

Bani-Mohammad, S. and Ould-Khaoua, M. and Abaneh, I. and
Mackenzie, L. (2007) An efficient processor allocation strategy that
maintains a high degree of contiguity among processors in 2D mesh
connected multicomputers. In, ACS/IEEE International Conference on
Computer Systems and Applications, AICCSA 2007, 13-16 May 2007,
pages pp. 934-941, Amman, Jordan.

http://eprints.gla.ac.uk/3496/

An Efficient Processor Allocation Strategy that Maintains a High Degree of
Contiguity among Processors in 2D Mesh Connected Multicomputers

S. Bani-Mohammad
Glasgow University,
Computing Science,
Glasgow G12 8RZ,

UK.
saad@dcs.gla.ac.uk

M. Ould-Khaoua
Glasgow University,
Computing Science,
Glasgow G12 8RZ,

UK.
mohamed@dcs.gla.ac.uk

I. Ababneh
Al al-Bayt University,
Computing Science,

Mafraq 25113,
Jordan.

ismail@aabu.edu.jo

Lewis M. Mackenzie
Glasgow University,
Computing Science,
Glasgow G12 8RZ,

UK.
lewis@dcs.gla.ac.uk

Abstract

Two strategies are used for the allocation of jobs to
processors connected by mesh topologies: contiguous
allocation and non-contiguous allocation. In non-
contiguous allocation, a job request can be split into
smaller parts that are allocated to non-adjacent free sub-
meshes rather than always waiting until a single sub-
mesh of the requested size and shape is available. Lifting
the contiguity condition is expected to reduce processor
fragmentation and increase system utilization. However,
the distances traversed by messages can be long, and as a
result the communication overhead, especially
contention, is increased. The extra communication
overhead depends on how the allocation request is
partitioned and assigned to free sub-meshes. This paper
presents a new Non-contiguous allocation algorithm,
referred to as Greedy-Available-Busy-List (GABL for
short), which can decrease the communication overhead
among processors allocated to a given job. The
simulation results show that the new strategy can reduce
the communication overhead and substantially improve
performance in terms of parameters such as job
turnaround time and system utilization. Moreover, the
results reveal that the Shortest-Service-Demand-First
(SSD) scheduling strategy is much better than the First-
Come-First-Served (FCFS) scheduling strategy.

1. Introduction

In a multicomputer, processor allocation is responsible
for selecting the set of processors on which parallel jobs
are executed, while job scheduling is responsible for
determining the order in which the jobs are executed.
Most allocation strategies employed in a multicomputer
are based on contiguous allocation, where the processors

allocated to a parallel job are physically contiguous and
have the same topology as that of the interconnection
network of the multicomputer [1, 3, 4, 5, 7, 13, 22].
Contiguous strategies often result in high external
processor fragmentation, as has been shown in [22].
External processor fragmentation occurs when there are
free processors sufficient in number to satisfy the number
requested by a parallel job, but they are not allocated to it
because the free processors are not contiguous or they do
not have the same topology as the multicomputer.

Several studies have attempted to reduce external
processor fragmentation [2, 8, 10, 15, 17, 19]. One
suggested solution is to adopt non-contiguous allocation
[2, 8, 15, 19]. In non-contiguous allocation, a job can
execute on multiple disjoint smaller sub-networks rather
than always waiting until a single sub-network of the
requested size and shape is available. Although non-
contiguous allocation increases message contention in the
network, lifting the contiguity condition is expected to
reduce processor fragmentation and increase processor
utilization [2, 15, 19]. It is the introduction of wormhole
routing [18] that has lead researchers to consider non-
contiguous allocation on multicomputer networks with a
long communication distances, such as the 2D mesh [2,
15, 19]. This is due to the fact that one of main
advantages of wormhole routing over earlier
communication schemes, e.g. store-and-forward, is that
message latency depends less on the distance the message
travels from source to destination [2, 18]. Nonetheless,
most existing research studies have been conducted in the
context of contiguous allocation [1, 3, 4, 5, 7, 13, 17, 22].
There has been comparatively very little work on non-
contiguous allocation. Whereas contiguous allocation
eliminates contention among the messages of
concurrently executing jobs, non-contiguous allocation
can eliminate external processor fragmentation that
contiguous allocation suffers from.

