
 

  
  
  
  
  
Bani-Mohammad, S. and Ould-Khaoua, M. and Abaneh, I. and 
Mackenzie, L. (2007) An efficient processor allocation strategy that 
maintains a high degree of contiguity among processors in 2D mesh 
connected multicomputers. In, ACS/IEEE International Conference on 
Computer Systems and Applications, AICCSA 2007, 13-16 May 2007, 
pages pp. 934-941, Amman, Jordan.

 
http://eprints.gla.ac.uk/3496/  
  
  
  
 



An Efficient Processor Allocation Strategy that Maintains a High Degree of 
Contiguity among Processors in 2D Mesh Connected Multicomputers 

 
 

S. Bani-Mohammad 
Glasgow University, 
Computing Science, 
Glasgow G12 8RZ, 

UK. 
saad@dcs.gla.ac.uk 

M. Ould-Khaoua 
Glasgow University, 
Computing Science, 
Glasgow G12 8RZ,  

UK. 
mohamed@dcs.gla.ac.uk 

I. Ababneh 
Al al-Bayt University, 
Computing Science, 

Mafraq 25113, 
Jordan. 

ismail@aabu.edu.jo 

Lewis M. Mackenzie 
Glasgow University, 
Computing Science, 
Glasgow G12 8RZ, 

UK. 
lewis@dcs.gla.ac.uk  

 
 

Abstract 
 

Two strategies are used for the allocation of jobs to 
processors connected by mesh topologies: contiguous 
allocation and non-contiguous allocation. In non-
contiguous allocation, a job request can be split into 
smaller parts that are allocated to non-adjacent free sub-
meshes rather than always waiting until a single sub-
mesh of the requested size and shape is available. Lifting 
the contiguity condition is expected to reduce processor 
fragmentation and increase system utilization. However, 
the distances traversed by messages can be long, and as a 
result the communication overhead, especially 
contention, is increased. The extra communication 
overhead depends on how the allocation request is 
partitioned and assigned to free sub-meshes. This paper 
presents a new Non-contiguous allocation algorithm, 
referred to as Greedy-Available-Busy-List (GABL for 
short), which can decrease the communication overhead 
among processors allocated to a given job. The 
simulation results show that the new strategy can reduce 
the communication overhead and substantially improve 
performance in terms of parameters such as job 
turnaround time and system utilization. Moreover, the 
results reveal that the Shortest-Service-Demand-First 
(SSD) scheduling strategy is much better than the First-
Come-First-Served (FCFS) scheduling strategy. 

 
 

1. Introduction 
 

In a multicomputer, processor allocation is responsible 
for selecting the set of processors on which parallel jobs 
are executed, while job scheduling is responsible for 
determining the order in which the jobs are executed. 
Most allocation strategies employed in a multicomputer 
are based on contiguous allocation, where the processors 

allocated to a parallel job are physically contiguous and 
have the same topology as that of the interconnection 
network of the multicomputer [1, 3, 4, 5, 7, 13, 22]. 
Contiguous strategies often result in high external 
processor fragmentation, as has been shown in [22]. 
External processor fragmentation occurs when there are 
free processors sufficient in number to satisfy the number 
requested by a parallel job, but they are not allocated to it 
because the free processors are not contiguous or they do 
not have the same topology as the multicomputer. 

Several studies have attempted to reduce external 
processor fragmentation [2, 8, 10, 15, 17, 19]. One 
suggested solution is to adopt non-contiguous allocation 
[2, 8, 15, 19]. In non-contiguous allocation, a job can 
execute on multiple disjoint smaller sub-networks rather 
than always waiting until a single sub-network of the 
requested size and shape is available. Although non-
contiguous allocation increases message contention in the 
network, lifting the contiguity condition is expected to 
reduce processor fragmentation and increase processor 
utilization [2, 15, 19]. It is the introduction of wormhole 
routing [18] that has lead researchers to consider non-
contiguous allocation on multicomputer networks with a 
long communication distances, such as the 2D mesh [2, 
15, 19]. This is due to the fact that one of main 
advantages of wormhole routing over earlier 
communication schemes, e.g. store-and-forward, is that 
message latency depends less on the distance the message 
travels from source to destination [2, 18]. Nonetheless, 
most existing research studies have been conducted in the 
context of contiguous allocation [1, 3, 4, 5, 7, 13, 17, 22]. 
There has been comparatively very little work on non-
contiguous allocation. Whereas contiguous allocation 
eliminates contention among the messages of 
concurrently executing jobs, non-contiguous allocation 
can eliminate external processor fragmentation that 
contiguous allocation suffers from.  



