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Abstract

R is a mature open-source programming language for statistical computing and graphics.
Many areas of statistical research are experiencing rapid growth in the size of data sets.
Methodological advances drive increased use of simulations. A common approach is to
use parallel computing.

This paper presents an overview of techniques for parallel computing with R on com-
puter clusters, on multi-core systems, and in grid computing. It reviews sixteen different
packages, comparing them on their state of development, the parallel technology used, as
well as on usability, acceptance, and performance.

Two packages (snow, Rmpi) stand out as particularly useful for general use on com-
puter clusters. Packages for grid computing are still in development, with only one package
currently available to the end user. For multi-core systems four different packages exist,
but a number of issues pose challenges to early adopters. The paper concludes with
ideas for further developments in high performance computing with R. Example code is
available in the appendix.

Keywords: R, high performance computing, parallel computing, computer cluster, multi-core
systems, grid computing, benchmark.

1. Introduction

R (R Development Core Team 2008a) is an open-source programming language and software
environment for statistical computing and graphics. The core R installation provides the
language interpreter and many statistical and modeling functions. R was originally created
by R. Ihaka and R. Gentleman in 1993 and is now being developed by the R Development
Core Team. R is highly extensible through the use of packages. These are libraries for specific
functions or specific areas of study, frequently created by R users and distributed under
suitable open-source licenses. A large number of packages are available at the Comprehensive
R Archive Network (CRAN) at http://cran.r-project.org or the Bioconductor repository
(Gentleman et al. 2004) at http://www.bioconductor.org. The R language was developed
to provide a powerful and extensible environment for statistical and graphical techniques.
However, it was not a development goal to provide software for parallel or high performance
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computing (HPC) with R.

Nonetheless, during the last decade more and more research has focussed on using parallel
computing techniques with R. The first available package was rpvm by Li and Rossini. This
package provides a wrapper to the Parallel Virtual Machine (PVM) software. Early papers
describing parallel computing with R are Li and Rossini (2001), Yu (2002), Sevcikova (2003)
and Rossini et al. (2003). Interest in high performance computing with R has been increasing
particularly in the last two years. The R mailing lists (http://www.r-project.org/mail.
html) now frequently host discussions about using R for parallel computing. The UseR 2008
Conference (Ligges 2008) in Dortmund, Germany, contained a tutorial (Eddelbuettel 2008),
as well as three sessions on HPC with R where several new packages were presented.

Two primary drivers for the increased focus on high performance computing with R can be
identified: larger data sets (Hey and Trefethen 2003), and increased computational require-
ments stemming from more sophisticated methodologies.

Bioinformatics provides a good illustration for the ’growing data’ problem. Consider that just
a few years ago, experimentally-generated data sets often fit on a single CD-ROM. Today, data
sets from high-throughput data sources—as for examples ‘next generation’ DNA sequencing
(Shaffer 2007)— no longer fit on a single DVD-ROM. In genome research, data sets appear to
be growing at a rate that is faster than the corresponding performance increases in hardware.

At the same time, methodological advances have led to more computationally demanding solu-
tions. A common thread among these recent methods is the use of simulation and resampling
techniques. Markov Chain Monte Carlo (MCMC) and Gibbs sampling, bootstrapping, and
Monte Carlo simulation are examples of increasingly popular methods that are important in
diverse areas of statistical analysis investigating geographic, econometric, and biological data.

Both increased data size and increased simulation demands have been approached by re-
searchers via parallel computing. Data sets can frequently be subdivided into ’chunks’ that
can undergo analysis in parallel. This is particularly the case when the analysis of a given data
’chunk’ does not depend on other chunks. Similarly, simulation runs that are independent
of other simulations can be executed in parallel. Hence, both drivers for increased interest
in high performance and parallel computing with R can be seen as so-called ’embarrassingly
parallel’ problems that are suitable for execution in parallel.

This paper reviews the state of parallel computing with R, and provides a starting point
for researches interested in adopting parallel computing methods. The paper is organized as
follows. Section 2 discusses code analysis with R, and introduces parallel computing concepts
at the hardware and software level. Section 3 presents R packages for computer cluster and
grid computing, multi-core systems and resource management. Section 4 provides a discussion
of these different packages. The next section focusses on application packages and general
tips for parallel computing. Section 6 concludes with a summary and outlook.

2. Overview

2.1. Code Analysis for R

Adapting code for parallel evaluation requires extra effort on the part of the researcher. For
this reason it is important to ensure that parallelization is necessary. Important considera-
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tions include use of appropriate serial algorithms, adoption of ‘best practices’ for efficient R
programming, and knowledge of packages tailored to processing of large data sets.
A number of tools are available to profile R code for memory use and evaluation time. How
to use these tools and how to detect probable bottlenecks is described in R Development Core
Team (2008b), Venables (2001), Gentleman (2008), and in the R help page ?Rprof. The
CRAN packages proftools (Tierney 2007) and profr (Wickham 2008) provide more extensive
profiling tools, an overview is available in Table 6 in the Appendix.
There exist a lot of different ways to solve performance issues. The solution mostly depends
on the specific problem. Therefore this paper only presents a list of well known techniques to
improve the R code (Gentleman 2008; Chambers 2008):

Vectorized Computation: Vectorized computation means any function call that, when
applied to a vector, automatically operates directly on all elements of the vector. Many
functions in R are vectorized. These are often implemented in C (see below), and
hence very fast. This greatly reduces the need for loops and similar constructs that are
prevalent in other languages. Vectorized computations should be used when possible.

apply-functions: There are a number of functions that can be used to apply a function,
iteratively, to a set of inputs. One of the main reasons to prefer the use of an apply-like
function over explicitly using a for-loop is that it more clearly and succinctly indicates
what is happening and hence makes the code somewhat easier to read and understand.
Appropriately implemented apply-like functions also often very readily adopted to par-
allel computation.

Foreign Language Interfaces: R provides a powerful interface to functions and libraries
written in other languages. The main reason for using foreign languages is efficiency,
since R is not compiled. In some situations the performance of R can be substantially
improved by writing code in a compiled language. The most widely used interfaces are
the .C() and .Call() functions which provides linkage to C code. R itself is largely
written in C and it is easy to make use of the internal data structures, macros and code
from routines written in C (see R Development Core Team 2008b).

There are a lot of other solutions for special problems. Most of them are presented at the
UseR conferences and support is available by the R mailing lists of the R user community.
This paper will focus onto techniques improving R code with parallel computing.

2.2. Parallel Computing

To understand and to evaluate the different packages that are available, it is important to
have an overview of existing technologies for parallel computing. Detailed introductions can
be found in various books for parallel computing or computer clusters (Sloan 2004; Dongarra
et al. 2003).
In general, parallel computing deals with hardware and software for computation in which
many calculations are carried out simultaneously. The main goal of parallel computing is the
improvement in calculating capacity.

Hardware

There are several hardware types which support parallelism. For the work presented here,
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however, the software part is more important. Therefore only the most popular hardware
types are mentioned.

Multi-processor and multi-core computers have multiple processing elements within a single
machine. In computers available to the general statistical computing community, the main
memory is usually shared between all processing elements (shared memory). The idea of
multicomputers — often called distributed computers — is the use of multiple computers to
work on the same task. A distributed computer is a computer system in which the computers
(processing elements with their own memory) are connected by a network. If the computers
are located in a local area network (LAN) they may be called a computing cluster. In grid
computing, machines are connected in a wide area network (WAN) such as the Internet.

Software

Several programming languages and libraries have been created for programming parallel
computers. They can be classified based on the underlying memory architecture.

Shared memory: Shared memory programming languages communicate by manipulating
shared memory variables. Widely used shared memory application programming interfaces
(APIs) include OpenMP (Dagum and Menon 1998) and POSIX Threads (Pthreads) (Butenhof
1997). These are implementations of multithreading, a method of parallelization whereby the
manager (master) thread forks a specified number of worker (slave) threads and a task is
divided among them. Each thread executes the parallelized section of code independently.

OpenMP: Open Multi-Processing is an API that supports multiplatform shared memory
multiprocessing programming in C/C++ and Fortran. Commercial and open source
compilers for many architectures including Windows are available. OpenMP is a portable,
scalable model that gives programmers a simple and flexible interface for developing
parallel applications. The section of code that is meant to run in parallel is marked
accordingly by using a preprocessor directive that will cause the threads to form before
the section is executed.

Pthreads: POSIX Threads is a POSIX standard for threads. Libraries implementing the
standard are often named Pthreads. For many architectures including Windows open
source implementations exist. Pthreads defines a set of C programming language types,
functions and constants. Programmers can use Pthreads to create, manipulate and
manage threads, as well as to synchronize between threads using mutexes and signals.

OpenMP is under active development. Recent work indicates that is easier to program with
OpenMP than Pthreads and that OpenMP delivers faster execution times (Breshears and
Luong 2000; Binstock 2008).

Distributed memory: Message-passing APIs are widely used in distributed memory sys-
tems. Message passing is a form of communication which is made by sending messages to
recipients. A manager-worker architecture—often called master-slave—is most common. In
this model of communication one device or process (manager) controls one or more other
devices or processes (workers). Once a manager-worker relationship between devices or pro-
cesses is established (spawned), the direction of control is always from the manager to the
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workers. Well known implementations of the standard are MPI (Message-Passing Interface)
(Forum 1998) and PVM (Parallel Virtual Machine) (Geist et al. 1994).

MPI: Message-Passing Interface is a standardized and portable message-passing system de-
signed by a group of researchers to function on a wide variety of parallel comput-
ers. The MPI interface is meant to provide essential virtual topology, synchronization,
and communication functionality between a set of processes in a language-independent
way. Open source implementations for many architectures, including Windows, exists.
MPICH2 (Buntinas et al. 2007) and DeinoMPI (Deino Software 2006) currently provide
a Windows implementation and OpenMPI (Gabriel et al. 2004) and MPICH2 are pop-
ular on Unix. OpenMPI is a project combining technologies and resources from several
other projects (e.g., LAM/MPI) with the stated aim of building the best MPI library
available.

