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ABSTRACT

Denoising Tandem Mass Spectrometry Data

by

Felix Offei

Protein identification using tandem mass spectrometry (MS/MS) has proven to be

an effective way to identify proteins in a biological sample. An observed spectrum is

constructed from the data produced by the tandem mass spectrometer. A protein can

be identified if the observed spectrum aligns with the theoretical spectrum. However,

data generated by the tandem mass spectrometer are affected by errors thus making

protein identification challenging in the field of proteomics. Some of these errors

include wrong calibration of the instrument, instrument distortion and noise. In this

thesis, we present a pre-processing method, which focuses on the removal of noisy data

with the hope of aiding in better identification of proteins. We employ the method

of binning to reduce the number of noise peaks in the data without sacrificing the

alignment of the observed spectrum with the theoretical spectrum. In some cases,

the alignment of the two spectra improved.
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1 INTRODUCTION

Proteins are complex compounds that carry out the daily functions of life. One

important component of proteins is to defend our bodies against infection and keep-

ing our bodies in good condition. According to the Protein Data Bank (PDB), there

are records of about 80,000 entries that is made up of proteins with their biological

macromolecular structures identified [1]. However, there remain some proportion of

proteins with unknown functions that have yet to be identified. This is so, because

researchers have not yet been able to link their sequence and structure level to known

functions [2]. One factor which has contributed to unidentified proteins is noisy data.

Being able to identify proteins will help researchers immensely to find out if there is a

genetic disease (such as diabetes) in an organism or the existence of a bacteria infec-

tion (like Rocky Mountain spotted fever caused by the bacteria Rickettsia rickettsii).

Researchers have been able to identify 1% - 10% of microbes in the ecosystem. While

clinical proteomics is important, the need for protein identification in environmental

proteomics is dire. There is 90%-99% of microbes in the entire universe that has not

been identified or cultured. Being able to identify these microbes by means of protein

identification will aid in environmental proteomics and possibly clinical proteomics if

certain bacteria can be identified [7].

1.1 Background

We define proteome as the protein content of a cell, a tissue or an entire organism

in a defined state. Proteomics describes the overall study of protein expression and

function. It is known that, the human genome roughly contains 30,000 genes [3]. The
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body of humans is made up of millions of cells. Each of these cells comes with a set

of instructions and these instructions define us. These instructions can be likened to

a recipe book for the body and they are known as the genome, which is also made up

of DNA [4]. Moreover, the proteomes of mammalian cells, tissues, and body fluids

are complex and display a wide dynamic range of proteins concentration, one cell can

contain between one and more than 100,000 copies of a single protein [12].

Proteomics has been identified as one of the growing areas of research of the

genomics. Genomics have to do with the overall analysis of gene expression using

different well known techniques to identify, determine and distinguish proteins, as

well as to store, communicate and interlink protein and DNA sequence and map-

ping information from genome projects [12]. There are numerous articles on the

application of proteomics in different fields like biochemical and clinical to study and

treat various kinds of diseases [25]. Genomics provided the blueprint of successful

study of the genes, which is now the main focus of the study of proteomics. There

have been some successful ways of applying the study of proteomics and they include

mass spectrometry-based proteomics, array based proteomics, structural proteomics,

proteome informatics and clinical proteomics [6].

In clinical proteomics, which is a sub-discipline of proteomics, researchers apply

technologies on specimens such as proteins or group of proteins to aid diagnosing

types of diseases with the sole aim of early diagnosis [16]. These groups of proteins

can be significant biomarkers. Biomarkers in general are molecules that show signs

of normal or abnormalities processes like diseases or unrecognisable conditions found

in the body. Some of the types of these molecules that can act as biomarkers include

12



DNA (genes), hormones and proteins. Notably, these biomarkers are present in blood,

urine or other bodily fluids [13].

There have been several methods which have been developed to aid in the identi-

fication of proteins. Current methods of protein identification comes with limitations

such as noisy data, limited number of known genome sequences and incomplete ion

sequences,restricting the accuracy of protein identification. In this paper, we focus

on one of the key challenges faced in protein identification, noisy data, in hopes to

enhance the identification of proteins. To resolve this, we employ a preprocessing

procedure to reduce noise in the data.

1.2 Proposed Work

We are going to apply a preprocessing method called binning to denoise a spec-

trum. Data in its raw form is soiled, especially data from the mass spectrometer. It

can be incomplete, thus missing some key values like m/z values and their intensities

(more about m/z values and intensities in Chapter 3). Data can also be noisy (con-

taining some random errors) or showing some irregularities in its attributes. Noisy

data can therefore hinder accurate decisions which might result in misleading inter-

pretation. The main objective of the binning method is to smooth a sorted noisy

data,fix inconsistencies and reduce data but deliver same detailed results.

The data used in this study was produced by the Pacific Northwest National

Laboratory (PNNL). Due to the complex structure of proteins (proteins consist of

chains of amino acids, each with different chemical properties), we shall be working

with peptides. Protein and peptides both consist of chains of amino acids but peptides
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are known to consist about 2 to 50 amino acids where as a protein can contain about

50 or more amino acids [18]. We can easily therefore perform analysis on proteins

using peptides.

1.3 Overview of Thesis

The thesis is organized as follows. Chapter 2 discusses how to obtain a protein

sample and identifies some current methods used in protein identification. Chapter

3 provides a basic introduction to the idea of protein fragmentation and spectrum

types. Chapter 4 describes the pre-processing method used to reduce noisy data. In

Chapter 5, we provide results using our method on real data. We conclude the thesis

in Chapter 6.
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2 MASS SPECTROMETRY AND PROTEIN IDENTIFICATION

METHODS

The use of mass spectrometry (MS) in recent years, has become a significant

approach in biological research for peptide identification [29]. There are various kinds

of mass spectrometers, but one important component employed by them all, they

possess magnetic and electric fields that apply a certain force on the charged particles

originating from the samples to be examined. Although there are different kinds of

mass spectrometers, the process involved are the same. A basic mass spectrometer

has an ion source where the ions are created from the sample, a mass analyzer in

which the ions produced by the ion source are isolated based on their masses, and an

ion detector which sends a signal from the isolated ions [30]. Figure 1 illustrates the

basic components of a mass spectrometer.

Figure 1: This figure shows the basic components of a mass spectrometer.

To elaborate on the basic process of the mass spectrometer, a sample in the form

of a gas, dried form or liquid is placed into a vacuum chamber. The sample is then

hit with electrons to create ions. As a result of this impact, the electrons collide in

the chamber producing enough kinetic energy to displace one or more of the electrons
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to produce positive ions. This process is called ionization. The mass spectrometer is

noted for working with positive ions. The ions produced need to flow freely hence why

they travel through a vacuum chamber. The positive ions are accelerated through

the mass spectrometer where they encounter an ion repeller, carrying a slight positive

charge. Like poles repels and thus this ion repeller repels away the positive ions. Most

of these positive ions produced carry a charge of +1. A magnetic field is formed by

an electromagnet deflects the ions by different amounts. The rate at which these ions

deflect is determined by the mass of the ion and its charge. Lighter ions travel faster

and are thus deflected more than heavy ions [31].

