56 research outputs found

    Handwriting recognition by using deep learning to extract meaningful features

    Full text link
    [EN] Recent improvements in deep learning techniques show that deep models can extract more meaningful data directly from raw signals than conventional parametrization techniques, making it possible to avoid specific feature extraction in the area of pattern recognition, especially for Computer Vision or Speech tasks. In this work, we directly use raw text line images by feeding them to Convolutional Neural Networks and deep Multilayer Perceptrons for feature extraction in a Handwriting Recognition system. The proposed recognition system, based on Hidden Markov Models that are hybridized with Neural Networks, has been tested with the IAM Database, achieving a considerable improvement.Work partially supported by the Spanish MINECO and FEDER founds under project TIN2017-85854-C4-2-R.Pastor Pellicer, J.; Castro-Bleda, MJ.; España Boquera, S.; Zamora-Martinez, FJ. (2019). Handwriting recognition by using deep learning to extract meaningful features. AI Communications. 32(2):101-112. https://doi.org/10.3233/AIC-170562S101112322Baldi, P., Brunak, S., Frasconi, P., Soda, G., & Pollastri, G. (1999). Exploiting the past and the future in protein secondary structure prediction. Bioinformatics, 15(11), 937-946. doi:10.1093/bioinformatics/15.11.937LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539Bertolami, R., & Bunke, H. (2008). Hidden Markov model-based ensemble methods for offline handwritten text line recognition. Pattern Recognition, 41(11), 3452-3460. doi:10.1016/j.patcog.2008.04.003Bianne-Bernard, A.-L., Menasri, F., Mohamad, R. A.-H., Mokbel, C., Kermorvant, C., & Likforman-Sulem, L. (2011). Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(10), 2066-2080. doi:10.1109/tpami.2011.22C.M. Bishop, Neural networks for pattern recognition, Oxford University Press, 1995.T. Bluche, H. Ney and C. Kermorvant, Feature extraction with convolutional neural networks for handwritten word recognition, in: 12th International Conference on Document Analysis and Recognition (ICDAR), 2013, pp. 285–289.T. Bluche, H. Ney and C. Kermorvant, Tandem HMM with convolutional neural network for handwritten word recognition, in: 38th International Conference on Acoustics Speech and Signal Processing (ICASSP), 2013, pp. 2390–2394.T. Bluche, H. Ney and C. Kermorvant, A comparison of sequence-trained deep neural networks and recurrent neural networks optical modeling for handwriting recognition, in: Slsp-2014, 2014, pp. 1–12.H. Bourlard and N. Morgan, Connectionist Speech Recognition – A Hybrid Approach, Series in Engineering and Computer Science, Vol. 247, Kluwer Academic, 1994.Bozinovic, R. M., & Srihari, S. N. (1989). Off-line cursive script word recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(1), 68-83. doi:10.1109/34.23114H. Bunke, Recognition of cursive roman handwriting – past, present and future, in: International Conference on Document Analysis and Recognition, Vol. 1, 2003, pp. 448–459.E. Caillault, C. Viard-Gaudin and A. Rahim Ahmad, MS-TDNN with global discriminant trainings, in: International Conference on Document Analysis and Recognition (ICDAR), 2005, pp. 856–860.P. Doetsch, M. Kozielski and H. Ney, Fast and robust training of recurrent neural networks for offline handwriting recognition, in: 14th International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 279–284.P. Dreuw, P. Doetsch, C. Plahl and H. Ney, Hierarchical hybrid MLP/HMM or rather MLP features for a discriminatively trained Gaussian HMM: A comparison for offline handwriting recognition, in: International Conference on Image Processing (ICIP), 2011, pp. 3541–3544.Dreuw, P., Heigold, G., & Ney, H. (2011). Confidence- and margin-based MMI/MPE discriminative training for off-line handwriting recognition. International Journal on Document Analysis and Recognition (IJDAR), 14(3), 