PVM: The Parallel Virtual Machine is designed to allow a network of heterogeneous Unix
and/or Windows machines to be used as a single distributed parallel computer. Open
source implementations for many architectures including Windows exist.

A comparison of both approaches is available in Gropp and Lusk (2002). For computer
clusters PVM is still widely used, but MPI appears to be emerging as a de-facto standard for
parallel computing.

3. Packages for Parallel Computing with R

A number of different approaches for high performance computing with R have been devel-
oped. This section describes different packages and technologies for parallel computing with
R. The Appendix A contains short code examples for all packages discussed here. An overview
containing hyperlinks to all packages is available in Table 1 and in Table 7 in the Appendix.
This section is divided into four parts: Packages for computer clusters, for grid computing, for
multi-core systems, and for technologies for resource management. The packages are discussed
and compared based on different software engineering criteria in Section 4.

3.1. R Packages for Computer Clusters

Nine different R packages for parallel computing on computer clusters have been published
and are available at CRAN (see Table 1). Most of these are based on technologies described
in Section 2.2. It is also possible to compile R with external libraries which support computer
clusters.

Rmpi

The package Rmpi (Yu 2002) is an interface, or wrapper, to MPI. It provides an interface
to low-level MPI functions from R so that users do not have to know details of the MPI
implementations (C or Fortran). It requires that MPI is installed, and runs under popular
MPI implementations: LAM/MPI, OpenMPI, MPICH, MPICH2 and DeinoMPI. This allows
the Rmpi package to be run on clusters with Linux, Windows or Mac OS X.
The Rmpi package includes scripts to launch the R instances at the slaves from the master
(mpi.spawn.Rslaves()). The instances run until they will be closed with the command
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mpi.close.Rslaves(). The package provides several R-specific functions, in addition to
wrapping the MPI API. For example, parallel versions of the R apply-like functions are
provide by, e.g., mpi.parApply(). Also, R objects can be efficiently sent to slaves using
mpi.bcast.Robj2slave(). There is also primitive error-handling to report errors form the
workers to the manager.

rpvm

The package rpvm (Li and Rossini 2001) is an interface to PVM. It supports low-level PVM
functions from R. There are no additional R functions, so the user has to provide all commu-
nication and parallel execution directives. And there is no command to launch R instances
at the slaves from the master. The command .PVM.spawnR() can be used to execute a R
script file (read by source()) at the slaves and after running the script the R instance will
be closed automatically.

The package requires a running PVM installation and runs on clusters with Linux, Windows
or Mac OS X.

nws

The package nws (Bjornson et al. 2007) (short for NetWorkSpaces) provides functions to store
data in a so-called ’NetWorkSpace’, and to use the ’sleigh’ mechanism for parallel execution.
NetWorkSpaces and Sleigh run on Linux and Windows platforms. It requires a running
NetWorkSpace server. NWS is implemented in the widely-available Python language and
uses its Twisted framework for network programming. NWS currently supports the Python,
Matlab, and R languages, and allows limited cross-language data exchange.

The ’sleigh’ class supports writing parallel programs. There are two basic functions for exe-
cuting tasks in parallel (eachElem(), eachWorker()). The package uses the manager-worker
paradigm, and automatically load-balances R function evaluations. To enable the manager
to communicate with workers, sleigh supports several mechanisms to launch R instances at
workers to run jobs: local, ssh, rsh, lsf, web launch.

The nws package and the NetWorkSpace Server are available as an open source and commer-
cial product from REvolution Computing (and had previously been marketed as LindaSpaces
by Scientific Computing Associates).

snow

The package snow (Simple Network of Workstations) (Rossini et al. 2007) supports simple
parallel computing in R. The interface is intended to be simple, and is designed to support
several different low-level communication mechanisms. Four low-level interfaces have been
implemented: PVM (via the rpvm package), MPI (via Rmpi), NetWorkSpaces (via nws), and
raw sockets that may be useful if PVM, MPI or NWS are not available. This means it is
possible to run the same code at a cluster with PVM, MPI or NWS, or on single multi-core
computer.

The snow package includes scripts to launch R instances on the slaves (cl <- makeCluster()).
The instances run until they are closed explicitly via the command stopCluster(cl). The
package provides support of high-level parallel functions like apply() and primitive error-
handling to report errors from the workers to the manager.
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snowFT

The package snowFT is an extension of the snow package supporting fault tolerance, repro-
ducibility and additional management features. The interface is very similar to the snow
interface. The heart of the package is the function performParallel(), which is a wrapper
function for clusterApplyFT(). Additional management features are functions for repairing
a cluster: add, remove and restart slaves of a cluster. The package is only written for the
PVM communication layer, and is no longer actively maintained.

snowfall

The package snowfall (Knaus 2008) supports more simple parallel computing in R. It is a
toplevel wrapper around the package snow for easier development of parallel R programs.
The interface strives to be as simple as the snow interface, yet differs in some aspects. For
example it does not require handling of the R cluster object by the user. The package supports
the same low-level communication mechanisms as snow. Additionally, all functions also work
in sequential mode. This can be useful for debugging or when no cluster is present.

The package is designed as a connector to the cluster management tool sfCluster (see Sec-
tion 3.4), but can be used without sfCluster.

papply

The package papply was developed to augement the parallel apply functionality of the Rmpi
package. Similar to the serial apply() function, papply() applies a function to all items of a
list, and returns a list with the results. It uses the Rmpi package to distribute the processing
evenly across a cluster. If Rmpi is not available, it implements this as a non-parallel algorithm.
This package is an add-on package to Rmpi, contains the function papply() and additional
debugging support, and is no longer actively maintained.

biopara

The package biopara allows the user to distribute execution of parallel problems over multiple
machines for concurrent execution. It uses raw socket connections (ssh). The package contains
only one function: biopara(). For every parallel run the tcp/ip port numbers and computer
tcp/ip hostnames are required, and all computers have to be in a trusted environment. An
R instance has to be started at every worker, or a custom start script has to be executed, at
the beginning in order to spawn the workers manually.

The biopara package provides limited fault tolerance and load balancing.

taskPR

The Task-pR package is an interface that uses the MPI implementation LAM/MPI for parallel
computing. If there is no available LAM universe, tasks will be executed serially on the
manager. A function that needs to be run in parallel has to be enclosed within the function
PE() and will be executed at the first slave. The next PE() call will be executed at the next
slave, and so on. There is no support of high-level parallel functions like apply().
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Using external libraries: BLAS and PBLAS

R relies on third-party BLAS libraries for common linear algebra and matrix operations.
Optimized and parallelized shared-memory implementations of these libraries exist, and can
be used for parallel computing on multicomputers and multi-core systems with R too (R
Development Core Team 2008a).
The Basic Linear Algebra Subprograms (BLAS) is the de-facto application programming
interface standard for publishing libraries to perform basic linear algebra operations such as
vector and matrix multiplication. The linear algebra routines in R can make use of enhanced
BLAS implementations (e.g. ATLAS, Intel MKL) and of parallel BLAS routines: PBLAS is
a collection of software for performing linear algebra operations on any system for which MPI
or PVM is available (http://www.netlib.org/scalapack/html/pblas_qref.html). The
library has to be integrated into R when R itself is compiled, using the configuration option
-with-blas (R Development Core Team 2008a).

3.2. R Packages for Grid Computing

At present, two R packages and one java-based software collection exist for grid computing
in R. These solutions are very new and were presented at the UseR2008 conference in August
2008.

gridR

The package gridR (Wegener et al. 2007) submits R functions for execution in a grid envi-
ronment (on a single computer or a cluster) and provides an interface to share functions and
variables with other users (grid.share()). Job submission is available via a web service,
ssh or locally and execution modes are Condor (Tannenbaum et al. 2001), Globus (Foster
2005), or single server. The grid infrastructure uses R as interface and client. The server side
implementation of gridR uses several external software components: Globus Toolkit 4 grid
middleware, an installation of the R environment on the grid machines, and a GRMS-Server
installation from the Gridge toolkit (Pukacki et al. 2006) on a central machine in the grid
environment.
The grid configuration can be performed with configuration files (XML style) or at run-
time by passing parameters. The main functions are grid.init() to initialize the grid and
grid.apply() to submit a function into the grid environment. This function is different to
the R apply-like functions, it does not apply a function to different data. Additionally there
are functions to facilitate the management of running grid jobs (e.g., grid.check()).
The R package is available at CRAN and the maintainer website (see Table 1).

multiR

The package multiR (Grose 2008) is not yet available. At the time of review only the presen-
tation from the UseR2008 conference was available. The implementation should have some
similarity to aspects of snow and gridR, but should be independent of the many different types
of hardware and software systems. It requires no additional software components (Globus,
CoG, etc.) to be installed before it can be used.
Main differences involve job submission (via Grid middleware) and security (certificates). This
is implemented with a 3 tier client/server architecture provided by GTROWL (Hayes et al.
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2005). In this architecture, the server component communicates with Grid nodes on behalf
of the client. The implementation will extend the apply() family of functions, and allows
multiple function invocations in a distributed environment.

Biocep-R

The Biocep-R project (Chine 2007) is a general unified open source Java solution for inte-
grating and virtualizing the access to servers with R. Tools make it possible to use R as a
Java object-oriented toolkit or as a Remote Method Invocation (RMI) server. The Biocep-R
virtual workbench provides a framework enabling the connection of all the elements of a com-
putational environment: Computational resources (local machine, a cluster, a grid or a cloud
server) via a simple URL, computational components via the import of R packages, GUIs via
the import of plugins from repositories or the design of new views with a drag-and-drop GUI
editor.
The java software and further information is available at the maintainer website (see Table
1). It requires an installed Java 5 run-time and R. The project is under active development
and new features are available in every new version. User manuals and tutorials are not yet
available.