The lighter ions successfully make it through the mass spectrometer and are de-

tected by an ion detector. Some ions end up hitting the walls of the mass spectrom-

eter, receiving electrons in the process and are neutralized. In the course of time,

they are eliminated by the vacuum pump. The output from the mass spectrometer

is a spectrum representing the ions that hit the detector with their mass-to-charge

ratio. In the spectrum, peaks can be recognized by plotting intensities versus the

mass-to-charge ratio (m/z). The spectrum can contain thousands of peaks that have

to under go processing to be able to identify the peptide.

There are two methods commonly used by the mass spectrometer to identify

proteins. One of the well known methods is MALDI-TOF, matrix-assisted laser des-

orption and ionization-time of flight mass spectrometry. In MALDI-TOF, the sample

is first ionized by a laser. Once they are ionized, they receive electric charges. These

charged ions are accelerated by an electric field in the mass spectrometer. The time

of flight of these ions are monitored and reported. The output from the detector is
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a spectrum of mass of the ions and their respective intensities. Figure 2 shows a

graphical representation of the work flow in a MALDI-TOF mass spectrometry. One

of the key features of the MALDI-TOF procedure is its ability to work perfectly with

smaller quantities of samples and also its capacity to process samples in the shortest

possible time.

Surface-enhanced laser desorption/ionization (SELDI-TOF) mass spectrometry is

well known for quantifying proteins of low-molecular weights. With this method,

there is a sample matrix, known as protein chip that plays an effective role in the

purification and ionization of the sample [17]. There are 3 parts that make up the

SELDI-TOF mass spectrometer; protein chip, a mass analyser and software to analyze

the data. The sample is first transferred on to a chromatographic surface where the

protein chips are incubated. The chromatographic surface absorbs the proteins of

interest based on their individual properties. This absorption can either be done by

an electrostatic interaction or by partition. The particles are then analyzed by the

TOF (time-of-flight) mass spectrometer and the output will be a spectrum comprised

of mass-to-charge (m/z) ratio values and their corresponding intensities [19].
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Figure 2: This figure, taken from Frontiers in Microbiology [22], shows the work flow

in a MALDI-TOF mass spectrometry.

In mass spectrometry, the ions with distinct masses are separated in a flight tube.

The mass spectrometer employs a quadratic transformation method to calculate the

m/z from the flight time. The coefficients of the quadratic transformation can be

determined with a small number of particles from the sample (normally between 3

and 7) with known masses are used to generate a spectrum. The peaks matching the

known masses in the spectrum are then determined. The coefficients of the quadratic

transformation are then determined by the method of least squares, given a set of

(time, mass) [14]. The process by which the observed flight time is mapped to

the m/z values is called calibration. The pairs of intensities and m/z values is then

plotted in a spectrum. Data produced from the mass spectrometer can be used to

plot a spectrum of peaks, where one peak represents the pair of intensity (vertical

axis) and m/z values (horizontal axis) of the peptide in the current sample. Figure

3 is a graphical display of a spectrum for a given peptide. The peaks we see in this

plot shows signal peaks and noise peaks. Signal peaks are defined as peaks whose

observed m/z value is closest to the theoretical m/z value within a 0.5 Da tolerance.

18



Usually these signal peaks are the ones with large intensity values.

2.1 Tandem Mass Spectrometry

Tandem mass spectrometry, commonly known as tandem MS/MS is a mass spec-

trometry comprised of two stages of the mass spectrometer. There are two mass

analyzers in tandem MS/MS. The first mass analyzer is responsible for isolating ions

of specific m/z values representing a particular peptide coming from the ion source.

Tandem MS/MS breaks down precursor ions into product ions also known as frag-

ment ions. The product ions are the ions that show the chemical composition of the

precursor ions. Those ions successfully isolated by the first mass analyzer are acceler-

ated into a collision cell chamber holding inert gas. This is where the fragmentation

of the ions take place. The process is termed collision induced dissociation (CID) or

collision activated dissociation (CAD). The second mass analyzer measures the m/z

values of the fragmented ions to obatin the sequence of the peptide.

Some of the commonly used types of tandem MS/MS include triple stage quadrupoles

(TSQ), quadrupole time-of-flight (QTOF), quadrupole-linear ion trap (QTRAP), 3D

and linear ion traps [15].

2.2 Noise Detection

In mass spectrometry, only a small portion of peaks in a spectrum are essential

for peptide identification. Most of the peaks in the spectrum are noise and can hinder

the process of peptide identification. Removing these noise peaks will aide in better

identification of peptides.
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Figure 3: Line plot of pairs of intensities and m/z values for a given peptide.

There are two main sources of noise in mass spectrometry data: chemical noise,

contaminants and random noise. Random noise is depicted by small peaks which are

uniformly scattered in the masses of the ions. Random noise is known to be caused

by electrical distortion in the mass spectrometer. In this thesis, we focus on random

noise. It can easily be removed by preprocessing methods such as smoothing and

binning. Chemical noise has a pattern which is very identical to signal peaks. The

process of removing chemical noise can be very cumbersome. Chemical noise has the

effect of shifting peaks, thus hindering peptide identification. In a previous work,

they proposed wavelet decomposition can be used for removing chemical noise [32].
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2.3 Protein Identification

With the improvements in using mass spectrometry technology, peptide identifica-

tion has become less challenging. Most methods that are available make comparison

of a theoretical spectrum and observed spectrum which is forecasted based on a se-

quence from a protein database [27]. Two such methods are peptide mass fingerprint

(PMF) analysis and de novo sequencing in protein identification [33].

In PMF, an unknown protein is dissolved into short peptides with a proteolytic

enzyme [8]. The mass of these short peptides can easily be measured using the

MALDI-TOF mass spectrometer. Once the mass of the peptides are determined, they

are compared to a database, which contain theoretical spectra of peptides with known

sequences [9]. The match which produces the highest score is therefore considered to

be the identity of the unknown peptide [9].

De novo sequencing make use of the b and y ions produced by collision induced

dissociation (CID) [10]. This process use the mass difference between two fragment

ions to compute the mass of an amino acid present in a candidate peptide. The

computed mass between the amino acids becomes the residue. The process can be

used to compute all residues between the ions. If the b and y ion series in the

spectrum can be determined, then the sequence of the peptide can be identified [10].

