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Abstract 

Emily Dean 
AN IN SILICO STUDY OF THE DELTA OPIOID RECEPTOR USING SMALL 

MOLECULES 

2020-2021 

Chun Wu, Ph.D. 

Master of Science in Pharmaceutical Sciences 

 

 The DOR is the least studied out of the three opioid receptors (µ, κ and 𝛿). The 

most is known of the Mu Opioid receptor (MOR) and the drugs that target it have led to 

the global opioid epidemic due to their adverse effects of tolerance and addiction. The 

DOR is not known for the same adverse effects and therefore, is a promising 

pharmacological target for the development of new opioid ligands. In this thesis, 

molecular modeling, simulations and other computational methods are introduced in 

Chapter 1 where these methods are used to study the activation mechanism of DOR 

(Chapter 2) and are used to identify novel DOR agonists (Chapter 3).  Recently, both the 

inactive and active conformations of the DOR have been solved. However, the activation 

mechanism remains to be elusive. In Chapter 2, molecular dynamics (MD) simulations 

will offer a deeper insight into the dynamics and interactions beginning with the inactive 

conformation of the receptor when bound to an agonist undergoing a conformational 

change. Chapter 3 will involve the use of high-throughput screening of new molecules for 

potential agonist candidates using multiple conformations of the active conformation of 

the DOR. The top lead compounds subjected further computational analysis on their drug 

properties to ensure that they do not cause any unwanted side effects. Final lead 

compounds are available for experimental testing.  



vi 
 

Table of Contents 

Abstract ............................................................................................................................v 

 

List of Figures ..................................................................................................................x 

 

List of Tables ...................................................................................................................xii 

 

Chapter 1: Introduction to Molecular Dynamic Simulations ...........................................1 

 

1.1 Background ..........................................................................................................1 

 

1.2 Methodology ........................................................................................................3 

 

1.2.1 Homology Modeling ...................................................................................3 

 

1.2.2 Molecular Docking and Structure Based Virtual Screening .......................4 

 

1.2.3 Molecular Dynamics Simulations ...............................................................6 

 

1.2.4 MM-GBSA/MM-PBSA Binding Free Energy Calculations ......................7 

 

1.3 Thesis Outline ......................................................................................................8 

 

Chapter 2: To Probe the Activation Mechanism of the Delta Opioid Receptor by an 

Agonist ADL5859 Started From Inactive Conformation Using Molecular 

Dynamics Simulations ...................................................................................11 

 

2.1 Introduction ..........................................................................................................11 

 

2.1.1 Problems With Opioid Receptors ...............................................................11 

 

2.1.2 History of DOR Agonists............................................................................12 

 

2.1.3 Crystal Structures and Previous MD Simulation Studies of the DOR........12 

 

2.1.4 Experimental Overview ..............................................................................14 

 

2.2 Methods................................................................................................................15 

 

2.2.1 Multiple Sequence Alignment and Analysis...............................................15 

 

2.2.2 The Homology Modeling of the DOR ........................................................16 

 

2.2.3 Molecular Docking of ADL5859 ................................................................16 

 



vii 
 

Table of Contents (Continued) 

 

2.2.4 Molecular Dynamics Simulation System Setup .........................................17 

 

2.2.5 Trajectory Clustering Analysis ...................................................................19 

 

2.2.6 RMSD of Protein Structure Analysis ..........................................................20 

 

2.2.7 Analysis of Microswitches and Pairwise Residue Distance .......................20 

 

2.2.8 Normal Mode Analysis ...............................................................................21 

 

2.3 Results ..................................................................................................................21 

 

2.3.1 Sequence-Based Comparison of Human DOR With Other Class A  

GPCRs..................................................................................................................21 

 

2.3.2 Homology Model of Human DOR Without Fusion Protein .......................21 

 

2.3.3 Docked Conformation of ADL5859 Shows Similarity With the Co-

Crystallized Conformation of DPI-287 and Subtle Difference With  

Naltrindole ...........................................................................................................22 

 

2.3.4 MD Simulations of Human DOR With ADL5859 and Naltrindole Assume 

Steady State ..........................................................................................................24 

 

2.3.5 ADL5859-DOR System Shows Adopting Toward the Crystal Active 

Conformation While Naltrindole-DOR System Maintains Inactive  

Conformation .......................................................................................................26 

 

2.3.6 ADL5859-DOR System Has Multiple Clusters Folding Toward the Active 

State......................................................................................................................31 

 

2.3.7 Secondary Structure Analysis Shows Maintained Helices but With Subtle 

Differences Between the Two Complexes ...........................................................35 

 

2.3.8 Key Interactions of ADL5859 and Naltrindole With Human DOR ...........36 

 

2.3.9 DOR Shows Flexibility When Bound to ADL5859 Than Naltrindole .......37 

 

2.3.10 Distance of ADL5859 With Side Chain of D95 Decreases While 

Naltrindole Shows No Change.............................................................................40 

 

2.3.11 Role of Molecular Switches in the Activation of DOR by ADL5859 ......41 

 



viii 
 

Table of Contents (Continued) 

 

2.3.12 Center of Mass Distances Identify Activation Related Changes ..............43 

 

2.3.13 Normal Mode Analysis Shows the Overall Motion of the Receptor ........47 

 

2.4 Discussion ............................................................................................................47 

 

Chapter 3: To Probe Activation Mechanism of Agonist DPI-287 to Delta Opioid 

Receptor and Novel Agonists to Using Ensemble-Based Virtual Screening 

With Molecular Dynamics Simulations .........................................................56 

 

3.1 Introduction ..........................................................................................................56 

 

3.1.1 The Opioid Epidemic ..................................................................................56 

 

3.1.2 DOR Target Potential .................................................................................57 

 

3.1.3 Previous Studies on the DOR .....................................................................58 

 

3.1.4 High-Throughput Virtual Screening Reasoning .........................................58 

 

3.1.5 Ensemble-Based Approaches ......................................................................59 

 

3.1.6 Experimental Overview ..............................................................................60 

 

3.2 Methods................................................................................................................61 

 

3.2.1 Virtual Screening Workflow Overview ......................................................61 

 

3.2.2 Normal Mode Analysis ...............................................................................69 

 

3.2.3 Dynamical Network Model.........................................................................69 

 

3.3 Results ..................................................................................................................70 

 

3.3.1 Crystal Conformation Maintained Stability During MD Simulation .........70 

 

3.3.2 Crystal Complex Produces Other Conformations to Use for HTVS ..........73 

 

3.3.3 Top 8 Compounds Assume Steady State ....................................................80 

 

3.3.4 MD Simulations Improved the Binding Pose of the Top Eight Ligands ....82 

 

3.3.5 Protein-Ligand Interactions of Top Compounds to the DOR .....................83 



ix 
 

Table of Contents (Continued) 

 

3.3.6 Secondary Structure Shows Maintained Helices ........................................87 

 

3.3.7 RMSF Shows Fluctuation in Regions of the Protein With Respect to the  

Ligand ..................................................................................................................87 

 

3.3.8 Network Analysis Helped to Understand Communications Among Different  

Regions of the DOR .............................................................................................88 

 

3.4 Discussion ............................................................................................................91 

 

References ........................................................................................................................94 

 

Appendix A: To Probe the Activation Mechanism of the Delta Opioid Receptor by an 

Agonist ADL5859 Started From Inactive Conformation Using Molecular Dynamic 

Simulations ......................................................................................................................104 

 

Appendix B: To Probe Activation Mechanism of Agonist DPI-287 to Delta Opioid 

Receptor and Novel Agonists to Using Ensemble-Based Virtual Screening With 

Molecular Dynamics Simulations ....................................................................................149 

 

 

 



x 
 

List of Figures 

Figure Page 

Figure 1. Chemical Structures of Agonist ADL5859, Agonist DPI-287, and Antagonist 

Naltrindole to DOR ..........................................................................................................13 

 

Figure 2. Comparison Between the Docked Pose With the Crystal Pose of Ligands  ....23 

 

Figure 3. Protein (Blue) and Ligand (Red) RMSD ..........................................................25 

 

Figure 4. Receptor RMSDs of Varied Parts From Agonist and Antagonist Simulation 

Systems Against the Two Solved Crystal Receptor Structures .......................................29 

 

Figure 5. Most Abundant Agonist Cluster of the First Trajectory Compared to Solved 

Crystal Structures and Structural RMSD Calculations ....................................................34 

 

Figure 6. Protein-Ligand 2D Interaction Diagram ...........................................................37 

 

Figure 7. RMSF Comparison ...........................................................................................39 

 

Figure 8. Average Distance Timeline Between Positively Charged Nitrogen Atom of 

Ligand and Side Chain of D95.........................................................................................40 

 

Figure 9. Molecular Switches ..........................................................................................42 

 

Figure 10. DOR Activation Pathway ...............................................................................55 

 

Figure 11. Structural Organization of the Active Conformation of the DOR and  

Ligand ..............................................................................................................................60 

 

Figure 12. Virtual Screening Workflow ..........................................................................62 

 

Figure 13. Simulation Interaction Diagrams After MD Simulation of the Crystal  

Structure ...........................................................................................................................72 

 

Figure 14. Superimposition of the Active Crystal DOR Structure With the Most 

Abundant Conformations From the MD Simulations With Agonist DPI-287 ................74 

 

Figure 15. Predicted Binding Pocket of the Different DOR Conformations ...................75 

 

Figure 16. Top 2 Low Frequency Vibrational Modes From the Normal Mode  

Analysis............................................................................................................................76 

 

Figure 17. Network Analysis ...........................................................................................77 

 



xi 
 

List of Figures (Continued) 

 

Figure Page 

Figure 18. RMSD of the Top 8 Zinc Compounds ...........................................................81 

 

Figure 19. Comparison of Glide XP Docking Pose (Blue) and MD Simulation Pose (Red) 

for the Top 8 Compounds ................................................................................................83 

 

Figure 20. Protein-Ligand 2D Interaction Diagrams From the MD Simulation for the Top 

8 Compounds ...................................................................................................................86 

 

Figure 21. Optimal Signal Transduction Pathway of the Transmission Switch and the 

Toggle Switch ..................................................................................................................90 

 

 

 

 

 

 



xii 
 

List of Tables 

Table Page 

Table 1. The Combined Mean RMSF Values of the Ligand Bound Complex From N-

Terminal to C-Terminal ...................................................................................................38 

 

Table 2. Residue Pairs for Center of Mass Distance Measurement .................................44 

 

Table 3. Average Atomic and Center of Mass Distances ................................................46 

 

Table 4. Comparison Between MOR and DOR ...............................................................57 

 

Table 5. Various Properties of the Top 8 Compounds Identified From Our Virtual 

Screening Work Flow ......................................................................................................80 

 

Table 6. The Predicted Pharmacokinetics ADME Properties ..........................................80 

 

Table 7. Protein-Ligand Interactions During MD Simulations for the Top 8 Compounds 

From the MD Simulations ...............................................................................................84 

 

 

 



1 
 

Chapter 1 

Introduction to Molecular Dynamic Simulations 

1.1 Background 

The detailed molecular information on the drug targets are not used in traditional 

developmental methods of new drugs. Consequently, when a new drug is brought into the 

market using the traditional developmental methods, the money, amount of time needed, 

and risk of failure can be very costly, taking anywhere from 10-15 years from the initial 

identification until the drug is developed and on the market, in addition to costing 

between 800 million to 1.8 billion US dollars1. The increase in databases and the genomic 

and protein information plus an advancement in computational methods, with higher 

performance and better algorithms to process these valuable information greatly advances 

the drug discovery process2, 3. 

Computational tools used for the discovery and development of a new drug to aid 

in human health range from a number of applications and methods. Computer aided drug 

design (CADD) is a powerful application that has been developed that uses the rational 

drug design approach that provides more knowledge and information about binding 

affinity and any interactions in the protein-ligand complex1. The use of this tool has 

enhanced the preliminary stage of the drug discovery process by reducing the failures of 

potential molecules at the drug development level to be brought onto market, as well as 

minimizing the cost. CADD consists of two general approaches: structure-based and 

ligand-based. Both of these methods have made their own advancements without the 

other. 
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Structure-based drug design (SBDD) begins with identifying and processing the 

desired three-dimensional (3D) target with all of its structural information4. By using a 

3D structure of the protein target, this allows for the use of computation to delve into 

experimental results at the atomic level and to gain more understanding of disease at the 

molecular level. This target structure can be taken from a variety of different methods 

such as experimental methods like NMR and X-ray crystallography downloaded to a 

database, or purely computational methods like homology modeling and molecular 

dynamics (MD) simulations. SBDD can be divided into two subcategories within itself: 

the de novo approach and the virtual screening approach. The de novo approach produces 

some lead compounds, but mainly offers new scaffolds of ligands that can be further 

developed due to their attractive properties by using fragments of molecules that 

correspond with the binding site1, 5. The idea is based on the primary constraints of 

ligands and receptors that are already known to produce novel compounds. The virtual 

screening (VS) approach uses commercially available small molecule libraries to identify 

compounds predicted to have attractive binding affinities for the target protein of a 

known structure. Once these compounds are identified, it is with the thought that they 

will then be experimentally tested on. This method does not produce novel ligands. 

Ligand-based drug design (LBDD) is the method of CADD that is useful when 

the desired protein target is missing important structural information or when its entire 

3D structure itself is absent6. If this is the case, the approach is to use the information 

from the known ligands that bind to the target of interest to determine the lacking 

structural and/or physiochemical information causing the observed biological response1. 



3 
 

LBDD utilizes two approaches: quantitative structure-activity relationships (QSARs) and 

pharmacophore-based techniques.  

Molecular dynamics (MD) simulations is a computational technique that further 

enhances the drug design process. It is used to simulate a molecular system in a period of 

time to study the interactions and stability based on the physical laws.7 This technique 

can help rule out ligands that will not remain stable in complex with the target. This only 

adds more insight into the interacting behavior of a ligand with its target in higher special 

and temporal resolution than traditional experimental methods. 

Because of the advancement in computational methods with higher performance 

and better algorithms, the preliminary stage of the drug discovery process has become 

much more reliable with higher accuracy and less costly procedures3. This is largely in 

part due to the vast availability of both genomic and protein information, as well as the 

access to computational tools and applications such as ligand design, modeling, 

pharmacophore mapping, protein-ligand molecular dynamic simulations, and toxicity 

predictions.  

1.2 Methodology 

1.2.1 Homology Modeling  

To study a protein, whether it be the protein’s dynamics or finding ligand 

candidates, the three-dimensional (3D) structure of the protein is typically required.8, 9 

The 3D structure is determined from the protein sequence. Experimental methods such as 

NMR spectroscopy and X-ray crystallography are how protein structures are determined 

but both methods are time consuming and cannot necessarily be used for each protein. In 



4 
 

the case of NMR spectroscopy, the protein molecules generally need to be smaller and 

with X-ray crystallography, the molecules need to be crystallized. There are difficulties 

when it comes to protein purification and crystallization, most notably in membrane 

proteins that make up a majority of therapeutic targets, which causes a deficiency in high 

resolution 3D protein structures.  

 Homology modeling is considered to be a powerful computational prediction tool 

with two main observations: the 3D protein structure is determined precisely by its amino 

acid sequence, and protein structure is very conserved with change happening at a slow 

rate.8 It is also fast with low cost and simple steps. There are seven standard steps with 

this modeling method: (1) The identification and the selection of templates using 

sequence similarity as well as environmental and phylogenetic factors, (2) Sequence 

alignment with careful inspection and alignment correction, (3) Model building, (4) Loop 

modeling with accuracy determining the significance of the model for future use, (5) Side 

chain modeling using the backbone, (6) Model Optimization to improve the model 

quality, (7) Model Validation where the functionality is determined by the quality of the 

model. 

1.2.2 Molecular Docking and Structure Based Virtual Screening  

Molecular docking is a key tool used in the drug discovery process due to its fast 

and cost-efficient methodologies that predict the binding pose of ligands to the active site 

of their respective targets. Docking has been a great help with screening large libraries of 

molecules, meaning it has the ability to work in combination with structure-based virtual 

screening (SBVS). This works by docking large libraries of small molecules to a target in 
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a short time frame. The docking software generates a molecular surface of the target 

structure on the basis of high-resolution structure that achieves the docking poses. 

Spheres are generated in a known ligand binding site of the target and determine all the 

possible orientations of new ligands. A scoring function is then used that ranks the 

different poses by most favorable to least favorable binding. Docking has three main 

scoring functions. The force-field based approach is the first that is based on 

experimental data that estimates binding affinity. Empirical scoring has a simplified 

version of the parameters in the force-field based approach that gives slightly less 

accurate results. The knowledge-based scoring function is the third approach that is taken 

from known binding interactions and is more common than using random distribution. 