Most existing research on contiguous and non-
contiguous allocation has been carried out in the context 
of the 2D mesh [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 17, 19, 22]. 
The mesh network has been used as the underlying 
network in a number of practical and experimental 
parallel machines, such as IBM BlueGene/L [11, 21] and 
Delta Touchstone [6]. The method used for decomposing 
allocation requests in existing non-contiguous allocation 
schemes are not based on free contiguous sub-meshes. 
For example, allocation requests are subdivided into two 
equal parts in [2]. The subparts are successively 
subdivided in a similar fashion if allocation fails for any 
of them. In the study of [19], a promising strategy (MBS) 
expresses the allocation request as a base-4 number, and 
bases allocation on this expression. In this study, we 
propose a new non-contiguous allocation strategy, 
referred to here as Greedy-Available-Busy-List (GABL), 
for the 2D mesh. GABL strategy combines the desirable 
features of both contiguous and non-contiguous strategies 
and partitions requests based on the sub-meshes available 
for allocation. A major goal of the partitioning process is 
to maintain a high degree of contiguity among the 
processors allocated to a given parallel job. The 
performance of GABL is compared against the 
performance of the non-contiguous allocation strategies 
Paging(0) and MBS [19]. These two strategies have been 
selected because they have been shown to perform well in 
[19]. Furthermore, GABL is also compared against the 
contiguous First Fit strategy [22] as this has been used in 
several previous related studies [2, 3, 19].  

In addition to suggested allocation strategy, we use 
two job scheduling strategies, notably First-Come-First-
Served (FCFS) and Shortest-Service-Demand-First (SSD) 
to compare the performance of allocation strategies. In 
FCFS, the allocation request that arrived first is 
considered for allocation first. Allocation attempts stop 
when they fail for the current FIFO queue head, while in 
SSD, the job with the shortest service demand is 
scheduled first [12].  

The rest of the paper is organized as follows. Section 2 
contains a brief summary of previous allocation 
strategies. Section 3 describes our proposed non-
contiguous allocation strategy. Section 4 compares the 
performance of the contiguous and non-contiguous 
allocation strategies. Finally, Section 5 concludes this 
study. 

 
2. Related Work 

 
To conserve space, this section provides a brief 

overview of some existing non-contiguous allocation 
strategies, the existing contiguous allocation strategies are 
not included in this paper, but appear in [16]. 

2.1 Non-Contiguous Allocation Strategies 
 
Advances in routing techniques such as wormhole 

routing [18], has made communication latency less 
sensitive to the distance between communicating nodes 
[2]. This has made allocating a job to non-contiguous 
processors plausible in networks characterised by a long-
diameter, such the 2D mesh. Non-contiguous allocation 
allows jobs to be executed without waiting if the number 
of available processors is sufficient [2, 15, 19]. Below, we 
describe some non-contiguous strategies that have been 
suggested in the literature. 

Paging: In the Paging strategy [19], the entire 2D 
mesh is divided into pages that are sub-meshes with equal 

sides’ length of indexsize_2 , where indexsize_  is a 

positive integer. The pages are indexed according to 
several indexing schemes (row-major, shuffled row-
major, snake-like, and shuffled snake-like indexing). The 
number of pages a job requests is computed by: 

( ) Psizeba /× , where Psize is the size of the pages, and 

a  and b  are the side lengths of the requested sub-mesh. 
In this paper, we only consider the row-major indexing 
scheme because using the remaining indexing schemes 
has only a slight impact on the performance of Paging, as 
has been demonstrated in [19].  

Multiple Buddy System (MBS): In MBS, the mesh 
network is divided into non-overlapped square sub-
meshes with side lengths that are powers of 2. The 
number of processors, p , requested by an incoming job 

is factorized into a base-4 representation of the 

form: ( ) 

∑
=

××
p

i

ii
id

4log

0

22 , where 30 ≤≤ id . The request is 

then considered for allocation according to the factorized 

number, where id  blocks of size ii 22 ×  are required. If a 

required block is unavailable, MBS recursively searches 
for a larger block and repeatedly breaks it down into four 
buddies until it produces blocks of the desired size. If that 
fails, the requested block is broken into four requests for 
smaller blocks and the searching process is repeated [19].  