273-288. doi:10.1007/s10032-011-0160-xEspaña-Boquera, S., Castro-Bleda, M. J., Gorbe-Moya, J., & Zamora-Martinez, F. (2011). Improving Offline Handwritten Text Recognition with Hybrid HMM/ANN Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(4), 767-779. doi:10.1109/tpami.2010.141A. Graves, S. Fernández, F. Gomez and J. Schmidhuber, Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks, in: 23rd International Conference on Machine Learning (ICML), ACM, 2006, pp. 369–376.A. Graves and N. Jaitly, Towards end-to-end speech recognition with recurrent neural networks, in: 31st International Conference on Machine Learning (ICML), 2014, pp. 1764–1772.Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009). A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 855-868. doi:10.1109/tpami.2008.137A. Graves and J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM networks, in: International Joint Conference on Neural Networks (IJCNN), Vol. 4, 2005, pp. 2047–2052.A. Graves and J. Schmidhuber, Offline handwriting recognition with multidimensional recurrent neural networks, in: Advances in Neural Information Processing Systems (NIPS), 2009, pp. 545–552.F. Grézl, M. Karafiát, S. Kontár and J. Černocký, Probabilistic and bottle-neck features for LVCSR of meetings, in: International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vol. 4, 2007.Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735Impedovo, S. (2014). More than twenty years of advancements on Frontiers in handwriting recognition. Pattern Recognition, 47(3), 916-928. doi:10.1016/j.patcog.2013.05.027Jaeger, S., Manke, S., Reichert, J., & Waibel, A. (2001). Online handwriting recognition: the NPen++ recognizer. International Journal on Document Analysis and Recognition, 3(3), 169-180. doi:10.1007/pl00013559M. Kozielski, P. Doetsch and H. Ney, Improvements in RWTH’s system for off-line handwriting recognition, in: 12th International Conference on Document Analysis and Recognition (ICDAR), IEEE, 2013, pp. 935–939.A. Krizhevsky, I. Sutskever and G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems (NIPS), F. Pereira, C.J.C. Burges, L. Bottou and K.Q. Weinberger, eds, Vol. 25, Curran Associates, Inc., 2012, pp. 1097–1105.Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.726791M. Liwicki, A. Graves, H. Bunke and J. Schmidhuber, A novel approach to on-line handwriting recognition based on bidirectional long short-term memory networks, in: 9th International Conference on Document Analysis and Recognition (ICDAR), 2007, pp. 367–371.Marti, U.-V., & Bunke, H. (2002). The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition, 5(1), 39-46. doi:10.1007/s100320200071S. Marukatat, T. Artieres, R. Gallinari and B. Dorizzi, Sentence recognition through hybrid neuro-Markovian modeling, in: 6th International Conference on Document Analysis and Recognition (ICDAR), 2001, pp. 731–735.F.J. Och, Minimum error rate training in statistical machine translation, in: 41st Annual Meeting on Association for Computational Linguistics, ACL’03, Vol. 1, 2003, pp. 160–167.J. Pastor-Pellicer, S. España-Boquera, M.J. Castro-Bleda and F. Zamora-Martínez, A combined convolutional neural network and dynamic programming approach for text line normalization, in: 13th International Conference on Document Analysis and Recognition (ICDAR), 2015.J. Pastor-Pellicer, S. España-Boquera, F. Zamora-Martínez, M. Zeshan Afzal and M.J. Castro-Bleda, Insights on the use of convolutional neural networks for document image binarization, in: The International Work-Conference on Artificial Neural Networks, Vol. 9095, 2015, pp. 115–126.V. Pham, T. Bluche, C. Kermorvant and J. Louradour, Dropout improves recurrent neural networks for handwriting recognition, in: International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 285–290.Plamondon, R., & Srihari, S. N. (2000). Online and off-line handwriting recognition: a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 63-84. doi:10.1109/34.824821Plötz, T., & Fink, G. A. (2009). Markov models for offline handwriting recognition: a survey. International Journal on Document Analysis and Recognition (IJDAR), 12(4), 269-298. doi:10.1007/s10032-009-0098-4A. Poznanski and L. Wolf, CNN-N-gram for HandwritingWord recognition, in: Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2305–2314.Puigcerver, J. (2017). Are Multidimensional Recurrent Layers Really Necessary for Handwritten Text Recognition? 