After filtering by docking score functions, ADMET(absorption, distribution, metabolism, 

excretion and toxicity) property prediction is utilized for SBVS by providing insight into 

different relevant properties that tell if a molecule is druggable. About half of the 

potential drugs tested fail in clinical trials due to poor ADMET properties, making early 

prediction cut out a lot of time and cost that would be wasted on testing unnecessary 

ligands. Schrodinger’s Glide extra precision (XP) docking uses extensive algorithms that 

uses not only water desolvation energy terms, but also QikProp ADME prediction. 

XP Glide Score = ΔEcoul + ΔEvdW+Ebind +Epenalty 

  Ebind=Ehyd_enclosure
4+Ehb_nn_motif

5 +Ehb_cc_motif
6 +EpI

7 +  Ehb_pair +Ephobic_pair 

  Epenalty = Edesolv +Eligand_strain 
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1.2.3 Molecular Dynamics Simulations 

Molecular dynamics simulations are a technique that uses the integration of Newton’s 

equations of motion.7 The purpose is to simulate behaviors of a dynamic molecular 

system throughout a period of time. Using the Newton’s laws of motion, MD simulations 

predict the motions of the atoms when acted upon by forces. The forces that are 

calculated in these simulations are based on force fields, which are the equations used to 

set up parameters that determine the potential energy interactions of the system. These 

interactions and features include bond rotations, bond length, and Coulomb’s law, 

comprising of van der Waals and electrostatic interactions.10 There are two different 

solvent models to simulations that have different levels of atomic detail. Explicit solvent 

models are effective by imitating the most realistic solvent effects but are high in cost. 

This type of model is better for comparing drastically different systems. Implicit models 

use a dielectric constant and treat the solvent as a continuous medium, making it cheaper 

to use and a better option for comparing systems that are more similar to each other. 

After the system is prepared, the simulation is ran and reaches equilibrium, snap shots are 

taken throughout the simulation time, creating the simulation trajectory. The position of 

all the atoms in the system have coordinates that are contained in each of the snap shots. 

Using this, different post simulation analyses can be performed to help determine the 

questions asked beforehand. Trajectory clustering is one of the analyses performed post-

simulation to identify the populated conformation by first aligning each snapshot of the 

trajectory. After the initial alignment, the different populated clusters are based on the 

root mean squared deviation (RMSD) of the backbone of the target protein to determine 

structural similarity and represent the different structural families. The populated 
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conformations generated can then be used as the most ideal binding positions of the 

target. 

1.2.4 MM-GBSA/MM-PBSA Binding Free Energy Calculations  

To determine if a bound ligand is stable in its target’s binding pocket, the binding 

free energy during the simulation can be calculated. There are different prediction 

methods of binding free energy, however, the end point methods have been particularly 

useful by calculating the bound and unbound states of solvated molecules.11 The two 

known end point methods are the molecular mechanics generalized Born surface area 

(MM-GBSA) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA). 

These binding free energy methods are fast and widely exploited.12 The calculations are 

done through minimization on the receptor alone, the ligand alone, and then the receptor-

ligand complex. There are three components involved in the energy decomposition of 

these calculations which are van der Waals, electrostatic, and hydrophobic interactions 

using surface area. Each component contributes to the final result of the total binding 

energy. This gives further insight into the most optimal binding conformation of the 

ligand in the binding pocket. The calculations of binding free energy do not include a 

solute entropic term; therefore, the true binding free energy could be much lower. This is 

compensated for when different binding poses have comparable solute entropies to each 

other, allowing the relative binding free energy to be relative to MM-GBSA binding 

energies. In the equations, the internal energy change (ΔEint) is canceled due to the 

receptor and ligand being extracted from the same trajectory. This makes the electrostatic 

(ΔEELE) plus the van der Waals (ΔEVDW) energies equal to the gas phase interaction 

energy (ΔEgas) from the receptor and ligand. In the fourth equation, polar and nonpolar 
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energy terms together make up the solvation free energy (ΔGsol). While the polar 

contribution (ΔG(GB)) is calculated using the GB model, the nonpolar energy term 

(ΔG(Surf)) is calculated using solvent-accessible surface area. Because the entropy term is 

neglected, the binding free energy (ΔGbind) is the sum of the gas-phase and solvation free 

energy.  

        ΔGbind = (Gcomplex) – (Greceptor) – (Gligand)           (1) 

                               ΔGbind = ΔH - TΔS ≈ ΔEgas + ΔGsol – TΔS          (2) 

                               ΔEgas = ΔEint + ΔEELE + ΔEVDW                        (3) 

                               ΔGsol = ΔG(GB) + ΔG(Surf)                                                                     (4) 

1.3 Thesis Outline 

In Chapter 2, the activation mechanism of the Delta Opioid receptor (DOR) was probed 

using novel agonist ADL5859 in multiple microsecond molecular dynamics simulations. 

Out of the three opioid receptors, (Mu, Kappa, Delta) the Delta receptor is the least 

studied with the potential for reduced adverse side effects. Recently, crystal structures of 

both the inactive and active conformation of the DOR were solved. However, the 

activation mechanism for this specific receptor remains elusive. To give deeper insight 

into what the activation mechanism may be, we started with a homology model of the 

inactive conformation of the DOR and docked the agonist ADL5859 into the binding 

pocket before starting the 1 microsecond MD simulations. Because all crystal structures 

contained fusion proteins at the N terminus, they were removed to rule out any 

probability that they may have played a role in the conformational change. The crystal 
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antagonist Naltrindole was also used and underwent 1 microsecond MD simulations to 

serve as an inactive control to compare our active complex. The most notable difference 

between the active and inactive state of class A GPCRs is the outward movement of 

transmembrane 6 (TM6) that opens up the intracellular portion of the receptor to allow G 

protein signaling and ultimately activation. After performing the MD simulations on both 

ligand complexes, the outward movement of TM6 was observed in the agonist bound 

complex. Additional analyses were performed including the molecular switch analysis 

and measuring the center of mass distances of known residue contacts for class A GPCRs 

and other unique distances to this study. Through our findings, key residues were 

identified that played a role in the activation of the DOR using an agonist starting with 

the inactive state of the receptor. In Chapter 3, HTVS coupled with MD simulations were 

used to find potential agonist candidates targeting the DOR. The world still struggles with 

opioid addiction. Addiction is a side effect found in agonists that target the MOR. The 

DOR has shown to not have addictive properties, indicating that finding ligands that 

target this receptor while eliciting the biological response of antinociception is of high 

importance. The HTVS and MD simulations were not just run on the active 

conformation, but on two other active conformations found while simulating the active 

crystal DOR with the crystal agonist ligand, making this an ensemble-based approach. 

The reasoning for this is due to the flexibility of receptors creating challenges within the 

binding site with amino acid side-chains that have dozens of rotatable conformations. The 

ensemble-based approach samples the degrees of freedom of the side chains instead of 

using just one conformation. The HTVS was ran on the multiple conformations and the 

top molecules were simulated to assess their stability. Through this and additional 
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analyses, 8 compounds were identified that should be considered for experimental 

testing. 
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Chapter 2 

To Probe the Activation Mechanism of the Delta Opioid Receptor by an Agonist 

ADL5859 Starting from the Inactive Conformation Using Molecular Dynamics 

Simulations 

2.1 Introduction 

2.1.1 Problems With Opioid Receptors  

Ligands that bind to receptors are typically classified as an agonist or antagonist, 

meaning they either elicit a biological response or they block the response, respectively. 

Opioid receptors, members of G-protein-coupled receptors (GPCR), bind an agonist such 

as opioids outside the cell and adopt the active conformation to activate G protein-

dependent signal transduction pathways, ultimately, inducing the biological response of 

antinociception.13, 14 There are three types (µ, 𝛿 and κ) of opioid receptors (MOR, DOR 

and KOR)15, all exhibiting antinociceptive properties. There is a fourth opioid receptor, 

nociception/orphanin (NOR) that little is known about. However, it is thought that due to 

its location in the brain and spinal cord that it’s activation can be similar to MOR effects 

or sometimes oppose them.16 Among them, MOR is the major pharmacological target of 

current opioid drugs such as morphine. However, these drugs targeting MOR are known 

for their high propensity for abuse and tolerance, leading to the current opioid epidemic 

in the United States and the rest of the world. Thus, there is pressing need to develop 

non-MOR-based opioid drugs. While drugs acting at the KOR produce dysphoria and 

anhedonia17, 18 19, 20, these same adverse effects are not observed when testing drugs that 
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act at the DOR. This makes the DOR a promising pharmacological target for developing 

new opioid drugs for pain medication.21 

2.1.2 History of DOR Agonists 

Over the years, researchers have been able to produce agonists that can target the 

DOR and cause antinociception and/or antidepressant-like effects without adverse 

weight-based effects.22-24 However, these molecules caused convulsant activities in vivo, 

making the search for an optimal agonist for the DOR continue. Through trial and error, 

ADL5859, a small molecule agonist targeting the DOR has been discovered with 

promising properties, including no adverse effects on convulsant activities. This ligand 

completed phase I in clinical trials, showing it was well absorbed after oral administration 

and was generally well tolerated, ready to move on to phase II.25 While this drug has 

shown promising activities in vivo, there is no crystal structure of ADL5859 with the 

DOR. Because of this, the detailed interaction of this ligand with the receptor is 

unknown, as well as the activation mechanism. 

2.1.3 Crystal Structures and Previous MD Simulation Studies of the DOR  

Recently, three crystal structures of the DOR have been solved; one is of the 

inactive state receptor with an amino terminal b562RIL fusion protein in complex with the 

antagonist, naltrindole (PDB ID: 4N6H), and two structures are of the active state DOR 

with the peptide agonist KGCHM07 (PDB ID: 6PT2) and with the small molecule 

agonist DPI-287 (PDB ID: 6PT3), both with a b562RIL fusion protein that contained three 

point mutations. When aligning the crystal structures (Figure A1), the two agonist bound 

complexes (6PT2 & 6PT3) show significant overlap, but in contrast, the antagonist 
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complex (4N6H) shows great differences mainly in the fusion protein, as well as TM5, 

intracellular loop (ICL) 3, and TM6. The difference in transmembrane (TM) 6 between 

the crystal structures appears to be one of the molecular switches in GPCR activation 

known as the Transmission Switch, and is a hallmark of GPCR activation, indicating the 

agonist bound complexes as the active crystal structures and the antagonist bound 

receptor as the inactive crystal structure. However, because the fusion protein also adopts 

very different conformations in the two complexes, the probability of the fusion protein 

causing the conformational change of TM6 cannot be completely ruled out. Because both 

DPI-287 and ADL5859 share the same pharmacophore and biological activity, their 

action on the DOR should be similar (Figure 1). 

 

Figure 1 

Chemical Structures of Agonist ADL5859, Agonist DPI-287, and Antagonist Naltrindole 

to DOR 

  

Note.  Pharmacophore of agonists highlighted in pink to show similarity. 

 

 

 
 

 

ADL5859 DPI-287 

Naltrindole 
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The DOR has not been as well studied as the MOR and KOR. With computational 

research on the rise, studies were conducted that modeled the DOR even before a crystal 

structure was available using templates such as bovine rhodopsin. Through this and a 20 

ns molecular dynamic (MD) simulation, it was suggested that between residues D128 and 

R192, an internal salt bridge exists. Another study delved into the possible interfaces of 

DOR homodimeric complexes26, 27. After solved crystal structures of the DOR became 

available, a study that solved two DOR crystal structures themselves modeled the active 

state DOR and docked small molecules and peptides into their crystal structure to 

evaluate water-mediated interactions in the binding pocket.28 Although the motion of 

TM6 is a known hallmark of activation for GPCRs, the key change at the residue level is 

not known for the DOR. Recently, a study 29 has suggested an activation pathway for β2-

adrenergic receptor, M2 muscarinic receptor, µ-opioid receptor, k-opioid receptor, and 

adenosine A2A receptor. However, the DOR has not been confirmed to have this pathway, 

leaving its activation pathway unknown.29  

2.1.4 Experimental Overview  

To give a better insight and understanding of the activation mechanism and 

detailed interaction of an agonist with the DOR, we ran multiple 1s molecular dynamic 

simulations of the novel ADL5859 and of naltrindole starting with a homology model of 

the inactive DOR (4N6H). Starting with the inactive conformation and an agonist allows 

us to probe the conformational change of the receptor toward the active conformation 

through MD simulations, giving insight into a potential activation mechanism for the 

DOR. To rule out the probability of the fusion protein causing the conformational 

change, it was removed. The ADL5859 was first docked to the inactive receptor 
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homology model and this initial structure was used for the simulations. Our most 

abundant structure from our MD simulation was then compared to the active state crystal 

complex to find the similarities and differences in the protein-ligand binding interactions 

and dynamics between the two systems. We observed TM6 move outward with a 

favorable overlap of our complex with the agonist bound crystal complex, supporting the 

evidence of the molecular switches for this receptor, specifically the Transmission 

Switch. Center of mass distances were measured as well using known residue contacts for 

some class A GPCRs as well as unique distances to our study to determine the 

conformation change occurring after beginning with the inactive state. The motion of 

TM6, as well as our additional distance analyses, offers insight into the activation 

mechanism of the DOR bound with agonist ADL5859. Given the hallmark movements 

and known residues, we believe our simulation has reached the active-like conformation. 

Our findings allows for an experimental mutagenesis study using our key residue 

pathway. The detailed interaction of ADL5859 with the DOR will also help to develop 

the opioid class of drugs. 

2.2 Methods 

2.2.1 Multiple Sequence Alignment and Analysis 

Conservation of residues among 62 members of class A GPCR was investigated 

using Jalview program30. Protein sequences of 61 class A GPCRs listed in the GPCR-

EXP database (https://zhanglab.org/GPCR-EXP/) and 5 class A GPCRs listed in the 

subfamily A4 of rhodopsin family in the Pfam database 

(http://pfam.xfam.org/family/PF00001) were retrieved from the UniProt database and 
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MUSCLE tool31 with default settings was used for the multiple sequence alignment. 

Positional occupancy of each residues was analyzed at both family and subfamily levels. 

2.2.2 The Homology Modeling of the DOR 

The FASTA files of human DOR-1(P41143) were obtained from the UniProt website to 

fix any nonnative mutations.32 The sequence is shown in Figure A2.33, 34 The Prime 

feature in Maestro35, 36 was used to build the homology model based on pre-aligned 

crystal structure of human δ-opioid 7TM receptor bound with antagonist naltrindole 

(PDB ID: 4N6H) oriented in the membrane from the OPM web server site. 37 The crystal 

structure of human δ-opioid 7TM receptor bound with with agonist DPI-287 (PDB ID: 

6PT3) was used for comparison. Alignment is based on the backbone residues of TM1-

5&7 (4N6H: 39-77, 82-111, 117-152, 161-187, 206-243, 293-321; 6PT3: 45-77, 82-111, 

117-152, 161-187, 206-243, 293-321). 

2.2.3 Molecular Docking of ADL5859 

Protein structures were prepared using Maestro’s Protein Preparation Wizard.38 

The charge state of the preprocessed protein was optimized at pH 7. A restrained 

minimization was then performed to relax the protein structure using OPLS3 force 

field.39 The 3D structures of naltrindole and ADL5859 were prepared using Maestro 

Elements. Figure 1 shows the chemical structures of the ligands. The 2D structure of 

ADL5859 was drawn using Maestro’s 2D sketcher, converting into 3D structure. 3D 

structure of naltrindole was extracted from the crystal structure (PDB ID: 4N6H). Both 

ligands had their bond orders fixed and underwent the pKa calculation. The 

ionization/tautomeric states were generated at pH 7 using Maestro’s Epik tool based on 
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the more accurate Hammet and Taft methodologies.38 The lowest ionization/tautomeric 

state (+1) was selected and the geometry was then minimized to the most energetically 

favorable structure to relax the structure of the ligand.  

The receptor grid files were generated from the prepared receptors, in which the 

centroid of the crystal ligand, naltrindole, was used to specify the active site. The 

prepared ligands (naltrindole and ADL5859) were docked into their corresponding 

generated grids using Glide XP scoring with default procedures and parameters.40, 41 In 

detail, the receptor grid required for the docking process was generated using van der 

Waals scaling factor of 1 and partial charge cutoff 0.25. Docking was performed using a 

ligand-centered grid using OPLS3 force field.39 Glide XP Dock performed a 

comprehensive systematic search for the best receptor conformations and orientations to 

fit the ligand. The docked poses were compared to the inactive crystal complex (PDB ID: 

4N6H) with an antagonist to verify if the docked ligand poses were reasonable.  Both 

ligands were bound within the binding pocket with naltrindole binding similar to the 

crystal ligand with subtle differences, providing a reasonable starting pose for later 

molecular dynamic simulations.  The binding pose can then be refined given the full 

conformation flexibility in the simulations.  

