8,030 research outputs found

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    Targeted Test Generation for Actor Systems

    Get PDF
    This paper addresses the problem of targeted test generation for actor systems. Specifically, we propose a method to support generation of system-level tests to cover a given code location in an actor system. The test generation method consists of two phases. First, static analysis is used to construct an abstraction of an entire actor system in terms of a message flow graph (MFG). An MFG captures potential actor interactions that are defined in a program. Second, a backwards symbolic execution (BSE) from a target location to an "entry point" of the actor system is performed. BSE uses the MFG constructed in the first phase of our targeted test generation method to guide execution across actors. Because concurrency leads to a huge search space which can potentially be explored through BSE, we prune the search space by using two heuristics combined with a feedback-directed technique. We implement our method in Tap, a tool for Java Akka programs, and evaluate Tap on the Savina benchmarks as well as four open source projects. Our evaluation shows that the Tap achieves a relatively high target coverage (78% on 1,000 targets) and detects six previously unreported bugs in the subjects

    Constraint-based reachability

    Get PDF
    Iterative imperative programs can be considered as infinite-state systems computing over possibly unbounded domains. Studying reachability in these systems is challenging as it requires to deal with an infinite number of states with standard backward or forward exploration strategies. An approach that we call Constraint-based reachability, is proposed to address reachability problems by exploring program states using a constraint model of the whole program. The keypoint of the approach is to interpret imperative constructions such as conditionals, loops, array and memory manipulations with the fundamental notion of constraint over a computational domain. By combining constraint filtering and abstraction techniques, Constraint-based reachability is able to solve reachability problems which are usually outside the scope of backward or forward exploration strategies. This paper proposes an interpretation of classical filtering consistencies used in Constraint Programming as abstract domain computations, and shows how this approach can be used to produce a constraint solver that efficiently generates solutions for reachability problems that are unsolvable by other approaches.Comment: In Proceedings Infinity 2012, arXiv:1302.310

    Test generation for high coverage with abstraction refinement and coarsening (ARC)

    Get PDF
    Testing is the main approach used in the software industry to expose failures. Producing thorough test suites is an expensive and error prone task that can greatly benefit from automation. Two challenging problems in test automation are generating test input and evaluating the adequacy of test suites: the first amounts to producing a set of test cases that accurately represent the software behavior, the second requires defining appropriate metrics to evaluate the thoroughness of the testing activities. Structural testing addresses these problems by measuring the amount of code elements that are executed by a test suite. The code elements that are not covered by any execution are natural candidates for generating further test cases, and the measured coverage rate can be used to estimate the thoroughness of the test suite. Several empirical studies show that test suites achieving high coverage rates exhibit a high failure detection ability. However, producing highly covering test suites automatically is hard as certain code elements are executed only under complex conditions while other might be not reachable at all. In this thesis we propose Abstraction Refinement and Coarsening (ARC), a goal oriented technique that combines static and dynamic software analysis to automatically generate test suites with high code coverage. At the core of our approach there is an abstract program model that enables the synergistic application of the different analysis components. In ARC we integrate Dynamic Symbolic Execution (DSE) and abstraction refinement to precisely direct test generation towards the coverage goals and detect infeasible elements. ARC includes a novel coarsening algorithm for improved scalability. We implemented ARC-B, a prototype tool that analyses C programs and produces test suites that achieve high branch coverage. Our experiments show that the approach effectively exploits the synergy between symbolic testing and reachability analysis outperforming state of the art test generation approaches. We evaluated ARC-B on industry relevant software, and exposed previously unknown failures in a safety-critical software component

    Combining Static Analysis and Targeted Symbolic Execution for Scalable Bug-finding in Application Binaries

    Get PDF
    Manual software testing is laborious and prone to human error. Yet, it is the most popular method for quality assurance. Automating the test-case generation promises better effectiveness, especially for exposing “deep” corner-case bugs. Symbolic execution is an automated technique for program analysis that has recently become practical due to advances in constraint solvers. It stands out as an automated testing technique that has no false positives, it eventually enumerates all feasible program executions, and can prioritize executions of interest. However, “path explosion”, the fact that the number of program executions is typically at least exponential in the size of the program, hinders the adoption of symbolic execution in the real world, where program commonly reaches millions of lines of code. In this thesis, we present a method for generating test-cases using symbolic execution which reach a given potentially buggy “target” statement. Such a potentially buggy program statement can be found by static program analysis or from crash-reports given by users and serve as input to our technique. The test-case generated by our technique serves as a proof of the bug. Generating crashes at the target statement have many applications including re-producing crashes, checking warnings generated by static program analysis tools, or analysis of source code patches in code review process. By constantly steering the symbolic execution along the branches that are most likely to lead to the target program statement and pruning the search space that are unlikely to reach the target, we were able to detect deep bugs in real programs. To tackle exponential growth of program paths, we propose a new scheme to manage program execution paths without exhausting memory. Experiments on real-life programs demonstrate that our tool WatSym, built on selective symbolic execution engine S2E, can generate crashing inputs in feasible time and order of magnitude better than symbolic approaches (as embodied by S2E) failed

    Succinct Representations for Abstract Interpretation

    Full text link
    Abstract interpretation techniques can be made more precise by distinguishing paths inside loops, at the expense of possibly exponential complexity. SMT-solving techniques and sparse representations of paths and sets of paths avoid this pitfall. We improve previously proposed techniques for guided static analysis and the generation of disjunctive invariants by combining them with techniques for succinct representations of paths and symbolic representations for transitions based on static single assignment. Because of the non-monotonicity of the results of abstract interpretation with widening operators, it is difficult to conclude that some abstraction is more precise than another based on theoretical local precision results. We thus conducted extensive comparisons between our new techniques and previous ones, on a variety of open-source packages.Comment: Static analysis symposium (SAS), Deauville : France (2012

    Automatic Creation of SQL Injection and Cross-Site Scripting Attacks

    Get PDF
    We present a technique for finding security vulnerabilitiesin Web applications. SQL Injection (SQLI) and cross-sitescripting (XSS) attacks are widespread forms of attackin which the attacker crafts the input to the application toaccess or modify user data and execute malicious code. Inthe most serious attacks (called second-order, or persistent,XSS), an attacker can corrupt a database so as to causesubsequent users to execute malicious code.This paper presents an automatic technique for creatinginputs that expose SQLI and XSS vulnerabilities. The techniquegenerates sample inputs, symbolically tracks taintsthrough execution (including through database accesses),and mutates the inputs to produce concrete exploits. Oursis the first analysis of which we are aware that preciselyaddresses second-order XSS attacks.Our technique creates real attack vectors, has few falsepositives, incurs no runtime overhead for the deployed application,works without requiring modification of applicationcode, and handles dynamic programming-languageconstructs. We implemented the technique for PHP, in a toolArdilla. We evaluated Ardilla on five PHP applicationsand found 68 previously unknown vulnerabilities (23 SQLI,33 first-order XSS, and 12 second-order XSS)
    • …
    corecore