategies. The FCFS schedulintegira
is chosen because it is fair and it is widely usedther
similar studies [2, 3, 4, 10, 15, 19, 20, 22], whlte SSD
scheduling strategy is used to avoid potentialqyerhnce

Procedure Greedy-Available-Busy-List (a, b):
{Total_Allocated = 0; Job_Size axh
Sted.. If (humber of free processors < Job_Size)
return failure
Ste2. If (there is a free S(x, y) suitable for S(a, b))
allocate it using RBS contiguous allocation
algorithm and return success.
SteB.a=aandf=b
Stepl. Subtract 1 from maxx(p) if max > 1

Sterb. If (Total _allocated +u x > Job_Size) consists of 1000 completed jobs. Simulation resaits

go to step 4 averaged over enough independent runs so that the
Step. If there is a free S (X, y) suitable foug){ confidence level is 95% and the relative errorsnad
allocate it using RBS algorithm. exceed 5%.
Total_allocated = Total_allocated & x $. The interconnection network uses wormhole,
XY routing. Flits are assumed to take one time unit to
Stepy. If (Total_allocated = Job_Size) move between two adjacent nodes, d@gdime units to
elserewm success. be routed through a node. Message sizes are repedse

by Re,, - Processors allocated to a job communicate with

go to Step 5. . L
each other using one of the two common communigatio

} end procedure

patterns [8, 18, 19]. The first communication pattées
one-to-all, where a randomly selected processodssen
packet to all other processors allocated to theesgnin.
The second communication pattern is all-to-all, whe

Figure 1: Outline of GABL allocation algorithm

Procedure GABL_Deallocate (): each processor allocated to a job sends a pe}ckall to_
{jid = id of the de_parting job; other processors allocated to the same job. '_I'r_us
For all elements in the busy list comn_1umcauon pattern causes much message _coII|S|on

if (element’s id = jid) and is known as the weak point for non-contiguous

remove the element from the busy list allocation algorithms [8]. _
} end procedure In all cases, processors allocated to a job arepathp

.) . - - to a linear array of processors using row-majoexiag.
Figure 2: Outline of GABL deallocation algorithm The simulator selects the sources and the destirati

_ from this array, and the mapping is used for deitgng
4. Performance Evaluation the x and y coordinates of the sources and destinations

of communication operations. As in [19], the numbér

In this s_ection, the results from simulations thate messages that are actually generated by a giverisjob
been carried out to evaluate the performance of theexponentially distributed with a mearunr mes .

proposed algorithm are presented and compared stgain
those of Paging(0), MBS and FF. To conserve spaee,
complexity analysis of the proposed algorithm igt no
included in this paper, but appears in [16]. Ren= 8 flits and num_mes=5 messages. The main
We have implemented the proposed allocation andperformance parameters used are the average turmhro
deallocation algorithms, including the busy lisutiaes, time of jobs and the mean system utilization. The
in the C language, and integrated the software théo turnaround time of a job is the time that the jplreds in
ProcSimity simulation tool for processor allocatiand the mesh from arrival to departure. The mean system
job scheduling in highly parallel systems [9, 14]. utilization is the percentage of processors thatuitized
The target mesh modelled in the simulation over time. The independent variable in the simatatis
experiments is square with side lengths Jobs are the system load. It is defined as the inverse efrtiean
assumed to have exponential inter-arrival timeeyTére inter-arrival time of jobs.
scheduled using FCFS and SSD scheduling strategies. The notation <allocation strategy>(<scheduling
The execution times of jobs are assumed to bestrategy>) is used to represent the strategieshen t
exponential distributed with a mean of one time.uhivo performance figures. For example, GABL(SSD) reters
distributions are used to generate the lengthsvédths the Greedy-Available-Busy-List allocation strategyder
of job requests. The first is the uniform distrioat over the scheduling strategy Shortest-Service-Demarst:Fir
[1,L], where the width and length of a request are In Figs. 3 and 4, the average turnaround time log jo
generated independently. The second distribution isplotted against the system load for the one-to-all
uniform-decreasing distribution. It is determined four communication pattern and the two scheduling giase
probabilities pl, p2, p3, and p4, respectively. The FCFS and SSD. The results reveal that GABL strategy
side lengths within a range are equally likely tour. For ~ performs better than all other strategies for ljothsize
the simulation results shown below1=0.4, p2=0.2, distributions and scheduling strategies considénetthis

p3=0.2, p4=0.2, I1=L/8, 12=L/4, 13=L/2, and paper. Furthermore, GABL strategy is substantially