Most existing research on contiguous and non-
contiguous allocation has been carried out in the context
of the 2D mesh [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 17, 19, 22].
The mesh network has been used as the underlying
network in a number of practical and experimental
parallel machines, such as IBM BlueGene/L [11, 21] and
Delta Touchstone [6]. The method used for decomposing
allocation requests in existing non-contiguous allocation
schemes are not based on free contiguous sub-meshes.
For example, allocation requests are subdivided into two
equal parts in [2]. The subparts are successively
subdivided in a similar fashion if allocation fails for any
of them. In the study of [19], a promising strategy (MBS)
expresses the allocation request as a base-4 number, and
bases allocation on this expression. In this study, we
propose a new non-contiguous allocation strategy,
referred to here as Greedy-Available-Busy-List (GABL),
for the 2D mesh. GABL strategy combines the desirable
features of both contiguous and non-contiguous strategies
and partitions requests based on the sub-meshes available
for allocation. A major goal of the partitioning process is
to maintain a high degree of contiguity among the
processors allocated to a given parallel job. The
performance of GABL is compared against the
performance of the non-contiguous allocation strategies
Paging(0) and MBS [19]. These two strategies have been
selected because they have been shown to perform well in
[19]. Furthermore, GABL is also compared against the
contiguous First Fit strategy [22] as this has been used in
several previous related studies [2, 3, 19].

In addition to suggested allocation strategy, we use
two job scheduling strategies, notably First-Come-First-
Served (FCFS) and Shortest-Service-Demand-First (SSD)
to compare the performance of allocation strategies. In
FCFS, the allocation request that arrived first is
considered for allocation first. Allocation attempts stop
when they fail for the current FIFO queue head, while in
SSD, the job with the shortest service demand is
scheduled first [12].

The rest of the paper is organized as follows. Section 2
contains a brief summary of previous allocation
strategies. Section 3 describes our proposed non-
contiguous allocation strategy. Section 4 compares the
performance of the contiguous and non-contiguous
allocation strategies. Finally, Section 5 concludes this
study.

2. Related Work

To conserve space, this section provides a brief

overview of some existing non-contiguous allocation
strategies, the existing contiguous allocation strategies are
not included in this paper, but appear in [16].

2.1 Non-Contiguous Allocation Strategies

Advances in routing techniques such as wormhole

routing [18], has made communication latency less
sensitive to the distance between communicating nodes
[2]. This has made allocating a job to non-contiguous
processors plausible in networks characterised by a long-
diameter, such the 2D mesh. Non-contiguous allocation
allows jobs to be executed without waiting if the number
of available processors is sufficient [2, 15, 19]. Below, we
describe some non-contiguous strategies that have been
suggested in the literature.

Paging: In the Paging strategy [19], the entire 2D
mesh is divided into pages that are sub-meshes with equal

sides’ length of indexsize_2 , where indexsize_ is a

positive integer. The pages are indexed according to
several indexing schemes (row-major, shuffled row-
major, snake-like, and shuffled snake-like indexing). The
number of pages a job requests is computed by:

() Psizeba /× , where Psize is the size of the pages, and

a and b are the side lengths of the requested sub-mesh.
In this paper, we only consider the row-major indexing
scheme because using the remaining indexing schemes
has only a slight impact on the performance of Paging, as
has been demonstrated in [19].

Multiple Buddy System (MBS): In MBS, the mesh
network is divided into non-overlapped square sub-
meshes with side lengths that are powers of 2. The
number of processors, p , requested by an incoming job

is factorized into a base-4 representation of the

form: () 

∑
=

××
p

i

ii
id

4log

0

22 , where 30 ≤≤ id . The request is

then considered for allocation according to the factorized

number, where id blocks of size ii 22 × are required. If a

required block is unavailable, MBS recursively searches
for a larger block and repeatedly breaks it down into four
buddies until it produces blocks of the desired size. If that
fails, the requested block is broken into four requests for
smaller blocks and the searching process is repeated [19].