3.3. R Packages for Multi-core Systems

There are four different packages using multi-core systems to accelerate computations in R.
Three of the implementations are very new, they were all developed and presented in the last
year.

pnmath and pnmath0

These two packages (Tierney 2008) offer a parallel implementation of most of the basic R
numerical math routines (most of the non-random number, non-BLAS routines) for multi-
core architectures. The package pnmath uses OpenMP; pnmath0 uses Pthreads.
On loading, the packages replace built-in math functions with hand-crafted parallel versions.
Once loaded, the package provides access to parallel functions with no further changes to user
code. The packages use timing estimates (determined at install-time, if possible) to calibrate
when the benefits of parallel evaluation outweigh the costs of thread initialization. With
numerically intensive code, these packages yield a speed-up of up to a factor given by the
number of available processors. The packages work on most platforms, including Window,
but require compiler and library support as detailed in the package README files. Both
packages are available at the maintainers website (see Table 1).

fork

The package fork (Warnes 2007) provides simple wrappers around the Unix process manage-
ment API calls: fork, signal, wait, waitpid, kill, and exit. This enables construction of
programs that utilize and mange multiple concurrent processes.
The main function of the package is fork(slave_function), which will create a new R
instance which is an exact copy of the current R process, including open files, sockets, etc..
For communication between the instances socket connections socketConnection() have to be
used. There is no support of high-level parallel functions like apply() or any error handling.
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The R package is available at CRAN, it only works in a Unix environment. Commer-
cial support for this package is available from Random Technologies, LLC (http://www.
random-technologies-llc.com).

R/parallel

The package R/parallel (Vera et al. 2008) enables automatic parallelization of loops without
data dependencies by adding a single function: runParallel(). A data dependency occurs
when the calculation of a value depends on the result of a previous iteration (e.g. a[n] =
a[n− 1] + 1 ). For efficient R programming (see Section 2.1) an apply-like implementation of
loops without data dependencies is preferred.
The package uses a master-slave architecture. The implementation is based on C++, and
combines low level operating system calls to manage processes, threads and inter-process
communications. The package is able to locate loops and automate their parallelization by
requiring that the user enclose the runParallel() function and the target loop within an
if/else control structure.
The R package is available at the maintainer website (see Table 1).

romp

The package romp (Jamitzky 2008) is only available as a presentation from the UseR2008
conference and some example code (version 01a) without documentation is available at the
maintainers website. The code transforms R code to Fortran, inserts OpenMP directives, and
compiles the Fortran code (compile.mp()). The compiled code is then executed in R. The
example code includes functions apply.mp() and a sum.mp().

3.4. Resource Manager Systems

Deploying parallel computing application becomes increasingly challenging as any one of the
number of jobs, users or compute nodes increases. A resource management tool can alleviate
such issues. Resource manager systems are software applications to submit, control and mon-
itor jobs in computing environments. Synonyms are job scheduler or batch system. These
applications work on the operating system level and mostly directly monitor the communica-
tion protocols. Therefore they are independent from the R language. They make the parallel
computing environment manageable for administrators and especially if several people work
in the same environment to avoid resource or scheduling conflicts.
In the R user community there exists some experience with different resource management
software. In the following the mostly used ones are described, an overview containing hyper-
links is available in Table 7 in the Appendix.

SLURM: A Highly Scalable Resource Manager

SLURM (Jette et al. 2003), which stands for Simple Linux Utility for Resource Management,
is an open-source resource manager designed for Linux. Slurm is powerful enough for being
deployed on clusters containing over 100k processors, yet simple enough to be used for small
personal clusters.
While Slurm works particularly well with OpenMPI, it can be built for use with different
message passing libraries. Slurm can be deployed over different high-end fabrics (such as
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Quadrics or Federation) as well as Myrinet or Ethernet. Slurm can also use external batch
processing systems such as Maui or Moab.

Slurm provides three key functions. First, the salloc command can be used to allocate
exclusive and/or non-exclusive access to resources (such as computing nodes) to users for
some duration of time so they can perform work. Second, the sbatch or srun commands
provide a framework for starting and executing work (typically a parallel job) on a set of
allocated nodes. The state can be monitored using the sinfo and squeue commands as well
as the sview graphical user interface. Third, Slurm can arbitrate contention for resources by
managing a queue of pending work. Lastly, job accounting functionality, including record-
keeping in SQL backends, is also available.

Slurm is under active development by a consortium comprised of a major research organisation
(Lawrence Livermore National Laboratory) as well as several industrial partners (Hewlett-
Packard, Bull, Cluster Resources and SiCortex). It is being released under the standard GNU
GPL, but is also available as a component of commercial clusters such as IBM’s BlueGene.

SGE: Sun Grid Engine

SGE is an open source batch-queuing system, supported by Sun Microsystems (Sun Microsys-
tems 2002). It is available as an open source and a commercial product. SGE is responsible
for accepting, scheduling, dispatching, and managing the remote execution of large numbers
of standalone, parallel or interactive user jobs. It also manages and schedules the allocation
of distributed resources such as processors, memory, disk space, and software licenses.

SGE is a very powerful and complex system to manage a cluster system. It is optimized to
manage large environments. There is a big command line user interface to communicate with
the SGE. The main functions are qsub to submit jobs and qstat to get a status listing of
all jobs and queues. There is also a X-window command interface and monitoring facility
(qmon).

Rsge - Interface to the SGE Queuing System: The Rsge package provides functions
for using R with the SGE environment via the qsub command. The package requires an
installed and configured SGE, a shared network device, and R with an installed snow package.

The package offers functions to get information from the SGE (sge.job.status()) and to
submit work (R code) to an R cluster started from the SGE (sge.apply(), sge.submit()).
At the manager the data object will be split as specified by the number of jobs and each
data segment along with the function, argument list are saved to a shared network location.
Each R instance loads the saved file, executes it, and saves the results to the shared network
location. Finally the master script merges the results together and returns the result.

At the time of review the first version of the package was available. The code still contains
a lot of open topics and a proper documentation is missing. The package does not support
any of the parallel computing technologies described in Section 2.2. For the commercial LSF
Queuing System a very similar package Rlsf exists on CRAN (http://cran.r-project.org/
web/packages/Rlsf).

sfCluster

sfCluster (Knaus 2008) is a small resource manager optimized for cluster solutions with R.
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It is a Unix tool written in perl for managing and observing R instance running on clusters.
The parallel R code has to be written with the snowfall package.

sfCluster automatically sets up the cluster for the user and shutdowns all running R sessions
after finish. It allows multiple clusters per user and offers four execution modes: batch mode
(-b), interactive R-shell (-i), monitoring mode (-m) and sequential mode (-s). For developing
parallel code the sequential mode and the parallel=FALSE option in the snowfall package
can be used for developing on a single machine.

The software is available in a beta version at the maintainers website (see Table 7 in the
Appendix). At the time of review sfCluster is only available for Unix systems and is based on
LAM/MPI. The scheduler does not support queue mode and is optimized for the requirements
of the maintainers institute.

Further Resource Manager

There are a lot of other possibilities for resource manager (TORQUE Resource Manager,
Condor High-Throughput Computing System, LSF Queuing System, etc.) which can not be
reviewed in detail here due to space constraints. The choice of an appropriate tool could be
very difficult. The decision should depend on the used architecture and the specific require-
ments.
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Package Version Releases First Version Last Version Development

Computer Cluster
Rmpi 0.5-5 12 2002-05-10 2007-10-24 ++
rpvm 1.0.2 12 2001-09-04 2007-05-09 ++
nws 1.7.0.0 8 2006-01-28 2008-08-08 +
snow 0.3-3 9 2003-03-10 2008-07-04 ++
snowFT 0.0-2 2 2004-09-11 2005-11-29 0
snowfall 1.60 5 2008-01-19 2008-10-22 +
papply 0.1 1 2005-06-23 2005-06-23 0
biopara 1.5 3 2005-04-22 2007-10-22 −−
taskPR 0.31 3 2005-05-12 2008-03-12 −

Grid Computing
GridR 0.8.4 1 2008-12-04 2008-12-04 −

Multi-core System
fork 1.2.1 6 2003-12-19 2007-03-24 +

Table 2: Versions of R parallel computing packages available at CRAN, characterized by state
of development (++: highly developed, stable; −−: in development, unstable).

4. Comparison and Discussion

This section provides a discussion and critical comparison of packages for parallel computing
with R.

4.1. State of development

It is important to have stable software whose basic functionality changes in a structured
fashion. New features need to be introduced to allow leading-edge research. Legacy code
might be deprecated and then removed in an orderly fashion, and over several release cycles,
to minimize unnecessary disruption of user work flows. With these considerations in mind, we
characterize the state of development of R packages in Table 2. The characterization is based
on the number of released versions, the release frequency and the results from the performance
analysis tests shown in Section 4.6 and Appendix B. The table shows only packages for parallel
computing which are available via CRAN.

Packages for basic communication protocols MPI and PVM are very well developed, having
been available and in wide use for close to a decade. The code and functionality are stable
over recent releases. The higher-level wrapper package snow is also mature and stable. On
the other hand, the package snowfall is still being developed, with recent addition of func-
tionality. The nws (NetWorkSpaces) package is a relatively recent addition based on previous
work; it is mature, while also still being extended. The packages snowFT and papply are no
longer actively maintained. The biopara package contains many comments and preliminary
‘debugging’ output, and has seen only yearly releases; it is classified as ‘under development’.
Packages assessed as ’0’, ’−’ or ’−−’, experience or have the opportunity for major code and
functionality changes.
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4.2. Technology

Table 1 provides an overview of the different technologies employed by the various parallel
computing packages. Differences among technologies were described in Section 2.2. For
future developments and wide adoption, it is important for all packages to use standardized
communication protocols, and to establish platform-independent solutions.

For computer clusters, PVM is still widely used. However, MPI appears to be emerging as
a de-facto standard for parallel computing. For parallel computing with R, MPI is the best-
supported communication protocol. Different MPI implementations exist and cover many
different computer architectures. Most of them are supported by the package Rmpi. The
higher-level package snow can then deploy Rmpi (as well as rpvm, nws or sockets) whereas
the package taskPR only supports the LAM/MPI implementation. NWS and sleigh represent
a slightly different approach to parallel computing with R. The shared global workspace model
of these approaches could be very useful for special tasks.