~ o _ superior to the FF strategy for both job size distions
I4=L . These distributions have often been used in thegng scheduling strategies. In Fig. 3, for examphe,

literature [1, 3, 4, 15, 16, 19, 22]. Each simalatiun gifference in performance in favour for GABL(FCFS)

Unless specified otherwise, the performance figures
shown below are for a 16x16 meshy= 3 time units,

strategy could be as large as 64% compared to FHRFC results lead to the same conclusion on the relative
strategy, 36% to Paging(0)(FCFS) strategy, and 3d% performance of the allocation strategies. Moreovee,
MBS(FCFS) strategy under the job arrival rate 0320 results indicate that the relative performance taeof
jobs/time unit. Experiments that use larger messages GABL strategy over the remaining strategies become
(16, 32, and 64 flits) have been also conductecirTh more noticeable as the message length increases.

2 10760 -

'§ 9580 + —— FF(FCFS)

T 8400 - —aA— GABL(FCFS)

3 ggig 1 —e— Paging(0)(FCFS)

= il

% 4860 - —X¥— MBS(FCFS)

= 3680 - & - -FF(SSD)

& iggg 1 - A- - - GABL(SSD)

2 140 - 9 - -Paging(0)(SSD)
5E-04 0.003 0.005 0.007 0.009 0.011 0.013 0.015 0.017 0.019 0.021 |-~ * - -MBS(SSD)

Load

Figure 3: Average turnaround time vs. system load for the one-to-all communication
pattern and uniform side lengths distribution.

2 5000 -

'E 4500 - —— FF(FCFS)

5 4000 - —A— GABL(FCFS)

S 3500 |

© 3000 A —@— Paging(0)(FCFS)

g 2500 - —>— MBS(FCFS)

2 2000 - - - & - -FF(SSD)

> 1500 -

2 1000 - - - A - -GABL(SSD)

5 500 4 ,

<>(0 - - 4 - -Paging(0)(SSD)
0.0005 0.0105 0.0205 0.0305 0.0405 0.0505 0.0605 0.0705 0.0805 0.0905 - - X - -MBS(SSD)

Load

Figure 4: Average turnaround time vs. system load for the one-to-all communication
pattern and uniform-decreasing side lengths distribution.

In Figs. 5 and 6, the average turnaround time log je Fig. 7 depicts the mean system utilization of the
plotted against the system load for the all-to-all allocation strategies GABL(FCFS), MBS(FCFS),
communication pattern and the two scheduling gfiet¢e = Paging(0)(FCFS), and FF(FCFS) for the two
FCFS and SSD. Again, GABL strategy performs much communication patterns considered and FCFS scmeduli
better than all other strategies for both job size strategy under uniform-decreasing side lengths
distributions and scheduling strategies. Moreo@ABL distribution. The simulation results in this figuee
strategy is substantially superior to FF strategy foth presented for a heavy system load. The load is thath
job size distributions and scheduling strategies. the waiting queue is filled very early, allowing cka
Experiments that use larger messages sizes (16r8R, allocation strategy to reach its upper limits dfizdtion.

64 flits) have lead to the same conclusion as ® th For both job size distributions, uniform and unifoer
relative performance of the strategies. Fig. 6 efcample, decreasing, the non-contiguous allocation strasegie
depicts that when the job arrival rate is 0.1 jolve unit, achieve a mean system utilization of 72% to 79%,Hfu

the average turnaround time of GABL(FCFS) are 0.17,can not exceed 49%. This is because contiguous
0.28, and 0.30 of the average turnaround time ofallocation produces high external fragmentation,jcivh
FF(FCFS), Paging(0)(FCFS), and MBS(FCFS) means that allocation is less likely to succeed. &s
respectively. consequent, the mean system utilization is lowdre T

utilization of the three non-contiguous allocation greater than or equal the allocation request. Bmxymerts
strategies is approximately the same for both jaie s that compute the utilization based on SSD stratemye
distributions. This is because the non-contiguous been also conducted. Their results lead to the same
allocation strategies, considered in this papevgehihe conclusion as in FCFS strategy. To conserve sphee,
same ability to eliminate both internal and extérna results of the mean system utilization under unif@ide
processor fragmentation. They always succeed doatt length distribution are not included in this papbut
processors to a job when the number of free procgss appear in [16].