Adaptive Non-Contiguous Allocation (ANCA): ANCA
first attempts to allocate a job contiguously. When
contiguous allocation fails, it breaks the request into two
equal-sized sub-frames. These sub-frames are then
allocated to available locations, if possible; otherwise,
each of these sub-frames is broken into two equal-sized
sub-frames, then ANCA tries to assign these sub-frames
to available locations and thus take advantage of non-
contiguous allocation, and so on [2].

In Paging, there is some degree of contiguity because
of the indexing schemes used. Contiguity can also be
increased by increasing the parameter indexsize_ .

However, there is internal processor fragmentation for
1_ ≥indexsize , and it increases with indexsize_ [19].

An issue with MBS is that it may fail to allocate a
contiguous sub-mesh although one exists. In fact,
contiguous allocation is explicitly sought in MBS only for

requests with sizes of the form n22 , where n is a
positive integer. As for ANCA, it can disperse the
allocated sub-meshes more than it is necessary. It requires
that allocation to all sub-frames occur in the same
decomposition and allocation iteration, skipping over the
possibility of allocating larger sub-meshes for a large part
of the request in a previous iteration. Moreover, ANCA
halts the decomposition and search processes when a side
length reaches 1, which can cause external fragmentation.
The main goal of our proposed strategy is to achieve a
larger degree of contiguity than the previous non-
contiguous allocation strategies. This is so that the
communication overhead is lower and the overall system
performance is superior.

3. The Proposed Allocation Strategy

In the following, we present the system model
assumed in this paper. The target system is a LW × 2D
mesh, where W is the width of the mesh and L is its
length. Every processor is denoted by a pair of
coordinates (yx,), where Wx <≤0 and Ly <≤0 [15].

Each processor is connected by bidirectional
communication links to its neighbour processors. The
following definitions have been adopted from [15].

Definition 1: A sub-mesh),(lwS of width w and length

l , where Ww <≤0 and Ll <≤0 is specified by the
coordinates (yx,) and (yx ′′,), where (yx,) is the lower

left corner of S and (yx ′′,) is its upper right corner. The

lower left corner node is called the base node of the sub-
mesh, whereas the upper right corner node is the end
node.

Definition 2: The size of),(lwS is lw× .

Definition 3: An allocated sub-mesh is one whose
processors are all allocated to a parallel job.

Definition 4: A free sub-mesh is one whose processors
are all not allocated.

An allocation request can be accommodated
contiguously if and only if a suitable sub-mesh is
available [3]. In this study, it is assumed that parallel jobs
are selected for allocation and execution using FCFS and
SSD scheduling strategies. The FCFS scheduling strategy
is chosen because it is fair and it is widely used in other
similar studies [2, 3, 4, 10, 15, 19, 20, 22], while the SSD
scheduling strategy is used to avoid potential performance

loss due to blocking [12]. In the next sub-section, we
describe the non-contiguous allocation strategy.

3.1 Greedy-Available-Busy-List Strategy (GABL)

The GABL strategy combines the desirable features of

both contiguous and non-contiguous allocation, and
partitions requests based on the sub-meshes available for
allocation. In implementing GABL, we exploit an
efficient approach, the Right of Busy Sub-meshes (RBS)
approach proposed in [3], for the detection of such
available sub-meshes. The basic idea of RBS is to
maintain a list of the allocated sub-meshes sorted in the
non-increasing order of the second coordinate of their
upper right corners. The list is used to determine all
forbidden regions consisting of the nodes that cannot
serve as base nodes for the requested sub-mesh. The
forbidden regions are then subtracted from the right
border lines of the allocated sub-meshes so as to locate
nodes that could be used as base nodes for the required
sub-mesh.

In GABL strategy, when a parallel job is selected for
allocation a sub-mesh suitable for the entire job is
searched for. If such a sub-mesh is found it is allocated to
the job and the allocation is done. Otherwise, the largest
free sub-mesh that can fit inside),(baS is allocated.

Then, the largest free sub-mesh whose side lengths do not
exceed the corresponding side lengths of the previous
allocated sub-mesh is searched for under the constraint
that the number of processors allocated does not exceed

ba× . This last step is repeated until ba× processors are
allocated. Allocated sub-meshes are kept in a busy list.
Each element in this list includes the id of the job the
sub-mesh is allocated to. When a job departs the sub-
meshes it is allocated are removed from the busy list and
the number of free processors is updated.