2.2.4 Molecular Dynamics Simulation System Setup 

Two MD simulation systems were constructed using the prepared and refined 

receptor-ligand complex from the Glide XP docking and crystal structure (4N6H) as 

input files. Each system was built using SPC as water solvent model 42 using 

orthorhombic solvent box with 10Å water buffer. System was neutralized using Na+ and 
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Cl- ions and were added to maintain the salt concentration of 0.15 M NaCl.  After the 

system was successfully solvated, OPLS3 force field39 was used to represent the receptor-

ligand. 

Using Desmond module, the system was first relaxed using the default relaxation 

protocol for membrane proteins.43 This relaxation protocol consists of eight stages: 1). 

Minimization with restraints on solute heavy atoms; 2). Minimization without any 

restraints; 3). Simulation with heating from 0 K to 300 K, H2O barrier and gradual 

restraining; 4). Simulation under the NPT ensemble (constant number of particles, 

constant pressure of 1 bar and constant temperature of 300 K) with H2O barrier and with 

heavy atoms restrained; 5). Simulation under the NPT ensemble with equilibration of 

solvent and lipids; 6). Simulation under the NPT ensemble with protein heavy atoms 

annealing from 10.0 kcal/mol to 2.0 kcal/mol; 7). Simulation under the NPT ensemble 

with Cα atoms restrained at 2kcal/mol; and 8). Simulation for 1.5 ns under the NPT 

ensemble with no restraints. After the relaxation, three trajectories (1000.0 ns of each) 

were conducted under the NPT ensemble for each of the systems using the default 

protocol. In details, temperature was controlled by using the Nosé-Hoover chain coupling 

scheme 44 with a coupling constant of 1.0 ps. Pressure was controlled using the Martyna-

Tuckerman-Klein chain coupling scheme 44 with coupling constant of 2.0 ps. M-SHAKE 

45 was applied to constrain all bonds connecting hydrogen atoms, enabling a 2.0 fs time 

step in the simulation. The k-space Gaussian split Ewald method 46 was used to treat 

long-range electrostatic interactions under periodic boundary conditions (charge grid 

spacing of ~1.0 Å, and direct sum tolerance of 10-9). The cutoff distance for short-range 

non-bonded interactions was 9 Å, with the long-range Van der Waals interactions based 
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on a uniform density approximation. To reduce the computation, non-bonded forces were 

calculated using an r-RESPA integrator 47 where the short-range forces were updated 

every step and the long-range forces updated every three steps. The trajectories were 

saved at 40.0 ps intervals for analysis. 

To check the convergence of MD simulations, the protein Cα and ligand RMSD 

plots were investigated for each trajectory. The relatively flat plots within last 200 ns 

indicates that the complex systems have reached a steady state.  

Desmond SID tool was used to analyze the behavior and interaction of proteins 

and ligands during the course of simulation including RMSD; protein-ligand contacts 

including H-bonds, hydrophobic, ionic, and water-bridge contacts; secondary structure 

changes and Root Mean Square Fluctuation (RMSF) measures. 

2.2.5 Trajectory Clustering Analysis 

Desmond trajectory clustering tool 48 was used to group complex structures from 

the last 100 ns simulation of each complex system. Backbone RMSD matrix was used as 

structural similarity metric, the hierarchical clustering with average linkage 48 was 

selected as the clustering method. The merging distance cutoff was set to be 2Å.  The 

centroid structure (i.e. the structure having the largest number of neighbors in the 

structural family) was used to represent the structural family. The centroid structures of 

populated structural families (>2% of total structure population) are shown in Figures 

A5-A6 of the supporting material. 
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2.2.6 RMSD of Protein Structure Analysis 

We analyzed the RMSD of the whole protein, transmembrane domain (TMD), 

and TM6 for each trajectory in reference to both the solved inactive crystal structure of 

the DOR (PDB ID: 4N6H) and the solved active crystal structure of the DOR (PDB ID: 

6PT3) to aid in differentiating the protein in the active or inactive state. Alignment of the 

whole protein is based on the backbone residues of the protein excluding backbone 

residues of TM6 (4N6H: 36-248, 288-321, 6PT3: 45-248, 288-321), and alignment of the 

7TMs is based on backbone residues of TM1-5&7 (4N6H: 39-77, 82-111, 117-152, 161-

187, 206-243, 293-321; 6PT3: 45-77, 82-111, 117-152, 161-187, 206-243, 293-321), both 

of which exclude oxygen. RMSD calculations are of the backbone residues of the whole 

protein (4N6H: 36-321, 6PT3: 45-321), 7TMs (4N6H: 39-77, 82-111, 117-152, 161-187, 

206-243, 250-286, 293-321; 6PT3: 45-77, 82-111, 117-152, 161-187, 206-243, 250-286, 

293-321), and TM6 (250-286). Maestro’s Simulation Event Analysis was used to 

calculate the RMSD of the MD simulation. VMD RMSD Calculator49 was used to 

calculate the RMSD of the portions of each representative structure of abundant clusters 

from each trajectory. 

2.2.7 Analysis of Microswitches and Pairwise Residue Distance  

We analyzed three important microswitches50 , i.e., transmission (CWXP), 

tyrosine toggle (NPXXY) and ionic lock (DRY) which are used to differentiate between 

active and inactive states of class A GPCR.  Another lock known as 3-7 lock50 was also 

investigated.  
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Framewise center of mass distances were calculated for 23 pairs of residues. Out 

of 23 pairs of residues, 20 were previously used by Zhou et al.,29 to define the activation 

of mechanism of class A GPCRs. For calculation of atomic and center of mass distances, 

VMD49 was used.   

2.2.8 Normal Mode Analysis  

The individual trajectories from both systems were used in the Normal Mode 

Wizard in VMD51 to generate a principal component analysis of the top 10 normal 

modes. 

2.3 Results 

2.3.1 Sequence-Based Comparison of Human DOR With Other Class A GPCRs 

Comparison of primary sequence of human DOR with 61 class A GPCRs 

revealed that DOR sequence was more conserved at subfamily level than the family level.  

Residues belonging to molecular switches such as CPXY, NPXXY and D/ERY motifs 

showed high level of conservation at both family and subfamily levels. DOR showed 

more than 50% identity with kappa (κ) and mu (µ) opioid receptors. 

2.3.2 Homology Model of Human DOR Without Fusion Protein 

Homology models of the DOR for the generation of ADL5859 and naltrindole 

bound complexes were obtained based on experimentally resolved crystal structure of the 

human DOR with naltrindole (PDB ID: 4N6H) as described in the methods section. In 

the homology model of the DOR, mutation P37S present in the crystal structure of DOR 

was corrected. A cartoon representation is shown in Figure A2 from top and side 
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viewpoints. This homology model is a valid starting structure for molecular docking and 

simulations to inspect the activation mechanism. 

2.3.3 Docked Conformation of ADL5859 Shows Similarity With the Co-Crystallized 

Conformation of DPI-287 and Subtle Difference With Naltrindole 

The docking protocol was validated by docking the co-crystallized naltrindole 

back into the crystal structure of DOR (Figure 2). The result had an almost identical 

overlap which suggests a satisfactory docking method. ADL5859 was docked into the 

inactive receptor, resulting in a similar binding pose as the crystal agonist. Docked 

conformation of ADL5859 showed interaction with salt bridge with D128 and non-polar 

interactions with M132, W274, V281, L300 and Y308. 
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Figure 2 

Comparison Between the Docked Pose With the Crystal Pose of Ligands 

 

Note. A: Comparison between final docked pose of ADL5859 (dark blue) with the crystal 

pose of Naltrindole (red) in the inactive crystal complex structure (cyan) (PDB ID: 

4N6H)  B: Comparison of final docked pose of agonist ADL5859 with the crystal pose of 

DPI-287 (orange) in the active crystal complex structure (tan) (PDB ID: 6PT3). C: 

Comparison of antagonist Naltrindole (light blue) with the crystal pose of Naltrindole 

(red) in the inactive crystal complex structure (cyan) (PDB ID: 4N6H) (C). Intracellular 

and extracellular loops were removed in the top view for clarity. 
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2.3.4 MD Simulations of Human DOR With ADL5859 and Naltrindole Assume Steady 

State 

The complexes from Glide XP docking were used as the input structures to 

perform six independent 1 µs molecular dynamic simulation for ADL5859-DOR 

complex and three 1 µs molecular dynamic simulation for naltrindole-DOR complex.  

The RMSD values of ADL5859 and naltrindole shows the flexibility of the ligand 

interaction with the DOR. The movement of the ligand and the receptor during the 

simulation was analyzed using the RMSD (Figure 3 and Figure A3 and A4).  In the 

RMSD plots for systems, the protein and ligand RMSD are approaching stable values 

within the last 200 ns, indicating that the two complexes had been sufficiently 

equilibrated and allowed for rigorous analysis. The protein RMSD for ADL5859 changes 

~3Å which indicates that the protein is undergoing a large conformational change during 

the simulation (Figure 3). The protein RMSD for naltrindole has a lower RMSD value 

and remains more stable. The ligand RMSD for ADL5859 shows multiple fluctuations 

around 200-400 ns during the simulation (Figure 3). Naltrindole RMSD has a large 

fluctuation around 200 ns and again between 800-950 ns. 
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Figure 3 

Protein (Blue) and Ligand (Red) RMSD 

 

 

Note: Averaged over the six independent trajectories for agonist ADL5859-DOR system 

(A) and three independent trajectories for antagonist Naltrindole-DOR system (B). 

Alignment is based on the Cα atoms of the protein and the RMSD calculation with 

reference to the first frame. Ligand RMSD calculated the ligand heavy atoms after the 

complex is first aligned on the protein backbone of the reference. 
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2.3.5 ADL5859-DOR System Shows Adopting Toward the Crystal Active Conformation 

While Naltrindole-DOR System Maintains Inactive Conformation 

To determine whether our agonist MD complex can adopt toward the active 

conformation and move away from the inactive conformation, the RMSD of the receptor 

against the active and inactive crystal structures was calculated throughout the whole 

trajectory. The RMSD of the whole protein, TMD, and TM6 of the receptor was 

calculated to home in on which portion of the protein has the most conformational 

change, presumably leading to activation. The RMSD of the same regions for the 

antagonist naltrindole system was calculated as well to determine if the MD complex will 

maintain the inactive conformation to serve as a control. For this to be clear, our 

complexes were aligned against the inactive and active crystal structures (4N6H & 6PT3) 

using the backbone residues of the TMD excluding TM6. The reason for this exclusion is 

because TM6 appears to have the most dynamics while the other transmembranes are 

more rigid. Aligning the rigid parts of the receptor will better show the change in 

conformation of the flexible part. Examining the whole protein of the individual agonist 

RMSD plots (Figure A5) revealed that trajectories 1, 3, 5, and 6 behave similarly as they 

clearly show a general trend where they increase in RMSD when against the inactive 

crystal structure and decrease in RMSD when against the active crystal structure. This 

trend becomes more pronounced when looking at the RMSD of the TMD for these 

trajectories and even more so for the RMSD of TM6. Using trajectory 1 as an example, 

the RMSD value of the TMD at the beginning of the trajectory against the inactive crystal 

structure is 1.9Å and ends at 2.4Å; and when against the active crystal structure, the 

RMSD value begins at 3.0Å and ends at 2.4Å. With this same process for TM6 in 

trajectory 1, the RMSD values when it first begins against the inactive crystal structure is 
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3.3Å and ends with an RMSD value of 4.2Å; and when against the active crystal 

structure, it begins with an RMSD value of 5.7Å and ends with an RMSD value of 4.0Å. 

This indicates the major part contributing to the protein folding is the movement in TM6. 

Trajectory 4 of the agonist system shows the same trend within the first 800 ns as 

trajectories 1, 3, 5, and 6 but after 800 ns, it reverses the process with an increasing trend 

against the active crystal structure and decreasing trend against the inactive crystal 

structure. Trajectory 2 of the agonist system differs from the others in which it only 

maintains the same RMSD trend as the other trajectories during the first 200 ns but still 

not as clear. After 200 ns, especially for the RMSD of TM6, it loses the general trend and 

levels out. To clarify what this means, using the RMSD of TM6 in trajectory 2, when 

against the inactive conformation at 200 ns has an RMSD value of 2.3Å and ends with an 

RMSD value of 2.4Å; and when it is against the active conformation at 200 ns has an 

RMSD value of 4.3Å and ends with an RMSD value of 4.5Å. In the case of the RMSD 

for the antagonist naltrindole system (Figure A6), all three trajectories displayed the same 

pattern for each protein region in which there was no change in RMSD when against 

either crystal structures. From these results we can speculate that if the system adopts 

toward the active conformation, it should decrease in RMSD against the active crystal, 

favoring smaller RMSD values, and increase in RMSD against the inactive crystal, 

favoring larger RMSD values. If there is no protein folding within the system, then the 

RMSD should not change which would be validated by flat RMSD plots. Because the 

majority of the agonist trajectories shared a general trend in RMSD and all antagonist 

trajectories shared a general trend in RMSD, the individual trajectories were averaged to 

simplify the results (Figure 4). After averaging the trajectories for both systems, a 



28 
 

noticeable feature in the RMSD became more apparent. For both simulation systems 

(agonist & antagonist), there is a gap between the starting values of the RMSD when 

against the reference structures, with the inactive reference structure at much lower 

values than when against the active crystal structure. Our simulation systems began using 

the inactive conformation which correlates with this feature that our systems are more 

similar to the inactive crystal structure at the beginning of the trajectory, depicted by 

lower RMSD values. This gap gets larger as the protein regions get more specific (whole 

protein → TMD → TM6), indicating the difference between the conformation of the 

reference structures increases as the RMSD gets more specific. The averaged agonist 

trajectories show to have maintained the same clear trend in RMSD as its individual 

trajectories throughout the protein regions, with the gap diminishing between the 

reference structures throughout the trajectory, and the most prominent trend occurring in 

TM6. 
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Figure 4 

Receptor RMSDs of Varied Parts From Agonist and Antagonist Simulation Systems 

Against the Two Solved Crystal Receptor Structures 

 

Note: A: RMSD of protein = backbone residues 36-321 (4N6H), 45-321 (6PT3). B: 

RMSD of 7TMs = backbone residues of TM1-7. C: RMSD of TM6 = backbone residues 

250-286. (PDB ID: 6PT3 Active state DOR in complex w/ agonist DPI-287) (PDB ID: 

4N6H Inactive state DOR in complex w/ antagonist Naltrindole). 
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The RMSD of the averaged agonist system of the whole protein against the active crystal 

begins with an RMSD of 3.5Å and ends with a decreasing RMSD of 3.4Å showing a 

difference of .1Å. When against the inactive crystal, the whole protein begins with an 

RMSD of 2.4Å and ends with an increasing RMSD of 3.4Å, showing a difference of 1Å. 

The TMD displays the trend in RMSD more clearly with the average agonist trajectories 

against the active crystal beginning at an RMSD of 2.9Å and ending with an RMSD of 

2.7Å, showing a decreasing difference of 0.2Å. When against the inactive crystal, the 

TMD begins with an RMSD of 1.6Å and ends with an RMSD of 2.6Å, showing an 

increasing difference of 1Å. The greatest difference in RMSD lies in TM6 beginning with 

an RMSD of 5.6Å against the active crystal and ending with a decreasing RMSD of 4.4Å, 

indicating a 1.2Å difference. When against the inactive crystal structure, TM6 of the 

averaged agonist trajectories begins with an RMSD of 2.6Å and ends with an increasing 

RMSD of 3.6Å, showing a 1Å difference. The trend in RMSD of the whole protein and 

the TMD of the agonist system was not as drastic, indicating TM6 shows the most change 

in conformation. When viewing the RMSD of the averaged antagonist trajectories, they 

have still maintained the trend of no change in RMSD with relatively flat plots. The gap 

between the reference structures is maintained throughout the whole trajectory for each 

protein region, indicating the antagonist system is more similar to the inactive crystal 

structure and less similar to the conformation of the active crystal structure. When against 

the active crystal structure, the averaged antagonist system of the whole protein begins 

with an RMSD of 3.1Å and ends with an RMSD of 3.2Å, showing a .1Å difference. 