£ 14800 -

; 12700 4 —8—FF(FCFS)

§ 10600 - —aA— GABL(FCFS)

5 8500 - —e— Paging(0)(FCFS)

S 6400 - —¥— MBS(FCFS)

}_

p 43007 - - & - -FF(SSD)

S 2200 - SR

S 3 SR - - A - -GABL(SSD)

< lO(c)) (705 0’01 0.015 0.02 0.025 0.03 0035 | & Paging(0)(SSD)
' : ' ' i ' i - - ¥ - -MBS(SSD)

Load

Figure 5: Average turnaround time vs. system load for the all-to-all communication pattern
and uniform side lengths distribution.

£ 4900 -

= 4300 - —®—FF(FCFS)

=]

5 3790° —A— GABL(FCFS)

o B

g 5500 Paging(0)(FCFS)

&€ 2500 - ——

> 1900 - —— MBS(FCFS)

® 1300 - - - @ - -FF(SSD)

g /90 - - A - -GABL(SSD)

< 100o 01 002 003 004 005 006 007 008 009 01 | o -20ng(0)SSD)
' ' ' ' ' ' ' ' ' * |- - % - -MBS(SSD)

Load

Figure 6: Average turnaround time vs. system load for the all-to-all communication
pattern and uniform-decreasing side lengths distribution.

F 7
1.22 - 2 o 8
0.92 - 5 Q 3 Q el
c 0.82 — 2 & & & MFF(FCFS)
2 3 B GABL(FCFS)
= a B Paging(0)(FCFS)
= m EMBS(FCFS)

One to All All to All

Figure 7: System utilization of the non-contiguous allocation strategies (GABL, MBS,
Paging(0)) and contiguous allocation strategy FF, for the two communication patterns
tested, and uniform-decreasing side lengths distribution.

In addition to the turnaround time and system List, which differs from the earlier non-contiguous
utilization we have measured another performanceallocation strategies in the method used for de@simg
parameter for the non-contiguous allocation stiakeg allocation requests. The GABL strategy decompokes t
This is the average blocks per job, which is defiae the allocation requests based on the sub-meshes aeaitab
average number of non-contiguous blocks allocated t allocation. The major goal of the partitioning pess is to
job. The higher the average blocks the more likelg maintain a high degree of contiguity among processo
that the job’s messages will go through nodes atkmt to allocated to a job. This decreases the number bf su
other jobs, potentially causing more contentiontlie meshes allocated to a job, hence decreases tlanahst
interconnection network [19]. Fig. 8 shows that the traversed by messages, and which in turn decrdhses
average blocks per job for the non-contiguous atiot communication overhead. GABL strategy achieves this
strategies that gave the best performance (GABL andby using a busy list whose length is often smakrev
MBS strategies), for all-to-all communication pattend when the size of the mesh scales up.
uniform side length distribution under both schéauyl The performance of GABL strategy was compared
strategies FCFS and SSD. It can be seen that GABLagainst that of existing non-contiguous and cormticgu
strategy has lower average blocks per job than MBSallocation strategies using both FCFS and SSD
strategy over all loads under the two schedulingtegies scheduling strategies. Simulation results have shtnat
FCFS and SSD. For example, the average blocksoper j GABL strategy can greatly improve performance despi
of GABL(FCFS) allocation strategy are 0.54, 0.58da the additional message contention inside the nétwaat
0.60 of the average blocks per job of MBS(FCFS) results from the interference among the messages of
allocation strategy when the job arrival rates @u@25, different jobs. GABL strategy also produces superio
0.03, and 0.035 jobs/time unit, respectively. This system utilization than its contiguous counterpdie
conclusion is compatible with the values of the mea results have also revealed that GABL strategy is
turnaround time shown above. To conserve space, thesubstantially superior over the previous well-knomon-
results of the average blocks per job for the analt contiguous allocation strategies considered in plaiger.
communication pattern under both job size distiing Results have also shown that the effects of the SSD
and also for all-to-all communication pattern and scheduling strategy on the performance of the ation
uniform-decreasing side lengths distribution aret no strategies is substantially better than that of H@&FS
included in this paper, but appear in [16]. scheduling strategy in terms of mean turnarounck.tim

