23 research outputs found

    Computational methods in drug repurposing and natural product based drug discovery

    Get PDF
    For a few decades now, computation methods have been widely used in drug discovery or drug repurposing process, especially when saving time and money are important factors. Development of bioinformatics, chemoinformatics, molecular modelling techniques and machine or deep learning tools, as well as availability of various biological and chemical databases, have had a significant impact on improving the process of obtaining successful drug candidates. This dissertation describes the role of natural products in drug discovery, as well as presents several computational methods used in drug discovery and drug repurposing. Application of these methods is presented with the example of searching for potential drug treatment options for the COVID-19 disease. The disease is caused by the novel coronavirus SARS-CoV-2, which was first discovered in December 2019 and has caused the death of more than 5.6 million people worldwide (until January 2022). Findings from two research projects, which aimed to identify potential inhibitors of main protease of SARS-CoV-2, are presented in this work. Moreover, a summary on COVID-19 treatment possibilities has been included. In the first project, a ligand-based virtual screening of around 360,000 compounds from natural products databases, as well as approved and withdrawn drugs databases was conducted, followed by molecular docking and molecular dynamics simulations. Moreover, computational predictions of toxicity and cytochrome activity profiles for selected candidates were provided. Twelve candidates as SARS-CoV-2 main protease inhibitors were identified - among them novel drug candidates, as well as existing drugs. The second project was focused on finding potential inhibitors from plants (Reynoutria japonica and Reynoutria sachalinensis) and was based on molecular docking studies, followed by in vitro studies of the activity of selected compounds, extract, and fractions from those plants against the enzyme. Several natural compounds were identified as promising candidates for SARS-CoV-2 main protease inhibitors. Additionally, butanol fraction of Ryenoutria rhizomes extracts also showed inhibitory activity on the enzyme. Suggested drugs, natural compounds and plant extracts should be further investigated to confirm their potential as COVID-19 therapeutic options. Presented workflow could be used for investigation of compounds for other biological targets and different diseases in the future research projects.Seit einigen Jahrzehnten werden bei der Entwicklung und Repositionierung von Arzneimitteln rechenintensive computergestützte Methoden eingesetzt, insbesondere da Zeit- und Kostenersparnis wichtige Faktoren sind. Die Weiterentwicklung der Bioinformatik und Chemoinformatik und die damit einhergehende Optimierung von molekularen Modellierungstechniken und Tools für maschinelles sowie tiefes Lernen ermöglicht die Verarbeitung von großen biologischen und chemischen Datenbanken und hat einen erheblichen Einfluss auf die Verbesserung des Prozesses zur Gewinnung erfolgreicher Arzneimittelkandidaten. In dieser Dissertation wird die Rolle von Naturstoffen bei der Entwicklung von Arzneimitteln beschrieben, und es werden verschiedene computergestützte Methoden vorgestellt, die bei der Entdeckung von Arzneimitteln und der Repositionierung von Arzneimitteln eingesetzt werden. Die Anwendung dieser Methoden wird am Beispiel der Suche nach potenziellen medikamentösen Behandlungsmöglichkeiten für die Krankheit COVID-19 vorgestellt. Die Krankheit wird durch das neuartige Coronavirus SARS-CoV-2 ausgelöst, das erst im Dezember 2019 entdeckt wurde und bisher (bis Januar 2022) weltweit mehr als 5,6 Millionen Menschen das Leben gekostet hat. In dieser Arbeit werden Ergebnisse aus zwei Forschungsprojekten vorgestellt, die darauf abzielten, potenzielle Hemmstoffe der Hauptprotease von SARS-CoV-2 zu identifizieren. Außerdem wird ein Überblick über die Behandlungsmöglichkeiten von COVID-19 gegeben. Im ersten Projekt wurde ein ligandenbasiertes virtuelles Screening von rund 360.000 Kleinstrukturen aus Naturstoffdatenbanken sowie aus Datenbanken für zugelassene und zurückgezogene Arzneimittel durchgeführt, gefolgt von molekularem Docking und Molekulardynamiksimulationen. Darüber hinaus wurden für ausgewählte Kandidaten rechnerische Vorhersagen zur Toxizität und zu Cytochrom-P450-Aktivitätsprofilen erstellt. Es wurden zwölf Kandidaten als SARS-CoV-2-Hauptproteaseinhibitoren identifiziert - darunter sowohl neuartige als auch bereits vorhandene Arzneimittel. Das zweite Projekt konzentrierte sich auf die Suche nach potenziellen Inhibitoren aus Pflanzen (Reynoutria japonica und Reynoutria sachalinensis) und basierte auf molekularen Docking-Studien, gefolgt von In-vitro-Studien der Aktivität ausgewählter Verbindungen, Extrakte und Fraktionen aus diesen Pflanzen gegen das Enzym. Mehrere Naturstoffe wurden als vielversprechende Kandidaten für SARS-CoV-2- Hauptproteaseinhibitoren identifiziert. Außerdem zeigte die Butanolfraktion von Ryenoutria Rhizomextrakten ebenfalls eine hemmende Wirkung auf das Enzym. Die vorgeschlagenen Arzneimittel, Naturstoffe und Pflanzenextrakte sollten weiter untersucht werden, um ihr Potenzial als COVID-19-Therapieoptionen zu bestätigen. Der vorgestellte Arbeitsablauf könnte in zukünftigen Forschungsprojekten zur Untersuchung von Verbindungen für andere biologische Ziele und verschiedene Krankheiten verwendet werden