The peptide sequences are used to map a predicted data from sequence databases

[11]. In this approach, a scoring function is used to scan the observed peptide and

the candidate peptide to check for a match.
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3 FRAGMENTATION PROCESS

The most important part of peptide identification is to align an observed spectrum

to a theoretical spectrum of a candidate peptide. In this chapter, we present how a

peptide is fragmented using the mass spectrometer. A peptide is a combination of

two or more amino acids connected in a chain. Twenty distinct types of amino acids

make up these peptides. A protein’s structure and function is determined by the

sequence of the amino acids. Table 1 shows an alphabetical order of the amino acids

with their matching 3 letter and 1 letter code. To ease notation, we will be using the

1 letter code for the remaining of the thesis. The theoretical spectrum of a peptide

is a collection of peaks with each peak located at the m/z value of each ion type.

In order to find the theoretical spectrum, the candidate peptide is first split into

all possible ion combinations. Collision-induced dissociation (CID) is the uttermost

way for parent ion fragmentation.

Table 1: A table listing all 20 amino acids along with their abbreviations.

Amino Acid 3 Letter

Code

1 Letter

Code

Amino Acid 3 Letter

Code

1 Letter

Code

Alanine ALa A Leucine Leu L

Arginine Arg R Lysine Lys K

Asparagine Asn N Methionine Met M

Aspartic Acid Asp D Phenylalanine Phe F

Cysteine Cys C Proline Pro P

Glutamine Gln Q Serine Ser S

Glutamic Acid Glu E Threonine Thr T

Glycine Gly G Tryptophan Trp W

Histidine His H Tryosine Try Y

Isoleucine Ile I Valine Val V
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The most common fragment ions formed by collision induced dissociation (CID)

are the b-ions and y-ions [20]. Figure 4 shows a theoretical spectrum using only the

b and y ions. Each of the ions is located at its corresponding m/z value on the

theoretical spectrum. It must be noted that, the distances between the peaks can

also be used to make conclusions about sequences of the peptide. In a spectrum,

the peaks observed shows a reflection of the fragment ions produced from the mass

spectrometer.

Figure 4: Theoretical spectrum for the peptide V INELTEK using only b and y ions.

1 represents the presence of an ion and 0 represents the absence of an ion. The solid

lines are b ions and the dashed are y ions.

The b ions extend from the N-terminus. The N-terminus or the amino terminus
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is the beginning of a peptide and it is terminated by an amino acid with a free amine

group (−NH2) [23]. The y ions serve as a complement to the b ions and they extend

from the carboxyl terminus, also called the C-terminus. The C-terminus is the end

of the peptide terminated by a free carboxyl group (−COOH). The charge of y ion

is maintained on the carboxyl terminus.

Table 2: A list of all 20 amino acids with their masses, measured in daltons.

Amino Acid Mass Amino Acid Mass
A 71.0371 M 131.04
C 103.009 N 114.043
D 115.027 P 97.0528
E 129.043 Q 128.059
F 147.068 R 156.101
G 57.0215 S 87.032
H 137.059 T 101.048
I 113.084 V 99.0684
K 128.095 W 186.079
L 113.084 Y 163.063

3.1 Computing expected fragmented b and y ions

In a typical spectrum, the peaks can be differentiated by the mass of the amino

acid. Table 2 shows a list of the twenty amino acids and their mass in daltons

(Da). These peaks are a representation of the fragment ions formed through the

collision process of a mass spectrometer. The mass of a particular ion is determined

by
∑n

j=1m(pj) + δl where m(pj) represents the mass of the amino acid located in the

jth position, n is the number of amino acids in the ion sequence, p(j) is the amino
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acid located in the jth position, l represents the type of ion present δl is the off-

set value for the type of ion. The offsets correspond to peaks showing ion types

produced by the tandem mass spectrometer [24]. Table 3 shows a list of the various

ions types along with their terminus, their corresponding offset values and how to

compute the mass of the ion.

Table 3: A list of different ion types and their corresponding offset values.

Ion Terminus Offset Value Position
b N 0.85 (M + 0.85)

b−H2O N -17.05 (M - 17.05)
a N -27.15 (M - 27.15)

b−NH3 N -16.15 (M - 16.15)
b−H2O −H2O N -35.20 (M - 35.20)
b−H2O −NH3 N -34.20 (M -34.20)

a−NH3 N -44.25 (M - 44.25)
a−H2O N -45.15 (M - 45.15)

y C 18.85 (M + 18.85)
y −H2O C 0.90 (M + 0.90)

y2 C 20.05 (M + 20.05)/2
y −NH3 C 1.90 (M + 1.90)
y2 −H2O C 2.30 (M + 2.30)/2

y −H2O −NH3 C -16.10 (M - 16.10)
y −H2O −H2O C -17.15 (M - 17.15)

Consider the peptide V INELTEK whose sequence consists of 8 amino acids.

This peptide has n − 1 b ions and n − 1 y ions. Recall that, the beginning of any

peptide is on the N-terminus, and thus V is the first b ion, denoted b1, with a mass of

99.0684 + 0.85 = 99.9184 Da. The second b ion is V I with a mass of 99.0684 + 113.084

+ 0.85 = 213.0024 Da. In the same manner, we compute the subsequent masses of the
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other b ions in the order V IN , V INE, V INEL, V INELT , and V INELTE with

their respective masses 327.0454, 456.0884, 569.1724, 670.2204,and 799.2634 daltons.

Figure 5 shows a simplified diagram of the fragmentation of the b ions found in the

peptide V INELTEK.

The fragmentation of the y ions starts at the C-terminus and the first y ion,

denoted y1, is K. The mass of y1 is computed to be 128.095 + 18.85 = 146.945 Da.

The second y ion denoted y2 is EK with a mass of 129.043 + 128.095 + 18.85 =

275.988 Da.

Figure 5: A simplified diagram of the fragmentation of b ions. The first b ion indicated

by b1 is V and the last b ion is V INELTE indicated by b7.

The subsequent y ions, in order, are TEK, LTEK, ELTEK, NELTEK, and
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INELTEK with their respective masses to be 377.036, 490.12, 619.163, 733.206,

846.29 Daltons. Figure 6 shows a simplified diagram of the fragmentation of the y

ions found in the peptide V INELTEK.

To find the total weight of a candidate peptide, we add the mass of all the amino

acids present in the peptide plus the mass of one hydrogen and water molecule. Con-

sider the peptide V INELTEK. To compute the total weight, we add the following

masses representing the amino acids in order: 99.0684 + 113.084 + 114.043 + 129.043

+ 113.084 + 101.048 + 129.043 + 128.095 + 18.010565 (water) + 1.00794 (hydrogen)

= 945.5269 da.

Figure 6: A simplified diagram of the fragmentation of y ions. The first y ion indicated

by y1 is K and the last y ion is INELTEK indicated by y7.
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4 PRE-PROCESSING OF MASS SPECTROMETRY DATA

Data produced by mass spectrometer are influenced by errors due to sample prepa-

ration, sample insertion into the experiment and the instrument itself. It therefore

becomes a challenge to use the raw data in peptide identification because of noise, in-

strument distortion and saturation, wrong calibration and m/z measurement errors.