To sum up, the above performance results demoastrat Moreover, GABL strategy can be efficient becauses it
that GABL strategy is the most flexible allocation implemented using a busy list approach. This apyproa
strategy. Overall, it is superior to all other ttaes can be expected to be efficient in practice becgole
considered in this paper; including when contentisn sizes typically grow with the size of the mesh.

heavy (the communication pattern is all-to-all). As a continuation of this research in the futute, i
would be interesting to assess the suggested atloca
5. Conclusions and Future Directions strategy in other common multicomputer networkshsu

as torus networks. Another possible line for future

This paper has investigated the performance mefits research is to implement our strategy based on real
non-contiguous allocation in the 2D mesh network. T workload traces from different parallel machinesd an
this end, we have suggested a new non-contiguougompare it with our results obtained by means of
allocation strategy, referred to as Greedy-AvadaBlisy- simulations.

—aA— GABL(FCFS)
—— MBS(FCFS)
- - A - -GABL(SSD)
- - % - -MBS(SSD)

Average Blocks Per Job
OO FRP N WMOIO

.005 0.01 0.015 0.02 0.025 0.03 0.035
Load

Figure 8: Average blocks per job vs. system load for the all-to-all communication pattern
and uniform side lengths distribution.

6. References

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

(10]

(11]

(12]

B.-S.Yoo, C.-R. Das, “A Fast and Efficient Pessor
Allocation Scheme for Mesh-Connected
Multicomputers”, IEEE Transactions on Parallel &
Distributed Systems, vol. 51, no, [EEE Computer
Society, Washington, USA, January 2002, pp. 46-60.
C.-Y. Chang, P. Mohapatra, “Performance improeet

of allocation schemes for mesh-connected compuyters”
Journal of Parallel and Distributed Computingol. 52,
no. 1, Academic Press, Inc. Orlando, FL, USA, July
1998, pp. 40-68.

G.-M. Chiu, S.-K. Chen, “An efficient submesh
allocation scheme for two-dimensional meshes viitle |
overhead” |EEE Transactions on Parallel & Distributed
Systems, vol. 10, no., 3EEE Press, Piscataway, NJ,
USA, May 1999, pp. 471-486.

I. Ababneh, “An efficient free-list submesh adhtion
scheme for two-dimensional mesh-connected
multicomputers”,Journal of Systems and Softwavel.

79, no. 8 Elsevier Science Inc., New York, NY, USA,
August 2006, pp. 1168-1179.

I. Ismail, J. Davis, “Program-based static a#tion
policies for highly parallel computersProc. IPCCC95,
IEEE Computer Society Press, Scottsdale, AZ, USA, 2
31 Mar 1995, pp. 61-68.

Intel Corporation, A Touchstone DELTA system
description 1991.

K. Li, K.-H. Cheng, “A Two-Dimensional Buddy
System for Dynamic Resource Allocation in a
Partitionable Mesh Connected SystemJournal of
Parallel and Distributed Computingvol. 12, no. 1
Elsevier Science, CA, USA, May 1991, pp. 79-83.

K. Suzaki, H. Tanuma, S. Hirano, Y. Ichisugi,. C
Connelly, and M. Tsukamoto, “Multi-tasking Method o
Parallel Computers which Combines a Contiguous and
Non-contiguous Processor Partitioning Algorithm”,
Proceedings of the Third International Workshop on
Applied Parallel Computing, Industrial Computatiand
Optimization,Springer-Verlag, UK, 1996, pp. 641-650.