Adaptive Non-Contiguous Allocation (ANCA): ANCA 
first attempts to allocate a job contiguously. When 
contiguous allocation fails, it breaks the request into two 
equal-sized sub-frames. These sub-frames are then 
allocated to available locations, if possible; otherwise, 
each of these sub-frames is broken into two equal-sized 
sub-frames, then ANCA tries to assign these sub-frames 
to available locations and thus take advantage of non-
contiguous allocation, and so on [2]. 

In Paging, there is some degree of contiguity because 
of the indexing schemes used. Contiguity can also be 
increased by increasing the parameter indexsize_ . 



However, there is internal processor fragmentation for 
1_ ≥indexsize , and it increases with indexsize_  [19]. 

An issue with MBS is that it may fail to allocate a 
contiguous sub-mesh although one exists. In fact, 
contiguous allocation is explicitly sought in MBS only for 

requests with sizes of the form n22 , where n  is a 
positive integer. As for ANCA, it can disperse the 
allocated sub-meshes more than it is necessary. It requires 
that allocation to all sub-frames occur in the same 
decomposition and allocation iteration, skipping over the 
possibility of allocating larger sub-meshes for a large part 
of the request in a previous iteration. Moreover, ANCA 
halts the decomposition and search processes when a side 
length reaches 1, which can cause external fragmentation.  
The main goal of our proposed strategy is to achieve a 
larger degree of contiguity than the previous non-
contiguous allocation strategies. This is so that the 
communication overhead is lower and the overall system 
performance is superior. 

 
3. The Proposed Allocation Strategy 
 

In the following, we present the system model 
assumed in this paper. The target system is a LW ×  2D 
mesh, where W is the width of the mesh and L  is its 
length. Every processor is denoted by a pair of 
coordinates ( yx, ), where Wx <≤0  and Ly <≤0  [15]. 

Each processor is connected by bidirectional 
communication links to its neighbour processors. The 
following definitions have been adopted from [15]. 

Definition 1: A sub-mesh ),( lwS  of width w  and length 

l , where Ww <≤0  and Ll <≤0  is specified by the 
coordinates ( yx, ) and ( yx ′′, ), where ( yx, ) is the lower 

left corner of S  and ( yx ′′, ) is its upper right corner. The 

lower left corner node is called the base node of the sub-
mesh, whereas the upper right corner node is the end 
node.  

Definition 2: The size of ),( lwS  is lw× . 

Definition 3: An allocated sub-mesh is one whose 
processors are all allocated to a parallel job. 

Definition 4: A free sub-mesh is one whose processors 
are all not allocated. 

An allocation request can be accommodated 
contiguously if and only if a suitable sub-mesh is 
available [3]. In this study, it is assumed that parallel jobs 
are selected for allocation and execution using FCFS and 
SSD scheduling strategies. The FCFS scheduling strategy 
is chosen because it is fair and it is widely used in other 
similar studies [2, 3, 4, 10, 15, 19, 20, 22], while the SSD 
scheduling strategy is used to avoid potential performance 

loss due to blocking [12]. In the next sub-section, we 
describe the non-contiguous allocation strategy. 

 
3.1 Greedy-Available-Busy-List Strategy (GABL)  

 
The GABL strategy combines the desirable features of 

both contiguous and non-contiguous allocation, and 
partitions requests based on the sub-meshes available for 
allocation. In implementing GABL, we exploit an 
efficient approach, the Right of Busy Sub-meshes (RBS) 
approach proposed in [3], for the detection of such 
available sub-meshes. The basic idea of RBS is to 
maintain a list of the allocated sub-meshes sorted in the 
non-increasing order of the second coordinate of their 
upper right corners. The list is used to determine all 
forbidden regions consisting of the nodes that cannot 
serve as base nodes for the requested sub-mesh. The 
forbidden regions are then subtracted from the right 
border lines of the allocated sub-meshes so as to locate 
nodes that could be used as base nodes for the required 
sub-mesh.  