We propose a binning method to reduce the number of noise peaks in the data.

4.1 Binning

One common method of preprocessing mass spectrometry data is binning. Binning

is a method used to group large quantitative numbers into small bins. This method

seeks to reduce the amount of data by grouping adjacent m/z values of the data into

small bins. This causes a reduction in the data thus reducing the number of noise

peaks present in the spectrum. It becomes problematic when you have to examine

the spectra by setting a sliding window. This is because, if the window width is too

large, we may accidentally remove some signal peaks from the data set. This will

cause the observed spectrum and theoretical spectrum not to be aligned. In the case

of a small window with, the outcome of data reduction is not given; thus, the number

of peaks intended to be reduced will not happen.

A bin will consists of N m/z (mass-to-charge) values and their associated inten-

sities. The structure of the bin is in the form [(Ij,m/zj), ..., (IN ,m/ZN)], where Ij

is the jth intensity value and m/zj is the jth m/z value for j = 1, ..., N . They are

then joined to form (I,m/z) vector pairs. The m/z value of the bin is calculated by

taking the mean of all the N original m/z data values and the intensity value of I is
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calculated by using an aggregate function (such as the maximum intensity or sum) of

all the N original intensity values. Figure 7 shows a small data set where binning was

applied (adapted from [26] ). The total number of observations in the original data

was 9 and after binning, it reduced to 4. We use this binning method in conjunction

with thresholding to denoise large data sets.

Figure 7: An example of binning method applied to reduce a data set.

4.2 Denoising Data by Binning

In order to use binning, the data must be sorted. We know that peaks with large

intensities are usually signal peaks. Therefore, we want to ensure these peaks remain

at their current m/z location. We first compute a percentile of the observed intensity,

denoted p. The percentile chosen allows us to keep peaks with large intensities. That

is, any peaks above the threshold value will be kept. Binning will be applied to the

remaining peaks. After binning, the binned data set will be combined with the pairs

of m/z values and intensities whose intensity values are larger than the threshold
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value to form the final denoised data set.

4.2.1 Percentiles

After our data is sorted, we must threshold out the peaks with large intensities.

It was found that the same percentile p to determine the threshold value does not

work for all peptides. Upon investigation, it was found that peptides with short se-

quences behaved differently than peptides with longer sequences. Although the mass

spectrometer cannot determine the length of the peptide sequence, it can determine

the total weight of the peptide. It must be noted that, the length of a peptide or the

number of amino acids does not determine the size of the peptide but rather the total

weight. We consider a peptide to be short if the total weight is found to be less than

1100 Da and a peptide is considered long if the total weight is 1100 Da or more.

Consider a peptide, V INELTEK consisting of 8 amino acids. The total weight

of this peptide is 945.5269 Da, thus this peptide would be classified as a short peptide.

The threshold value for the 60th percentile for the peptide V INELTEK is 21.07.

And so all intensity values that fall below this threshold value with their corresponding

m/z values will be binned.

Consider another peptideAFNEMQPIV DR with a total mass weight of 1319.642

Da and 654 pairs of m/z values and corresponding intensities. Since the total weight

is 1100 Da or more, this peptide would be classified as a peptide with a long sequence.

The threshold value for the 10th percentile was computed to be 8.257594 Da.
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4.2.2 Window Width

Since observed spectra are unique, the same window width cannot be applied to

all sequences. We need to calculate the average distance for all m/z values. A general

rule of thumb is to round the average value to the nearest 0.5 Da to get the window

width. For instance, if the average distance between m/z values of the ions is 0.2,

then a window width of 0.5 Da would be appropriate for binning. If the average

distance for all m/z values in the spectrum is than 1.75, then a window width of 2

Da should be employed.

Consider the peptide V INELTEK with 347 pairs of m/z values and intensities.

Computing for the average distance between m/z values, we get an average of 2.07,

thus a window width of 2.5 Da should be applied. Now consider the peptide

AAAAPV TGPLADFPIQETITFDDFAK with 573 pairs of m/z values and in-

tensities. We found the average distance between the m/z values to be 2.77 and so a

window width of 3.0 should be used for binning.

4.3 Pre-processing Steps

To denoise the observed spectrum for peptides, consider the following steps:

1. Find the total weight of a given peptide and compare to 1100 Da. If the total

weight is less than 1100 Da, the peptide is classified as a short peptide otherwise

it is classified as long peptide.

2. Determine the threshold value. Use p = 0.6 for short peptides and p = 0.1 for

long peptides.
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3. Compare all intensities to the threshold value. For intensity values greater than

the threshold value save until the final step.

4. Compute the average distance between m/z values and determine the appro-

priate window width by rounding to the nearest 0.5.

5. Apply binning to the m/z values whose corresponding intensity values are below

the threshold values.

6. Combine the binned data to the pairs of m/z values and intensities whose

intensities are larger than the threshold value.

Consider the peptide V INELTEK with 348 pairs of m/z values and correspond-

ing intensity values. The threshold value was determined to be 21.07. Thus, any pair

of m/z values whose corresponding intensity value is larger than 21.07 was saved until

the final step and all other pairs were binned. The average distance between m/z

values was found to be 2.07 and thus a window with of 2.5 was used. After apply-

ing the method, the spectrum was reduced from 348 to 226 pairs of m/z values and

intensities. Figure 8 (a) shows the observed spectrum before applying our method.

Figure 8 (b) shows the observed spectrum after applying our method. You can see

quite a bit of the noise has been reduced from the spectrum.

Consider the peptide AFNEMQPIV DR with 654 pairs of m/z values and cor-

responding intensities. The threshold value for the 10th percentile was computed to

be 8.257594. Any pair of m/z values whose corresponding intensity value is larger

than 8.257594 was saved until the final step and all other pairs were binned. The

average distance between m/z values was found to be 1.70 and thus a window with of
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(a)

(b)

Figure 8: (a) shows the observed spectrum before applying the threshold. (b) shows

the observed spectrum after applying the threshold
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2.0 was used. After applying the method, the spectrum was reduced from 654 to 619

pairs of m/z values and intensities. Figure 9 (a) shows the observed spectrum before

applying our method. Figure 9 (b) shows the observed spectrum after applying our

method. One can see some of the noise has been reduced in the spectrum.
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(a)

(b)

Figure 9: (a) shows the observed spectrum before applying the threshold. (b) shows

the observed spectrum after applying the threshold
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5 EXPERIMENTAL RESULTS

The data used for the analysis was produced by the Pacific Northwest National

Laboratory (PNNL) and is available to the general public. Each of these peptides

consist of pairs of m/z values and their respective intensities. We present examples in

which our binning method is applied in order to denoise the spectrum. The data set

consists of 1,206 peptides with amino acids sequences ranging in length from 7 to 20

amino acids. Tandem mass spectrometry was used to determine the proteomic profiles

of the samples. The m/z values range from 100 Da to 2000 Da with corresponding

intensities from 1 to 3000.