When against the inactive crystal structure, the RMSD of the whole protein begins at 

3.3Å and ends with an RMSD of 3.3Å, indicating no change from the inactive reference 
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structure. The RMSD of the TMD when against the active crystal structure begins at 2.9Å 

and ends with an RMSD of 3.0Å, showing an increase of .1Å. When against the inactive 

crystal structure, the TMD starts with an RMSD of 2.4Å and ends with an RMSD of 

2.4Å, again showing the antagonist system has not folded away from the inactive 

conformation. The RMSD of TM6 of the averaged antagonist system when against the 

active crystal structure begins at 5.2Å and ends at an RMSD of 5.3Å, showing a 0.1Å 

increase. When against the inactive crystal structure, TM6 begins with an RMSD of 2.4Å 

and ends with an RMSD of 2.5Å, showing another 0.1Å increase.  This data alludes to 

our agonist system folding towards the active conformation as the gap between the 

reference structures dies out with a decreasing trend against the active crystal structure 

and an increasing trend against the inactive crystal structure. Lower RMSD values 

against the active crystal structure indicate greater similarity with the active conformation 

and in this same respect, higher values against the inactive crystal structure indicate the 

difference from the inactive conformation. This trend was the most prominent for the 

RMSD of TM6 of the agonist system, which movement of is associated with activation in 

GPCRs. In the case of the antagonist system, the RMSD of the different protein regions 

showed either a change of 0.1Å or no change at all while also maintaining the gap 

between reference structures, which would imply that the system has not folded away 

from the inactive conformation. From the backbone RMSD plots, it is clear the activation 

related conformational changes are unique to the agonist-ADL5859 bound DOR. 

2.3.6 ADL5859-DOR System Has Multiple Clusters Folding Toward the Active State  

The clustering analysis was done after the MD simulation to identify the 

populated conformation for each trajectory. Based on the clustering algorithm, each 
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cluster conformation contains a percentage of abundance in which a cutoff of 1% was 

used. The clustering results are clearly tabulated in Table A1. There was a total of 15 

abundant clusters from the six agonist trajectories with each trajectory containing at least 

two abundant conformations, with the exception of trajectory 2. For the three antagonist 

trajectories, there were three abundant clusters, one for each independent trajectory. The 

clustering result for both systems corresponds with the thought that the agonist system is 

believed to be folding towards the active state which would produce more than one 

conformation; and in this same regard, the antagonist system should not have any folding, 

which would result in one conformation.  

To acquire a deeper insight into the conformation of the MD structures, the 

RMSD of the whole protein, TMD, and TM6 of each abundant cluster against the 

inactive and active crystal structures was calculated as described in the Methods (Table 

A1 and Figure A7-A8). To consider an abundant cluster as folded toward the active state, 

when comparing the RMSD values of the protein regions against the different crystal 

structures, especially in the case of TM6, they should differ roughly by at least 1 Å, with 

lower values when against the active crystal structure, indicating greater similarity. The 

RMSD values of the abundant clusters from the antagonist system against both crystal 

structures were also taken into consideration when determining the criteria for folding 

toward the active state as this system should remain in the inactive state. Each cluster of 

the antagonist system had an RMSD ranging from 3.1-3.4Å for the whole protein when 

against the active crystal structure and 3.1-3.3Å when against the inactive crystal 

structure. When looking at the TMD, the antagonist abundant clusters had an RMSD 

ranging from 2.8-3.0Å when against the active crystal structure and 2.7-2.8Å when 
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against the inactive crystal structure. The last protein region calculated for the RMSD of 

the naltrindole complexes, TM6, had RMSD values ranging from 4.9-5.5Å against the 

active crystal structure and 1.8-2.9Å against the inactive crystal structure. After 

calculating the RMSD of each of the agonist clusters against the crystal structures, there 

were three trajectories (trj1, trj4, trj6) and four clusters (trj1 cluster 1&3, trj4 cluster 5, 

trj6 cluster 1) that can be considered in the active state. The most abundant cluster 

(cluster 1) from trajectory 1 in the agonist system is the most favorable from this system 

and is used as the representative structure (Figure 5). The interactions of agonist 

ADL5859 with the DOR from the first trajectory were examined, along with the crystal 

antagonist naltrindole in the crystal inactive state DOR, and the crystal agonist DPI-287 

in the crystal active state DOR. With this, ADL5859 directly interacted with polar 

histidine 278 of the DOR during the simulation, which is consistent with the interactions 

of crystal agonist DPI-287 and the DOR. Both agonists also have exposure to solvent on 

the same CH3 of their structures. The clusters from the naltrindole system show good 

agreement with the inactive crystal structure and were validated by the RMSD values 

with the abundant cluster from the first trajectory used as the representative structure 

(Table A1, Figure A7 and Figure A8). Naltrindole directly interacted with negatively 

charged aspartic acid 128 of the DOR during the simulation which is consistent with the 

interactions of crystal antagonist naltrindole and the DOR. This indicates the 

conformational changes occurring to the receptor are unique to the agonist ADL5859-

DOR system. 
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Figure 5 

Most Abundant Agonist Cluster of the First Trajectory Compared to Solved Crystal 

Structures and Structural RMSD Calculations 

  

Note. MD DOR-agonist-ADL5859 structure (purple&blue) of the most abundant cluster 

(52%) of the first trajectory, its comparison to the solved crystal structures (Inactive PDB 

ID: 4N6H, cyan&red) (Active PDB ID: 6PT3, tan&yellow) in the side, top, and bottom 

views respectively. RMSD of the protein, 7TMs, and TM6 of the MD structure against 

crystal structures is listed. Alignment is using backbone residues of TM1-5&7, excluding 

oxygen. Ligand view of MD-DOR-ADL5859, crystal antagonist Naltrindole in inactive 

DOR, and crystal agonist DPI-287 in active DOR. 
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While the RMSD of the superimposed agonist structures indicated four clusters folding 

toward the active state, there were other abundant clusters from the agonist-ADL5859 

system that are thought to contain intermediate conformations of the protein folding 

toward the active state (Figure A7). These other noteworthy structures are cluster 1 and 

cluster 2 from trajectory 3 with a percentage of abundance of 90 and 11 respectively; 

trajectory 4 cluster 1, cluster 3, and cluster 4 with percentages of abundance of 43, 20, 

and 5 respectively; and cluster 1 from trajectory 5 with a percentage of abundance of 56. 

Even though these structures did not have as favorable of RMSD values as the others that 

were identified, they are speculated to be intermediate conformations in the activation-

related folding process, as they also still display agreement with the active crystal 

structure and contain great differences from the inactive crystal structure. The differences 

from the inactive crystal structure mentioned mainly lie in TM5, ICL3, and TM6 while 

similarities to the active crystal structure mainly lie in TM1, TM5, and TM6. These 

clusters, along with the ones identified from the RMSD as folding toward the active state, 

are consistent with the results from the backbone RMSD plots (Figure A5-A6), in which 

the trajectories these cluster conformations were generated from (trj1, trj3, trj4, trj5, trj6) 

displayed the general trend implying protein folding toward the active conformation 

throughout the simulation. This adds further support of the agonist-ADL5859 system 

folding toward the active state. 

2.3.7 Secondary Structure Analysis Shows Maintained Helices but With Subtle 

Differences Between the Two Complexes 

Secondary structure elements (SSE) plots illustrate where the major differences 

occur in the transmembrane sections for comparisons to be made between the agonist and 
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antagonist (Figure A9). Some of the noteworthy features include: A) Additional kink in 

ADL5859 in TM6. B) Additional kinks in naltrindole in TM2 and TM7. 

2.3.8 Key Interactions of ADL5859 and Naltrindole With Human DOR 

The Desmond Simulation Interaction Diagram was used, as described in the 

methods section, to analyze and compare the residues involved in both naltrindole and 

ADL5859 binding to the receptor (Figure 6). The key interacting residues that interacted 

with each ligand of the combined trajectories for more than 5% of the simulation are 

tabulated for clarity in Table S4. Key interacting residues of the individual trajectories for 

the agonist and antagonist systems that lasted more than 20% of the MD simulation can 

be found in Figure A10 and Figure A11, respectively. Interacting residues during the 

simulation in histogram format of the individual agonist and antagonist trajectories can be 

found in Figure A12 and Figure A13, respectively. Using Figure 6 it can be understood 

that ADL5859 interacted with a greater number of residues from the receptor with a total 

of 47 interacting residues that mainly occur in TM2, TM3, TM5, TM6, and TM7. 

Naltrindole had a total of 30 interacting residues in which 26 of them were conserved in 

ADL5859. In TM6, there were 6 conserved interacting residues between the two systems. 

Naltrindole, however, interacted with residue I282 which differed from ADL5859 that 

interacted with residues F270 and W285. The major differences lie in TM7 where 

ADL5859 had 10 interacting residues: V297; L300; H301; C303; I304; G307; Y308; 

N310; S311; N314 whereas naltrindole had only 6: L300; I304; G307; Y308; N310; and 

S311. The 2D interaction diagram indicates that π-π stacking is crucial for the binding of 

both ligands (Figure 6). 
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Figure 6 

Protein-Ligand 2D Interaction Diagram 

 

Note: Interactions lasting more than 20% of the molecular dynamics simulation from the 

combined agonist (left) and antagonist (right) trajectories are shown in the 2D interaction 

diagrams. 

 

 

2.3.9 DOR Shows Flexibility When Bound to ADL5859 Than Naltrindole 

The receptor RMSF (Table 1, Figure 7 and Figure A14-A15) shows higher RMSF 

values in areas of high flexibility such as the intra- and extracellular loops, as well as the 

N- and C- terminals. In contrast, the helices, or rigid areas of the receptor, show lower 

RMSF values. When the DOR was bound to ADL5859, the receptor RMSF values were 

higher than when bound to naltrindole. ADL5859 has higher ligand RMSF values in 

comparison to naltrindole (Figure 7). In Figure 7, naltrindole has lower RMSF values at 

almost every atom. This is consistent with what was expected from the structures of the 

 

ADL5859 Naltrindole 
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two ligands – for naltrindole contains one more six membered ring than ADL5859, as 

well as two five membered rings and one three membered ring, making naltrindole a 

more rigid ligand compared to ADL5859. These differences indicate that the DOR 

exhibited greater flexibility when interacting with an agonist (ADL5859) than with an 

antagonist (naltrindole). This is likely because the receptor was undergoing activation 

when in complex with ADL5859. Receptor RMSF data of the individual trajectories can 

be found in Figure A14-A15 of the appendix and individual ligand RMSF data can be 

found in Figure A16-A17 of the appendix. 

 

 

Table 1  

The Combined Mean RMSF Values of the Ligand Bound Complex From N-Terminal to 

C-Terminal 

 

 

 

 

 

 

  

RMSF (Å) N-term ICL ECL Helices Ligand 

ADL5859 8.1 2.2 2.0 1.27 0.5 

Naltrindole 2.5 1.9 1.5 0.9 0.3 
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Figure 7 

RMSF Comparison 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The root mean square fluctuation of the Cα atom for residues in the delta opioid 

receptor in complex with agonist ADL5859 (trj1) (blue) and antagonist Naltrindole (trj1) 

(red) is shown with the DOR architecture above for reference (top). Ligand RMSF values 

for ADL5859 (blue) and Naltrindole (red) (bottom). The root mean square fluctuation of 

the atoms in both ligands as indicated in their numbering. 
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2.3.10 Distance of ADL5859 With Side Chain of D95 Decreases While Naltrindole 

Shows No Change 

Residue D952.50 plays an important role in DOR activation signaling. Mutagenesis 

studies have shown that G protein signaling is affected in GPCRs when D2.50 is replaced 

with a neutral amino acid.52  Measuring the distance of the positively charged nitrogen 

atom of agonist ADL5859 and antagonist naltrindole with D95 of the protein shows a 

clear difference between the two systems (Figure 8). In the agonist ADL5859 system, the 

distance decreases about 4Å inferring a salt bridge formed with the ligand. The antagonist 

system shows no change in distance, further supporting the DOR in complex with the 

antagonist naltrindole maintained the inactive conformation. 

 

Figure 8  

Average Distance Timeline Between Positively Charged Nitrogen Atom of Ligand and 

Side Chain of D95 

  

Note: For ADL5959-DOR system, average values of traj1 and traj6 and for naltrindole-

DOR system average values of all three trajectories over 1µs are shown. 
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2.3.11 Role of Molecular Switches in the Activation of DOR by ADL5859  

Class A GPCRs share a set of conserved motifs which are known as molecular 

switches. Activation of the class A GPCR can be characterized by the conformational 

changes in one or more molecular switches. Molecular switches were evaluated 

throughout the entire trajectories of ADL5859-DOR and naltrindole-DOR systems. For 

the DOR, three such motifs are considered to be critical in regulating its activity: 

Transmission Switch (CWXP) in TM6, Ionic Lock Switch (DRY) in TM3 and TM6, and 

Tyrosine-Toggle Switch (NPXXY, X represents any amino acid) in TM7. Each abundant 

cluster from the individual trajectories of both simulation systems was compared to the 

solved crystal structure of the inactive DOR in complex with antagonist naltrindole (PDB 

ID: 4N6H) to measure the switch distances. We have determined five abundant clusters 

in the agonist system (trj1 cluster 1&3, trj3 cluster 2, trj4 cluster 5, trj6 cluster 1) to have 

broken molecular switches, inferring activation, based on the transmission switch and 

ionic lock switch as there was no significant change in the tyrosine toggle switch for any 

of the clusters (Figure 9, Figure A18-A25). Trajectory 1 cluster 1 is the most favorable 

from the agonist system as is used as the representative structure (Figure 9). The key 

distances characterizing the switches for all trajectories of ADL5859 and naltrindole are 

summarized in Table A2.  
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Figure 9  

Molecular Switches 

 

Note: The crystal structure of Naltrindole and MD ADL5859 (trj 1 cluster 1) ligands in 

complex with DOR (crystal Naltrindole/DOR: red/cyan; ADL5859/DOR: blue/purple). 

B. Transmission Switch (CWXP) C. Tyrosine Toggle Switch (NPXXY) D. Ionic Lock 

Switch (DRY). B-D: crystal Naltrindole/DOR: red/cyan; ADL5859/DOR: blue/purple. 

 

 

The transmission switch is the most observable switch out of the three that when 

in the active state, a large outward “swing” occurs in TM6. Our molecular switch analysis 

shows this same “swing” in our agonist ADL5859 system ranging from 9.2Å-13.9Å. The 

naltrindole system displays a motion of 3.8Å and 3.0Å in TM6 indicating it lacks any 

significant outward motion of TM6. One of the aromatic rings of ADL5859 showed 
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interaction with the side chain of W274, a highly conserved residue in the transmission 

switch. This is consistent with the active crystal structures of the DOR exhibiting slight 

rotameric change at the level of W274. Naltrindole also interacts with W274 but 

interaction is weak compared to ADL5859. The salt bridge between D3.49 and R3.50 

residues in the DRY motif is already disrupted in the inactive DOR with distances of 

>3.5Å and is missing an acidic residue in position 6.30, which is only conserved in about 

30% of GPCRs. To compensate for this, we measured the hydrogen bonding between 

residues R1463.50 and T2606.34, for this interaction is thought to stabilize receptors in the 

inactive state and may be important for regulating receptor signaling.53 When measuring 

the distance of the agonist-ADL5859 system, the hydrogen bonding between residues 

R1463.50 and T2606.34 was disrupted in trj1 cluster 1, trj3 cluster 2, trj4 cluster 5, and trj6 

cluster 1 with distances ranging from 4.2Å-9.3Å, implying the inactive state of the 

receptor was destabilized. The distances for the ionic lock switch in the antagonist-

naltrindole system ranged from 3.7-4.4Å, indicating it was only broken in one trajectory 

(trj 2). 