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). doi:10.1109/icdar.2017.20L.R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, 1989.Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252. doi:10.1007/s11263-015-0816-yT.N. Sainath, B. Kingsbury and B. Ramabhadran, Auto-encoder bottleneck features using deep belief networks, in: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2012, pp. 4153–4156.Sayre, K. M. (1973). Machine recognition of handwritten words: A project report. Pattern Recognition, 5(3), 213-228. doi:10.1016/0031-3203(73)90044-7Schenkel, M., Guyon, I., & Henderson, D. (1995). On-line cursive script recognition using time-delay neural networks and hidden Markov models. Machine Vision and Applications, 8(4), 215-223. doi:10.1007/bf01219589Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. doi:10.1109/78.650093A.W. Senior and A.J. Robinson, An off-line cursive handwriting recognition system, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, 1998, pp. 309–321.E. Singer and R.P. Lippman, A speech recognizer using radial basis function neural networks in an HMM framework, in: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1, IEEE, 1992, pp. 629–632.J. Stadermann, A hybrid SVM/HMM acoustic modeling approach to automatic speech recognition, in: International Conference on Spoken Language Processing (ICSLP), 2004.A. Stolcke, SRILM: An extensible language modeling toolkit, in: International Conference on Spoken Language Processing (ICSLP), 2002, pp. 901–904.C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich, Going deeper with convolutions, in: Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–12.TOSELLI, A. H., JUAN, A., GONZÁLEZ, J., SALVADOR, I., VIDAL, E., CASACUBERTA, F., … NEY, H. (2004). INTEGRATED HANDWRITING RECOGNITION AND INTERPRETATION USING FINITE-STATE MODELS. International Journal of Pattern Recognition and Artificial Intelligence, 18(04), 519-539. doi:10.1142/s0218001404003344Toselli, A. H., Romero, V., Pastor, M., & Vidal, E. (2010). Multimodal interactive transcription of text images. Pattern Recognition, 43(5), 1814-1825. doi:10.1016/j.patcog.2009.11.019J.M. Vilar, Efficient computation of confidence intervals for word error rates, in: International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2008, pp. 5101–5104.Vinciarelli, A. (2002). A survey on off-line Cursive Word Recognition. Pattern Recognition, 35(7), 1433-1446. doi:10.1016/s0031-3203(01)00129-7Voigtlaender, P., Doetsch, P., & Ney, H. (2016). Handwriting Recognition with Large Multidimensional Long Short-Term Memory Recurrent Neural Networks. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR). doi:10.1109/icfhr.2016.0052E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu and Y. Wang, Intel math kernel library, in: High-Performance Computing on the Intel® Xeon Phi™, Springer, 2014, pp. 167–188.F. Zamora-Martínez et al., April-ANN Toolkit, a Pattern Recognizer in Lua, Artificial Neural Networks Module, 2013, https://github.com/pakozm/ [github.com]april-ann.Zamora-Martínez, F., Frinken, V., España-Boquera, S., Castro-Bleda, M. J., Fischer, A., & Bunke, H. (2014). Neural network language models for off-line handwriting recognition. Pattern Recognition, 47(4), 1642-1652. doi:10.1016/j.patcog.2013.10.020Zeyer, A., Beck, E., Schlüter, R., & Ney, H. (2017). CTC in the Context of Generalized Full-Sum HMM Training. Interspeech 2017. doi:10.21437/interspeech.2017-107