To ensure our method does not alter the alignment between the observed spectrum

and the theoretical spectrum, we compare the distances between the theoretical m/z

value based on the b and y ions and the closest observed m/z value to the distances

between the theoretical m/z value based on the b and y ions and the closest observed

m/z value after applying our method. If these distances remain the same or reduce,

this implies our method successfully does not change the alignment or improves the

alignment, respectively. If these distances increase, the alignment has shifted and

will hinder the identification of that peptide. In that case, our method would be

unreliable.
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5.1 Short Peptides

5.1.1 Example 1

To ensure the reliability of our method, we applied our method to several peptides

with short amino acid sequences. Consider the short peptide LSDY GV QLR whose

total weight is 1050.558 with 470 pairs of m/z values ranging from 155 to 995 Da and

corresponding intensities ranging from 1 to 4900.

Using a 60th percentile, the threshold value was found to be 28. The average

distance between m/z values is 1.8 Da and thus we set the window width to be 2.0

Da. After our applying our method, the observed spectrum was reduced from 470

pairs to 294 pairs of m/z values and their corresponding intensities.

Figure (a) in Figure 10 shows the observed and theoretical spectrum before our

method is applied and Figure (b) shows the observed and theoretical spectrum after

our method was applied. One can see some of the noise peaks are removed successfully

without affecting the alignment of the observed and theoretical spectrum.

Table 4 lists the closest observed m/z values for both before and after our method

is applied, the theoretical m/z value, the distances between the observed m/z value

before denoising and the theoretical m/z value, and the distances between the ob-

served m/z value after denoising and the theoretical m/z value. The values in bold

in Table 4 indicate the distances that were reduced. We see all the distances either

remained the same or reduced indicating our method is doing well.
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(a)

(b)

Figure 10: (a) shows the observed and theoretical spectrum before binning. (b) shows

the observed and theoretical spectrum after binning with kth percentile chosen to be

60%.
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Table 4: A table comparing the distances for the peptide LSDY GV QLR before and

after binning. The values in bold indicate the distances that were reduced.

Observed m/z

before method

Theoretical

m/z

Observed m/z

after denoising

Difference

before denoising

Difference af-

ter denoising
155.2550 113.9340 155.2550 41.3209 41.3209
174.3954 174.9510 175.0938 0.5556 0.1427
200.1734 200.9660 201.0907 0.7926 0.1247
288.1805 288.0350 288.1805 0.1455 0.1455
315.6753 315.9930 316.2448 0.3177 0.2517
416.2673 416.0940 416.2673 0.1733 0.1733
479.0506 479.0560 479.0506 0.0054 0.0054
515.3530 515.1624 515.3530 0.1906 0.1906
536.1034 536.0775 536.1034 0.0259 0.0259
572.2805 572.1839 572.2805 0.0966 0.0965
635.0522 635.1459 635.0522 0.0937 0.0937
735.3122 735.2469 735.3122 0.0653 0.0653
763.1658 763.2049 763.1658 0.0391 0.0391
850.3229 850.2739 850.3229 0.0490 0.0490
876.1458 876.2889 876.1458 0.1431 0.1431
937.3237 937.3059 937.3237 0.0178 0.0178
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5.1.2 Example 2

Consider the short peptide FGSELLAK whose total weight is 864.4831 with 269

pairs of m/z values ranging from 129 to 787 Da and corresponding intensities ranging

from 1 to 5455.

Using a 60th percentile, the threshold value was found to be 14. The average

distance between m/z values is 2.4 Da and thus we set the window width to be 2.5

Da. After applying our method, the observed spectrum was reduced from 269 pairs

to 173 pairs of m/z values and their corresponding intensities

Figure 11 (a) shows the observed and theoretical spectrum before our method

is applied and Figure 11 (b) shows the observed and theoretical spectrum after our

method is applied. One can clearly see some of the noise peaks are removed without

disturbing the alignment of the two spectra.

Table 5 lists the closest observed m/z values for both before and after our method

is applied, the theoretical m/z value, the distances between the observed m/z value

before denoising and the theoretical m/z value, and the distances between the ob-

served m/z value after denoising and the theoretical m/z value. We see all the

distances either remained the same or reduced indicating our method is doing well.
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(a)

(b)

Figure 11: (a) shows the observed and theoretical spectrum before binning. (b) shows

the observed and theoretical spectrum after binning with kth percentile chosen to be

60%.
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Table 5: A table comparing the distances for the peptide FGSELLAK before and

after binning. The values in bold indicate the distances that were reduced.

Observed m/z

before method

Theoretical

m/z

Observed m/z

after denoising

Difference

before denoising

Difference af-

ter denoising
147.0104 146.9450 147.0101 0.0654 0.0654
147.0104 147.9180 147.0101 0.90759 0.90759
204.9052 204.9395 204.9052 0.0343 0.0343
218.1224 217.9821 218.1224 0.1403 0.1403
292.9860 291.9715 292.0566 1.0145 0.0851
331.2053 331.0661 331.2053 0.1392 0.1392
421.2489 421.0145 421.2489 0.2344 0.2344
444.2705 444.1501 444.2705 0.1204 0.1204
534.1363 534.0985 534.1363 0.0378 0.0378
573.2606 573.1931 573.2606 0.0675 0.0675
647.0905 647.1825 647.0905 0.0920 0.0920
660.2869 660.2251 660.2869 0.0618 0.0618
717.3460 717.2466 717.3460 0.0994 0.0994
718.3046 718.2196 718.3046 0.0850 0.0850

42



5.1.3 Example 3

Now consider the peptide V INELTEK whose total weight is 945.5269 with 348

pairs of m/z values ranging from 140 to 860 Da and corresponding intensities ranging

from 1 to 2820.

Using a 60th percentile, the threshold value was found to be 21. The average

distance between m/z values is 2.07 Da and thus we set the window width to be 2.5

Da. After our applying our method, the observed spectrum was reduced from 347

pairs to 213 pairs of m/z values and their corresponding intensities.

Figure 12 (a) shows the observed and theoretical spectrum before our method

is applied and Figure 12 (b) shows the observed and theoretical spectrum after our

method is applied. Once again we see the noise peaks have be successfully removed

without ruining the alignment of the observed and theoretical spectrum.