For grid computing the only available package GridR uses the Globus Toolkit. Globus,
developed by the Globus Alliance, is probably the most standardized and most widely used
middleware for grid computing.

Early interfaces and integration of multi-core technology into R exist as research projects
that are under active development. The OpenMP standard for multi-core systems and mul-
tiprocessors provides an established technology for parallelization at the compiler level. The
package pnmath is a promising integration of this technology.

Several packages use coarse-grained processes to evaluate R expressions in parallel. The
package R/parallel uses a master-slave architecture to launch several R instances on the same
machine using system-level commands. Every R instance requires its own main memory, and
the amount of main memory will frequently limit scalability. The same problem appears for
the package fork, which is limited to Unix environments.

Installation

In general, installation of packages in the R environment is simple, with the user invoking
the install.packages() function. This function takes a vector of package names, down-
loads these packages from on-line repositories, and installs them in user- or system-wide R
libraries. However, packages for parallel computing are often based on underlying communi-
cations technology (e.g., MPI, PVM) and the packages have to be linked to libraries providing
the corresponding technology. The underlying communication libraries have to be installed
and configured on the computer cluster. In many cases the communication libraries will be
installed by a system administrator, and the R packages must be customized (e.g. using
the configure.args argument to install.packages, or in extreme cases by altering the R
package configuration files) to find the appropriate communication library.

In order to use some external libraries (such as PBLAS) the R program itself has to be
recompiled and reinstalled.

4.3. Fault-Tolerance and Load Balancing

Fault-tolerance for parallel algorithms provides continued operations in the event of failure of
some slaves. On the other hand, load balancing is the technique to spread processes between
resources in order to get optimal resource utilization. Both aspects are very important in the
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Learnability Efficiency Memorability Errors Satisfaction

Rmpi + −− ++ + +
rpvm −− −− + − −−
nws + + ++ + +
snow + ++ ++ + ++
snowFT + ++ ++ + ++
snowfall ++ ++ + + ++
papply + + ++ + 0
biopara −− −− 0 0 −−
taskPR + − ++ 0 −

Table 3: Assessment of the usability of the R packages for computer clusters (ranging from
++ to −−).

field of parallel computing.

Only the packages snowFT and biopara have integrated solutions for fault tolerance. Thus for
many common use cases the users must accommodate the possibility of failure during lengthy
calculations.

The packages Rmpi, snow, snowFT, snowfall and biopara support load balancing for the apply
functions. Resource managers (discussed below) can help with load balancing.

4.4. Usability

Usability describes how easily software can be deployed to achieve a particular goal. Given
the focus of R on statistical computing, this section stresses use cases that can arise in a
variety of statistical analyses.

For computer clusters, the basic communication packages Rmpi and rpvm cover the full func-
tionality of both communication standards and provide an essentially complete API to these
standards. The complexity of the full API makes these packages somewhat more difficult for
researchers with primarily statistical interests to become familiar with. The other R packages
for computer clusters were developed to improve usability by providing a somewhat higher
level of abstraction. Table 3 shows an estimation of the components of usability (Shneiderman
and Plaisant 2004) for R packages for computer clusters. ’Learnability’ describes how easy
it is for first-time users to learn functionality. ’Efficiency’ describes how quickly users can
perform tasks. ’Memorability’ is the assessment of how easily users can reestablish details
required for use. How to avoid errors and to fix them is reviewed in ’Errors’. ’Satisfaction’
describes how pleasant it is to use a package.

To assess the learnability of R packages the quality of the vignettes and help files were re-
viewed. Only the package snowfall integrates a vignette into the R package. The existence of
online tutorials for the packages Rmpi and snow improves their learnability score.

To get good efficiency for an R package it is important to provide functions that facilitate writ-
ing simple code. Code based directly on the Rmpi and rpvm packages can become complex,
because the user must interact with the communication API at a relatively low level. biopara
and taskPR only have functions for sending commands to workers, so a lot of additional code
for basic functionality has to be implemented by the user.
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Learnability Efficiency Memorability Errors Satisfaction

Grid Computing
gridR + − + − −
R/parallel 0 + + − 0

Multi-core System
pnmath(0) ++ ++ ++ ++ +
fork + − + − −

Table 4: Assessment of the usability of the available R packages for grid computing and
multi-core systems. (ranging from ++ to −−).

R’s package structure provides for help files, and allows optional vignettes, so the memorability
score for every R package is elevated. However, some packages provide incomplete, complex,
or difficult to navigate help files. This leads to lower scores.

In order to correct and fix errors, it is important that functions provided by a package help the
user to identify sources of error. For example parameters should be checked for correctness
before use. The scoring criteria for ’Errors’ was determined based on experiences during
creation of test code in the appendix.

For satisfaction, the functionality provided by the different packages was compared. The
packages rpvm, biopara and taskPR provide only very basic functions for parallel computing.
The packages snow, nws and Rmpi have scripts to launch R instances at the workers. The
packages snowFT and snowfall use scripts from the package snow.

The usability assessment of packages for grid computing is very difficult to determine, due
to lack of mature and stable packages. Table 4 shows an estimation of the components of
usability for available R packages for grid computing and multi-core systems.

In the GridR package the user has to deal with intricate configuration and connection to the
grid system. Once the configuration is finished, the parameters can be reused in subsequent
runs. Complex jobs require the user to implement a lot of additional code.

The usability of the packages pnmath is excellent. Once the package is loaded, parallelization
runs without further code modification; the user employs familiar R functions. The package
R/parallel is still in development and adequate documentation is missing, but the usabil-
ity of the code is promising. Implementing R’s apply-like functions for loops without data
dependencies would be a valuable addition to this package (see Section 2.1).

4.5. Acceptance

To evaluate the acceptance of parallel computing packages, the number of links from the
DESCRIPTION files of other packages was counted. We used the Biocondcutor (Gentleman
et al. 2004) repository as a reference set of packages. This repository comprises about 294
R packages oriented towards research in bioinformatics and computational biology. Four
packages use snow, three Rmpi and one package carries an additional references to rpvm.
Therefore about 2% of the bioinformatic packages use parallel computing technologies, the
packages snow and Rmpi are used exclusively.

The packages for grid computing and multi-core systems are in active development and not
yet used in any other package. Only example code and applications exist for proof of principle
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and functionality.

4.6. Performance

Performance of the different parallel computing packages can differ due to a number of reasons.
Among these reasons, design and efficiency of the implementation as well the technology and
hardware are likely the dominant factors.

A benchmark was designed to evaluate the performance of the cluster packages. A perfor-
mance evaluation of the packages for grid computing and multi-core systems was not possible,
mainly due to unavailability or complex system requirements of the packages. The package
R/parallel was excluded from the benchmark, because the benchmark does not include a
component for loops without data dependencies. The package pnmath was excluded because
in the benchmark no NMATH routines were used.

The benchmark analysis was further restricted by focusing on packages providing functional-
ity that allows all benchmark code to be run in a meaningful fashion. The packages snowFT,
papply, biopara, taskPR and rpvm were excluded from the benchmark. The package biopara
only supports socket connections, the package taskPR only supports the LAM/MPI imple-
mentation and both packages are unstable. The package rpvm does not have scripts to launch
R instances at the slaves. There is only a function (.PVM.spawnR()) to run a R script file at
the workers, therefore data can not be stored in R worker instances. The packages snowFT
and papply are add-on packages which use the same communication mechanism as snow and
Rmpi. They include additional functionality for better usability or error handling. Therefore
they execute additional checks that reduce performance. The same behavior can be found
for the snowfall package. For these packages all time measurements for the three components
tests are about 10% slower than the computations with the snow package.

The benchmark comprises three different components: Sending data from the manager to
all workers, distributing a list of data from the manager to the workers and a classic paral-
lel computation example from the numerical analysis literature, the integration of a three-
dimensional function. Details and code are provided in Appendix B. The computation times
for each package and scenarios are summarized in Table 5.

Component test 1 sends a lot of data to all workers. Data transmission is relatively expensive
in terms of time. In the Rmpi package the mpi.bcast() command is used for sending data
to the workers. This uses a very efficient tree-like algorithm to broadcast the data. All other
packages send the data in a serial loop over all slaves from the manager to the workers. One
data sending operation must finish before the next starts (the snow.time() function in snow
helps to visualize this process; see Figure 1).

The package nws sends every communication through the NetWorkSpace server. Component
1 and 2 show a bottleneck due to this communication model. Even in component 3 the nws
implementations are the slowest solutions.

For component 3 there are three different ways for a serial implementation: using nested
for-loops (75.6 sec), using vectorization (0.01 sec) and using the apply() function (21.1 sec).
As mentioned in Section 2.1, improvements in the serial version of the code are of great
importance. For the parallel implementation an apply-like implementation was used (see
Appendix B.4). This implementation is comparable to the serial apply() function. The par-
allelization achieves an improvement of a factor 10 compared to the serial apply() function.
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Component 1 Component 2 Component 3

Rmpi 0.91 1.83 3.00
nws 14.87 3.49 3.03

snow
MPI 10.33 2.00 2.96
PVM 4.13 1.01 2.93
NWS 8.68 1.58 2.98
Socket 3.47 0.93 2.90

snowfall
MPI 13.99 2.07 2.93
PVM 4.29 0.94 2.93
NWS 8.82 1.62 2.99
Socket 3.77 1.00 2.91

Table 5: Computing time in seconds of the performance evaluation of R packages for computer
clusters.
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Figure 1: Visualization of timing information for cluster usage for component test 1 with the
snow package using MPI. Green rectangles representing active computation (in this case very
small), blue horizontal lines representing a worker waiting to return a result, and red lines
representing master-slave communications.
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The package snow (when using sockets) is the fastest solutions for parallel computing with
R. If the ratio of communication and calculation time is good (see component test 3 and
Appendix Figure 3), all packages have similar performance.