    Computational Prediction of Potential Inhibitors of the Main Protease of SARS-CoV-2

    Get PDF
    The rapidly developing pandemic, known as coronavirus disease 2019 (COVID-19) and caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently spread across 213 countries and territories. This pandemic is a dire public health threat-particularly for those suffering from hypertension, cardiovascular diseases, pulmonary diseases, or diabetes; without approved treatments, it is likely to persist or recur. To facilitate the rapid discovery of inhibitors with clinical potential, we have applied ligand- and structure-based computational approaches to develop a virtual screening methodology that allows us to predict potential inhibitors. In this work, virtual screening was performed against two natural products databases, Super Natural II and Traditional Chinese Medicine. Additionally, we have used an integrated drug repurposing approach to computationally identify potential inhibitors of the main protease of SARS-CoV-2 in databases of drugs (both approved and withdrawn). Roughly 360,000 compounds were screened using various molecular fingerprints and molecular docking methods; of these, 80 docked compounds were evaluated in detail, and the 12 best hits from four datasets were further inspected via molecular dynamics simulations. Finally, toxicity and cytochrome inhibition profiles were computationally analyzed for the selected candidate compounds

    Structure-based classification and ontology in chemistry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent years have seen an explosion in the availability of data in the chemistry domain. With this information explosion, however, retrieving <it>relevant </it>results from the available information, and <it>organising </it>those results, become even harder problems. Computational processing is essential to filter and organise the available resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI provides a classification of chemicals based on their structural features and a role or activity-based classification. An example of a structure-based class is 'pentacyclic compound' (compounds containing five-ring structures), while an example of a role-based class is 'analgesic', since many different chemicals can act as analgesics without sharing structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural classification in use in chemistry nor a comparison to the capabilities of available technologies.</p> <p>Results</p> <p>We analyze the different categories of structural classes in chemistry, presenting a list of patterns for features found in class definitions. We compare these patterns of class definition to tools which allow for automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent extensions for modelling structured objects. Finally we discuss the relationships and interactions between cheminformatics approaches and logic-based approaches.</p> <p>Conclusion</p> <p>Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying computational utilities including algorithmic, statistical and logic-based tools. For the task of automatic structure-based classification of chemical entities, essential to managing the vast swathes of chemical data being brought online, systems which are capable of hybrid reasoning combining several different approaches are crucial. We provide a thorough review of the available tools and methodologies, and identify areas of open research.</p

    ChemVA: Interactive visual analysis of chemical compound similarity in virtual screening

    Get PDF
    In the modern drug discovery process, medicinal chemists deal with the complexity of analysis of large ensembles of candidate molecules. Computational tools, such as dimensionality reduction (DR) and classification, are commonly used to efficiently process the multidimensional space of features. These underlying calculations often hinder interpretability of results and prevent experts from assessing the impact of individual molecular features on the resulting representations. To provide a solution for scrutinizing such complex data, we introduce ChemVA, an interactive application for the visual exploration of large molecular ensembles and their features. Our tool consists of multiple coordinated views: Hexagonal view, Detail view, 3D view, Table view, and a newly proposed Difference view designed for the comparison of DR projections. These views display DR projections combined with biological activity, selected molecular features, and confidence scores for each of these projections. This conjunction of views allows the user to drill down through the dataset and to efficiently select candidate compounds. Our approach was evaluated on two case studies of finding structurally similar ligands with similar binding affinity to a target protein, as well as on an external qualitative evaluation. The results suggest that our system allows effective visual inspection and comparison of different high-dimensional molecular representations. Furthermore, ChemVA assists in the identification of candidate compounds while providing information on the certainty behind different molecular representations.Fil: Sabando, María Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Ulbrich, Pavol. Masaryk University. Faculty of Sciences; República ChecaFil: Selzer, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Ciencias de la Imágenes; ArgentinaFil: Byska, Jan. Masaryk University. Faculty of Sciences; República ChecaFil: Mican, Jan. Masaryk University. Faculty of Sciences; República ChecaFil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Ganuza, María Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Ciencias de la Imágenes; ArgentinaFil: Kozlikova, Barbora. Masaryk University. Faculty of Sciences; República Chec