Table 6 lists the closest observed m/z values for both before and after our method

is applied, the theoretical m/z value, the distances between the observed m/z value

before denoising and the theoretical m/z value, and the distances between the ob-

served m/z value after denoising and the theoretical m/z value. In all cases but the

first, the distances remained the same. Although the distance increased for the first

observed m/z value closest the the theoretical m/z value, this is not of concern be-

cause the first b and y ions are rarely captured in the mass spectrometer. Therefore

the alignment will not be disturbed.
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(a)

(b)

Figure 12: (a) shows the observed and theoretical spectrum before binning. (b) shows

the observed spectrum after binning with kth percentile chosen to be 60%.
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Table 6: A table comparing the distances for the peptide V INELTEK before and

after binning.

Observed m/z

before method

Theoretical

m/z

Observed m/z

after denoising

Difference

before denoising

Difference af-

ter denoising
141.9028 99.9184 144.7715 41.9844 44.8531
147.0816 146.9450 147.0816 0.1366 0.1366
213.0144 213.0024 213.0144 0.0120 0.0120
276.1071 275.9880 276.1065 0.1191 0.1185
327.0514 327.0454 327.0514 0.0060 0.0060
377.2013 377.0360 377.2013 0.1653 0.1653
456.2416 456.0884 456.2416 0.1532 0.1532
490.2245 490.1200 490.2245 0.1045 0.1045
569.1671 569.1724 569.1671 0.0053 0.0053
619.3815 619.1630 619.3815 0.2185 0.2185
670.1361 670.2204 670.1361 0.0843 0.0843
733.1962 733.2060 733.1962 0.0098 0.0098
799.2451 799.2634 799.2451 0.0183 0.0183
846.3795 846.2900 846.3795 0.0895 0.0895
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5.2 Long Peptides

5.2.1 Example 1

Now we will consider peptides in which we classify as being long. First, consider

the peptide ENLMQV Y QQAR whose total weight is 1379.675 with 590 pairs of m/z

values ranging from 200 to 1280 Da and corresponding intensities ranging from 1 to

1700.

Using a 10th percentile, the threshold value was found to be 4. The average

distance between m/z values is 1.8 Da and so we set the window width to be 2.0 Da.

After our applying our method, the observed spectrum was reduced from 590 pairs

to 548 pairs of m/z values and their corresponding intensities.

Figure 13 (a) shows the observed spectrum before our method is applied and

Figure 13 (b) shows the observed spectrum after our method is applied. We see that

a few noise peaks have been removed and the alignment remains the same.

Table 7 lists the closest observed m/z values for both before and after our method

is applied, the theoretical m/z value, the distances between the observed m/z value

before denoising and the theoretical m/z value, and the distances between the ob-

served m/z value after denoising and the theoretical m/z value. We see in most cases

the distances either remained the same or was reduced. The first two increase but as

we mention in Section 5.1.3 this not a concern and the alignment is still intact.
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(a)

(b)

Figure 13: (a) shows the observed and theoretical spectrum before binning. (b)

shows the observed and theoretical spectrum for the peptide ENLMQV Y QQAR

after binning.
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Table 7: A table comparing the distances for the peptide ENLMQV Y QQAR before

and after binning. The values in bold indicate the distances that were reduced.

Observed m/z

before method

Theoretical

m/z

Observed m/z

after denoising

Difference

before denoising

Difference af-

ter denoising
200.0935 129.8930 201.5275 70.2005 71.6345
200.0935 174.9510 201.5275 25.1425 26.5765
243.8989 243.9360 243.8989 0.0371 0.0371
246.0997 245.9881 246.0997 0.1116 0.1116
357.1619 357.0200 357.1619 0.1419 0.1419
374.2530 374.0471 374.2530 0.2059 0.2059
488.0701 488.0600 488.0701 0.0101 0.0101
502.2154 502.1061 502.2154 0.1093 0.1093
616.1608 616.1190 616.1608 0.0418 0.0418
665.2491 665.1691 665.2491 0.0800 0.07998
715.1245 715.1874 715.1245 0.0629 0.0629
764.2294 764.2375 764.2294 0.0081 0.0081
878.1607 878.2504 878.1607 0.0897 0.08969
892.3641 892.2965 92.3641 0.0676 0.06757
1006.1984 1006.3094 1006.1984 0.1110 0.1110
1023.3416 1023.3365 1023.3416 0.0051 0.0051
1134.2614 1134.3684 1134.2614 0.1070 0.1070
1136.3928 1136.4205 1136.3928 0.0277 0.0277
1205.1498 1205.4055 1205.1498 0.2557 0.2557
1248.4108 1250.4635 1248.4108 2.0527 2.0527
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5.2.2 Example 2

Let us consider the peptide DLVHAIPLY AIK whose total weight is 1352.794

with 520 pairs of m/z values ranging from 199 to 1285 Da and corresponding inten-

sities ranging from 1 to 965.

Using a 10th percentile, the threshold value was found to be 3. The average

distance between m/z values is 2.0 Da and thus we set the window width to be 2.5

Da. After our applying our method, the observed spectrum was reduced from 520

pairs to 498 pairs of m/z values and their corresponding intensities.

Figure 14 (a) shows the observed spectrum before our method is applied and

Figure 14 (b) shows the observed spectrum after our method is applied. Once again,

we see a few of the noise peaks have been successfully removed.

Table 8 lists the closest observed m/z values for both before and after our method

is applied, the theoretical m/z value, the distances between the observed m/z value

before denoising and the theoretical m/z value, and the distances between the ob-

served m/z value after denoising and the theoretical m/z value. In all cases the

distances either remained the same or reduced indicating our method is doing well.
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(a)

(b)

Figure 14: (a) shows the observed and theoretical spectrum before binning. (b)

shows the observed and theoretical spectrum for the peptide DLVHAIPLY AIK

after binning.
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Table 8: A table comparing the distances for the peptide DLVHAIPLY AIK before

and after binning. The values in bold indicate the distances that were reduced.

Observed m/z

before method

Theoretical

m/z

Observed m/z

after denoising

Difference

before denoising

Difference af-

ter denoising
199.2601 115.8770 199.2601 83.3831 83.3831
199.2601 146.9450 199.2601 52.3151 52.3151
228.9623 228.9610 228.9623 0.0013 0.0013
260.0568 260.0290 260.0568 0.0278 0.0278
328.8438 328.0294 327.8862 0.8144 0.1432
331.3174 331.0661 331.3174 0.2513 0.2513
465.1366 465.0884 465.1366 0.0482 0.0482
494.3502 494.1291 494.3502 0.2211 0.2211
536.3278 536.1255 536.3278 0.2023 0.2023
607.4730 607.2131 607.4730 0.2599 0.2599
649.1726 649.2095 649.1726 0.0369 0.0369
704.3751 704.2659 704.3751 0.1092 0.1092
746.8922 746.2623 746.8922 0.6299 0.6299
817.3657 817.3499 817.3657 0.0158 0.0158
859.1126 859.3463 859.1126 0.2337 0.2337
888.2925 888.3870 888.2925 0.0945 0.0945
1022.2666 1022.4093 1022.2666 0.1427 0.1427
1025.3823 1025.4460 1025.3823 0.0637 0.0637
1093.0952 1093.4464 1093.0952 0.3512 0.3512
1124.4200 1124.5144 1124.4200 0.0944 0.0944
1206.2695 1206.5304 1206.2695 0.2609 0.2609
1240.4637 1237.5984 1240.4637 2.8653 2.8653
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5.3 Percentile Evaluation

Extensive experimentation showed the 60th percentile and the 10th percentile

worked well for short and long peptide sequences, respectively. Other values were

explored to find the optimized value. For short peptide sequences, we looked at the

70th, 80th, and 90th percentiles. For long peptide sequences, we looked at the 20th

and 50th percentiles.