In GABL strategy, when a parallel job is selected for 
allocation a sub-mesh suitable for the entire job is 
searched for. If such a sub-mesh is found it is allocated to 
the job and the allocation is done. Otherwise, the largest 
free sub-mesh that can fit inside ),( baS  is allocated. 

Then, the largest free sub-mesh whose side lengths do not 
exceed the corresponding side lengths of the previous 
allocated sub-mesh is searched for under the constraint 
that the number of processors allocated does not exceed 

ba× . This last step is repeated until ba×  processors are 
allocated. Allocated sub-meshes are kept in a busy list. 
Each element in this list includes the id  of the job the 
sub-mesh is allocated to. When a job departs the sub-
meshes it is allocated are removed from the busy list and 
the number of free processors is updated. 

Allocation in GABL strategy is implemented by the 
algorithm outlined in Fig. 1, while the deallocation 
algorithm is outlined in Fig. 2. Note that allocation always 
succeeds if the number of free processors ba×≥ . 
Moreover, it can be noticed that the methodology used for 
maintaining contiguity is greedy. GABL strategy attempts 
to allocate large sub-meshes first. 

 
Procedure Greedy-Available-Busy-List (a, b): 
{Total_Allocated = 0; Job_Size = ba×  

Step1. If (number of free processors < Job_Size) 
return failure 

Step2.  If (there is a free S(x, y) suitable for S(a, b))  
allocate it using RBS contiguous allocation 
algorithm and return success. 

Step3. α = a and β = b 
Step4. Subtract 1 from max (α, β) if max > 1 



Step5. If (Total _allocated + α × β > Job_Size) 
go to step 4 

Step6. If there is a free S (x, y) suitable for S(α, β){ 
 allocate it using RBS algorithm. 
Total_allocated = Total_allocated + α × β. 

} 
Step7. If (Total_allocated = Job_Size)  

return success.  
else  

go to Step 5. 
} end procedure 
Figure 1: Outline of GABL allocation algorithm 

 

 
Procedure GABL_Deallocate (): 
{jid = id of the departing  job; 

For all elements in the busy list 
if (element’s id = jid) 

remove the element  from the busy list 
} end procedure 
Figure 2: Outline of GABL deallocation algorithm 
 

4. Performance Evaluation 
 
In this section, the results from simulations that have 

been carried out to evaluate the performance of the 
proposed algorithm are presented and compared against 
those of Paging(0), MBS and FF. To conserve space, the 
complexity analysis of the proposed algorithm is not 
included in this paper, but appears in [16].  

We have implemented the proposed allocation and 
deallocation algorithms, including the busy list routines, 
in the C language, and integrated the software into the 
ProcSimity simulation tool for processor allocation and 
job scheduling in highly parallel systems [9, 14]. 

The target mesh modelled in the simulation 
experiments is square with side lengths L . Jobs are 
assumed to have exponential inter-arrival times. They are 
scheduled using FCFS and SSD scheduling strategies. 
The execution times of jobs are assumed to be 
exponential distributed with a mean of one time unit. Two 
distributions are used to generate the lengths and widths 
of job requests. The first is the uniform distribution over 
[1, L ], where the width and length of a request are 
generated independently. The second distribution is 
uniform-decreasing distribution. It is determined by four 
probabilities 1p , 2p , 3p , and 4p , respectively. The 

side lengths within a range are equally likely to occur. For 
the simulation results shown below, 1p =0.4, 2p =0.2, 

3p =0.2, 4p =0.2, 8/1 Ll = , 4/2 Ll = , 2/3 Ll = , and 

Ll =4 . These distributions have often been used in the 
literature [1, 3, 4, 15, 16, 19, 22]. Each simulation run 

consists of 1000 completed jobs. Simulation results are 
averaged over enough independent runs so that the 
confidence level is 95% and the relative errors do not 
exceed 5%.  

The interconnection network uses wormhole, 
XY routing. Flits are assumed to take one time unit to 
move between two adjacent nodes, and st  time units to 

be routed through a node. Message sizes are represented 
by lenP . Processors allocated to a job communicate with 

each other using one of the two common communication 
patterns [8, 18, 19]. The first communication pattern is 
one-to-all, where a randomly selected processor sends a 
packet to all other processors allocated to the same job. 
The second communication pattern is all-to-all, where 
each processor allocated to a job sends a packet to all 
other processors allocated to the same job. This 
communication pattern causes much message collision 
and is known as the weak point for non-contiguous 
allocation algorithms [8]. 