2.3.12 Center of Mass Distances Identify Activation Related Changes  

The conserved motifs in molecular switches of Class A GPCRs were used as the 

motivation to search for other potential motifs in examining the conformational changes 

throughout the simulation systems (Table 2).  
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Table 2  

Residue Pairs for Center of Mass Distance Measurement 

ID Residue pair Location Nature of interaction Reference 
1 S249-S249 TM6 Self CA-CA distance Present study 
2 W274-W274 TM6 Self CA-CA distance Present study 
3 Y318-Y318 TM7 Self CA-CA distance Present study 
4 R146-T260 TM3-TM6 H-bond 1 
5 I226

5.51
-F270

6.44 TM5-TM6 Hydrophobic/ van der Waals contact   
  
  
  
  
  
2 

6 I136
3.40

-W274
6.48 TM3-TM6 Hydrophobic/ van der Waals contact 

7 T230
5.55

-V267
6.41 TM5-TM6 Van der Waals contact 

8 L139
3.47

-N314
7.49 TM3-TM7 Van der Waals contact 

9 Y233
5.58

-V266
6.40 TM5-TM6 Hydrophobic/ van der Waals contact 

10 L139
3.43

-Y318
7.53 TM3-TM7 Hydrophobic/ van der Waals contact 

11 M142
3.46

-Y318
7.53 TM3-TM7 Hydrophobic/ van der Waals contact 

12 M142
3.46

-R146
3.50 TM3-TM3 Van der Waals contact 

13 R146
3.50

-Y318
7.53 TM3-TM7 H-bond/Cation pi 

14 V70
1.53

-A319
7.54 TM1-TM7 Hydrophobic/ van der Waals contact 

15 L237
5.62

-V263
6.36 TM5-TM6 Hydrophobic/ van der Waals contact 

16 L139
3.43

-V267
6.41 TM3-TM6 Hydrophobic/ van der Waals contact 

17 V266
6.40

-N314
7.49 TM6-TM7 Hydrophobic/ van der Waals contact 

18 M142
3.46

-V263
6.37 TM3-TM6 Hydrophobic/Van der Waals contact 

19 R146
3.50

-V263
6.37 TM3-TM6 Hydrophobic/ van der Waals contact 

20 D145
3.49

-R146
3.50 TM3-TM3 Van der Waals contact/Salt bridge 

21 V70
1.53

-Y318
7.53 TM1-TM7 Hydrophobic/ van der Waals contact 

22 M236
5.61

-A319
7.54 TM5-TM7 Hydrophobic/ van der Waals contact 

23 R146
3.50

-A149
3.53 TM3-TM3 Van der Waals contact 

24 V265
6.39

-L321
7.56 TM6-TM3 Van der Waals contact Present study 

25 R258
6.32

-E323
8.48 TM6-TM8 Salt bridge Present study 

26 L139
3.43

-V266
6.40 TM3-TM6 Van der Waals contact Present study 

27 I88
2.43

-M262
6.36 TM2-TM6 Hydrophobic/ van der Waals contact Present study 

1. Claff, T.; Yu, J.; Blais, V.; Patel, N.; Martin, C.; Wu, L.; Han, G. W.; Holleran, B. J.; Van der Poorten, O.; 

White, K. L.; Hanson, M. A.; Sarret, P.; Gendron, L.; Cherezov, V.; Katritch, V.; Ballet, S.; Liu, Z.-J.; Müller, C. E.; 

Stevens, R. C., Elucidating the active δ-opioid receptor crystal structure with peptide and small-molecule agonists. Sci 

Adv 2019, 5, eaax9115-eaax9115. 

2. Zhou, Q.; Yang, D.; Wu, M.; Guo, Y.; Guo, W.; Zhong, L.; Cai, X.; Dai, A.; Jang, W.; Shakhnovich, E. I.; 

Liu, Z.-J.; Stevens, R. C.; Lambert, N. A.; Babu, M. M.; Wang, M.-W.; Zhao, S., Common activation mechanism of 

class A GPCRs. eLife 2019, 8, e50279. 
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From the literature, 18 pair-wise residues were identified that were analyzed in 

this study, including several hydrophobic and van der Waals contacts, as well as 

hydrogen bonding and salt bridges.29 In addition, four atomic mass distances were 

measured from the molecular switch motifs: S249-S249 in TM6, W274-W274 in TM6, 

Y318-Y318 in TM7, R146-T260 hydrogen bonding between TM3-TM6.28 When a 

residue is a part of TM6, the distance between that and the other transmembrane helices, 

particularly TM3 and TM7, should increase, breaking any interactions. Based on this, 

four pair-wise residues involving TM6 that are also conserved in the subfamily (opioid 

receptors) level were additionally measured: V265-L321 Van der Waals contact, R258-

E323 salt bridge, L139-V266 Van der Waals contact, I88-M262 hydrophobic and Van 

der Waals contact. In total, we analyzed 27 distances, measuring the center of mass 

between residues, to investigate the conformational changes over the whole trajectory for 

the average of both simulation systems (Table 3). Through this, seven distance profiles 

were identified that are associated with activation. A significant increase in the distance 

of the center of mass is observed in the agonist system when one of the residues in a pair 

is a part of TM6. The timelines for the distances involving residues in TM6 for both 

systems are shown in Figure A26. In the agonist-ADL5859 system, trajectory 1 and 6 

displayed similar distance profiles with a general increasing trend, and because of this, 

were averaged together to simplify the distance timeline. The three antagonist-naltrindole 

trajectories displayed similar distance profiles as well with a general slightly decreasing 

trend, and therefore, were averaged together to simplify the distance timeline. The 

greatest difference between the two simulation systems can be observed between residues 

I882.43 and M2626.36 located at the intracellular portions of TM2 and TM6. Over the 
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course of the simulation for the agonist system, this residue shows a large increase 

throughout the ADL5859 timeline with a change of 4.1Å. The timeline of the naltrindole 

system shows this residue to be gradually decreasing throughout the simulation with a 

change of 0.2Å. This is consistent with the previously mentioned thought that the 

distance between TM6 and other transmembrane helices should increase. 

 

Table 3 

Average Atomic and Center of Mass Distances 
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2.3.13 Normal Mode Analysis Shows the Overall Motion of the Receptor 

The normal mode analysis (Figure S27-S28) shows the top 10 low vibrational 

modes identified from the principal component analysis, however modes 1-3 show the 

most difference in motion. The overall motion of the receptor is significant, however, the 

motion of TM6 is presumed to be a hallmark in determining the state of the receptor (i.e. 

active, inactive) and therefore can be focused in on for clarity. Using our representative 

structures from our two systems, our analysis identified the ADL5859 system having a 

higher degree of fluctuation and a more distinct motion when compared to naltrindole. In 

the top mode of the ADL5859 system, the ends of TM5, TM6, and ICL3 appear to be 

moving outward, deeming the bottom of the receptor to be open, or otherwise, in the 

active state. The motion in the naltrindole system of the same region can be observed as 

moving back towards TM3 and TM4, still in a closed position. This analysis was also 

performed on trajectory six of the ADL5859 system and the remaining two trajectories of 

the naltrindole system. Trajectory six of the ADL5859 system had maintained similar 

modes of motion from the first agonist trajectory-. The two trajectories from the 

naltrindole system also maintained similar modes of motion from the first antagonist 

trajectory. 

2.4 Discussion 

 Computational studies have been utilized in studying the DOR even before crystal 

structures became available, however, to our best knowledge, no known studies have 

applied the use of MD simulations to study its activation mechanism started from an 

inactive conformation. Molecular dynamic simulations is extremely powerful tool to 
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probe deeper into the interactions and dynamics occurring in a protein system. Starting 

from the inactive state of the DOR and sampling its active conformation in the presence 

of a small molecule agonist offers an opportunity to explore the structural basis of DOR 

activation. Using agonist ADL5859 adds to the novelty due to its lack of a crystal 

structure and unknown interactions with the DOR. ADL5859 shares a pharmacophore 

with the crystal agonist DPI-287 (Figure 1), implying their interactions with the DOR 

will be similar, validating the use of this small molecule ligand for this study. The crystal 

antagonist naltrindole was used as our second simulation system in order to determine if 

the inactive conformation of the DOR when bound to an antagonist can be maintained in 

MD simulations to serve as a negative control. Here we present the first study probing the 

active conformation of the DOR started from an inactive conformation using MD 

simulations. 

After docking the ligands into the homology model, both agonist ADL5859 and 

antagonist naltrindole resulted in docking conformations consistent with the crystal 

ligand poses (Figure 2).28, 54 This validated our initial poses for the MD simulation of 

both ligands. Following the simulation of both systems, the calculation of RMSD 

throughout the simulation of different protein regions against both crystal structures 

(4N6H, 6PT3) offered a deeper insight into the structural change response of the DOR 

when bound to an agonist or antagonist (Figure 4). The gap between the crystal reference 

structures in the RMSD plots indicated both simulation systems were more similar to the 

inactive conformation at the start of the simulation, which is consistent with our starting 

structures that were generated based on the inactive crystal structure (4N6H). Decreasing 

in RMSD against the active crystal structure while increasing in RMSD against the 
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inactive crystal structure would suggest that the system is adopting toward the active 

conformation. Encouragingly, the agonist-ADL5859 system followed this RMSD trend 

with the most apparent in TM6. This correlates with what is known about GPCRs, that 

TM6 outward opening is a hallmark of the activation in class A GPCRs.50 The RMSDs in 

the antagonist system only showed no change. This analysis supports our agonist system 

folding toward the active conformation and our antagonist system maintaining the 

inactive conformation. 

The trajectory clustering analysis identified the populated conformations of the 

individual trajectories throughout the simulation that helped to gain further insight into 

the DOR complexes (Table A1, Figure 5, Figure A7-A8). Expecting the agonist bound 

DOR to undergo conformation change, it can be understood that the majority of the 

individual agonist trajectories contained more than one populated cluster conformation. 

In contrast, the individual antagonist trajectories each generated only one populated 

cluster conformation, as they were not expected to have changed from their initial 

inactive conformation.  

After calculating the RMSD of different portions of the receptor when 

superimposed with the crystal structures, we were able to identify three independent 

activating events of the ADL5859 system that supports the DOR folding toward the 

active conformation, with the most notable hallmark as the RMSD of TM6. The first 

event occurred in the first trajectory where cluster 1 (52%) and cluster 3 (17%) were 

structurally similar to the active crystal complex with favorable RMSD values (Cluster 1 

RMSD TM6 Inactive: 4.1Å Active: 3.4Å ˖ Cluster 3 RMSD TM6 Inactive: 3.3Å Active: 

2.9Å). The second event happened in the fourth trajectory where cluster 5 (1%) showed 
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agreement with the active crystal complex with favorable RMSD values (Cluster 5 

RMSD TM6 Inactive: 5.8Å Active: 2.8Å). The third event was in the sixth trajectory’s 

most abundant cluster (76%) that was structurally similar to the active crystal structure 

with favorable RMSD values (Cluster 1 RMSD TM6 Inactive: 3.9Å Active: 3.2Å). The 

percentage of abundance of each event indicates >70% folding into the active state with 

the 1% of abundance from trajectory 4 cluster 5 as a partial folding event. The agonist 

bound clusters shared similar interacting protein-ligand residues as the active crystal 

structure as well. In the three individual naltrindole trajectories, each abundant cluster 

showed structural agreement with the inactive crystal structure (4N6H) with lower 

RMSD values against 4N6H and higher values against 6PT3, further inferring its 

similarity to the inactive conformation. This is further validating that the activation 

related changes are unique to our agonist bound complex.  

Superimposing the abundant structures to the crystal structures and calculating the 

RMSD of different protein regions also opened speculation to other populated clusters 

from the individual agonist trajectories as intermediate conformations in the protein 

folding toward the active state. Trajectory 3 clusters 1 (90%) and 2 (11%); trajectory 4 

clusters 1 (43%), 3 (20%), and 4 (5%); and trajectory 5 cluster 1 (56%) show some to 

great agreement to the active crystal structure, especially in regions TM5-6, while 

showing disagreement to the inactive crystal structure in these same regions. These 

speculated intermediate active state folding structures add further support that our 

agonist-ADL5859 system has undergone protein folding toward the active state as the 

trajectories from which the structures came (trj3, trj4, trj5), in addition to the respective 

trajectories of the identified active folding structures from the clustering RMSD 
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calculation (trj1, trj4, trj6), are consistent with the individual agonist trajectories 

determined as adopting toward the active conformation from the RMSD time series of the 

whole simulation (trj1, trj3, trj4, trj5, trj6) (Figure A5-A6). This analysis has not only 

offered support to the previous RMSD analysis, but has also added more insight into the 

speculated activation process towards the activated DOR. 

Comparing the two representative structures from the MD complexes revealed a 

clear conformational difference in the receptors in the transmembranes as well as the 

intra- and extracellular loops and the ligand binding pose. These differences in the protein 

structures are consistent with the differences between the active and inactive crystal 

structures. The binding pose of ADL5859 is lower than that of naltrindole, which may be 

a result of the great conformational change occurring that could be pulling the ligand 

deeper into the binding pocket. The MD simulations were successful in producing 

different conformations in the DOR when bound to an agonist and antagonist. Our 

simulation data supports the conformation selection mechanism for DOR activation.  

The RMSF of the receptor (Figure 7 and Figure A14-A15) when bound to 

agonist-ADL5859 indicated the complex had greater flexibility in the loops and terminals 

when compared to the antagonist-naltrindole system which is consistent with not only the 

pharmacological actions of the two ligands (agonist/antagonist), but also our hypothesis 

that our agonist system adopted toward the active conformation. The ligand RMSF also 

supports our hypothesis due to ADL5859 itself showing greater flexibility than 

naltrindole. This is consistent with what is known, that an antagonist (naltrindole) 

typically binds tighter to the receptor than an agonist (ADL5859). Naltrindole is also a 

more rigid ligand compared to ADL5859, with more aromatic rings and less rotatable 
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bonds, which tells enough in itself about the predicted flexibility of the ligands that was 

produced in the ligand RMSF. The RMSF analysis is another indication supporting that 

our agonist system underwent a conformational change. 

Residue D952.50 is believed to be an important residue in the agonist-induced 

cyclic adenosine monophosphate (cAMP) response that occurs in activated GPCRs.52 In 

timeline plots, we see that in traj1 and traj6 decrease in the distance between ADL5859 

and D95 correlates with DOR activation (Figure 8). In contrast, the distance between D95 

and naltrindole has no change throughout the simulation, inferring that the helices have 

not shifted, remaining in the inactive state. 

Molecular switches are hallmarks in the classification of the activation state of 

class A GPCRs.50 Previous studies have identified the lack of a salt bridge in inactive 

opioid receptors which have a hydrophobic Leu6.30 in place of the usual acidic Glu6.30.54 It 

was later realized hydrogen bonding between R1463.50 and T2606.34 residues may 

stabilize the receptor in the inactive state similar to the salt bridge in the Ionic Lock 

Switch.53 This interaction was analyzed as the Ionic Lock Switch along with the usual 

Transmission and Tyrosine Toggle Switches. This hydrogen bonding was broken in 

multiple trajectories with a distances of 4.2-9.3Å. A very recent study by Claff and 

coworkers reported on the distance of the transmission switch on a mutant active state 

DOR with a large outward movement on helix 6 with a distance of approximately 9.4 to 

11.2Å28, which is consistent with our data that showed distances of 9.2-13.9Å. The 

sidechain of W274 of the transmission switch also showed slight rotameric change, 

indicating the receptor is in the active state. Any slight change in the orientation of side 

chain of W274 can have direct effect on the residues of TM6 and other regions of DOR. 
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This same study as previously mentioned also reported an inward shift of helix 7 at a 

distance of 3.9Å, however, they speculate this greater shift may be attributed to the three 

mutations they made in the sodium-binding pocket (N902.45S, D952.50G, N1313.35S).28 In 

contrast, this shift was not observed in the trajectories of the agonist-ADL5859 bound 

DOR. Tyrosine-toggle switch did not show significant change in ADL5859-DOR 

complex.  As for the Naltrindole complex, the three molecular switches remain intact, 

which obstruct the outward movement of TM6 thus, blocking G protein signaling. 

In addition, we have used multiple atomic and center of mass distances to 

characterize the conformation differences between the active and inactive states of the 

DOR. These differences could contribute the activation.  Indeed, the seven residue pairs 

were identified that are associated with activation. 

The normal mode analysis (Figure A27-A28) shows the top 10 low vibrational 

modes identified from the principal component analysis. Previous knowledge tells us that 

the motion and conformation of transmembrane six is relative to the state of the receptor 

(i.e. active, inactive). While the overall motion is significant, this area can be focused in 

on for clarity. We conducted this analysis on trajectory 1 and 6 from our agonist system 

and all three antagonist trajectories. Our analysis identified the ADL5859 system having 

a higher degree of fluctuation and a more distinct motion when compared to naltrindole. 

Altogether, the two agonist trajectories had seven conserved vibrational modes in which 

they had similar motion (mode 1, 2, 3, 4, 7, 8, 9). The conserved vibrational modes where 

motion was favored between the two trajectories were modes 1, 2, 4, and 8 where the 

ends of TM5 and TM6 swing outward, opening the intracellular portion of the receptor 

for G protein signaling that is crucial in GPCR activation. The motion of the naltrindole 
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system in the majority of the modes for all three trajectories of the same region can be 

observed as moving back towards TM3 and TM4 or downward, still in a closed inactive 

position. This further provided another level of insight into the essential dynamics of 

these complexes in the lowest vibrational states. We can conclude from the normal mode 

analysis that the overall dynamics of the two complexes are distinct from one another, 

which further supports that the motion differences of these complexes are due to their 

dynamic interactions as well as their pharmacological actions. Our analyses including 

RMSD, RMSF, molecular switches, measuring the center of mass, and normal mode 

analysis help to explain the activity differences on the receptor that cannot be explained 

from the crystal antagonist alone. 