Allocation in GABL strategy is implemented by the
algorithm outlined in Fig. 1, while the deallocation
algorithm is outlined in Fig. 2. Note that allocation always
succeeds if the number of free processors ba×≥ .
Moreover, it can be noticed that the methodology used for
maintaining contiguity is greedy. GABL strategy attempts
to allocate large sub-meshes first.

Procedure Greedy-Available-Busy-List (a, b):
{Total_Allocated = 0; Job_Size = ba×

Step1. If (number of free processors < Job_Size)
return failure

Step2. If (there is a free S(x, y) suitable for S(a, b))
allocate it using RBS contiguous allocation
algorithm and return success.

Step3. α = a and β = b
Step4. Subtract 1 from max (α, β) if max > 1

Step5. If (Total _allocated + α × β > Job_Size)
go to step 4

Step6. If there is a free S (x, y) suitable for S(α, β){
 allocate it using RBS algorithm.
Total_allocated = Total_allocated + α × β.

}
Step7. If (Total_allocated = Job_Size)

return success.
else

go to Step 5.
} end procedure
Figure 1: Outline of GABL allocation algorithm

Procedure GABL_Deallocate ():
{jid = id of the departing job;

For all elements in the busy list
if (element’s id = jid)

remove the element from the busy list
} end procedure
Figure 2: Outline of GABL deallocation algorithm

4. Performance Evaluation

In this section, the results from simulations that have

been carried out to evaluate the performance of the
proposed algorithm are presented and compared against
those of Paging(0), MBS and FF. To conserve space, the
complexity analysis of the proposed algorithm is not
included in this paper, but appears in [16].

We have implemented the proposed allocation and
deallocation algorithms, including the busy list routines,
in the C language, and integrated the software into the
ProcSimity simulation tool for processor allocation and
job scheduling in highly parallel systems [9, 14].

The target mesh modelled in the simulation
experiments is square with side lengths L . Jobs are
assumed to have exponential inter-arrival times. They are
scheduled using FCFS and SSD scheduling strategies.
The execution times of jobs are assumed to be
exponential distributed with a mean of one time unit. Two
distributions are used to generate the lengths and widths
of job requests. The first is the uniform distribution over
[1, L], where the width and length of a request are
generated independently. The second distribution is
uniform-decreasing distribution. It is determined by four
probabilities 1p , 2p , 3p , and 4p , respectively. The

side lengths within a range are equally likely to occur. For
the simulation results shown below, 1p =0.4, 2p =0.2,

3p =0.2, 4p =0.2, 8/1 Ll = , 4/2 Ll = , 2/3 Ll = , and

Ll =4 . These distributions have often been used in the
literature [1, 3, 4, 15, 16, 19, 22]. Each simulation run

consists of 1000 completed jobs. Simulation results are
averaged over enough independent runs so that the
confidence level is 95% and the relative errors do not
exceed 5%.

The interconnection network uses wormhole,
XY routing. Flits are assumed to take one time unit to
move between two adjacent nodes, and st time units to

be routed through a node. Message sizes are represented
by lenP . Processors allocated to a job communicate with

each other using one of the two common communication
patterns [8, 18, 19]. The first communication pattern is
one-to-all, where a randomly selected processor sends a
packet to all other processors allocated to the same job.
The second communication pattern is all-to-all, where
each processor allocated to a job sends a packet to all
other processors allocated to the same job. This
communication pattern causes much message collision
and is known as the weak point for non-contiguous
allocation algorithms [8].

In all cases, processors allocated to a job are mapped
to a linear array of processors using row-major indexing.
The simulator selects the sources and the destinations
from this array, and the mapping is used for determining
the x and y coordinates of the sources and destinations

of communication operations. As in [19], the number of
messages that are actually generated by a given job is
exponentially distributed with a mean mesnum_ .

Unless specified otherwise, the performance figures
shown below are for a 16×16 mesh, st = 3 time units,

lenP = 8 flits and 5_ =mesnum messages. The main

performance parameters used are the average turnaround
time of jobs and the mean system utilization. The
turnaround time of a job is the time that the job spends in
the mesh from arrival to departure. The mean system
utilization is the percentage of processors that are utilized
over time. The independent variable in the simulation is
the system load. It is defined as the inverse of the mean
inter-arrival time of jobs.

