98,377 research outputs found

    Determination of Creatinine in Human Urine with Flow Injection Tandem Mass Spectrometry

    Get PDF
    Background/Aims: Excretion of urinary compounds in spot urine is often estimated relative to creatinine. For the growing number of liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays of urine-excreted molecules, a fast and accurate method for determination of creatinine is needed. Methods: A high-throughput flow injection tandem mass spectrometry method for exact quantitation of creatinine in urine has been developed and validated. Sample preparation used only two-step dilution for protein precipitation and matrix dilution. Flow injection analysis without chromatographic separation allowed for total run times of 1 min per sample. Creatinine concentrations were quantitated using stable isotope dilution tandem mass spectrometry. Selectivity and coelution-free quantitation were assured by qualifier ion monitoring. Results: Method validation revealed excellent injection repeatability of 1.0% coefficient of variation (CV), intraday precision of 1.2% CV and interday precision of 2.4% CV. Accuracy determined from standard addition experiments was 106.1 +/- 3.8%. The linear calibration range was adapted to physiological creatinine concentrations. Comparison of quantitation results with a routinely used method (Jaffe colorimetric assay) proved high agreement (R-2 = 0.9102). Conclusions: The new method is a valuable addition to the toolbox of LC-MS/MS laboratories where excretion of urinary compounds is studied. The `dilute and shoot' approach to isotope dilution tandem mass spectrometry makes the new method highly accurate as well as cost-and time-efficient. Copyright (C) 2012 S. Karger AG, Base

    Pitfall in the high-throughput quantification of whole blood cyclosporin A using liquid chromatography-tandem mass spectrometry

    Get PDF
    In a growing number of laboratories the technique of liquid chromatography-tandem mass spectrometry is used for the quantification of cyclosporin A in whole blood, employing cyclosporin D as the internal standard. Cyclosporin A is extensively metabolized in vivo; in liquid chromatography-tandem mass spectrometry respective metabolites can give rise to both parent and product ions that are isobaric with ions commonly used for the detection of cyclosporin A and cyclosporin D, respectively. In this article it is demonstrated that limited chromatography with co-elution of such metabolites together with cyclosporin A and cyclosporin D can lead to incorrect results

    Pitfall in the high-throughput quantification of whole blood cyclosporin A using liquid chromatography-tandem mass spectrometry

    Get PDF
    In a growing number of laboratories the technique of liquid chromatography-tandem mass spectrometry is used for the quantification of cyclosporin A in whole blood, employing cyclosporin D as the internal standard. Cyclosporin A is extensively metabolized in vivo; in liquid chromatography-tandem mass spectrometry respective metabolites can give rise to both parent and product ions that are isobaric with ions commonly used for the detection of cyclosporin A and cyclosporin D, respectively. In this article it is demonstrated that limited chromatography with co-elution of such metabolites together with cyclosporin A and cyclosporin D can lead to incorrect results

    Chemical ionization tandem mass spectrometer for the in situ measurement of methyl hydrogen peroxide

    Get PDF
    A new approach for measuring gas-phase methyl hydrogen peroxide [(MHP) CH_3OOH] utilizing chemical ionization mass spectrometry is presented. Tandem mass spectrometry is used to avoid mass interferences that hindered previous attempts to measure atmospheric CH_3OOH with CF_3O− clustering chemistry. CH_3OOH has been successfully measured in situ using this technique during both airborne and ground-based campaigns. The accuracy and precision for the MHP measurement are a function of water vapor mixing ratio. Typical precision at 500 pptv MHP and 100 ppmv H_2O is ±80 pptv (2 sigma) for a 1 s integration period. The accuracy at 100 ppmv H_2O is estimated to be better than ±40%. Chemical ionization tandem mass spectrometry shows considerable promise for the determination of in situ atmospheric trace gas mixing ratios where isobaric compounds or mass interferences impede accurate measurements

    Rapid method for Mycobacterium tuberculosis identification using electrospray ionization tandem mass spectrometry analysis of mycolic acids

    Get PDF
    Mycolic acids (MAs), which play a crucial role in the architecture of mycobacterial cell walls, were analyzed using electrospray ionization tandem mass spectrometry. A targeted analysis based on the 10 most abundant and characteristic multiple reaction monitoring pairs was used to profile the crude fatty acid mixtures from Mtb and several nontuberculous mycobacterial strains. Comparative analysis yielded unique profiles for MAs, enabling the reliable identification of mycobacterial species. In a case-control study of tuberculosis (TB) and non-TB Polish patients, we demonstrated the potential diagnostic utility of our approach for the rapid diagnosis of active TB with sensitivity and specificity surpassing those of existing methods. This robust method allows the identification of TB-positive patients after 2 h of sample preparation in the case of direct sputum analysis or 10 days of culturing, both of which are followed by 1 min of liquid chromatography– tandem mass spectrometry analysis

    Denoising Tandem Mass Spectrometry Data

    Get PDF
    Protein identification using tandem mass spectrometry (MS/MS) has proven to be an effective way to identify proteins in a biological sample. An observed spectrum is constructed from the data produced by the tandem mass spectrometer. A protein can be identified if the observed spectrum aligns with the theoretical spectrum. However, data generated by the tandem mass spectrometer are affected by errors thus making protein identification challenging in the field of proteomics. Some of these errors include wrong calibration of the instrument, instrument distortion and noise. In this thesis, we present a pre-processing method, which focuses on the removal of noisy data with the hope of aiding in better identification of proteins. We employ the method of binning to reduce the number of noise peaks in the data without sacrificing the alignment of the observed spectrum with the theoretical spectrum. In some cases, the alignment of the two spectra improved

    Tandem Mass Spectrometry and Glycoproteins

    Get PDF

    Disorders of Fatty Acid Oxidation in the Era of Tandem Mass Spectrometry in Newborn Screening

    Full text link
    With recent advances in laboratory technology with tandem mass spectrometry (MS/MS), the number of infants identified with a fatty acid oxidation disorder has increased dramatically. Disorders of fatty acid oxidation comprise one of the most rapidly growing groups within the field of errors of metabolism. This review will explore the recent developments in newborn screening related to the use of tandem mass spectrometry and disorders of fatty acid oxidation

    Liquid chromatography-tandem mass spectrometry - Application in the clinical laboratory

    Get PDF
    This review provides a concise survey of liquid chromatography tandem mass spectrometry (LCTMS) as an emerging technology in clinical chemistry. The combination of two mass spectrometers with an interposed collision cell characterizes LCTMS as an analytical technology on its own and not just as a more specific detector for HPLC compared with conventional techniques. In LCTMS, liquid chromatography is rather used for sample preparation but not for complete resolution of compounds of interest. The instrument technology of LCTMS is complex and comparatively expensive; however, in routine use, methods are far more rugged compared to conventional chromatographic techniques and enable highthroughput analyses with very limited manual handling steps. Moreover, compared to both gas chromatographymass spectrometry (GCMS) and conventional HPLC techniques, LCTMS is substantially more versatile with respect to the spectrum of analyzable compounds. For these reasons it is likely that LCTMS will gain far more widespread use in the clinical laboratory than HPLC and GCMS ever did. In this article, the key features of LCTMS are described, method development is explained, typical fields of application are discussed, and personal experiences are related
    corecore