The proposed activation pathway of the receptor started from the allosteric signal 

from the agonist ligand to the intracellular domain that interact with the effector G-

protein has been summarized in Figure 10. When the agonist is bound to the DOR, it 

forms strong interactions with W274 and D95 in layer 1-2, further leads to break 

important interaction pairs from layer2 by layer4 such as V267-L139, V263-M142 and 

others, and finally causing an outward shift of the intracellular domain of TM6. This is 

consistent with what is known about class A GPCRs that the intracellular portion of this 

helices should move outward when activating to allow for G-protein signaling.50 In this 

same respect, TM3 shifts away from TM6, breaking any hydrogen bonding that stabilizes 

the inactive conformation. While this occurs, TM7 also moves away from both TM3 and 

TM6. During all of this movement, the extracellular portion of TM1 folds away from the 

ligand and the binding pocket while TM2 shifts closer to the ligand. The key residues in 
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the activation pathway identified from this study provides a short list for future 

experimental mutagenesis study. 

 

Figure 10 

DOR Activation Pathway 

 

Note. Binding of agonist to DOR led to flow of allosteric signal from layer 1 (containing 

agonist binding residues) to different layers of human DOR. 
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Chapter 3 

To Probe Activation Mechanism of Agonist DPI-287 to Delta Opioid Receptor and 

Novel Agonists to Using Ensemble-Based Virtual Screening With Molecular 

Dynamics Simulations 

3.1 Introduction 

3.1.1 The Opioid Epidemic  

While pharmaceuticals have made great strides over the years in many areas, the 

field of pain management is still lacking. There are great medications that target pain and 

are effective, however, there has been a rise in the use of opioids over the years that has 

led to the opioid epidemic that Northern America and other parts of the world are in. The 

use of opioids (legally and illegally) has risen between 10-14 times in the last 20 years, 

with more than 42,000 deaths in 2016 in the USA occurring from opioid overdoses 

alone.55, 56 Most prescribed opioids target the Mu Opioid receptor (MOR) which are 

located in the reward areas of the brain.55, 57, 58 When opioid agonists bind to and activate 

these receptors, it causes euphoria which can lead to addiction after repeated use. When 

people have long-term use of opioids, they can build up a tolerance, meaning they need 

higher doses to feel the same effect, and/or physical dependence, inferring the need for 

opioid use to continue normalcy. If the user is leading down this track, it can cause 

decreased gastrointestinal motility, anorexia, urinary retention, and finally, respiratory 

depression leading to an opioid overdose. When a user stops taking opioids after 

addiction and physical dependence has taken place, it leads to withdrawal symptoms such 

as bone pain with muscle aches, changes in body temperature, hyperalgesia, insomnia, 
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stomach cramps, nausea, and many dysphoric effects.56 Physical dependency along with 

the known unattractive symptoms of withdrawal are major reasons people do not stop 

taking opioids. The need for better pain management without addictive properties is 

pressing. 

3.1.2 DOR Target Potential 

The DOR has shown to have potential in not only pain management, but also in 

psychiatric and neurological disorders without the potential for dependence or respiratory 

depression (Table 4).59-66 This makes the DOR an attractive target to further study to 

potentially help alleviate the opioid epidemic in the world. 

 

Table 4 

Comparison Between MOR and DOR 

Receptor 

Type 

Therapeutic 

Function & Side 

Effects 

Model Type Reference 

Mu Pain relief 

Euphoric effect – 

Addiction, physical 

dependence, 

respiratory depression 

Humans (Shipton, et al. 2018), 

(Pergolizzi Jr, et al. 2020), 

(Volkow, et al. 2017), 

(Centers for Disease, et al. 

2016) 

Delta Chronic pain relief Spinal administration rat, 

Gene knockout mice 

(Holdridge, et al. 2007) 

(Nadal, et al. 2006) 

(Gavériaux-Ruff, et al. 

2008) 

anti-depression Gene knockout mice, 

Forced swim assay rats 

(Filliol, et al. 2000) 

(Broom, et al. 2002) 

ischemic 

preconditioning 

Ischemia reperfusion 

injury rats, post-ischemic 

mice 

(Tian, et al. 2013) 

(Min, et al. 2018) 

Convulsions Systemic administration 

mice, rats, 

electroencephalographic 

rhesus monkeys 

(Comer, et al. 1993) 

(Jutkiewicz, et al. 2005) 

(Danielsson, et al. 2006) 

 



58 
 

3.1.3 Previous Studies On the DOR 

However, multiple studies have reported on convulsions in various animal models 

with the use of DOR agonists. After systemic administration of a DOR agonist, mice 

displayed convulsive effects.67 Using rats, tolerance rapidly developed to convulsive and 

locomotor-stimulating effects of a selective DOR agonist but did not display tolerance to 

the antidepressant-like effects.68 When using rhesus monkeys, only one out of the four 

monkeys had convulsions, however, this same monkey did not display convulsive 

activity when given a smaller dose weeks later or even the same dose one year later.69 

The difference in convulsions in species could indicate that these are species-dependent 

effects. As mentioned previously, the DOR is distributed in different areas of the spinal 

cord in rodents versus primates. In rodents, the delta receptor is found dispersed in the 

spinal cord, whereas it is limited to the superficial laminae of the spinal dorsal horn in 

humans and non-human primates. 

3.1.4 High-Throughput Virtual Screening Reasoning 

High-throughput virtual screening (HTVS) is a useful computational process that 

can screen for thousands of molecules that bind to a molecular target and can also 

identify toxic or unfavorable pharmacodynamics and pharmacokinetic properties of these 

compounds.70 Structure-based virtual screening (SBVS) is a HTVS approach that predicts 

the interactions between ligands and proteins as a complex, ranking them by their affinity 

to the receptor. The top hit compounds are then selected based on the desired parameters 

and are then optimized to undergo preclinical and clinical trials. Computational methods 

such as molecular modeling are used in the HTVS approach to speed up the drug 
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discovery process by analyzing the interactions of multiple molecules in a shorter period 

of time, which can look into interactions before the drug is even synthesized. SBVS is a 

good technique due to its low cost, faster result time, and good results achieved. 

3.1.5 Ensemble-Based Approaches 

The flexibility of receptors is a challenge researchers face as binding sites usually 

consist of 10-20 amino acid side-chains that have dozens of rotatable conformations, 

which is larger than the rotatable torsions of a ligand.71 The movements of the backbone 

can make this even worse by affecting multiple side chains. Using an ensemble-based 

receptor technique combats this issue in HTVS and MD simulations by sampling the 

degrees of freedom instead of traditional techniques using one receptor conformation 

with a flexible ligand. It has been found in cases to also improve docking scores. With 

previous studies it has been suggested that ensembles generated from simulations have 

been closely similar in replicating the dynamics of proteins in NMR experiments.72, 73 It 

is better to use a few specifically selected conformations as using too many could give 

false results. In the case of virtual screening, using the top 10% of a library subset is more 

efficient with this approach.71 Previous studies using ensemble-based virtual screening 

have been successful in screening ligands against various drug targets.74, 75 The 

integration of this ensemble-based technique helps to have a better understanding of the 

structural dynamics of a receptor, have a better understanding of ligand-receptor 

interactions which aids in discovering novel ligand binding modes, and helps to develop 

better therapeutic molecules.76 
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3.1.6 Experimental Overview 

In the present study, we used MD simulations to probe the active conformation of 

the DOR starting with the active crystal conformation (PDB ID: 6PT3) with the crystal 

agonist DPI-287 (Figure 11). This agonist is highly selective towards the DOR and has 

shown antidepressant effects with less convulsive properties than the other drugs in this 

drug family in the rat forced swim test.77  

 

Figure 11 

Structural Organization of the Active Conformation of the DOR and Ligand 

 

 

 

 

 

 

 

 

 

 

(A) 

(C) (B) 
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Using the ensemble-based method, two representative conformations were identified 

from the clustering and principal component analysis based on the MD simulation. These 

two conformations and the crystal conformation were used to screen 17 million 

compounds from the zinc database. As a result, 69 drugs were identified on the basis of 

docking scores. These 69 complexes underwent MD simulations to assess their stability. 

From this, 8 were identified that showed significantly improved MM-GBSA binding free 

energy scores with high blood brain barrier (BBB) permeability and high gastrointestinal 

(GI) absorption. This study helps to identify potential compounds to be further tested that 

will aid in antinociception without addictive or convulsive properties for the DOR. 

3.2 Methods 

3.2.1 Virtual Screening Workflow Overview 

Using the Zinc 15 drug-like library that contains 17 million entries, a virtual 

screening workflow (VSW) was developed to identify lead agonists to the DOR. The 

VSW is made up of ten steps that includes drug property prediction, molecular docking, 

and molecular dynamics simulations (Figure 12).  
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Figure 12 

Virtual Screening Workflow 

 

 

 

 

 

 

 

 

 

 

 

 

Inputting the prepared protein structure and ligand library is the first step of the VSW. In 

steps 2-5, the compounds were then filtered by drug property with docking and multiple 

Glide docking score functions that have increasing accuracy (Glide HTVS, SP, and XP). 

In the next step, a ligand similarity analysis was performed to identify different molecular 

scaffolds. In step 7, the ligands that were removed were based on if they had a worse 

ZINC drug-like library (17M) 
Receptor (6PT3) (3 

conformations) 

ADMET Filter (QikProp) 

Glide HTVS Docking Top 10% 

Glide SP Docking Top 10% 

Glide XP Docking Top 10% 

Diverse Structure (Canvas) 

Pick Top 69 Compounds 

Molecular Dynamics 
(Desmond) (200ns) 

Post Simulation Analysis 

ADMET Prediction 

Top 8 Compounds 
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Glide XP score than the reference compound (PDB ID: 6PT3 ligand DPI-287) and/or if 

they had more than one red flag in drug property (number of stars, from QikProp). The 

top compounds were manually selected from the remaining compounds by maximizing 

the number of molecular scaffolds (i.e. different ligand cluster IDs). The 200ns MD 

simulations were carried out in step 8 which was then followed by the post simulation 

analyses in step 9, including MMGBSA binding free energy calculation, simulation 

interaction diagram analysis, and protein conformation clustering analysis. In the last 

step, the ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) 

prediction was used to examine the human oral bioavailability of potential drug 

candidates. From this, the compounds with better MM-GBSA binding free energy than 

the reference compound were selected and presented in the main text. The ten steps are 

presented in detail in the following six modules. 

 1. Preparation of Protein and Ligand Library 

 The crystal structure (6PT3) of the active conformation of the DOR was prepared 

and preprocessed using Maestro’s Protein Preparation Wizard.78 The charge state of the 

preprocessed protein was optimized at pH 7. A restrained minimization was then 

performed to relax the protein structure using OPLS3 force field.79 The 3D structures of 

DPI-287 and the Zinc compounds were prepared using Maestro Elements. The 3D 

structure of DPI-287 was extracted from the crystal structure (PDB ID: 6PT3) and the 

Zinc compounds were downloaded from the Zinc15 database 

(https://zinc15.docking.org/). The ionization/tautomeric states for the ligands were 

generated at pH 7 using Maestro’s Epik tool based on the more accurate Hammet and 

Taft methodologies.78 The lowest ionization/tautomeric state was selected and the 

https://zinc15.docking.org/
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geometry was then minimized to the most energetically favorable structure to relax the 

structure of the ligand. A geometry optimization was utilized using quantum mechanics 

in Jaguar as the final step. 

 2. Filtering and Docking 

 The prepared protein and ligand were merged into a complex to then be ran 

through the Schrodinger Virtual Screening Interface using prefilters through Lipinski’s 

Rule and filtered with ADMET risk parameter assessments through QikProp. The 

receptor grid files were generated from the prepared receptors, in which the centroid of 

the crystal ligand, DPI-287, was used to specify the active site. The prepared ligands 

were docked into their corresponding generated grids using Glide XP scoring with default 

procedures and parameters.79 In detail, the receptor grid required for the docking process 

was generated using van der Waals scaling factor of 1 and partial charge cutoff 0.25. 

Docking was performed using a ligand-centered grid using OPLS3 force field. Glide XP 

Dock performed a comprehensive systematic search for the best receptor conformations 

and orientations to fit the ligand. The docked poses were compared to the active crystal 

complex (PDB ID: 6PT3) with an agonist to verify if the docked ligand poses were 

reasonable. All ligands were bound within the binding pocket with DPI-287 binding 

similar to the crystal ligand, providing a reasonable starting pose for later molecular 

dynamic simulations. The binding pose can then be refined given the full conformation 

flexibility in the simulations. The docking results comprised of 69 top compounds with 

higher docking scores than the reference ligand (6PT3), indicating they all had high 

affinity for the receptor. 
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 3. Ligand Similarity Clustering 

 The canvas program was used for the ligand similarity clustering. This program 

uses pharmacophore fingerprinting and hierarchical clustering to further filter out top 

compounds. Pharmacophore fingerprinting identified similar groups of compounds to 

match the crystal structure.80 Hierarchical clustering was then utilized to form cluster 

groups of similar compounds based on their docking score, binding affinity, drug 

properties, and ligand similarities.81, 82 The poses were manually generated and evaluated 

based on their binding score and similarity to known FDA-approved drugs. The top 69 

compounds were then used for the MD simulations. 

 4. MD Simulation 

4.1. MD Simulation System Setup 

 The 69 prepared receptor-ligand complexes were used to construct MD simulation 

systems using the prepared and refined receptor-ligand complex from the Glide XP 

docking, crystal structure (6PT3), and generated conformations as input files. Each 

system was built using SPC as water solvent model83 using orthorhombic solvent box 

with 6Å water buffer. The system was neutralized using Na+ and Cl- ions and were added 

to maintain the salt concentration of 0.15 M NaCl. After the system was successfully 

solvated, OPLS3 force field using Desmond System Builder79 was used to represent the 

receptor-ligand.  

4.2. Relaxation and Production Runs 
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 Using Desmond module, the system was first relaxed using the default relaxation 

protocol for membrane proteins.84 This relaxation protocol consists of eight stages: 1). 

Minimization with restraints on solute heavy atoms; 2). Minimization without any 

restraints; 3). Simulation with heating from 0 K to 300 K, H2O barrier and gradual 

restraining; 4). Simulation under the NPT ensemble (constant number of particles, 

constant pressure of 1 bar and constant temperature of 300 K) with H2O barrier and with 

heavy atoms restrained; 5). Simulation under the NPT ensemble with equilibration of 

solvent and lipids; 6). Simulation under the NPT ensemble with protein heavy atoms 

annealing from 10.0 kcal/mol to 2.0 kcal/mol; 7). Simulation under the NPT ensemble 

with Cα atoms restrained at 2kcal/mol; and 8). Simulation for 1.5 ns under the NPT 

ensemble with no restraints.  

After the relaxation, each system was submitted to a 200 ns production run 

conducted under the NPT ensemble for each of the systems using the default protocol. In 

details, temperature was controlled by using the Nosé-Hoover chain coupling scheme85 

with a coupling constant of 1.0 ps. Pressure was controlled using the Martyna-

Tuckerman-Klein chain coupling scheme85 with coupling constant of 2.0 ps. M-SHAKE86 

was applied to constrain all bonds connecting hydrogen atoms, enabling a 2.0 fs time step 

in the simulation. The k-space Gaussian split Ewald method87 was used to treat long-

range electrostatic interactions under periodic boundary conditions (charge grid spacing 

of ~1.0 Å, and direct sum tolerance of 10-9). The cutoff distance for short-range non-

bonded interactions was 9 Å, with the long-range Van der Waals interactions based on a 

uniform density approximation. To reduce the computation, non-bonded forces were 

calculated using an r-RESPA integrator88 where the short-range forces were updated 
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every step and the long-range forces updated every three steps. The trajectories were 

saved at 40.0 ps intervals for analysis. 

5. Post Simulation Analysis 

5.1. Simulation Interaction Diagram (SID) Analysis 

 Desmond SID tool was used to analyze the behavior and interaction of proteins 

and ligands during the course of simulation including RMSD; protein-ligand contacts 

including H-bonds, hydrophobic, ionic, and water-bridge contacts; secondary structure 

changes and Root Mean Square Fluctuation (RMSF) measures. To check the convergence 

of MD simulations, the protein Cα and ligand RMSD plots were investigated for each 

trajectory. Relatively flat plots indicate that the complex systems have reached a steady 

state.  

5.2. Trajectory Clustering Analysis 

 Desmond trajectory clustering tool89 was used to group complex structures from 

the last 100 ns simulation of each complex system. Backbone RMSD matrix was used as 

structural similarity metric, the hierarchical clustering with average linkage was selected 

as the clustering method. The merging distance cutoff was set to be 2Å. The centroid 

structure (i.e. the structure having the largest number of neighbors in the structural 

family) was used to represent the structural family. 