5.3.1 Percentile Evaluation for Peptides with Short Sequences Approach

Consider the short peptide V INELTEK with 348 pairs of m/z values and inten-

sities. In our initial example, using a 60th percentile, all distances remained the same

or were reduced and spectrum was reduced to 226 pairs of m/z values and intensi-

ties. When applying a 70th percentile, the data was reduced further from 226 pairs

to 191 pairs of m/z values and intensities but three of the distances were increased

as one can see in Table 9. This will cause the observed spectrum not to be aligned

with the theoretical spectrum, which could greatly hinder the identification of this

peptide. Any shift more than 0.5 Da (the standard tolerance level in most peptide

identification methods) is considered severe. From Table 9, we see that distances that

were increased are greater than 0.5. Similar results were seen for other peptides with

short sequences when using a 70th percentile.
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Table 9: A table comparing the distances for the peptide V INELTEK before and

after binning. The bolded values indicate the distances that increased after using a

threshold of 70%

Observed m/z

before method

Theoretical

m/z

Observed m/z

after denoising

Difference

before denoising

Difference af-

ter denoising
141.9028 99.9184 144.7715 41.9844 44.8531
147.0816 146.9450 147.0816 0.1366 0.1366
213.0144 213.0024 213.9703 0.0120 0.9679
276.1071 275.9880 275.9107 0.1191 0.0773
327.0514 327.0454 327.0514 0.0060 0.0060
377.2013 377.0360 377.2013 0.1653 0.1653
456.2416 456.0884 456.2416 0.1532 0.1532
490.2245 490.1200 490.2245 0.1045 0.1045
569.1671 569.1724 569.1671 0.0053 0.0053
619.3815 619.1630 619.3815 0.2185 0.2185
670.1361 670.2204 672.2233 0.0843 2.0029
733.1962 733.2060 733.1962 0.0098 0.0098
799.2451 799.2634 799.2451 0.0183 0.0183
846.3795 846.2900 846.3795 0.0895 0.0895
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Consider the peptide V INELTEK again with 348 pairs of m/z values and inten-

sities. In our initial example, using a 60th percentile, all distances remained the same

or were reduced and spectrum was reduced to 226 pairs of m/z values and intensities.

When applying a 80th percentile, the data was reduced further from 226 pairs to 160

pairs of m/z values and intensities but four of the distances were increased as one

can see in Table 10. From Table 10, we see that the four distances that increased

are greater than 05. Similar results were seen for other peptides with short sequences

when using this percentile value.

Table 10: A table comparing the distances for the peptide V INELTEK before and

after binning. The bolded values indicate the distances that increased after using a

threshold of 80%

Observed m/z

before method

Theoretical

m/z

Observed m/z

after denoising

Difference

before denoising

Difference af-

ter denoising
141.9028 99.9184 144.7715 41.9844 44.8531
147.0816 146.9450 147.0816 0.1366 0.8265
213.0144 213.0024 213.0144 0.0120 0.0120
276.1071 275.9880 275.1071 0.1191 0.1191
327.0514 327.0454 327.0514 0.0060 0.0060
377.2013 377.0360 377.2013 0.1653 0.1653
456.2416 456.0884 456.2416 0.1532 0.1532
490.2245 490.1200 490.2245 0.1045 0.1045
569.1671 569.1724 573.7797 0.0053 4.6073
619.3815 619.1630 619.3815 0.2185 0.2185
670.1361 670.2204 672.2233 0.0843 2.0029
733.1962 733.2060 733.1962 0.0098 0.0098
799.2451 799.2634 799.2451 0.0183 0.0183
846.3795 846.2900 846.3795 0.0895 0.0895
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Now consider the peptide LSDY GV QLR with 470 pairs of m/z values and inten-

sities. In our initial example, using a 60th percentile, all distances remained the same

or were reduced and spectrum was reduced to 294 pairs of m/z values and intensities.

Table 11: A table comparing the distances for the peptide LSDY GV QLR before

and after binning. The bolded values indicate the distances that increased after using

a threshold of 90%.

Observed m/z

before method

Theoretical

m/z

Observed m/z

after denoising

Difference

before denoising

Difference af-

ter denoising
155.2550 113.9340 156.8959 41.3209 42.9619
174.3954 174.9510 170.0961 0.5556 4.8549
200.1734 200.9660 201.0907 0.7926 0.1247
288.1805 288.0350 288.1805 0.1455 0.1455
315.6753 315.9930 316.2869 0.3177 0.2939
416.2673 416.0940 416.2487 0.1733 0.1547
479.0506 479.0560 479.0506 0.0054 0.0054
515.3530 515.1624 515.3530 0.1906 0.1906
536.1034 536.0775 538.5869 0.0259 2.5094
572.2805 572.1839 572.2805 0.0966 0.0966
635.0522 635.1459 635.0522 0.0937 0.0937
735.3122 735.2469 735.3122 0.0653 0.0653
763.1658 763.2049 763.1658 0.0391 0.0391
850.3229 850.2739 850.1546 0.0490 0.1193
876.1458 876.2889 876.1458 0.1431 0.1431
937.3237 937.3059 937.3237 0.0178 0.0178

When applying a 90th percentile, the data was reduced further from 294 pairs to

183 pairs of m/z values and intensities but four of the distances were increased as

one can see in Table 11. From Table 11, we see the four distances that were increased

are greater than 05. Similar results were seen for other peptides with short sequences
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when using this percentile value.

5.3.2 Percentile Evaluation for Peptides with Long Sequences Approach

Consider the peptide ENLMQV Y QQAR with 590 pairs of m/z values and inten-

sities. In our initial example, using a 10th percentile, all distances remained the same

or were reduced and spectrum was reduced to 548 pairs of m/z values and intensities.

When applying a 20th percentile, the data was reduced further from 548 pairs to

529 pairs of m/z values and intensities but three of the distances were increased as

one can see in Table 12. From Table 12, we see that the three distances that were

increased are greater than 0.5. Similar results were seen for other peptides with long

sequences using a threshold of 20%.