    Tuscan Varieties of Sweet Cherry Are Rich Sources of Ursolic and Oleanolic Acid: Protein Modeling Coupled to Targeted Gene Expression and Metabolite Analyses

    Get PDF
    The potential of six ancient Tuscan sweet cherry (Prunus avium L.) varieties as a source of health-promotingpentacyclictriterpenesishereevaluatedbymeansofatargetedgeneexpressionand metabolite analysis. By using a sequence homology criterion, we identify five oxidosqualene cyclase genes (OSCs) and three cytochrome P450s (CYP85s) that are putatively involved in the triterpene production pathway in sweet cherries. We performed 3D structure prediction and induced-fit docking using cation intermediates and reaction products for some OSCs to predict their function. We show that the Tuscan varieties have different amounts of ursolic and oleanolic acids and that these variations are related to different gene expression profiles. This study stresses the interest of valorizing ancient fruits as alternative sources of functional molecules with nutraceutical value. It also provides information on sweet cherry triterpene biosynthetic genes, which could be the object of follow-up functional studies

    Immune-Mediated Drug Induced Liver Injury: A Multidisciplinary Approach

    Get PDF
    This thesis presents an approach to expose relationships between immune mediated drug induced liver injury (IMDILI) and the three-dimensional structural features of toxic drug molecules and their metabolites. The series of analyses test the hypothesis that drugs which produce similar patterns of toxicity interact with targets within common toxicological pathways and that activation of the underlying mechanisms depends on structural similarity among toxic molecules. Spontaneous adverse drug reaction (ADR) reports were used to identify cases of IMDILI. Network map tools were used to compare the known and predicted protein interactions with each of the probe drugs to explore the interactions that are common between the drugs. The IMDILI probe set was then used to develop a pharmacophore model which became the starting point for identifying potential toxicity targets for IMDILI. Pharmacophore screening results demonstrated similarities between the probe IMDILI set of drugs and Toll-Like Receptor 7 (TLR7) agonists, suggesting TLR7 as a potential toxicity target. This thesis highlights the potential for multidisciplinary approaches in the study of complex diseases. Such approaches are particularly helpful for rare diseases where little knowledge is available, and may provide key insights into mechanisms of toxicity that cannot be gleaned from a single disciplinary study

    Immune-Mediated Drug Induced Liver Injury: A Multidisciplinary Approach

    Get PDF
    This thesis presents an approach to expose relationships between immune mediated drug induced liver injury (IMDILI) and the three-dimensional structural features of toxic drug molecules and their metabolites. The series of analyses test the hypothesis that drugs which produce similar patterns of toxicity interact with targets within common toxicological pathways and that activation of the underlying mechanisms depends on structural similarity among toxic molecules. Spontaneous adverse drug reaction (ADR) reports were used to identify cases of IMDILI. Network map tools were used to compare the known and predicted protein interactions with each of the probe drugs to explore the interactions that are common between the drugs. The IMDILI probe set was then used to develop a pharmacophore model which became the starting point for identifying potential toxicity targets for IMDILI. Pharmacophore screening results demonstrated similarities between the probe IMDILI set of drugs and Toll-Like Receptor 7 (TLR7) agonists, suggesting TLR7 as a potential toxicity target. This thesis highlights the potential for multidisciplinary approaches in the study of complex diseases. Such approaches are particularly helpful for rare diseases where little knowledge is available, and may provide key insights into mechanisms of toxicity that cannot be gleaned from a single disciplinary study

    AN IN SILICO STUDY OF THE DELTA OPIOID RECEPTOR USING SMALL MOLECULES

    Get PDF
    The DOR is the least studied out of the three opioid receptors (Mu, Kappa, and Delta). The most is known of the Mu Opioid receptor (MOR) and the drugs that target it have led to the global opioid epidemic due to their adverse effects of tolerance and addiction. The DOR is not known for the same adverse effects and therefore, is a promising pharmacological target for the development of new opioid ligands. In this thesis, molecular modeling, simulations and other computational methods are introduced in Chapter 1 where these methods are used to study the activation mechanism of DOR (Chapter 2) and are used to identify novel DOR agonists (Chapter 3). Recently, both the inactive and active conformations of the DOR have been solved. However, the activation mechanism remains to be elusive. In Chapter 2, molecular dynamics (MD) simulations will offer a deeper insight into the dynamics and interactions beginning with the inactive conformation of the receptor when bound to an agonist undergoing a conformational change. Chapter 3 will involve the use of high-throughput screening of new molecules for potential agonist candidates using multiple conformations of the active conformation of the DOR. The top lead compounds subjected further computational analysis on their drug properties to ensure that they do not cause any unwanted side effects. Final lead compounds are available for experimental testing
    corecore