The notation <allocation strategy>(<scheduling
strategy>) is used to represent the strategies in the
performance figures. For example, GABL(SSD) refers to
the Greedy-Available-Busy-List allocation strategy under
the scheduling strategy Shortest-Service-Demand-First.

In Figs. 3 and 4, the average turnaround time of jobs is
plotted against the system load for the one-to-all
communication pattern and the two scheduling strategies
FCFS and SSD. The results reveal that GABL strategy
performs better than all other strategies for both job size
distributions and scheduling strategies considered in this
paper. Furthermore, GABL strategy is substantially
superior to the FF strategy for both job size distributions
and scheduling strategies. In Fig. 3, for example, the
difference in performance in favour for GABL(FCFS)

strategy could be as large as 64% compared to FF(FCFS)
strategy, 36% to Paging(0)(FCFS) strategy, and 31% to
MBS(FCFS) strategy under the job arrival rate 0.0205
jobs/time unit. Experiments that use larger messages sizes
(16, 32, and 64 flits) have been also conducted. Their

results lead to the same conclusion on the relative
performance of the allocation strategies. Moreover, the
results indicate that the relative performance merits of
GABL strategy over the remaining strategies become
more noticeable as the message length increases.

140
1320
2500
3680
4860
6040
7220
8400
9580

10760

5E-04 0.003 0.005 0.007 0.009 0.011 0.013 0.015 0.017 0.019 0.021

Load

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e

FF(FCFS)

GABL(FCFS)

Paging(0)(FCFS)

MBS(FCFS)

FF(SSD)

GABL(SSD)

Paging(0)(SSD)

MBS(SSD)

Figure 3: Average turnaround time vs. system load for the one-to-all communication
pattern and uniform side lengths distribution.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0.0005 0.0105 0.0205 0.0305 0.0405 0.0505 0.0605 0.0705 0.0805 0.0905

Load

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e

FF(FCFS)

GABL(FCFS)

Paging(0)(FCFS)

MBS(FCFS)

FF(SSD)

GABL(SSD)

Paging(0)(SSD)

MBS(SSD)

Figure 4: Average turnaround time vs. system load for the one-to-all communication
pattern and uniform-decreasing side lengths distribution.

In Figs. 5 and 6, the average turnaround time of jobs is
plotted against the system load for the all-to-all
communication pattern and the two scheduling strategies
FCFS and SSD. Again, GABL strategy performs much
better than all other strategies for both job size
distributions and scheduling strategies. Moreover, GABL
strategy is substantially superior to FF strategy for both
job size distributions and scheduling strategies.
Experiments that use larger messages sizes (16, 32, and
64 flits) have lead to the same conclusion as to the
relative performance of the strategies. Fig. 6, for example,
depicts that when the job arrival rate is 0.1 jobs/time unit,
the average turnaround time of GABL(FCFS) are 0.17,
0.28, and 0.30 of the average turnaround time of
FF(FCFS), Paging(0)(FCFS), and MBS(FCFS)
respectively.

Fig. 7 depicts the mean system utilization of the
allocation strategies GABL(FCFS), MBS(FCFS),
Paging(0)(FCFS), and FF(FCFS) for the two
communication patterns considered and FCFS scheduling
strategy under uniform-decreasing side lengths
distribution. The simulation results in this figure are
presented for a heavy system load. The load is such that
the waiting queue is filled very early, allowing each
allocation strategy to reach its upper limits of utilization.
For both job size distributions, uniform and uniform-
decreasing, the non-contiguous allocation strategies
achieve a mean system utilization of 72% to 79%, but FF
can not exceed 49%. This is because contiguous
allocation produces high external fragmentation, which
means that allocation is less likely to succeed. As a
consequent, the mean system utilization is lower. The

utilization of the three non-contiguous allocation
strategies is approximately the same for both job size
distributions. This is because the non-contiguous
allocation strategies, considered in this paper, have the
same ability to eliminate both internal and external
processor fragmentation. They always succeed to allocate
processors to a job when the number of free processors is

greater than or equal the allocation request. Experiments
that compute the utilization based on SSD strategy have
been also conducted. Their results lead to the same
conclusion as in FCFS strategy. To conserve space, the
results of the mean system utilization under uniform side
length distribution are not included in this paper, but
appear in [16].