We consider another example of the long peptide DLVHAIPLY AIK with 520

pairs of m/z values and intensities. In our initial example, using a 10th percentile,

all distances remained the same or were reduced and spectrum was reduced to 498

pairs of m/z values and intensities. When applying a 50th percentile, the data was

reduced further from 498 pairs to 363 pairs of m/z values and intensities but five of

the distances were increased as one can see in Table 13. From Table 13, we see that

the five distances that were increased are greater than 0.5. Similar results were seen

for other peptides with long sequences with a threshold of 50%.
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Table 12: A table comparing the distances for the peptide ENLMQV Y QQAR

before and after binning. The bolded values indicate the distances that increased

after using a threshold of 20%.

Observed m/z

before method

Theoretical

m/z

Observed m/z

after denoising

Difference

before denoising

Difference af-

ter denoising
200.0935 129.8930 201.5275 70.2005 71.6345
200.0935 174.9510 201.5275 25.1425 26.5765
243.8989 243.9360 243.8989 0.0371 0.0371
246.0997 245.9881 246.0997 0.1116 0.1116
357.1619 357.0200 357.1619 0.1419 0.1419
374.2530 374.0471 374.2530 0.2059 0.2059
488.0701 488.0600 488.0701 0.0101 0.0101
502.2154 502.1061 502.2154 0.1093 0.1093
616.1608 616.1190 616.1608 0.0418 0.0418
665.2491 665.1691 665.2491 0.0800 0.07998
715.1245 715.1874 715.1245 0.0629 0.0629
764.2294 764.2375 764.2294 0.0081 0.0081
878.1607 878.2504 878.1607 0.0897 0.08969
892.3641 892.2965 892.3641 0.0676 0.06757
1006.1984 1006.3094 1006.1984 0.1110 0.1110
1023.3416 1023.3365 1023.3416 0.0051 0.0051
1134.2614 1134.3684 1134.2614 0.1070 0.1070
1136.3928 1136.4205 1136.3928 0.0277 0.0277
1205.1498 1205.4055 1205.1498 0.2557 0.2557
1248.4108 1250.4635 1247.5865 2.0527 2.876967
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Table 13: A table comparing the distances for the peptide DLVHAIPLY AIK

before and after binning. The bolded values indicate the distances that increased

after using a threshold of 50%.

Observed m/z

before method

Theoretical

m/z

Observed m/z

after denoising

Difference

before denoising

Difference af-

ter denoising
199.2601 115.8770 200.9872 83.3831 85.1102
199.2601 146.9450 200.9872 52.3151 54.0422
228.9623 228.9610 228.9623 0.0013 0.00133
260.0568 260.0290 261.2964 0.0278 1.2674
328.8438 328.0294 330.5817 0.8144 2.5523
331.3174 331.0661 331.3174 0.2513 0.2513
465.1366 465.0884 465.1366 0.0482 0.0482
494.3502 494.1291 494.3502 0.2211 0.2211
536.3278 536.1255 536.3278 0.2023 0.2023
607.4730 607.2131 607.4730 0.2599 0.2599
649.1726 649.2095 649.1726 0.0369 0.0369
704.3751 704.2659 704.3751 0.1092 0.1092
746.8922 746.2623 746.8922 0.6299 0.6299
817.3657 817.3499 817.3657 0.0158 0.0158
859.1126 859.3463 860.2671 0.2337 0.9208
888.2925 888.3870 888.2925 0.0945 0.0945
1022.2666 1022.4093 1022.2666 0.1427 0.1427
1025.3823 1025.4460 1025.3823 0.0637 0.0637
1093.0952 1093.4464 1093.0952 0.3512 0.3512
1124.4200 1124.5144 1124.4200 0.0944 0.0944
1206.2695 1206.5304 1206.2695 0.2609 0.2609
1240.4637 1237.5984 1234.8877 2.8653 2.7107
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5.4 More Examples

Table 14 lists other peptides in which our method was applied. In each example,

the distances of concern either remained the same or reduced. This gave us indication

that our method is performing well. In each example, the alignment of the theoretical

and observed spectrum either remained the same or was improved by the reduction

of some distances.

Table 14: A table showing results of some peptides using our method.

Short sequence peptides Long sequence peptides
V SGQTV R ENLMQV Y QQAR
TGMSNV SK DLVHAIPLY AIK
PAV AMLEER AGSGALTLGQPNSPGV PADFAK
ALNLQDK AFNEMQPIV DR
FGSELLAK AAAAPV TGPLADFPIQETITFDDFAK
FNDAV IR GASQNIIPSSTGAAK
IGENINIR HSSTISDPDTNVK
ISDIPEFV R IDV EGSNEMGQLAENLR
V INELTEK KAV LLPGDLSDESFAR
TLNDAV EVK TV GKPV ETV PQIFV DQK
LSDY GV QLR
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6 DISCUSSION

We presented a method that denoises the spectrum and thus aid in the better

identification of peptides. The identification of peptides have proved to be vital

in determining diseases in its early stages especially in cancer. Early detection of

cancer conclusively leads to a better chance of recovery. With the help of advance

technologies being developed, protein identification has become less cumbersome for

early discoveries of diseases. Being able to identify peptides that have not been

cultured will help researchers immensely. It is the hope that scientists will one day

expand their research in developing drugs that pertains to specific diseases made for

an individual with minimum unwanted secondary effect.

Our focus in this thesis was on random noise, however it was stated in Chap-

ter 2 that another type of noise is chemical noise. Wavelet thresholding is a type

of pre-processing procedure to reduce chemical noise in the data. In this approach,

coefficients are computed based on the data and the coefficients are compared with a

threshold [35]. It is assumed that that there are n noisy samples of a certain function

f ;

yi = fti + σεi ...(1)

where i = 1, ...n, εi are independent and identically distributed (iid) N(0, 1) and σ

is the level of the noise. The noise level may be known or sometimes unknown as

in figure 29, which shows a signal which is clean and a noisy signal. The wavelet

coefficient is calculated from Equation (1) and is given as

yjk = wjk + σ2εjk ...(2)

where wjk are the wavelet coefficients and εjk are independent and identically dis-
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tributed (iid) N(0, 1).

In this approach, coefficients with a minimum magnitude are thought to be pure

noise and therefore set to zero. There are two coefficients calculated from Equation 2,

detailed coefficients and approximation coefficients. Wavelet coefficient thresholding

is most often used on the detail coefficients. The reason being that, the approximation

coefficients contain some important signals with less noise [35]. We believe the use

of wavelets to remove chemical noise coupled with our method to reduce the random

noise, will make peptide identification less cumbersome.

Tandem mass spectrometry produces considerably huge amount of data that is

used for analysis of proteins. Data produced by tandem mass spectrometry in its raw

form is polluted by noise. The method used in this thesis lessens the effect of the

noise inhibiting the process of peptide identification.
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