    Neural Networks for Document Image and Text Processing

    Full text link
    Nowadays, the main libraries and document archives are investing a considerable effort on digitizing their collections. Indeed, most of them are scanning the documents and publishing the resulting images without their corresponding transcriptions. This seriously limits the document exploitation possibilities. When the transcription is necessary, it is manually performed by human experts, which is a very expensive and error-prone task. Obtaining transcriptions to the level of required quality demands the intervention of human experts to review and correct the resulting output of the recognition engines. To this end, it is extremely useful to provide interactive tools to obtain and edit the transcription. Although text recognition is the final goal, several previous steps (known as preprocessing) are necessary in order to get a fine transcription from a digitized image. Document cleaning, enhancement, and binarization (if they are needed) are the first stages of the recognition pipeline. Historical Handwritten Documents, in addition, show several degradations, stains, ink-trough and other artifacts. Therefore, more sophisticated and elaborate methods are required when dealing with these kind of documents, even expert supervision in some cases is needed. Once images have been cleaned, main zones of the image have to be detected: those that contain text and other parts such as images, decorations, versal letters. Moreover, the relations among them and the final text have to be detected. Those preprocessing steps are critical for the final performance of the system since an error at this point will be propagated during the rest of the transcription process. The ultimate goal of the Document Image Analysis pipeline is to receive the transcription of the text (Optical Character Recognition and Handwritten Text Recognition). During this thesis we aimed to improve the main stages of the recognition pipeline, from the scanned documents as input to the final transcription. We focused our effort on applying Neural Networks and deep learning techniques directly on the document images to extract suitable features that will be used by the different tasks dealt during the following work: Image Cleaning and Enhancement (Document Image Binarization), Layout Extraction, Text Line Extraction, Text Line Normalization and finally decoding (or text line recognition). As one can see, the following work focuses on small improvements through the several Document Image Analysis stages, but also deals with some of the real challenges: historical manuscripts and documents without clear layouts or very degraded documents. Neural Networks are a central topic for the whole work collected in this document. Different convolutional models have been applied for document image cleaning and enhancement. Connectionist models have been used, as well, for text line extraction: first, for detecting interest points and combining them in text segments and, finally, extracting the lines by means of aggregation techniques; and second, for pixel labeling to extract the main body area of the text and then the limits of the lines. For text line preprocessing, i.e., to normalize the text lines before recognizing them, similar models have been used to detect the main body area and then to height-normalize the images giving more importance to the central area of the text. Finally, Convolutional Neural Networks and deep multilayer perceptrons have been combined with hidden Markov models to improve our transcription engine significantly. The suitability of all these approaches has been tested with different corpora for any of the stages dealt, giving competitive results for most of the methodologies presented.Hoy en día, las principales librerías y archivos está invirtiendo un esfuerzo considerable en la digitalización de sus colecciones. De hecho, la mayoría están escaneando estos documentos y publicando únicamente las imágenes sin transcripciones, limitando seriamente la posibilidad de explotar estos documentos. Cuando la transcripción es necesaria, esta se realiza normalmente por expertos de forma manual, lo cual es una tarea costosa y propensa a errores. Si se utilizan sistemas de reconocimiento automático se necesita la intervención de expertos humanos para revisar y corregir la salida de estos motores de reconocimiento. Por ello, es extremadamente útil para proporcionar herramientas interactivas con el fin de generar y corregir la transcripciones. Aunque el reconocimiento de texto es el objetivo final del Análisis de Documentos, varios pasos previos (preprocesamiento) son necesarios para conseguir una buena transcripción a partir de una imagen digitalizada. La limpieza, mejora y binarización de las imágenes son las primeras etapas del proceso de reconocimiento. Además, los manuscritos históricos tienen una mayor dificultad en el preprocesamiento, puesto que pueden mostrar varios tipos de degradaciones, manchas, tinta a través del papel y demás dificultades. Por lo tanto, este tipo de documentos requiere métodos de preprocesamiento más sofisticados. En algunos casos, incluso, se precisa de la supervisión de expertos para garantizar buenos resultados en esta etapa. Una vez que las imágenes han sido limpiadas, las diferentes zonas de la imagen deben de ser localizadas: texto, gráficos, dibujos, decoraciones, letras versales, etc. Por otra parte, también es importante conocer las relaciones entre estas entidades. Estas etapas del pre-procesamiento son críticas para el rendimiento final del sistema, ya que los errores cometidos en aquí se propagarán al resto del proceso de transcripción. El objetivo principal del trabajo presentado en este documento es mejorar las principales etapas del proceso de reconocimiento completo: desde las imágenes escaneadas hasta la