In all cases, processors allocated to a job are mapped 
to a linear array of processors using row-major indexing. 
The simulator selects the sources and the destinations 
from this array, and the mapping is used for determining 
the x  and y  coordinates of the sources and destinations 

of communication operations. As in [19], the number of 
messages that are actually generated by a given job is 
exponentially distributed with a mean mesnum_ .   

Unless specified otherwise, the performance figures 
shown below are for a 16×16 mesh, st = 3 time units, 

lenP = 8 flits and 5_ =mesnum  messages. The main 

performance parameters used are the average turnaround 
time of jobs and the mean system utilization. The 
turnaround time of a job is the time that the job spends in 
the mesh from arrival to departure. The mean system 
utilization is the percentage of processors that are utilized 
over time. The independent variable in the simulation is 
the system load. It is defined as the inverse of the mean 
inter-arrival time of jobs. 

The notation <allocation strategy>(<scheduling 
strategy>) is used to represent the strategies in the 
performance figures. For example, GABL(SSD) refers to 
the Greedy-Available-Busy-List allocation strategy under 
the scheduling strategy Shortest-Service-Demand-First. 

In Figs. 3 and 4, the average turnaround time of jobs is 
plotted against the system load for the one-to-all 
communication pattern and the two scheduling strategies 
FCFS and SSD. The results reveal that GABL strategy 
performs better than all other strategies for both job size 
distributions and scheduling strategies considered in this 
paper. Furthermore, GABL strategy is substantially 
superior to the FF strategy for both job size distributions 
and scheduling strategies. In Fig. 3, for example, the 
difference in performance in favour for GABL(FCFS) 



strategy could be as large as 64% compared to FF(FCFS) 
strategy, 36% to Paging(0)(FCFS) strategy, and 31% to 
MBS(FCFS) strategy under the job arrival rate 0.0205 
jobs/time unit. Experiments that use larger messages sizes 
(16, 32, and 64 flits) have been also conducted. Their 

results lead to the same conclusion on the relative 
performance of the allocation strategies. Moreover, the 
results indicate that the relative performance merits of 
GABL strategy over the remaining strategies become 
more noticeable as the message length increases. 
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Figure 3: Average turnaround time vs. system load for the one-to-all communication 
pattern and uniform side lengths distribution. 
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Figure 4: Average turnaround time vs. system load for the one-to-all communication 
pattern and uniform-decreasing side lengths distribution. 
 
 

In Figs. 5 and 6, the average turnaround time of jobs is 
plotted against the system load for the all-to-all 
communication pattern and the two scheduling strategies 
FCFS and SSD. Again, GABL strategy performs much 
better than all other strategies for both job size 
distributions and scheduling strategies. Moreover, GABL 
strategy is substantially superior to FF strategy for both 
job size distributions and scheduling strategies. 
Experiments that use larger messages sizes (16, 32, and 
64 flits) have lead to the same conclusion as to the 
relative performance of the strategies. Fig. 6, for example, 
depicts that when the job arrival rate is 0.1 jobs/time unit, 
the average turnaround time of GABL(FCFS) are 0.17, 
0.28, and 0.30 of the average turnaround time of 
FF(FCFS), Paging(0)(FCFS), and MBS(FCFS) 
respectively.  

Fig. 7 depicts the mean system utilization of the 
allocation strategies GABL(FCFS), MBS(FCFS), 
Paging(0)(FCFS), and FF(FCFS) for the two 
communication patterns considered and FCFS scheduling 
strategy under uniform-decreasing side lengths 
distribution. The simulation results in this figure are 
presented for a heavy system load. The load is such that 
the waiting queue is filled very early, allowing each 
allocation strategy to reach its upper limits of utilization. 
For both job size distributions, uniform and uniform-
decreasing, the non-contiguous allocation strategies 
achieve a mean system utilization of 72% to 79%, but FF 
can not exceed 49%. This is because contiguous 
allocation produces high external fragmentation, which 
means that allocation is less likely to succeed. As a 
consequent, the mean system utilization is lower. The 