100
2200
4300
6400
8500

10600
12700
14800

0.005 0.01 0.015 0.02 0.025 0.03 0.035

Load

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e

FF(FCFS)

GABL(FCFS)

Paging(0)(FCFS)

MBS(FCFS)

FF(SSD)

GABL(SSD)

Paging(0)(SSD)

MBS(SSD)

Figure 5: Average turnaround time vs. system load for the all-to-all communication pattern
and uniform side lengths distribution.

100
700

1300
1900
2500
3100
3700
4300
4900

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Load

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e

FF(FCFS)

GABL(FCFS)

Paging(0)(FCFS)

MBS(FCFS)

FF(SSD)

GABL(SSD)

Paging(0)(SSD)

MBS(SSD)

Figure 6: Average turnaround time vs. system load for the all-to-all communication
pattern and uniform-decreasing side lengths distribution.

F
F

(F
C

F
S

)

F
F

(F
C

F
S

)

G
A

B
L(F

C
F

S
)

G
A

B
L(F

C
F

S
)

P
aging(0)(F

C
F

S
)

P
aging(0)(F

C
F

S
)

M
B

S
(F

C
F

S
)

M
B

S
(F

C
F

S
)

0.02
0.12
0.22
0.32
0.42
0.52
0.62
0.72
0.82
0.92
1.02
1.12
1.22

One to All All to All

U
til

iz
at

io
n FF(FCFS)

GABL(FCFS)

Paging(0)(FCFS)

MBS(FCFS)

Figure 7: System utilization of the non-contiguous allocation strategies (GABL, MBS,
Paging(0)) and contiguous allocation strategy FF, for the two communication patterns
tested, and uniform-decreasing side lengths distribution.

In addition to the turnaround time and system
utilization we have measured another performance
parameter for the non-contiguous allocation strategies.
This is the average blocks per job, which is defined as the
average number of non-contiguous blocks allocated to a
job. The higher the average blocks the more likely it is
that the job’s messages will go through nodes allocated to
other jobs, potentially causing more contention in the
interconnection network [19]. Fig. 8 shows that the
average blocks per job for the non-contiguous allocation
strategies that gave the best performance (GABL and
MBS strategies), for all-to-all communication pattern and
uniform side length distribution under both scheduling
strategies FCFS and SSD. It can be seen that GABL
strategy has lower average blocks per job than MBS
strategy over all loads under the two scheduling strategies
FCFS and SSD. For example, the average blocks per job
of GABL(FCFS) allocation strategy are 0.54, 0.59, and
0.60 of the average blocks per job of MBS(FCFS)
allocation strategy when the job arrival rates are 0.025,
0.03, and 0.035 jobs/time unit, respectively. This
conclusion is compatible with the values of the mean
turnaround time shown above. To conserve space, the
results of the average blocks per job for the one-to-all
communication pattern under both job size distributions
and also for all-to-all communication pattern and
uniform-decreasing side lengths distribution are not
included in this paper, but appear in [16].

To sum up, the above performance results demonstrate
that GABL strategy is the most flexible allocation
strategy. Overall, it is superior to all other strategies
considered in this paper; including when contention is
heavy (the communication pattern is all-to-all).

5. Conclusions and Future Directions

This paper has investigated the performance merits of

non-contiguous allocation in the 2D mesh network. To
this end, we have suggested a new non-contiguous
allocation strategy, referred to as Greedy-Available-Busy-

List, which differs from the earlier non-contiguous
allocation strategies in the method used for decomposing
allocation requests. The GABL strategy decomposes the
allocation requests based on the sub-meshes available for
allocation. The major goal of the partitioning process is to
maintain a high degree of contiguity among processors
allocated to a job. This decreases the number of sub-
meshes allocated to a job, hence decreases the distance
traversed by messages, and which in turn decreases the
communication overhead. GABL strategy achieves this
by using a busy list whose length is often small even
when the size of the mesh scales up.