K. Windisch, J. V. Miller, and V. Lo, “ProcSiny: an
experimental tool for processor allocation and dclieg

in highly parallel systems”Proceedings of the Fifth
Symposium on the Frontiers of Massively Parallel
Computation (Frontiers'95) IEEE Computer Society
Press, Washington, USA, 6-9 Feb 1995, pp. 414-421.
K.-H. Seo, “Fragmentation-Efficient Node Allaton
Algorithm in 2D Mesh-Connected Systems”,
Proceedings of the 8th International Symposium on
Parallel Architecture, Algorithms and Networks
(ISPAN'05) IEEE Computer Society Press, Washington,
DC, USA, 7-9 December, 2005, pp. 318-323.

M. Blumrich, D. Chen, P. Coteus, A. Gara, M.
Giampapa, P. Heidelberger, S. Singh, B. Steinmacher
Burow, T. Takken and P. Vranas, “Design and Analysi
of the BlueGene/L Torus Interconnection Network”,
IBM Research Report RC2302BM Research Division,
Thomas J. Watson Research Center, Dec. 3, 2003.

P. Krueger, T. Lai, V. A. Radiya, “Job schedg! is
more important than processor allocation for hypkec

(13]

(14]

(19]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

computers”, IEEE Transactions on Parallel and
Distributed Systems, vol. 5, no., 5 IEEE Press,
Piscataway, NJ, USA, May 1994, pp. 488-497.

P.-J. Chuang, N.-F. Tzeng, “Allocating precise
submeshes in mesh connected system$EEE
Transactions on Parallel and Distributed Systenod, ¥,
no. 2 IEEE Press, USA, February 1994, pp. 211-217.
ProcSimity V4.3 User’s Manual, University ofr€yon,
1997.

S. Bani-Mohammad, M. Ould-Khaoua, |. Ababnahd

L. Machenzie, “Non-contiguous Processor Allocation
Strategy for 2D Mesh Connected Multicomputers Based
on Sub-meshes Available for AllocationProceedings
of the 13' International Conference on Parallel and
Distributed Systems (ICPADS’'06), vol. 2EEE
Computer Society Press, USA, 2006, pp. 41-48.

S. Bani-Mohammad, M. Ould-Khaoua, |. Ababnahd

L. Machenzie, “A Fast and Efficient Processor
Allocation Strategy which Combines a Contiguous and
Non-contiguous Processor Allocation Algorithms”,
Technical Report; TR-2007-229CS Technical Report
Series, Department of Computing Science, University
Glasgow, January 2007.

T. Srinivasan, J. Seshadri, A. Chandrasekhar,
Jonathan, “A Minimal Fragmentation Algorithm forska
Allocation in Mesh-Connected Multicomputers”,
Proceedings of IEEE International Conference on
Advances in Intelligent Systems - Theory and
Applications — AISTA 2004 in conjunction with IEEE
Computer Society, ISBN 2-9599-77681BEE Press,
Luxembourg, Western Europe, 15-18 Nov 2004.

V. Kumar, A. Grama, A. Gupta, and G. Karypis,
Introduction To Parallel Computing The
Benjamin/Cummings publishing Company, Inc.,
Redwood City, California, 2003.

V. Lo, K. Windisch, W. Liu, and B. Nitzberg,Non-
contiguous processor allocation algorithms for mesh
connected multicomputers”|JEEE Transactions on
Parallel and Distributed Systemsol. 8, no. 7 IEEE
Press, Piscataway, NJ, USA, July 1997, pp. 712-726.
W. Mao, J. Chen, W. Watson, “Efficient Subtsru
Processor Allocation in a Multi-Dimensional Torus”,
Proceedings of the 8th International Conference on
High-Performance Computing in Asia-Pacific Region
(HPCASIA'05) IEEE Computer Society, Washington,
DC, USA, 30 November - 3 December, 2005, pp. 53-60.
Y. Aridor, T. Domany, O. Goldshmidt, Y. Kliteyk, J.
Moreira, and E. Shmueli, “Open Job Management
Architecture for the Blue gene/L Supercomputer”,
Proceedings of the M Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP;0Springer
Berlin / Heidelberg, Cambridge, MA, June 19, 2008,
91-107.

Y. Zhu, “Efficient processor allocation strgies for
mesh-connected parallel computerdurnal of Parallel
and Distributed Computing, vol. 16, na. Blsevier, San
Diego, CA, 1992, pp. 328-337.

	citation_temp.pdf
	http://eprints.gla.ac.uk/3496/