transcripción final. Nuestros esfuerzos se centran en aplicar técnicas de Redes Neuronales (ANNs) y aprendizaje profundo directamente sobre las imágenes de los documentos, con la intención de extraer características adecuadas para las diferentes tareas: Limpieza y Mejora de Documentos, Extracción de Líneas, Normalización de Líneas de Texto y, finalmente, transcripción del texto. Como se puede apreciar, el trabajo se centra en pequeñas mejoras en diferentes etapas del Análisis y Procesamiento de Documentos, pero también trata de abordar tareas más complejas: manuscritos históricos, o documentos que presentan degradaciones. Las ANNs y el aprendizaje profundo son uno de los temas centrales de esta tesis. Diferentes modelos neuronales convolucionales se han desarrollado para la limpieza y mejora de imágenes de documentos. También se han utilizado modelos conexionistas para la extracción de líneas: primero, para detectar puntos de interés y segmentos de texto y, agregarlos para extraer las líneas del documento; y en segundo lugar, etiquetando directamente los píxeles de la imagen para extraer la zona central del texto y así definir los límites de las líneas. Para el preproceso de las líneas de texto, es decir, la normalización del texto antes del reconocimiento final, se han utilizado modelos similares a los mencionados para detectar la zona central del texto. Las imagenes se rescalan a una altura fija dando más importancia a esta zona central. Por último, en cuanto a reconocimiento de escritura manuscrita, se han combinado técnicas de ANNs y aprendizaje profundo con Modelos Ocultos de Markov, mejorando significativamente los resultados obtenidos previamente por nuestro motor de reconocimiento. La idoneidad de todos estos enfoques han sido testeados con diferentes corpus en cada una de las tareas tratadas., obtenieAvui en dia, les principals llibreries i arxius històrics estan invertint un esforç considerable en la digitalització de les seues col·leccions de documents. De fet, la majoria estan escanejant aquests documents i publicant únicament les imatges sense les seues transcripcions, fet que limita seriosament la possibilitat d'explotació d'aquests documents. Quan la transcripció del text és necessària, normalment aquesta és realitzada per experts de forma manual, la qual cosa és una tasca costosa i pot provocar errors. Si s'utilitzen sistemes de reconeixement automàtic es necessita la intervenció d'experts humans per a revisar i corregir l'eixida d'aquests motors de reconeixement. Per aquest motiu, és extremadament útil proporcionar eines interactives amb la finalitat de generar i corregir les transcripcions generades pels motors de reconeixement. Tot i que el reconeixement del text és l'objectiu final de l'Anàlisi de Documents, diversos passos previs (coneguts com preprocessament) són necessaris per a l'obtenció de transcripcions acurades a partir d'imatges digitalitzades. La neteja, millora i binarització de les imatges (si calen) són les primeres etapes prèvies al reconeixement. A més a més, els manuscrits històrics presenten una major dificultat d'analisi i preprocessament, perquè poden mostrar diversos tipus de degradacions, taques, tinta a través del paper i altres peculiaritats. Per tant, aquest tipus de documents requereixen mètodes de preprocessament més sofisticats. En alguns casos, fins i tot, es precisa de la supervisió d'experts per a garantir bons resultats en aquesta etapa. Una vegada que les imatges han sigut netejades, les diferents zones de la imatge han de ser localitzades: text, gràfics, dibuixos, decoracions, versals, etc. D'altra banda, també és important conéixer les relacions entre aquestes entitats i el text que contenen. Aquestes etapes del preprocessament són crítiques per al rendiment final del sistema, ja que els errors comesos en aquest moment es propagaran a la resta del procés de transcripció. L'objectiu principal del treball que estem presentant és millorar les principals etapes del procés de reconeixement, és a dir, des de les imatges escanejades fins a l'obtenció final de la transcripció del text. Els nostres esforços se centren en aplicar tècniques de Xarxes Neuronals (ANNs) i aprenentatge profund directament sobre les imatges de documents, amb la intenció d'extraure característiques adequades per a les diferents tasques analitzades: neteja i millora de documents, extracció de línies, normalització de línies de text i, finalment, transcripció. Com es pot apreciar, el treball realitzat aplica xicotetes millores en diferents etapes de l'Anàlisi de Documents, però també tracta d'abordar tasques més complexes: manuscrits històrics, o documents que presenten degradacions. Les ANNs i l'aprenentatge profund són un dels temes centrals d'aquesta tesi. Diferents models neuronals convolucionals s'han desenvolupat per a la neteja i millora de les dels documents. També s'han utilitzat models connexionistes per a la tasca d'extracció de línies: primer, per a detectar punts d'interés i segments de text i, agregar-los per a extraure les línies del document; i en segon lloc, etiquetant directament els pixels de la imatge per a extraure la zona central del text i així definir els límits de les línies. Per al preprocés de les línies de text, és a dir, la normalització del text abans del reconeixement final, s'han utilitzat models similars als utilitzats per a l'extracció de línies. Finalment, quant al reconeixement d'escriptura manuscrita, s'han combinat tècniques de ANNs i aprenentatge profund amb Models Ocults de Markov, que han millorat significativament els resultats obtinguts prèviament pel nostre motor de reconeixement. La idoneïtat de tots aquests enfocaments han sigut testejats amb diferents corpus en cadascuna de les tasques tractadPastor Pellicer, J. (2017). Neural Networks for Document Image and Text Processing [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90443TESI