5. Application Examples and Tips for Parallel Computing

In this section we briefly describe two application packages which use the technologies that
were discussed above. The section ends with some general tips for parallel computing in R.

5.1. Application Examples

These applications examples serve as concrete illustration for the increased efficiency of
parallel computing with R. Both packages are available via the Bioconductor repository
(http://bioconductor.org).

affyPara

The package affyPara (Schmidberger and Mansmann 2008) contains parallelized functions for
preprocessing of exploratory oligonucleotide microarray analysis. The package is designed for
large numbers (>200) of microarrays. It distributes arrays to different workers and accelerates
the standard preprocessing methods by up to a factor of 15. The package is based on the
cluster package snow and extends the package affy. Users switching from affy to affyPara
must make only minor code changes. One limitation in the design of affyPara is that it re-
implements rather than reuses affy; changes in affy require implementation of corresponding
changes in affyPara.

ShortRead

The package ShortRead (Morgan et al. 2008) implements base classes, functions, and meth-
ods for representation of high-throughput, short-read sequencing data. Raw data from single
experiments is very large (e.g., 10’s of GB). Considerable computational processing can be
required to summarize this data for down-stream analysis. If a running Rmpi cluster is avail-
able, ShortRead distributes the data processing across available workers. The only user-level
requirement for accessing this performance benefit is to load the Rmpi package. ShortRead
illustrates how parallel processing can be into a R packages without requiring extensive user
participation.
A number of other application packages have similar integration of parallel computing in
R. All of these offer good performance improvements using parallel computing techniques.
In general, the integration of serial and parallel code into one package is preferred as it
provides the possibility of using the packages on both a single-processor machine and in
parallel environments, without requiring duplicate code development.

5.2. Tips for Parallel Computing with R

In closing this section, it is appropriate to reiterate some generally-accepted best practices
from parallel computing:

• Communication is much slower than computation; care should be taken to minimize
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unnecessary data transfer to and from workers, and to maximize the amount of compu-
tation performed in each remote evaluation.

– Some functions produce large results, so it pays to reduce these on the workers
before returning.

– Very large objects, e.g., provided as additional apply-like function parameters,
might in some cases be more efficiently constructed on each worker, rather than
being forwarded from the manager to each worker.

• Random number generators require extra care. It is important to avoid producing the
same random number stream on each worker, and to facilitate reproducible research.
Special-purpose packages (rsprng, rlecuyer) are available; the snow package provides an
integrated uniform random number generator. An overview of random number generator
packages, with hyperlinks, is available in Appendix Table 8. Reproducible research
requires the ability to partition and schedule jobs across the same number of workers,
and in a reproducible order. The apply.seq argument of apply-like functions in the
Rmpi package provides facilities for achieving this scheduling.

• R’s rules for lexical scoping, its serializing functions and the environments they are
defined in all require some care to avoid transmitting unnecessary data to workers.
Functions used in apply-like calls should be defined in the global environment, or in a
package name space.

The enthusiasm for high performance computing in R has lead the user community to create
a new mailing list, starting in October 2008 (https://stat.ethz.ch/mailman/listinfo/
r-sig-hpc). The list is the recommended place for questions, and problems using packages
for parallel computing with R should be submitted to this list.

6. Summary and Outlook

In this section, we provide a brief summary of the ’state of the art’ of parallel programming
with R. We also provide an outlook about possible future developments.

6.1. State of the Art

As we discussed in Section 4, two well developed R packages stand out for use in high-
performance multicomputer environments: Rmpi and snow. Both have acceptable usability,
support a spectrum of functionality for parallel computing with R, and deliver good perfor-
mance. Other packages try to improve usability, but so far usability gains have usually been
achieved at the expense of lower functionality.

Packages to harness the power of multi-core architectures for the R language exist. These
packages are still in development and can be difficult to use. At the moment the best inte-
gration of R to multi-core systems is the use of external and architecture optimized libraries
(PBLAS). But linear algebra operations are not commonly the bottleneck in statistical compu-
tation. Another opportunity is the use of multicomputer technologies on multi-core systems.
The packages Rmpi and snow can use several R instances started at one machine, using sock-
ets or MPI for communication. The operating system allows each R instance to run on its own
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processing unit. However, every R instance requires its own main memory, and the amount
of main memory will frequently limit scalability.

Early-stage packages for grid computing are available. Further developments hinge on a
clearer understanding of how grid infrastructure can be leveraged for statistical applications.

6.2. Further Developments

R packages for multicomputer environments are well developed and very useful. There is
room for minor improvements in documentation (e.g., adding vignettes to aid new users in
establishing simple clusters) and performance optimization. The most exciting prospects for
new development are in areas other than the multicomputer environment covered so well by
snow and Rmpi.

Today multi-core systems are a standard for every workstation, and the number of processors
per chip is growing. There is a compelling need for integration of R code into multi-core
environments. The pnmath packages are a first step in this direction. This approach has
the potential to speed up the code, yielding a factor of improvement given by the number
of available processors. Enabling multi-core functionality as implemented in pnmath requires
manual adjustment of all C-level functions. To design a package to support a more abstract
use of multi-core systems for package development seems to be a very difficult task; the
interactive nature of R and existing multi-core technology implies runtime compilation.

From an end-user perspective, computer cluster are often unavailable, the physical costs
(acquisition, maintenance, etc.) are high, and effective use requires a diverse skill set (e.g.,
advanced user-level system configuration, mastery of batch job submission, careful formulation
of problems to effectively manage communication costs). Therefore it is difficult to use this
technology. Cloud computing (Vouk 2008) allows users to access services from the Internet
without knowledge of the technology infrastructure that supports them. These web services
provide resizable computer capacity in the cloud. There are several companies which offer
computing services for relatively modest costs. Cloud computing usually offers pre-defined
’machine images’ that contain OpenMPI support, and that can be extended with the latest R
version and packages. An exciting prospect would be the development of a new R package for
communication with the cloud, a web portal to control access, and an appropriate business
model for managing costs. Such a cloud computing package could provide cost-effective
cluster-based computing to end users.

In terms of hardware, the (parallel) computing power of graphic processing units (GPUs)
might provide significant performance benefits to R users. Following on the earlier releases
of vendor-specific APIs (e.g. nVidia (2007) proposed CUDA), standards for programming
GPUs in a vendor-independent fashion are beginning to emerge (Khronos Group 2008). They
offer a programming model that is designed to allow direct access to the specific graphics
hardware, with the graphics hardware running a very high number of threads in parallel.
A bioinformatics application for sequence alignment with GPUs (C code, no R integration)
has been published by Manavski and Valle (2008) and illustrates the usability of GPUs for
acceleration and management of large amounts of biological data.

The flexibility of the R package system allows integration of many different technologies to
address practical statistical questions. This provides an excellent opportunity to explore and
prototype how different approaches can be effectively integrated into end-user software. This
leads us to expect that whichever technologies emerge, R should be well-positioned to take
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advantage of them.
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A. R Code Examples for Parallel Computing Packages

This appendix gives some short code examples for all presented R packages, to introduce
the reader to the basic functionality. The code chunks do not cover the full functionality of
the packages. For further details and more functions see the R help files or the vignettes of
the packages. For details starting the corresponding technology, please contact your cluster
administrator or see the manuals.
The R help files contain descriptions for all R functions. To get more information on any
specific named function, for example mpi.spawn.Rslaves(), the command is

> library("Rmpi")

> help(mpi.spawn.Rslaves)

Vignettes contain executable examples and are intended to be used interactively. You can
access the PDF version of a vignette for any installed package from inside R as follows:

> library("Rmpi")

> vignette()

This will present a menu where to select the desired vignette. Selecting a vignette should
cause the corresponding PDF file to open on the system.

A.1. R Packages for Computer Cluster

Rmpi: R package for MPI

Depending of the used MPI implementation and resource manager there are different ways
for starting R with connection to the running MPI universe. Using Unix the commands for
LAM/MPI and openMPI in the latest version look like the following examples:

LAM/MPI Start LAM universe: lamboot HOSTFILE
Start R: R
Stop LAM universe: lamhalt

openMPI The MPI universe (openMPI daemons) should be running for default.
Start R: orterun -n 1 -hostfile HOSTFILE R -no-save

Start cluster R code to start or initialize the cluster:

> library("Rmpi")

> ## Starting 4 workers and initialize the master

> mpi.spawn.Rslaves(nslaves=4)

Sending data to all slaves R code to send data a and b to all slaves:

> a <- 3

> b <- 1:10

> mpi.bcast.Robj2slave(a)

> mpi.bcast.Robj2slave(b)
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Calculations at all slaves R code to calculate a+5 and sin(5) at all slaves:

> mpi.remote.exec(a+5)

> mpi.remote.exec(sin, 5)

Calculations at list element distributed to slaves R code to calculate sqrt(3) at first
slave, sqrt(6) at second slave and sqrt(9) and third slave.

> mpi.apply(c(3,6,9), sqrt)

Stop cluster R code to stop cluster and to close R instances at workers.

> mpi.close.Rslaves()

rpvm: R package for PVM

Start pvm: pvm HOSTFILE
Exit pvm console: pvm> quit
Start R: R
Stop pvm: pvm> halt

Start cluster There is no command to lunch R instances at the workers. There is only a
command to execute R script files at the slaves.

> library("rpvm")

> slaves <- .PVM.spawnR(R_Script_File,ntask=4)

For example the ’R instance lunch files’ from the package snow can be used. But it is easier
to use the package snow with PVM as communication layer.

The following examples are code chunks which could be used for R script files.