The performance of GABL strategy was compared
against that of existing non-contiguous and contiguous
allocation strategies using both FCFS and SSD
scheduling strategies. Simulation results have shown that
GABL strategy can greatly improve performance despite
the additional message contention inside the network that
results from the interference among the messages of
different jobs. GABL strategy also produces superior
system utilization than its contiguous counterpart. The
results have also revealed that GABL strategy is
substantially superior over the previous well-known non-
contiguous allocation strategies considered in this paper.
Results have also shown that the effects of the SSD
scheduling strategy on the performance of the allocation
strategies is substantially better than that of the FCFS
scheduling strategy in terms of mean turnaround time.
Moreover, GABL strategy can be efficient because it is
implemented using a busy list approach. This approach
can be expected to be efficient in practice because job
sizes typically grow with the size of the mesh.

As a continuation of this research in the future, it
would be interesting to assess the suggested allocation
strategy in other common multicomputer networks, such
as torus networks. Another possible line for future
research is to implement our strategy based on real
workload traces from different parallel machines and
compare it with our results obtained by means of
simulations.

0

1

2

3

4
5

6

0.005 0.01 0.015 0.02 0.025 0.03 0.035

Load

A
ve

ra
ge

 B
lo

ck
s

P
er

 J
ob

GABL(FCFS)

MBS(FCFS)

GABL(SSD)

MBS(SSD)

Figure 8: Average blocks per job vs. system load for the all-to-all communication pattern
and uniform side lengths distribution.

6. References

[1] B.-S.Yoo, C.-R. Das, “A Fast and Efficient Processor

Allocation Scheme for Mesh-Connected
Multicomputers”, IEEE Transactions on Parallel &
Distributed Systems, vol. 51, no. 1, IEEE Computer
Society, Washington, USA, January 2002, pp. 46-60.

[2] C.-Y. Chang, P. Mohapatra, “Performance improvement
of allocation schemes for mesh-connected computers”,
Journal of Parallel and Distributed Computing, vol. 52,
no. 1, Academic Press, Inc. Orlando, FL, USA, July
1998, pp. 40-68.

[3] G.-M. Chiu, S.-K. Chen, “An efficient submesh
allocation scheme for two-dimensional meshes with little
overhead”, IEEE Transactions on Parallel & Distributed
Systems, vol. 10, no. 5, IEEE Press, Piscataway, NJ,
USA, May 1999, pp. 471-486.

[4] I. Ababneh, “An efficient free-list submesh allocation
scheme for two-dimensional mesh-connected
multicomputers”, Journal of Systems and Software, vol.
79, no. 8, Elsevier Science Inc., New York, NY, USA,
August 2006, pp. 1168-1179.

[5] I. Ismail, J. Davis, “Program-based static allocation
policies for highly parallel computers”, Proc. IPCCC 95,
IEEE Computer Society Press, Scottsdale, AZ, USA, 28-
31 Mar 1995, pp. 61-68.

[6] Intel Corporation, A Touchstone DELTA system
description, 1991.

[7] K. Li, K.-H. Cheng, “A Two-Dimensional Buddy
System for Dynamic Resource Allocation in a
Partitionable Mesh Connected System”, Journal of
Parallel and Distributed Computing, vol. 12, no. 1,
Elsevier Science, CA, USA, May 1991, pp. 79-83.

[8] K. Suzaki, H. Tanuma, S. Hirano, Y. Ichisugi, C.
Connelly, and M. Tsukamoto, “Multi-tasking Method on
Parallel Computers which Combines a Contiguous and
Non-contiguous Processor Partitioning Algorithm”,
Proceedings of the Third International Workshop on
Applied Parallel Computing, Industrial Computation and
Optimization, Springer-Verlag, UK, 1996, pp. 641-650.

[9] K. Windisch, J. V. Miller, and V. Lo, “ProcSimity: an
experimental tool for processor allocation and scheduling
in highly parallel systems”, Proceedings of the Fifth
Symposium on the Frontiers of Massively Parallel
Computation (Frontiers'95), IEEE Computer Society
Press, Washington, USA, 6-9 Feb 1995, pp. 414-421.