    Using Imagery of Lawns to Estimate Lawn Care Need

    Get PDF
    Generally, the present disclosure is directed to identifying properties whose owners are likely to be receptive to lawn care services. In particular, in some implementations, the systems and methods of the present disclosure can include or otherwise leverage one or more machine-learned models to predict that a property exhibits a need for lawn care disproportional to surrounding properties and/or has an owner or owners with the financial capability to afford lawn care services based on imagery and/or real estate information for the property and/or surrounding properties

    Machine Learning for Hardware Simulation

    Get PDF
    Generally, the present disclosure is directed to improving hardware simulation through machine learning. In particular, in some implementations, the systems and methods of the present disclosure can include or otherwise leverage one or more machine-learned models to predict hardware test results based on data extracted from hardware

    Machine Learning to Determine Type of Vehicle

    Get PDF
    Generally, the present disclosure is directed to determining the vehicle type of a vehicle (e.g. for use in vehicle navigation). In particular, in some implementations, the systems and methods of the present disclosure can include or otherwise leverage one or more machine-learned models to predict a vehicle type of a vehicle based on vehicle data relating to the operation and/or capacity of a vehicle

    Predicting Categorical Information for New Content in Application Recommender Systems

    Get PDF
    Generally, the present disclosure is directed to predicting categorical information for newly created content in an application recommender system. In particular, in some implementations, the systems and methods of the present disclosure can include or otherwise leverage one or more machine-learned models to predict categorical information of new applications in an applications marketplace based on screenshots of such new applications in the applications marketplace

    Machine Learning to Identify Vehicle Maintenance Needs

    Get PDF
    Generally, the present disclosure is directed to identifying maintenance needs for a vehicle. In particular, in some implementations, the systems and methods of the present disclosure can include or otherwise leverage one or more machine-learned models to predict vehicle maintenance needs for a vehicle based on vehicle data from the vehicle

    Efficient Learning Machines

    Get PDF
    Computer scienc
    corecore