Sending data to all slaves

> TAG <- 22

> a <- 3

> b <- 1:10

> for (id in 1:length(slaves)) {

+ .PVM.initsend()

+ .PVM.serialize( assign(’a’,a, envir=.GlobalEnv) )

+ .PVM.send(slaves[[id]], TAG)

+ cat("Work sent to", slaves[id], "\n")

+ .PVM.recv(slaves[[id]], TAG)

+ }

> for (id in 1:length(slaves)) {

+ .PVM.initsend()

+ .PVM.serialize( assign(’b’,b, envir=.GlobalEnv) )
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+ .PVM.send(slaves[[id]], TAG)

+ cat("Work sent to", slaves[id], "\n")

+ .PVM.recv(slaves[[id]], TAG)

+ }

Calculations at all slaves

> for (id in 1:length(slaves)) {

+ .PVM.initsend()

+ .PVM.serialize( get(’a’, envir=.GlobalEnv) + 5 )

+ .PVM.send(slaves[[id]], TAG)

+ cat("Work sent to", slaves[id], "\n")

+ }

> results <- list()

> for (id in 1:length(slaves)) {

+ .PVM.recv(slaves[[id]], TAG)

+ results[id]=.PVM.unserialize()

+ }

> print(results)

> for (id in 1:length(slaves)) {

+ .PVM.initsend()

+ .PVM.serialize( sin(5) )

+ .PVM.send(slaves[[id]], TAG)

+ cat("Work sent to", slaves[id], "\n")

+ }

> results <- list()

> for (id in 1:length(slaves)) {

+ .PVM.recv(slaves[[id]], TAG)

+ results[id]=.PVM.unserialize()

+ }

> print(results)

Calculations at list element distributed to slaves

> array <- c(3,6,9)

> for (id in 1:length(array)) {

+ .PVM.initsend()

+ .PVM.serialize( sqrt( array[id] ) )

+ .PVM.send(slaves[[id]], TAG)

+ cat("Work sent to", slaves[id], "\n")

+ }

> results <- list()

> for (id in 1:length(array)) {

+ .PVM.recv(slaves[[id]], TAG)

+ results[id]=.PVM.unserialize()

+ }

> print(results)
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Stop cluster

> .PVM.exit()

nws: R package for Net Work Spaces

Start nws: twistd -y nws.tac
Start R: R
Stop nws: kill ’cat twistd.pid’

Start cluster

> library("nws")

> ws <- netWorkSpace(’test’)

> system("cat HOSTFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> ## Starting 4 workers and initialize master and

> ## removing first workername from list. In most cases this is the master,

> ## we do not want to have a slave running at the same machine than the master.

> s <- sleigh(nodeList=mycluster[-1], launch=sshcmd, workerCount=4)

Sending data to all slaves Using the package nws you have to store the data in the
network space.

> a <- 3

> b <- 1:10

> nwsStore(ws, ’a’, a)

> nwsStore(ws, ’b’, b)

To get data from the network space call:

> a <- nwsFindTry(ws, ’a’)

> b <- nwsFindTry(ws, ’b’)

Calculations at all slaves

> eachWorker(s, function(host, name){

+ ws <- netWorkSpace(serverHost=host, name)

+ a <- nwsFindTry(ws, ’a’)

+ return(a+5)

+ }, ws@server@serverHost, ws@wsName)

> eachWorker(s,sin,5)

Calculations at list element distributed to slaves

> eachElem(s, sqrt, c(3,6,9))
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Stop cluster

> stopSleigh(s)

snow: Simple Network of Workstations

Start the underlying technology you want to use. For details see the other sections.

Start cluster

> library("snow")

> ## Starting 4 workers and initialize master

> #c1 <- makePVMcluster(4)

>

> #system("cat HOSTFILE > cluster.txt")

> #mycluster <- scan(file="cluster.txt" ,what="character")

> ## Starting 4 workers and initialize master and

> ## removing first workername from list. In most cases this is the master,

> ## we do not want to have a slaves running at the same machine than the master.

> #c1 <- makeNWScluster(mycluster[2:5])

>

> #system("cat HOSTFILE > cluster.txt")

> #mycluster <- scan(file="cluster.txt" ,what="character")

> ## Starting 4 workers and initialize master and

> ## removing first workername from list. In most cases this is the master,

> ## we do not want to have a slaves running at the same machine than the master.

> #c1 <- makeSOCKcluster(mycluster[1:4])

>

> ## Starting 4 workers and initialize master

> c1 <- makeMPIcluster(4)

Sending data to all slaves

> a <- 3

> b <- 1:10

> clusterExport(cl, list("a", "b"))

Calculations at all slaves

> clusterEvalQ(cl, a+5)

> clusterCall(cl, sin, 5)

Calculations at list element distributed to slaves

> clusterApply(cl, c(3,6,9), sqrt)
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Stop cluster

> stopCluster(cl)

snowFT: Simple Network of Workstations with Fault Tolerance

For details starting the pvm see Section A.1.2.

Start cluster

> library("snowFT")

> ## Starting 4 workers and initialize master

> cl <- makeClusterFT(4)

Sending data to all slaves

> a <- 3

> b <- 1:10

> clusterExport(cl, list("a", "b"))

Calculations at all slaves

> clusterEvalQ(cl, a+5)

> clusterCall(cl, sin, 5)

Calculations at list element distributed to slaves

> clusterApplyFT(cl, c(3,6,9), sqrt)

Stop cluster

> stopCluster(cl)

snowfall: Simple Network of Workstations with more userfriendly interface

Start the underlying technology you want to use. For details see the other sections.

Start cluster

> library("snowfall")

> ## Starting 4 workers and initialize master

> sfInit(parallel=TRUE, cpus=4, type=’MPI’)
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Sending data to all slaves

> a <- 3

> b <- 1:10

> sfExport("a", "b")

Calculations at all slaves

> sfClusterEval(a+5)

> sfClusterCall(sin, 5)

Calculations at list element distributed to slaves

> sfClusterApply(c(3,6,9), sqrt)

Stop cluster

> sfStop()

papply

The package papply extends the package Rmpi with an improved apply() function. All
functions of the Rmpi package can or have to be used.

Start cluster

> library("Rmpi")

> library("papply")

> ## Starting 4 workers and initialize the master

> mpi.spawn.Rslaves(nslaves=4)

Calculations at list element distributed to slaves

> papply(as.list(c(3,6,9)), sqrt)

Stop cluster

> mpi.close.Rslaves()

biopara

In the package biopara all R instances have to be started manually and biopara has to be
initialized.
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Start cluster

> #Start workers: 4 times

> library("biopara")

> biopara(37000,"/tmp","localhost",38000)

> #Start master

> library("biopara")

> slaves <- list( list("slave1",37000,"/tmp",38000,""),

+ list("slave1",37000,"/tmp",38000,""),

+ list("slave1",37000,"/tmp",38000,""),

+ list("slave1",37000,"/tmp",38000,"") )

> biopara("master",36000,39000,slaves)

> #Start one more R instance for client

> library("biopara")

Sending data to all slaves

> out<-biopara(list("master",39000), list("localhost",40000), 4,

+ assign(’a’, 3, envir=.GlobalEn) )

> out<-biopara(list("master",39000), list("localhost",40000), 4,

+ assign(’b’, 1:10, envir=.GlobalEn) )

Calculations at all slaves

> out<-biopara(list("master",39000), list("localhost",40000), 4,

+ get(’a’, envir=.GlobalEn)+5 )

> out<-biopara(list("master",39000), list("localhost",40000), 4,

+ sin(5) )

Calculations at list element distributed to slaves not possible

Stop cluster Kill all R instances!

taskPR

Depending of the used MPI implementation and resource manager there are different ways
for starting R with connection to the running MPI universe.

Start cluster

> library("taskPR")

> ## Starting 4 workers and initialize the master

> StartPE(4)

Sending data to all slaves

> PE(a <- 3, global=TRUE)

> PE(b <- 1:10, global=TRUE)
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Calculations at all slaves

> PE(x <- a+5, global=TRUE)

> PE(y <- sin(5), global=TRUE)

> POBJ(x)

> print(x)

> POBJ(y)

> print(y)

Calculations at list element distributed to slaves

> sapply(c(3,6,9), function(x){

+ PE(temp<-sqrt(x))

+ POBJ(temp)

+ return(temp)

+ })

Stop cluster

> StopPE()

A.2. R Packages for Grid Computing

GridR

Start cluster / Grid

> library("GridR")

> grid.init()

Calculation somewhere in the Grid This is no parallel calculation!

> grid.apply("erg", sin, 5)

Parllel calculation in the Grid

> func <- function(x){

+ library("GridR")

+ grid.init(new-parameters)

+ grid.apply("result2", sin, 5)

+ return(result2)

+ }

> grid.apply("result", func, 5)
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multiR

Up to the time of review, there was no code available.

Biocep-R

Biocep-R is a GUI project. Therefore there is no special code.

A.3. R Packages for Multi-core Systems

R/Parallel

Start cluster There is no start command required. You only have to load the package.

> library("rparallel")

Paralleization of a loop without data dependencies

> colSumsPara <- function( x )

+ {

+ result <- NULL

+ if( "rparallel" %in% names( getLoadedDLLs()) ) {

+ runParallel( resultVar="result", resultOp="cbind", nWorkers=4 )

+ } else {

+ for( idx in 1:dim(x)[2] ){

+ tmp <- sum(x[,idx])

+ result <- cbind(result,tmp)

+ }

+ return( result )

+ }

+ }

> x <- matrix(sample(100), nrow=10)

> colSumsPara(x)

pnmath

Loading the packages they replace the builtin math functions by the parallel versions. The
user can use the standard math functions without learning any new code syntax.

> library("pnmath")

> library("pnmath0")

romp

Up to the time of review, there was no package available. Only some example code without
documentation was available.
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B. R Code for Performance Evaluation

The benchmark contains three different components: Sending data from the master to all
slaves, distributing a list of data from the master to the slaves and a small classic parallel
computation example. For every component the execution time will be measured. The time
for starting and stopping the cluster and as well for calculating results or parameters will not
be measured. To avoid foreign network traffic or processor load the measurement will be done
five times and the computation time will be averaged. The results are presented in Table 5.

B.1. Used Software and Hardware

For the benchmark the ’hoppy’ cluster at the Fred Hutchinson Cancer Research Center in
Seattle, WA, USA was used. For the evaluation ten workers were used and at every worker only
one R instance was started. The cluster has the following hardware and software configuration:

• each worker: 4 GB main memory, 4 x Intel(R) Xeon(TM) CPU 3.60GHz, Suse Linux
version 2.6.12

• R Version 2.8.0 and latest packages.

