1,134 research outputs found

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Fast multi-axis tracking of magnetically-resonant passive tags : methods and applications

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.Includes bibliographical references (p. 81-83).We have explored the design and development of magnetically-resonant tag readers for application to tangible computer interfaces. To this end, we constructed a ringdown tag reader and a swept-frequency tag reader, both capable of real-time continuous interaction with multiple tagged objects. Although the ringdown reader worked well for smaller numbers of tags, the swept-frequency tag reader proved more efficient for work with twenty to thirty tags, and so we did further work to extend and apply it. Graphical and musical applications were developed for the swept-frequency tag reader and proved its usability for driving tangible desktop interfaces. Finally, a six-coil variant was constructed in order to determine the three-dimensional position and orientation of tagged objects. This thesis describes both reader systems, outlines our demonstration applications, and gives first test results from the multiple-coil tracker.by Kai-yuh Hsiao.M.Eng

    Toward New Ecologies of Cyberphysical Representational Forms, Scales, and Modalities

    Get PDF
    Research on tangible user interfaces commonly focuses on tangible interfaces acting alone or in comparison with screen-based multi-touch or graphical interfaces. In contrast, hybrid approaches can be seen as the norm for established mainstream interaction paradigms. This dissertation describes interfaces that support complementary information mediations, representational forms, and scales toward an ecology of systems embodying hybrid interaction modalities. I investigate systems combining tangible and multi-touch, as well as systems combining tangible and virtual reality interaction. For each of them, I describe work focusing on design and fabrication aspects, as well as work focusing on reproducibility, engagement, legibility, and perception aspects

    GAINE - A Portable Framework for the Development of Edutainment Applications Based on Multitouch and Tangible Interaction

    Get PDF
    In the last few years, Multitouch and Tangible User Interfaces have emerged as a powerful tool to integrate interactive surfaces and responsive spaces that embody digital information. Besides providing a natural interaction with digital contents, they allow the interaction of multiple users at the same time, thus promoting collaborative activities and information sharing. In particular, these characteristics have opened new exploration possibilities in the edutainment context, as witnessed by the many applications successfully developed in different areas, from children’s collaborative learning to interactive storytelling, cultural heritage and medical therapy support. However, due to the availability of different multitouch and tangible interaction technologies and of different target computing platforms, the development and deployment of such applications can be challenging. To this end, in this paper we present GAINE (tanGible Augmented INteraction for Edutainment), a software framework that enables rapid prototyping and development of tangible augmented applications for edutainment purposes. GAINE has two main features. First, it offers developers high-level context specific constructs that significantly reduces the implementation burden. Second, the framework is portable on different operating systems and offers independence from the underlying hardware and tracking technology. In this paper, we also discuss several case studies to show the effectiveness of GAINE in simplifying the development of entertainment and edutainment applications based on multitouch and tangible interaction

    IoT4Fun Rapid Prototyping Toolkit for Smart Toys

    Get PDF
    Rapid prototyping tools turn the design of smart toys faster and easier for creative teams. Appropriate tools for smart toys should meet a list of requirements, which include distributed data collection and adaptability for assorted toy shapes and size. The IoT4Fun toolkit innovates by mixing the embedded, modular, and plug-and-play approaches. It supports motion tracking data, wireless communication, and contactless identification. IoT4Fun demonstrates its effectiveness to design a variety of smart toy solutions by fitting into a hula-hoop toy until spherical, cubic, and wearable shapes. Solutions connect with either mobile applications or other toys and play rules range from open-ended to closed behaviors. End-users exhaustively tested developed solutions, and technical assessment evaluates their integrity after playtesting sessions. Results show comparative data on battery consumption and vulnerabilities threats for data security and privacy of each design. Future versions of IoT4Fun can benefit from miniaturization, robustness, and reliability improvements

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint

    Development of actuated Tangible User Interfaces: new interaction concepts and evaluation methods

    Get PDF
    Riedenklau E. Development of actuated Tangible User Interfaces: new interaction concepts and evaluation methods. Bielefeld: UniversitĂ€t Bielefeld; 2016.Making information understandable and literally graspable is the main goal of tangible interaction research. By giving digital data physical representations (Tangible User Interface Objects, or TUIOs), they can be used and manipulated like everyday objects with the users’ natural manipulation skills. Such physical interaction is basically of uni-directional kind, directed from the user to the system, limiting the possible interaction patterns. In other words, the system has no means to actively support the physical interaction. Within the frame of tabletop tangible user interfaces, this problem was addressed by the introduction of actuated TUIOs, that are controllable by the system. Within the frame of this thesis, we present the development of our own actuated TUIOs and address multiple interaction concepts we identified as research gaps in literature on actuated Tangible User Interfaces (TUIs). Gestural interaction is a natural means for humans to non-verbally communicate using their hands. TUIs should be able to support gestural interaction, since our hands are already heavily involved in the interaction. This has rarely been investigated in literature. For a tangible social network client application, we investigate two methods for collecting user-defined gestures that our system should be able to interpret for triggering actions. Versatile systems often understand a wide palette of commands. Another approach for triggering actions is the use of menus. We explore the design space of menu metaphors used in TUIs and present our own actuated dial-based approach. Rich interaction modalities may support the understandability of the represented data and make the interaction with them more appealing, but also mean high demands on real-time precessing. We highlight new research directions for integrated feature rich and multi-modal interaction, such as graphical display, sound output, tactile feedback, our actuated menu and automatically maintained relations between actuated TUIOs within a remote collaboration application. We also tackle the introduction of further sophisticated measures for the evaluation of TUIs to provide further evidence to the theories on tangible interaction. We tested our enhanced measures within a comparative study. Since one of the key factors in effective manual interaction is speed, we benchmarked both the human hand’s manipulation speed and compare it with the capabilities of our own implementation of actuated TUIOs and the systems described in literature. After briefly discussing applications that lie beyond the scope of this thesis, we conclude with a collection of design guidelines gathered in the course of this work and integrate them together with our findings into a larger frame

    Ubiquitous computing and natural interfaces for environmental information

    Get PDF
    Dissertação apresentada na Faculdade de CiĂȘncias e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia do Ambiente, perfil GestĂŁo e Sistemas AmbientaisThe next computing revolution‘s objective is to embed every street, building, room and object with computational power. Ubiquitous computing (ubicomp) will allow every object to receive and transmit information, sense its surroundings and act accordingly, be located from anywhere in the world, connect every person. Everyone will have the possibility to access information, despite their age, computer knowledge, literacy or physical impairment. It will impact the world in a profound way, empowering mankind, improving the environment, but will also create new challenges that our society, economy, health and global environment will have to overcome. Negative impacts have to be identified and dealt with in advance. Despite these concerns, environmental studies have been mostly absent from discussions on the new paradigm. This thesis seeks to examine ubiquitous computing, its technological emergence, raise awareness towards future impacts and explore the design of new interfaces and rich interaction modes. Environmental information is approached as an area which may greatly benefit from ubicomp as a way to gather, treat and disseminate it, simultaneously complying with the Aarhus convention. In an educational context, new media are poised to revolutionize the way we perceive, learn and interact with environmental information. cUbiq is presented as a natural interface to access that information
    • 

    corecore