5.3. Binding Energy Calculations and Decompositions 

 The surface-area-based Generalized Born model90, 91 was used to calculate the 

ligand-binding affinities on the frames in the last 50 ns of each MD simulation with an 
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implicit membrane solvation model (VSGB 2.0).92 Slab-shaped regions with a low 

dielectric constant between 1 and 4 were excluded from the implicit membrane and were 

assigned with the solvent (water) dielectric constant of 80. The MM-GBSA calculation 

used an OPLS3 force field and the default Prime procedure.79 The OPLS3 force field 

employs a CM1A-BCC-based charge model based on a combination of Cramer-Truhlar 

CM1A charges93 with an extensive parameterization of bond charge correction terms 

(BCC). This process begins with minimizing the receptor only, then the ligand only, and 

then the receptor-ligand complex. Using equation 1, the MM-GBSA binding free energy 

for each system was calculated from three separate simulations: ligand-only, receptor-

only, and the receptor-ligand complex. Equation 2 contains 4 components: Van der Waals 

interaction energy (VDW), hydrophobic interaction energy (SUR), electrostatic 

interaction (GBELE), and the change of the conformation energy for the receptor and 

ligand that were calculated based on equations 3 and 4. 

    ∆𝐸 = 𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐸𝑟𝑒𝑐_𝑓𝑟𝑒𝑒 − 𝐸𝑙𝑖𝑔_𝑓𝑟𝑒𝑒                                                             (1) 

               ∆𝐸 = ∆𝐸𝑣𝑑𝑤 + ∆𝐸𝑆𝑈𝑅 + ∆𝐸𝐺𝐵𝐸𝐿𝐸 + ∆𝐸𝑐𝑜𝑚𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛                                       (2) 

   ∆𝐸𝑥 = 𝐸𝑥_𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐸𝑥_𝑟𝑒𝑐_𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐸𝑥_𝑙𝑖𝑔_𝑐𝑜𝑚𝑝𝑙𝑒𝑥,  x= vdw, sur and gbele  (3) 

               ∆𝐸𝐶𝑜𝑚𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 𝐸𝑟𝑒𝑐_𝑐𝑜𝑚𝑝𝑙𝑒𝑥+𝐸𝑙𝑖𝑔_𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐸𝑟𝑒𝑐_𝑓𝑟𝑒𝑒 − 𝐸𝑙𝑖𝑔_𝑓𝑟𝑒𝑒             (4) 

 The MM-GBSA scoring function lacks the solute conformational entropy 

contribution, which causes higher negative values when compared to actual values. It is 

essential being able to rank a drug’s ability to target a receptor when it is used to rank 

different drugs targeting receptors with comparable entropy values.94 MM-GBSA has 

shown to be a powerful tool in ranking ligands supported by multiple studies.95-98 
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6. ADMET Prediction 

 ADMET properties were predicted for the best ZINC compounds were performed 

on the SwissADME web server (http://www.swissadme.ch/). The SwissADME server 

was developed by the Swiss Institute of Bioinformatics and is used to provide 

physiochemical descriptors, ADMET parameters, pharmacokinetic properties, and drug-

like small molecules to support drug discovery.99 In order to receive each compounds 

ADMET properties, their respective SMILE codes were inserted into the webserver. 

3.2.2 Normal Mode Analysis 

The trajectory for the crystal complex (PDB ID: 6PT3) was used in the Normal 

Mode Wizard in VMD100 to generate a principal component analysis of the top 10 normal 

modes. 

3.2.3 Dynamical Network Model 

A dynamic network model, defined as a set of nodes connected by edges,97, 101-104 

was generated using the individual trajectories of each system using the NetworkView 

plugin41 in VMD.49 We first generated a contact map for each system of the top 

compounds and the crystal complex that added an edge between nodes whose heavy 

atoms interacted within a cutoff of 4.5Å for at least 75% of the MD simulation time. The 

edge distance was derived from pairwise correlations103 in the contact map using the 

program Carma105, which defines the probability of information transfer across a given 

edge using the following equation:  

  

http://www.swissadme.ch/
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The edges in the dynamic network model are weighted (wij) between two nodes i and j 

which uses the following calculation: wij = -log(|Cij|). The weight of the edge is 

correlated with the probability for information to transfer across the edge between two 

nodes. Because of this, a thicker edge is characterized as a higher probability of 

information transfer. The network for each system was further grouped into communities, 

or subnetworks based on groups of nodes with more frequent and stronger connection to 

each other, by applying the Girvan-Newman algorithm to the original network.106 The 

critical nodes that connect communities to each other were identified as well. Optimal 

communication paths were generated between the ligand node and the molecular switch 

residue number using the data from the molecular switches. 

3.3 Results 

3.3.1 Crystal Conformation Maintained Stability During MD Simulation 

The crystal complex of the active conformation of the human DOR (PDB ID: 

6PT3) with crystal agonist DPI-287 was used in the experiment to set the standard serve 

as the control. DPI-287 was first docked back into the crystal conformation and resulted 

in a similar binding pose with the crystal pose with a docking score of -8.6 kcal/mol, 

validating the docking protocol. The docked complex was used as the input structure to 

perform 1000 ns MD simulations to be further analyzed (Figure 13). First, the RMSD 

checked for convergence, in which the last 200 ns show the system to have converged 

with relatively flat plots. The secondary structure elements (SSE) shows the helices were 

maintained during the simulation. The RMSF shows fluctuation in the intra- and 
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extracellular loops, as well as the terminals, which are the most flexible parts of the 

receptor. The 2D ligand-protein interactions shows the residues that interacted with the 

ligand for at least 30% of the simulation, which shows mostly hydrophobic contacts and 

some hydrogen bonding. Looking at the protein-ligand histogram shows the interacting 

residues for the whole simulation. This corresponds with the 2D interactions where most 

interactions with residues are hydrophobic or hydrogen bonding. Overall, the system was 

shown to be stable and mimic the crystal structure with a stable binding pose. 
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Figure 13 

Simulation Interaction Diagrams After MD Simulation of the Crystal Structure 

 

Note: (A) RMSD plot from MD simulation of 200ns. (B) Protein Secondary Structure 

elements (SSE). Orange represents alpha helices, blue represents beta strands. (C) RMSF 

graph of protein of the crystal complex structure. (D) 2D ligand-protein interaction 

diagram from the MD trajectory. The residue displayed interacted with ligand for at least 

30% of the simulation time. (E) Protein-ligand contacts during MD simulations. 

Interaction fraction greater than 1 is because of multiple contacts on one residue. 
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3.3.2 Crystal Complex Produces Other Conformations to Use For HTVS  

The clustering analysis was done after the MD simulation to identify the 

populated conformation for the trajectory. Each cluster conformation contains a 

percentage of abundance based on the clustering algorithm in which a cutoff of 2% was 

used. From this, there were two abundant clusters (75% and 24% respectively) produced 

from the crystal conformation simulation and were compared to the crystal complex 

(Figure 14).  
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Figure 14 

Superimposition of the Active Crystal DOR Structure With the Most Abundant 

Conformations From the MD Simulations With Agonist DPI-287 

 

Note. (A) DOR crystal conformation superimposed with the first abundant conformation 

(yellow, 75%) in complex with agonist DPI-287 (orange) including ligand only view; (B) 

DOR crystal conformation superimposed with the second abundant conformation (pink, 

24%) in complex with agonist DPI-287 (green) including ligand only view; (C) DOR 

crystal conformation superimposed with both abundant clusters and all ligand poses. 

 

 

The two clusters slightly differ in conformation and the ligand binding pose from the 

crystal conformation. In a more precise view, the binding pocket of each structure was 

compared to the crystal pose (Figure 15).  
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Figure 15 

Predicted Binding Pocket of the Different DOR Conformations 

 

Note. Structural alignment of crystal conformation (cyan) with (A) representative 

conformation 1, (B) representative conformation 2, (C) both conformations. 

 

In this view, differences can be seen in the receptor itself and also the side chains that 

have adopted different rotamer states. Specific residues where the side chains differ the 

most from the crystal in both clusters are N90, D95, D128, N131, N310, and Y318. 

Using the normal mode analysis on the crystal MD simulation revealed the top two low 

frequency vibrational modes differ from each other (Figure 16).  

 

 

 

 



76 
 

Figure 16  

Top 2 Low Frequency Vibrational Modes From the Normal Mode Analysis 

 

Note Based on the MD simulation of the crystal conformation of the active DOR in 

complex with agonist DPI-287. (A) Mode 1; (B) Mode 2. 

 

This further validates the result of two cluster conformations that differ from the crystal 

conformation and therefore can be used as additional conformations to use for HTVS. 

Unweighted and weighted dynamic network models of the DPI-287/DOR system were 

calculated as described in the methods section to decipher the allosteric signal 

transmission pathway. The unweighted network model shows that their connections are 

in good agreement. Quantifying the correlation between the nodes in the weighted 

network model reveals the areas of the receptor that are in higher correlation to each 

other. The system appears to have higher correlations between edges TM5 and TM6. A 

community network model was generated using the weighted network model which 
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grouped residues together that interact more frequently and stronger than to residues in 

other communities (Figure 17).  

 

Figure 17 

Network Analysis 

 

 
 

  

 

(B) (A) 

(C) (D) 
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There were 38 critical nodes identified for the crystal system from the community 

analysis. These critical nodes were involved in signal transduction between different parts 

of the receptor throughout the simulation and therefore, the critical residue information 

was then cross referenced with experimentally reported mutagenesis data available on the 

G-protein coupled receptor databank (GPCRdb) to see if the residues were involved in 

the physical signal transduction. The DPI-287 system had 9 critical residues that were 

also naturally occurring mutations (D95, Y129, M132, M142, R160, M186, A269, I282, 

N310). It also had 3 critical residues that were mutations invitro (D95, W274, S312). 

Optimal paths generated for the DPI-287/DOR system give insight into the molecular 

signal transduction pathways involving the ligand. From the weighted network models, 

the shortest pathways able to pass a signal from the ligand to the site of the molecular 

switch (Tyrosine Toggle Switch: Y318) and the intracellular end of TM6 (Transmission 

Switch: S255) were calculated as the optimal paths. DPI-287 has a direct optimal path for 

the Transmission Switch (CWXP) through TM6 and another direct path for the Tyrosine 

Toggle Switch (NPXXY) through TM7. The HTVS was then ran on all three 

conformations (crystal conformation, cluster 1, cluster 2) of the active DOR for FDA 

approved drugs and compounds from the zinc15 database of 17 million compounds. 

Comparing the zinc compounds to the FDA approved drugs revealed that the zinc 

compounds had significantly better docking scores, therefore, ruling out the use of the 

FDA drugs. Each compound was docked back into the DOR binding pocket and had 

similar poses to the crystal ligand. Using the docking score of the crystal ligand DPI-287 

as a cutoff (-8.6 kcal/mol), the number of stars which tells how drug-like a compound is, 

and the cluster ID which tells how similar molecule scaffolds are to each other, a total of 
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69 zinc compounds were chosen. These docked compounds also showed good binding 

pose agreement with the crystal ligand. Out of the 69 compounds chosen, 32 were 

targeted to the crystal conformation, 11 were targeted to the first abundant cluster, and 26 

were targeted to the second abundant cluster. Each of the 69 compounds underwent 200 

ns MD simulations. The MM-GBSA was calculated for each of the molecules to their 

respective receptor conformation, including the crystal ligand DPI-287, to determine the 

binding affinity for the receptor with more negative values indicating better binding 

(Table B1). DPI-287 had an MM-GBSA of -90.2 kcal/mol which was used as the cutoff. 

With the MM-GBSA as a determinate, another method was used to pick out the top 

molecules, the SwissADME properties (Table B2). This tells the drugs predicted 

properties in which high gastrointestinal (GI) absorption and blood brain barrier (BBB) 

permeability were the major determinates. Also similar to the crystal ligand, having no 

alerts was attractive as well due to having a low chance of false positives from occurring. 

Considering all of this, 8 ligands were chosen as the top compounds (Table 5, Table 6). 

Two of the molecules were targeting the crystal conformation, four were targeting the 

first abundant cluster, and two were targeting the second abundant cluster. These 8 

compounds were further analyzed. 
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Table 5 

Various Properties of the Top 8 Compounds Identified From Our Virtual Screening Work 

Flow 

 

 

Table 6 

The Predicted Pharmacokinetics ADME Properties 

 

  

3.3.3 Top 8 Compounds Assume Steady State 

Each zinc compound was calculated for the RMSD of their respective simulations 

to check the convergence and if it has reached a steady state (Figure 18). The RMSD 

analyzes the movement of the ligand the receptor during the simulation. In the case of all 

8 compounds, it can be observed by the last 50 ns that they have converged by 

approaching steady values. The protein RMSD has lower RMSD values and have 

 

Compound 
GI 

absorption 

BBB 

permeant 
CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 

Lipinksi 

rule 
PAINS Brenk 

Crystal Structure 

(PDB ID:6PT3) 
High Yes No No No Yes Yes 

Yes; 0 

violation 
0 alert 0 alert 

ZINC000020559278 High Yes Yes No No Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

ZINC000078515864 High Yes No No No Yes No 
Yes; 0 

violation 
0 alert 0 alert 

ZINC000025329384 High Yes No No No Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

ZINC000037556415 High Yes No Yes Yes Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

ZINC000827360794 High Yes No No No Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

ZINC000078648574 High Yes No Yes Yes Yes No 
Yes; 0 

violation 
0 alert 0 alert 

ZINC000057999653 High Yes Yes Yes Yes Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

ZINC000006664413 High Yes Yes Yes Yes Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 
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remained more stable in each of the complexes. The ligand RMSD indicated compounds 

in which there are multiple fluctuations such as ZINC000025329384, 

ZINC000037556415, and ZINC000078648574. The others remained more stable 

throughout the simulation. 

 

Figure 18 

RMSD of the Top 8 Zinc Compounds 

 

Note: Cα RMSD during 200 ns MD simulation in reference to the crystal active DOR 

conformation (PDB ID: 6PT3).  
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3.3.4 MD Simulations Improved the Binding Pose of the Top Eight Ligands  

The Glide XP docking pose of each of the ligands were superimposed and 

compared to the pose from the MD simulation (Figure 19). The simulation can 

significantly alter the ligands original bound conformation to optimize the interactions 

with the receptor. The simulation improved the binding pose of each of the top 

compounds. This corresponds with the MM-GBSA results (Table 5) that was used to 

estimate the binding free energy of the compounds where the binding interaction between 

the protein-ligand complexes is specified by the free energy binding. The crystal ligand 

was used as a control where its score was -90.2 kcal/mol. The top compounds picked had 

significantly higher binding energy to the DOR with the lowest of the scores being -94.6 

kcal/mol. 
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Figure 19 

Comparison of Glide XP Docking Pose (Blue) and MD Simulation Pose (Red) for the Top 

8 Compounds 

 

 

3.3.5 Protein-Ligand Interactions of Top Compounds to the DOR  

The residues involved in the compounds binding to the receptor were analyzed as 

described in the methods section with the Desmond Simulation Interaction Diagram. All 

interacting residues to the top 8 compounds and crystal ligand are clearly tabulated in 

Table 7.  

 

 



84 
 

Table 7 

Protein-Ligand Interactions During MD Simulations for the Top 8 Compounds From the 

MD Simulations  

 

 

The highest amount of hydrogen bonding was in compounds ZINC000078515864, 

ZINC000006664413, and ZINC000020559278. ASP128 is the main residue involved in 

hydrogen bonding in seven of the eight compounds and is also maintained in the crystal 

ligand (Figure 20). ZINC000037556415, ZINC000827360794, ZINC000078648574, 

ZINC000057999653, and ZINC000006664413 have the highest number of hydrophobic 

contacts which the interaction of such generally involves hydrophobic amino acids and an 
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aromatic or aliphatic group on the ligand. Ionic interactions were mainly observed in 

ZINC000025329384 and ZINC000057999653. Water bridges occurred in all top 8 

compounds with the exception of ZINC000078648574 which is the same compound that 

did not show hydrogen bonding to residue ASP128. The majority of the compounds 

showed higher hydrophobic interactions and hydrogen bonding in comparison to the 

crystal structure, leading to higher GI absorption. 
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Figure 20 

Protein-Ligand 2D Interaction Diagrams From the MD Simulation for the Top 8 

Compounds 

 

 

 

 

 
  

 

  

 

 

 

    

ZINC000020559278 ZINC000827360794 

ZINC000078648574 

ZINC000057999653 

ZINC000037556415 ZINC000006664413 

ZINC000078515864 

ZINC000025329384 
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3.3.6 Secondary Structure Shows Maintained Helices 

The protein SSE was monitored throughout the MD simulation where the plots 

summarize the structure elements distribution by residue position throughout the protein. 