utilization of the three non-contiguous allocation 
strategies is approximately the same for both job size 
distributions. This is because the non-contiguous 
allocation strategies, considered in this paper, have the 
same ability to eliminate both internal and external 
processor fragmentation. They always succeed to allocate 
processors to a job when the number of free processors is 

greater than or equal the allocation request. Experiments 
that compute the utilization based on SSD strategy have 
been also conducted. Their results lead to the same 
conclusion as in FCFS strategy.  To conserve space, the 
results of the mean system utilization under uniform side 
length distribution are not included in this paper, but 
appear in [16]. 
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Figure 5: Average turnaround time vs. system load for the all-to-all communication pattern 
and uniform side lengths distribution. 
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Figure 6: Average turnaround time vs. system load for the all-to-all communication 
pattern and uniform-decreasing side lengths distribution. 
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In addition to the turnaround time and system 
utilization we have measured another performance 
parameter for the non-contiguous allocation strategies. 
This is the average blocks per job, which is defined as the 
average number of non-contiguous blocks allocated to a 
job. The higher the average blocks the more likely it is 
that the job’s messages will go through nodes allocated to 
other jobs, potentially causing more contention in the 
interconnection network [19]. Fig. 8 shows that the 
average blocks per job for the non-contiguous allocation 
strategies that gave the best performance (GABL and 
MBS strategies), for all-to-all communication pattern and 
uniform side length distribution under both scheduling 
strategies FCFS and SSD. It can be seen that GABL 
strategy has lower average blocks per job than MBS 
strategy over all loads under the two scheduling strategies 
FCFS and SSD. For example, the average blocks per job 
of GABL(FCFS) allocation strategy are 0.54, 0.59, and 
0.60 of the average blocks per job of MBS(FCFS) 
allocation strategy when the job arrival rates are 0.025, 
0.03, and 0.035 jobs/time unit, respectively. This 
conclusion is compatible with the values of the mean 
turnaround time shown above. To conserve space, the 
results of the average blocks per job for the one-to-all 
communication pattern under both job size distributions 
and also for all-to-all communication pattern and 
uniform-decreasing side lengths distribution are not 
included in this paper, but appear in [16]. 

To sum up, the above performance results demonstrate 
that GABL strategy is the most flexible allocation 
strategy. Overall, it is superior to all other strategies 
considered in this paper; including when contention is 
heavy (the communication pattern is all-to-all).  

  
5. Conclusions and Future Directions 

 
This paper has investigated the performance merits of 

non-contiguous allocation in the 2D mesh network. To 
this end, we have suggested a new non-contiguous 
allocation strategy, referred to as Greedy-Available-Busy-

List, which differs from the earlier non-contiguous 
allocation strategies in the method used for decomposing 
allocation requests. The GABL strategy decomposes the 
allocation requests based on the sub-meshes available for 
allocation. The major goal of the partitioning process is to 
maintain a high degree of contiguity among processors 
allocated to a job. This decreases the number of sub-
meshes allocated to a job, hence decreases the distance 
traversed by messages, and which in turn decreases the 
communication overhead. GABL strategy achieves this 
by using a busy list whose length is often small even 
when the size of the mesh scales up. 

The performance of GABL strategy was compared 
against that of existing non-contiguous and contiguous 
allocation strategies using both FCFS and SSD 
scheduling strategies. Simulation results have shown that 
GABL strategy can greatly improve performance despite 
the additional message contention inside the network that 
results from the interference among the messages of 
different jobs. GABL strategy also produces superior 
system utilization than its contiguous counterpart. The 
results have also revealed that GABL strategy is 
substantially superior over the previous well-known non-
contiguous allocation strategies considered in this paper. 
Results have also shown that the effects of the SSD 
scheduling strategy on the performance of the allocation 
strategies is substantially better than that of the FCFS 
scheduling strategy in terms of mean turnaround time. 
Moreover, GABL strategy can be efficient because it is 
implemented using a busy list approach. This approach 
can be expected to be efficient in practice because job 
sizes typically grow with the size of the mesh.  

As a continuation of this research in the future, it 
would be interesting to assess the suggested allocation 
strategy in other common multicomputer networks, such 
as torus networks. Another possible line for future 
research is to implement our strategy based on real 
workload traces from different parallel machines and 
compare it with our results obtained by means of 
simulations.
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