• PVM 3.4.5

• openMPI 1.2.4

• NWS Server 1.5.2 (located at the master)

• Resource Manager: Torque 2.3.2; Using Torque the HOSTFILE is stored in the variable
PBS NODEFILE.

B.2. Sending Data from the Master to all Slaves

In this test component a ’big’ R object will be sent from the master to all slaves and saved
in the Global Environment at the slaves. As ’big’ R object a list with five 500× 500 matrices
is used.

> dim <- 500

> Robj <- rep( list( matrix(1,nrow=dim, ncol=dim) ), 5)

Rmpi

> library("Rmpi")

> mpi.spawn.Rslaves(nslaves=10)

> t <- replicate(5,system.time(mpi.bcast.Robj2slave(obj=Robj)))

> tint <- summary(t[3,])

> mpi.close.Rslaves()

nws
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> library("nws")

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> s <- sleigh(nodeList=mycluster[-1], launch=sshcmd, workerCount=10)

> slavefunc <- function(x){ assign(’Robj’, x, envir=.GlobalEnv); return(NULL) }

> t <- replicate(5, system.time( eachWorker(s, slavefunc, Robj) ))

> tint <- summary(t[3,])

> stopSleigh(s)

snow

> library("snow")

snow with MPI

> c1 <- makeMPIcluster(10)

> t <- replicate(5, system.time( clusterExport(c1, list("Robj")) ))

> tint <- summary(t[3,])

> stopCluster(c1)

snow with PVM

> c1 <- makePVMcluster(10)

> t <- replicate(5, system.time( clusterExport(c1, list("Robj")) ))

> tint <- summary(t[3,])

> stopCluster(c1)

snow with NWS

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> c1 <- makeNWScluster(mycluster[2:11])

> t <- replicate(5, system.time( clusterExport(c1, list("Robj")) ))

> tint <- summary(t[3,])

> stopCluster(c1)

snow with SOCKET

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> c1 <- makeSOCKcluster(mycluster[2:11])

> t <- replicate(5, system.time( clusterExport(c1, list("Robj")) ))

> tint <- summary(t[3,])

> stopCluster(c1)
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snowfall

> library("snowfall")

snowfall with MPI

> sfInit(parallel=TRUE, cpus=10, type="MPI")

> slavefunc <- function(x){ assign(’Robj’, x, envir=.GlobalEnv); return(NULL)}

> t <- replicate(5, system.time( sfClusterCall(slavefunc, Robj) ))

> tint <- summary(t[3,])

> sfStop()

snowfall with PVM

> sfInit(parallel=TRUE, cpus=10, type="PVM")

> slavefunc <- function(x){ assign(’Robj’, x, envir=.GlobalEnv); return(NULL) }

> t <- replicate(5, system.time( sfClusterCall(slavefunc, Robj) ))

> tint <- summary(t[3,])

> sfStop()

snowfall with NWS

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> sfInit(parallel=TRUE, cpus=10, type="NWS", socketHosts=mycluster[2:11])

> slavefunc <- function(x){ assign(’Robj’, x, envir=.GlobalEnv); return(NULL) }

> t <- replicate(5, system.time( sfClusterCall(slavefunc, Robj) ))

> tint <- summary(t[3,])

> sfStop()

snowfall with SOCKET

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> sfInit(parallel=TRUE, cpus=10, type="SOCK", socketHosts=mycluster[2:11])

> slavefunc <- function(x){ assign(’Robj’, x, envir=.GlobalEnv); return(NULL) }

> t <- replicate(5, system.time( sfClusterCall(slavefunc, Robj) ))

> tint <- summary(t[3,])

> sfStop()

snowFT, papply, biopara, taskPR, rpvm These packages were excluded from the
benchmark. snowFT and papply are only add on packages. biopara only supports socket
connections and taskPR only supports the LAM/MPI implementation. The package rpvm
does not have scripts to lunch R instances at the workers.
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B.3. Distributing a List of Data from the Master to the Slaves

In this test component a list of R objects will be distributed from the master to the slaves and
saved in the global environment at the slaves. Therefore a list with 10 (number of workers)
elements will be created. Each element is a 500×500 matrix. Matrix 1 goes to slave 1, matrix
2 goes to slave 2 and so on.

> dim <- 500

> Robj <- rep( list( matrix(1,nrow=dim, ncol=dim) ), 10)

Rmpi

> library("Rmpi")

> mpi.spawn.Rslaves(nslaves=10)

> # the function mpi.scatter.Robj2slav is available in Rmpi_0.5-6

> t <- replicate(5,system.time(mpi.scatter.Robj2slave(Robj)))

> tint <- summary(t[3,])

> mpi.close.Rslaves()

nws

> library("nws")

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> s <- sleigh(nodeList=mycluster[-1], launch=sshcmd, workerCount=10)

> slavefunc <- function(x){ assign(’x’, x, envir=.GlobalEnv); return(NULL) }

> t <- replicate(5, system.time( eachElem(s, slavefunc, Robj) ))

> tint <- summary(t[3,])

> stopSleigh(s)

snow

> library("snow")

snow with MPI

> c1 <- makeMPIcluster(10)

> slavefunc <- function(x){ assign(’x’, x, envir=.GlobalEnv); return(NULL) }

> t <- replicate(5, system.time( clusterApply(c1, Robj, slavefunc) ))

> tint <- summary(t[3,])

> stopCluster(c1)
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snow with PVM

> c1 <- makePVMcluster(10)

> slavefunc <- function(x){ assign(’x’, x, envir=.GlobalEnv); return(NULL) }

> t <- replicate(5, system.time( clusterApply(c1, Robj, slavefunc) ))

> tint <- summary(t[3,])

> stopCluster(c1)

snow with NWS

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> c1 <- makeNWScluster(mycluster[2:11])

> slavefunc <- function(x){ assign(’x’, x, envir=.GlobalEnv); return(NULL) }

> t <- replicate(5, system.time( clusterApply(c1, Robj, slavefunc) ))

> tint <- summary(t[3,])

> stopCluster(c1)

snow with SOCKET

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> c1 <- makeSOCKcluster(mycluster[2:11])

> slavefunc <- function(x){ assign(’x’, x, envir=.GlobalEnv); return(NULL) }

> t <- replicate(5, system.time( clusterApply(c1, Robj, slavefunc) ))

> tint <- summary(t[3,])

> stopCluster(c1)

snowfall

> library("snowfall")

snowfall with MPI

> sfInit(parallel=TRUE, cpus=10, type="MPI")

> slavefunc <- function(x){ assign(’x’, x, envir=.GlobalEnv); return(NULL) }

> t <- replicate(5, system.time( sfClusterApply(Robj, slavefunc) ))

> tint <- summary(t[3,])

> sfStop()

snowfall with PVM

> sfInit(parallel=TRUE, cpus=10, type="PVM")

> slavefunc <- function(x){ assign(’x’, x, envir=.GlobalEnv); return(NULL) }

> t <- replicate(5, system.time( sfClusterApply(Robj, slavefunc) ))

> tint <- summary(t[3,])

> sfStop()
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snowfall with NWS

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> sfInit(parallel=TRUE, cpus=10, type="NWS", socketHosts=mycluster[2:11])

> slavefunc <- function(x){ assign(’x’, x, envir=.GlobalEnv); return(NULL) }

> t <- replicate(5, system.time( sfClusterApply(Robj, slavefunc) ))

> tint <- summary(t[3,])

> sfStop()

snowfall with SOCKET

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> sfInit(parallel=TRUE, cpus=10, type="SOCK", socketHosts=mycluster[2:11])

> slavefunc <- function(x){ assign(’x’, x, envir=.GlobalEnv); return(NULL) }

> t <- replicate(5, system.time( sfClusterApply(Robj, slavefunc) ))

> tint <- summary(t[3,])

> sfStop()

B.4. Small classic Parallel Computation Example

In this test component the integral of a three-dimensional function should be calculated. Inte-
gration of a function over a defined region is a very common example for parallel computing.

Problem formulation

> xint <- c(-1,2)

> yint <- c(-1,2)

> func <- function(x,y) x^3-3*x + y^3-3*y

> library(lattice)

> g <- expand.grid(x = seq(xint[1],xint[2],0.1), y = seq(yint[1],yint[2],0.1))

> g$z <- func(g$x,g$y)

Figure 2 shows the surface of the function. The exact solution of the integral can be analyti-
cally calculated.∫ ∫

[−1,2]×[−1,2]
x3 − 3x + y3 − 3y dxdy =

∫
[−1,2]

[
1
4
x4 − 3

2
x2 + xy3 − 3xy

]x=2

x=−1

dy

=
∫

[−1,2]
−3

4
+ 3y3 − 9y dy

=
[
−3

4
y +

3
4
y4 − 9

2
y2

]x=2

x=−1

= −4.5
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x
y

z

Figure 2: Surface of the example equation for test component 3.

Implementation

The volume under the function has to be split in several parts. Than the volume of the
rectangular boxes can be computed. Width and depth are the size of the split intervals and
the high is the function value (in the middle or at a corner). Summarizing the values returns
the full integral. The more boxes will be calculated (smaller boxes), the more exact the
calculation gets.

Serial code

There are principle three ways to implement the integration in serial.