[10] K.-H. Seo, “Fragmentation-Efficient Node Allocation
Algorithm in 2D Mesh-Connected Systems”,
Proceedings of the 8th International Symposium on
Parallel Architecture, Algorithms and Networks
(ISPAN’05), IEEE Computer Society Press, Washington,
DC, USA, 7-9 December, 2005, pp. 318-323.

[11] M. Blumrich, D. Chen, P. Coteus, A. Gara, M.
Giampapa, P. Heidelberger, S. Singh, B. Steinmacher-
Burow, T. Takken and P. Vranas, “Design and Analysis
of the BlueGene/L Torus Interconnection Network”,
IBM Research Report RC23025, IBM Research Division,
Thomas J. Watson Research Center, Dec. 3, 2003.

[12] P. Krueger, T. Lai, V. A. Radiya, “Job scheduling is
more important than processor allocation for hypercube

computers”, IEEE Transactions on Parallel and
Distributed Systems, vol. 5, no. 5, IEEE Press,
Piscataway, NJ, USA, May 1994, pp. 488-497.

[13] P.-J. Chuang, N.-F. Tzeng, “Allocating precise
submeshes in mesh connected systems”, IEEE
Transactions on Parallel and Distributed Systems, vol. 5,
no. 2, IEEE Press, USA, February 1994, pp. 211-217.

[14] ProcSimity V4.3 User’s Manual, University of Oregon,
1997.

[15] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and
L. Machenzie, “Non-contiguous Processor Allocation
Strategy for 2D Mesh Connected Multicomputers Based
on Sub-meshes Available for Allocation”, Proceedings
of the 12th International Conference on Parallel and
Distributed Systems (ICPADS’06), vol. 2, IEEE
Computer Society Press, USA, 2006, pp. 41-48.

[16] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and
L. Machenzie, “A Fast and Efficient Processor
Allocation Strategy which Combines a Contiguous and
Non-contiguous Processor Allocation Algorithms”,
Technical Report; TR-2007-229, DCS Technical Report
Series, Department of Computing Science, University of
Glasgow, January 2007.

[17] T. Srinivasan, J. Seshadri, A. Chandrasekhar, J.
Jonathan, “A Minimal Fragmentation Algorithm for Task
Allocation in Mesh-Connected Multicomputers”,
Proceedings of IEEE International Conference on
Advances in Intelligent Systems – Theory and
Applications – AISTA 2004 in conjunction with IEEE
Computer Society, ISBN 2-9599-7768-8, IEEE Press,
Luxembourg, Western Europe, 15-18 Nov 2004.

[18] V. Kumar, A. Grama, A. Gupta, and G. Karypis,
Introduction To Parallel Computing, The
Benjamin/Cummings publishing Company, Inc.,
Redwood City, California, 2003.

[19] V. Lo, K. Windisch, W. Liu, and B. Nitzberg, “Non-
contiguous processor allocation algorithms for mesh-
connected multicomputers”, IEEE Transactions on
Parallel and Distributed Systems, vol. 8, no. 7, IEEE
Press, Piscataway, NJ, USA, July 1997, pp. 712-726.

[20] W. Mao, J. Chen, W. Watson, “Efficient Subtorus
Processor Allocation in a Multi-Dimensional Torus”,
Proceedings of the 8th International Conference on
High-Performance Computing in Asia-Pacific Region
(HPCASIA’05), IEEE Computer Society, Washington,
DC, USA, 30 November - 3 December, 2005, pp. 53-60.

[21] Y. Aridor, T. Domany, O. Goldshmidt, Y. Kliteynik, J.
Moreira, and E. Shmueli, “Open Job Management
Architecture for the Blue gene/L Supercomputer”,
Proceedings of the 11th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP’05), Springer
Berlin / Heidelberg, Cambridge, MA, June 19, 2005, pp.
91-107.

[22] Y. Zhu, “Efficient processor allocation strategies for
mesh-connected parallel computers”, Journal of Parallel
and Distributed Computing, vol. 16, no. 4, Elsevier, San
Diego, CA, 1992, pp. 328-337.

	citation_temp.pdf
	http://eprints.gla.ac.uk/3496/