Serial calculation of the Integral with ’for’ loops

> integLoop <- function(func, xint, yint, n)

+ {

+ erg <- 0

+ # interval sizes

+ xincr <- ( xint[2]-xint[1] ) / n

+ yincr <- ( yint[2]-yint[1] ) / n

+ for(xi in seq(xint[1],xint[2], length.out=n)){

+ for(yi in seq(yint[1],yint[2], length.out=n)){

+ # Calculating one rectangular box

+ box <- func(xi, yi) * xincr * yincr

+ # Summarizing

+ erg <- erg + box

+ }

+ }
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+ return(erg)

+ }

Serial calculation of the Integral with vectorization

> integVec <- function(func, xint, yint, n)

+ {

+ xincr <- ( xint[2]-xint[1] ) / n

+ yincr <- ( yint[2]-yint[1] ) / n

+ # using vectors instead of loops

+ erg <- sum( func( seq(xint[1],xint[2], length.out=n),

+ seq(yint[1],yint[2], length.out=n) ) ) * xincr * yincr * n

+ return(erg)

+ }

Serial calculation of the Integral with apply functions

> integApply <- function (func, xint, yint, n)

+ {

+ applyfunc <- function(xrange, xint, yint, n, func)

+ {

+ # calculates for every x interval the complete volume

+ yrange <- seq(yint[1],yint[2], length.out=n)

+ xincr <- ( xint[2]-xint[1] ) / n

+ yincr <- ( yint[2]-yint[1] ) / n

+ erg <- sum( sapply(xrange, function(x) sum( func(x,yrange) )) ) * xincr * yincr

+ return(erg)

+ }

+ xrange <- seq(xint[1],xint[2],length.out=n)

+ erg <- sapply(xrange, applyfunc, xint, yint, n, func)

+ return( sum(erg) )

+ }

Parallel code

Slavefunction which will be executed at every slave and calculates the area under the function.
This slavefunction will be used for every R package.

> slavefunc<- function(id, nslaves, xint, yint, n, func){

+ xrange <- seq(xint[1],xint[2],length.out=n)[seq(id,n,nslaves)]

+ yrange <- seq(yint[1],yint[2], length.out=n)

+ xincr <- ( xint[2]-xint[1] ) / n

+ yincr <- ( yint[2]-yint[1] ) / n

+ erg <- sapply(xrange, function(x)sum( func(x,yrange ) ))* xincr * yincr

+ return( sum(erg) )

+ }
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R code for different cluster packages. In principle all the same, only the different syntax of
the parallel apply function will be used.

Rmpi

> integRmpi <- function (func, xint, yint, n)

+ {

+ nslaves <- mpi.comm.size()-1

+ erg <- mpi.parSapply(1:nslaves, slavefunc, nslaves, xint, yint, n, func)

+ return( sum(erg) )

+ }

nws

> integNWS <- function(sleigh, func, xint, yint, n)

+ {

+ nslaves <- status(s)$numWorkers

+ erg <- eachElem(sleigh, slavefunc, list(id=1:nslaves),

+ list(nslaves=nslaves, xint=xint, yint=yint, n=n, func=func))

+ return( sum(unlist(erg)) )

+ }

snow

> integSnow <- function(cluster, func, xint, yint, n)

+ {

+ nslaves <- length(cluster)

+ erg <- clusterApplyLB(cluster, 1:nslaves, slavefunc, nslaves, xint, yint, n, func)

+ return( sum(unlist(erg)) )

+ }

snowfall

> integSnowFall <- function(func, xint, yint, n)

+ {

+ nslaves <- sfCpus()

+ erg <- sfClusterApplyLB(1:nslaves, slavefunc, nslaves, xint, yint, n, func)

+ return( sum(unlist(erg)) )

+ }

Results comparison

R code to calculate the results of the integral.

> func <- function(x,y) x^3-3*x + y^3-3*y

> xint <- c(-1,2)
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> yint <- c(-1,2)

> n <- 10000

> #serial

> erg <- integLoop(func, xint, yint, n)

> erg <- integVec(func, xint, yint, n)

> erg <- integApply(func, xint, yint, n)

> #parallel MPI

> library(Rmpi)

> mpi.spawn.Rslaves(nslaves=10)

> erg <- integRmpi(func, xint, yint, n)

> mpi.close.Rslaves()

> #parallel NWS

> library("nws")

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> s <- sleigh(nodeList=mycluster[-1], launch=sshcmd, workerCount=10)

> erg <- integNWS(s, func, xint, yint, n)

> stopSleigh(s)

> #parallel SNOW

> library(snow)

> c1 <- makeMPIcluster(10)

> erg <- integSnow(c1, func, xint, yint, n)

> stopCluster(c1)

> #parallel snowfall

> library(snowfall)

> sfInit(parallel=TRUE, cpus=10, type="MPI")

> erg <- integSnowFall(func, xint, yint, n)

> sfStop()

Time measurement

R code to run the time measurements.

Time measurement for serial code

> rep <- 5

> tLoop <- replicate(rep, system.time( integLoop(func, xint, yint, n) ))

> summary(tLoop[3,])

> tVec <- replicate(rep, system.time( integVec(func, xint, yint, n) ))

> summary(tVec[3,])

> tApply <- replicate(rep, system.time( integApply(func, xint, yint, n) ))

> summary(tApply[3,])

Time measurement for parallel code

> #parallel MPI

> library(Rmpi)
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> mpi.spawn.Rslaves(nslaves=10)

> tRmpi <- replicate(rep, system.time( integRmpi(func, xint, yint, n) ))

> summary(tRmpi[3,])

> mpi.close.Rslaves()

> #parallel NWS

> library("nws")

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> s <- sleigh(nodeList=mycluster[-1], launch=sshcmd, workerCount=10)

> tNWS <- replicate(rep, system.time( integNWS(s, func, xint, yint, n) ))

> summary(tNWS[3,])

> stopSleigh(s)

> #parallel SNOW

> library(snow)

> c1 <- makeMPIcluster(10)

> tSnow1 <- replicate(rep, system.time( integSnow(c1, func, xint, yint, n) ))

> summary(tSnow1[3])

> stopCluster(c1)

> c1 <- makePVMcluster(10)

> tSnow2 <- replicate(rep, system.time( integSnow(c1, func, xint, yint, n) ))

> summary(tSnow2[3,])

> stopCluster(c1)

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> c1 <- makeNWScluster(mycluster[2:11])

> tSnow3 <- replicate(rep, system.time( integSnow(c1, func, xint, yint, n) ))

> summary(tSnow3[3,])

> stopCluster(c1)

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> c1 <- makeSOCKcluster(mycluster[2:11])

> tSnow4 <- replicate(rep, system.time( integSnow(c1, func, xint, yint, n) ))

> summary(tSnow4[3,])

> stopCluster(c1)

> #parallel snowfall

> library(snowfall)

> sfInit(parallel=TRUE, cpus=10, type="MPI")

> tSnowFall1 <- replicate(rep, system.time( integSnowFall(func, xint, yint, n) ))

> summary(tSnowFall1[3,])

> sfStop()

> sfInit(parallel=TRUE, cpus=10, type="PVM")

> tSnowFall2 <- replicate(rep, system.time( integSnowFall(func, xint, yint, n) ))

> summary(tSnowFall2[3,])

> sfStop()

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> sfInit(parallel=TRUE, cpus=10, type="NWS", socketHosts=mycluster[2:11])
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> tSnowFall3 <- replicate(rep, system.time( integSnowFall(func, xint, yint, n) ))

> summary(tSnowFall3[3,])

> sfStop()

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> sfInit(parallel=TRUE, cpus=10, type="SOCK", socketHosts=mycluster[2:11])

> tSnowFall4 <- replicate(rep, system.time( integSnowFall(func, xint, yint, n) ))

> summary(tSnowFall4[3,])

> sfStop()

Time Visualization

In the package snow the function snow.time() can be used to visualize timing informations
for the cluster usage. The function plot(), motivated by the display produced by ’xpvm’,
produces a Gantt chart of the computation, with green rectangles representing active com-
putation, blue horizontal lines representing a worker waiting to return a result, and red lines
representing master/worker communications.

> library(snow)

> c1 <- makeMPIcluster(10)

> visSnow1 <- snow.time( integSnow(c1, func, xint, yint, n) )

> stopCluster(c1)

> c1 <- makePVMcluster(10)

> visSnow2 <- snow.time( integSnow(c1, func, xint, yint, n) )

> stopCluster(c1)

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> c1 <- makeNWScluster(mycluster[2:11])

> visSnow3 <- snow.time( integSnow(c1, func, xint, yint, n) )

> stopCluster(c1)

> system("cat $PBS_NODEFILE > cluster.txt")

> mycluster <- scan(file="cluster.txt" ,what="character")

> c1 <- makeSOCKcluster(mycluster[2:11])

> visSnow4 <- snow.time( integSnow(c1, func, xint, yint, n) )

> stopCluster(c1)

C. Additional Tables and Figures

This appendix section includes additional tables and figures.
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Figure 3: Time visualization of timing informations for the cluster usage for component
test 3 with snow package. Green rectangles representing active computation, blue horizontal
lines representing a worker waiting to return a result, and red lines representing master-slave
communications.
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Packages Version Websites
proftools 0.0-2 http://cran.r-project.org/web/packages/proftools

http://www.cs.uiowa.edu/~luke/R/codetools
codetools 0.2-1 http://cran.r-project.org/web/packages/codetools

http://www.cs.uiowa.edu/~luke/R/codetools
profr 0.1.1 http://cran.r-project.org/web/packages/profr

http://github.com/hadley/profr

Table 6: Overview about R packages for code analysis available on CRAN, including latest
version numbers and corresponding hyperlinks.

Packages / Software Version Websites
sfCluster 0.4beta http://www.imbi.uni-freiburg.de/parallel
SLURM 1.3.11 https://computing.llnl.gov/linux/slurm

http://sourceforge.net/projects/slurm
SGE 6.2 http://gridengine.sunsource.net
Rsge (Package) 0.4 http://cran.r-project.org/web/packages/Rsge

Table 7: Overview about software and R packages for resource manager systems, including
latest version numbers and corresponding hyperlinks.

Ludwig-Maximilians-Universität Munich
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Packages Version Websites
rsprng 0.4 http://cran.r-project.org/web/packages/rsprng

http://www.biostat.umn.edu/~nali/SoftwareListing.html
rlecuyer 0.1 http://cran.r-project.org/web/packages/rlecuyer

Table 8: Overview about R packages for parallle random number generators, including latest
version numbers and corresponding hyperlinks.