The three categories are Alpha-helices, Beta-strands, and random coils. Alpha-helices are 

mainly made up of hydrophobic residues that are located in the core of the protein and are 

depicted by the orange sections. Beta-strands, however, contain both hydrophobic and 

polar amino acids which are depicted by blue sections. The random coil is not one 

specific shape of a polymer conformation, but a distribution of statistics of all chains 

depicted by the white spaces in the plots. The secondary structure is more rigid than the 

loop regions, inferring that they have less fluctuation. 

3.3.7 RMSF Shows Fluctuation in Regions of the Protein With Respect to the Ligand  

The RMSF calculated the fluctuation of the protein in complex with each 

compound using the Cα atom. Specifically, the changes in the protein backbone were 

observed during the simulation (Figure B9). Higher values depicted by peaks are areas of 

the protein that fluctuate the most, such as the N- and C-terminals as well as the intra- 

and extracellular loops. ZINC000037556415 showed the greatest fluctuation at nearly 5Å 

around residue 200 which is located in extracellular loop 2. All compounds showed 

similar fluctuation at the same residue positions between 1-3Å. A small fluctuation from 

ZINC000078648574 and ZINC000020559278 was observed around residue 250. Using 

the crystal structure as a positive control, each complex showed the same or higher 

residual fluctuation throughout the simulations. 
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3.3.8 Network Analysis Helped to Understand Communications Among Different 

Regions of the DOR 

Unweighted and weighted network models of the DPI-287/DOR system and the 

top compound systems were calculated as described in the methods section to decipher 

the allosteric signal transmission pathway. The comparison of the unweighted network 

models between the systems show that their connections are in good agreement. 

Quantifying the correlation between the nodes in the weighted network model reveals 

similarities observed between the systems. All systems appear to have higher correlations 

between edges TM5 and TM6. Community network models were generated using the 

weighted network model which grouped residues together that interact more frequently 

and stronger than to residues in other communities. The systems that seem to 

communicate more similarly to the crystal complex are ZINC000020559278, 

ZINC000078515864, ZINC000827360794, ZINC000078648574, ZINC000057999653, 

and ZINC000006664413. The basis for the similarity is that the intracellular portion of 

TM5 and TM6 are in the same community represented by one single color. Another thing 

that was observed in most of the similar systems is that the extracellular portion of TM6 

and TM7 belong to the same community while the same region in TM5 belongs to a 

different community. This trend occurred in ZINC000078515864, ZINC000827360794, 

and ZINC000078648574. The systems that had the most similarities in critical nodes with 

the crystal system are ZINC000020559278 with 11 of the same critical nodes, 

ZINC000078515864 with 13, and ZINC000078648574 with 11 (Table B3). When 

calculating the optimal paths of the Transmission and Toggle Switch for each of the top 

compounds, multiple systems showed great similarities to the crystal complex (Figure 21 

& Table B4). ZINC000025329384 shared every residue as the crystal with the 
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Transmission Switch pathway and two out of the four residues of the Toggle Switch 

pathway. ZINC000020559278, ZINC000078515864, and ZINC000037556415 also had 

many similar residues to the crystal complex with the Transmission Switch and Toggle 

Switch. ZINC000827360794 had the most residues similar to the crystal with the Toggle 

Switch.  
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Figure 21 

Optimal Signal Transduction Pathway of the Transmission Switch and the Toggle Switch 

 

Note: Transmission switch (pink nodes) and the Toggle switch (orange nodes) starting 

from the ligand of each of the top 8 compounds. 
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3.4 Discussion 

 The opioid epidemic has brought to light of the need for better opioid alternatives 

in public health all around the world. The continued rise of opioid addiction and overdose 

will not stop until there are better therapeutic agents available. Researchers and scientists 

have discovered that the DOR shows potential in not only pain management, but also in 

neurological and psychiatric disorders. Agonists targeting the DOR are strongly believed 

to not display addictive or dependence properties, such as MOR agonists, having the 

potential to help combat the addictive opioid crisis today. 

Though previous studies have been done on the DOR, none to our best knowledge 

have ever utilized multiple conformations from MD simulations for HTVS. MD 

simulations are able to probe deeper into interactions and dynamics that happen in a 

system that cannot be obtained from a crystal structure alone. Sampling the 

conformations from the active state DOR and using them for HTVS offers an opportunity 

to find better potential agonists to be of therapeutic use. Running long MD simulations on 

each of the top compounds takes it a step further by predicting if the compounds bound to 

the DOR will remain stable and looking into any protein-ligand interactions that may 

occur. Here we present the first study using ensemble-based HTVS to discover potential 

agonists to target the DOR. 

Based on our findings using the bioinformatics tools and drug similarity search, 

we analyzed compounds from Zinc15 and targeted novel agonists of the DOR using the 

virtual screening workflow which gave us a promising top 69 hits (32 from crystal 

conformation, 11 from cluster conformation 1, and 26 from cluster conformation 2). 
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These top 69 compounds were then further validated and compressed to eight of the 

agonists, which were further validated by the MM-GBSA score of binding free energy, 

MD simulation, and predicted drug ADME properties. The MM-GBSA score helped to 

investigate the binding interaction between the ligands and protein. The predicted drug 

ADME properties helped to specify if the compounds were highly (GI) absorbent as well 

as BBB permeant. These were the properties most valued due to opioids coming in an 

oral form and the receptors being located in areas of the brain. Without these specific 

properties, the compounds could be ruled out. 

The protein-ligand interaction further confirmed the top potential agonists. The 

large dataset and extended HTVS method portray the best interactions between ligands to 

form a complex with a molecular target. The adverse effects and related articles of the 

selected compounds were checked through CAS Scifinder and PubChem, where the 

compounds showed no adverse effects. Out of the top eight, ZINC000057999653 is 

patented to be useful for altering the lifespan of eukaryotic organisms. These results 

further validate the top hits to be potential agonists. 

The use of dynamic network models based on MD simulations data has shown to 

be efficient in extracting correlated motions, allosteric signals, and signal transduction 

networks within complex systems. The correlated motions are thought to be linked to 

their activity which is normally difficult to accurately distinguish through visualization of 

the MD simulations alone.107, 108 In addition, the communities that are generated with the 

dynamic network are highly correlated and provide insight into the overall 

communication network from ligand binding.107, 109, 110 In our study, the dynamic network 

analysis aided in identifying similar communication systems between the crystal DPI-287 
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and top compound systems. These similarities became more apparent when comparing 

the weighted networks that base their correlated motion in the simulation trajectories to 

the connections between nodes in the networks. The community models show that 

compound systems of ZINC000078515864, ZINC000827360794, and 

ZINC000078648574 communicate the most similar to the DPI-287 system. This analysis 

highlights how the structural differences of the ligands can have similar or different 

dynamics to the DOR due to the grouping of communities based on residues that interact 

strongly and frequently with one another. 

Based on the results, the potential binding and agonistic effects of the top eight 

compounds are indicated. Ensemble-based structure HTVS is a useful approach to find 

potential molecules that could target the binding pocket of the DOR. After examining 17 

million Zinc15 compounds using structure-based HTVS methods, the most potential hits 

were validated by MD simulations. This study has the potential to assist in the efforts to 

aid in the opioid epidemic. Experimental studies can be conducted on these compounds to 

help in the efforts of opioid addiction. 
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Appendix A 

To Probe the Activation Mechanism of the Delta Opioid Receptor by an Agonist 

ADL5859 Started from Inactive Conformation Using Molecular Dynamic 

Simulations 

Table A1  

RMSD Comparison 

Type Traj 

# 

Cluster 

ID 

Whole Protein (Å) 

  4N6H         6PT3 

7TMD (Å) 

4N6H       6PT3 

TM6 (Å) 

 4N6H      6PT3 

A
D

L
5

8
5

9
 

1 1 (52%) 

2 (30%) 

3 (17%) 

3.4 

2.1 

3.1 

2.5 

3.0 

2.4 

2.8 

1.8 

2.5 

2.2 

2.7 

2.2 

4.1 

2.0 

3.3 

3.4 

4.2 

2.9 

2 1 (98%) 2.5 3.1 2.1 2.6 1.7 4.6 

3 1 (90%) 

2 (11%) 

2.3 

2.8 

3.1 

2.9 

1.9 

2.4 

2.6 

2.6 

2.3 

4.5 

3.8 

4.2 

4 1 (43%) 

2 (32%) 

3 (20%) 

4 (5%) 

5 (1%) 

2.4 

2.4 

2.6 

2.7 

3.6 

2.9 

3.3 

2.9 

2.9 

2.7 

2.1 

1.9 

2.0 

1.7 

2.9 

2.4 

2.7 

2.3 

2.3 

2.1 

2.5 
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2.2 

5.8 

3.4 

4.5 
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3.6 

2.8 

5 1 (56%) 

2 (43%) 

2.8 

2.2 

2.7 

3.3 

2.5 

1.7 

2.4 

2.8 

3.1 

2.5 

3.4 

4.9 

6 1 (76%) 

2 (22%) 

3.3 

2.3 

2.8 

3.0 

2.6 

1.9 

2.4 

2.5 

3.9 

2.0 

3.2 

3.9 

N
a

lt
ri

n
d

o
le

 1 1 (100%) 3.1 3.4 2.7 3.0 1.8 5.5 

2 1 (100%) 3.3 3.1 2.8 2.8 2.9 5.0 

3 1 (100%) 3.2 3.3 2.7 2.9 2.4 4.9 
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Table A2  

Conserved Molecular Switches 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

     

     

     

     

     

     

 

     

     

     

 Traj
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Cluster 

ID 

Distance (Å) 

Toggle 

(NPXXY) 

Y3187.53-Y3187.53 

Distance (Å) 

Transmission 

(CWXP) 

S2496.23-S2496.23 

Distance (Å) 

Ionic Lock 

(DRY) 

R1463.50-T2606.34 

A
D

L
5

8
5

9
 

1 1 (52%) 

2 (30%) 

3 (17%) 

1.1 

1.4 

1.4 

9.4 

6.9 

10.3 

9.3 

5.9 

2.3 

2 1 (98%) 1.5 1.3 3.9 

3 1 (90%) 

2 (11%) 

1.7 

1.1 

6.0 

9.2 

6.1 

6.7 

4 1 (43%) 

2 (32%) 

3 (20%) 

4 (5%) 

5 (1%) 

2.2 

1.8 

1.5 

0.2 

1.1 

1.7 

2.5 

2.4 

1.3 

13.9 

7.8 

7.2 

7.4 

6.7 

6.5 

5 1 (56%) 

2 (43%) 

0.6 

0.4 

6.2 

2.5 

5.8 

6.4 

6 1 (76%) 

2 (22%) 

0.5 

1.5 

10.6 

5.9 

4.2 

6.1 

N
a

lt
ri

n
d

o
le

 1 1 

(100%) 

1.5 3.0 3.8 

2 1 

(100%) 

1.4 3.8 4.4 

3 1 

(100%) 

1.5 3.8 3.7 
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Figure A1  

Solved Crystal Structures of the Human DOR With Fusion Proteins 
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Figure A2  

Sequences of Full-Length Crystal Human Delta Opioid Receptor (PDB ID: 4N6H) 

(P41143)  
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Figure A3  

Protein and Ligand RMSD of the DOR/ADL5859 Agonist System 
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Figure A4  

Protein and Ligand RMSD of the DOR/Naltrindole Antagonist System 
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Figure A5  

Receptor RMSDs From Individual DOR-Agonist-ADL5859 Simulation Systems Against 

the Two Solved Crystal Receptor Structures 
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Figure A6  

Receptor RMSDs From Individual DOR-Antagonist-Naltrindole Simulation Systems 

Against the Two Solved Crystal Receptor Structures 

 

 

 

 

 

 

 

 

 

 

 

 



113 
 

Figure A7  

Representative Structure of Each DOR-Agonist-ADL5859 Cluster and Its Comparison 

With the Inactive and Active Solved Crystal Structure 
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Figure A8  

Representative Structure of Each DOR-Antagonist-Naltrindole Cluster and Its 

Comparison With the Inactive and Active Solved Crystal Structure 
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Figure A9  

Protein Secondary Structure Comparison 
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Figure A10  

Protein-Ligand 2D Interaction Diagram 
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Figure A11  

Protein-Ligand 2D Interaction Diagram 
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Figure A12   

Protein-Ligand Interactions 
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Figure A13   

Protein-Ligand Interactions 
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Figure A14  

The RMSF of the ADL5859 System 
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Figure A15  

The RMSF of the Naltrindole System 
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Figure A16  

Ligand RMSF Values For ADL5859 
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Figure A17  

Ligand RMSF Values For Naltrindole 
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Figure A18  

Molecular Switches of ADL5859 (Trj 1 Cluster 1) 
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Figure A19  

Molecular Switches of ADL5859 (Trj 1 Cluster 3) 
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Figure A20  

Molecular Switches of ADL5859 (Trj 3 Cluster 2) 
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Figure A21  

Molecular Switches of ADL5859 (Trj 4 Cluster 5) 
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Figure A22  

Molecular Switches of ADL5859 (Trj 6 Cluster 1) 

 

 

 

 

 

 

 

 

 

 

 

 



132 
 

Figure A23  

Molecular Switches of Naltrindole (Trj 1) 
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Figure A24  

Molecular Switches of Naltrindole (Trj 2) 
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Figure A25  

Molecular Switches of Naltrindole (Trj 3) 
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Figure A26  

Plots Showing Atomic (1-4) and Center of Mass (5-27) Distances Between Selected 

Residues of Human DOR in the Agonist and Antagonist Bound DOR Systems 
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Figure A27  

Top 10 Low Vibrational Modes From the NMA Based on the Agonist ADL5859 Complex 

System in the First Trajectory (A) and Sixth Trajectory (B) 
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Figure A28  

Top 10 Low Vibrational Modes From the NMA Based on the Antagonist Naltrindole 

Complex System in the First (A), Second (B), and Third Trajectory (C) 
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Appendix B 

To Probe Activation Mechanism of Agonist DPI-287 to Delta Opioid Receptor and 

Novel Agonists to Using Ensemble-Based Virtual Screening with Molecular 

Dynamics Simulations 
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Table B1 

Detailed Information Regarding Various Properties From the Glide XP Docking and MD 

Simulations of the Compounds 
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Table B2 

The Predicted ADME Properties for Top Compounds 

 

 

 

 

 

Structure Compound 
GI 

absorption 

BBB 

permeant 
CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 Lipinksi rule PAINS Brenk 

 
Crystal Structure 

(PDB ID:6PT3) 
High Yes No No No Yes Yes 

Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000020559278 High Yes Yes No No Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000014242201 Low No No No No No Yes 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000562639987 High No No No No No No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000071763967 High Yes No No No No No 
Yes; 0 

violation 

1 alert: 

catechol_A 
1 alert: catechol 

CC ZINC000067947687 High Yes Yes No No Yes No 
Yes; 0 

violation 

1 alert: 

catechol_A 
1 alert: catechol 

CC ZINC000634950507 High Yes No No No No No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000072227493 High Yes Yes Yes Yes No No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000257262766 High No No No No Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000006645700 High Yes Yes Yes No Yes No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000082157638 High No No No No No No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000091782363 Low No No No No No No 
Yes; 0 

violation 
0 alert 1 alert: hydantoin 

CC ZINC000091595762 High Yes No No No No No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000067558896 High No No No No No No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000757213857 High No No No No No No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000218867772 High Yes No No No No No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000013637398 High No Yes Yes No No Yes 
Yes; 0 

violation 
0 alert 

1 alert: 

thiocarbonyl_group 

CC ZINC000078515864 High Yes No No No Yes No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000014538415 High No No No No No No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000218873420 High No Yes No No No No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000001743629 High Yes Yes Yes Yes Yes No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000028295259 High Yes No No No No No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000014536536 High No No No No No No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000147095213 High Yes Yes No No No No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000095698957 Low No No Yes No No No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000014888594 High Yes No No No No No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000015080658 High No No No No No No 
Yes; 0 

violation 
0 alert 1 alert: phthalimide 

CC ZINC000096027748 High No No No No No No 
Yes; 0 

violation 
0 alert 

2 alerts: imine_1, 

imine_2 

CC ZINC000067675691 High No No No No No No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000011691661 High No Yes Yes Yes No Yes 
Yes; 0 

violation 
0 alert 

1 alert: 

isolated_alkene 

CC ZINC000096312018 High Yes Yes Yes Yes Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000248261142 High Yes Yes No No Yes No 
Yes; 0 

violation 
0 alert 0 alert 

CC ZINC000036160706 High No No No Yes No Yes 
Yes; 0 

violation 
0 alert 1 alert: nitro_group 
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C1 ZINC000025329384 High Yes No No No Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

C1 ZINC000037556415 High Yes No Yes Yes Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

C1 ZINC000095456365 High No No Yes Yes Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

C1 ZINC000225318193 High Yes Yes Yes No No No 
Yes; 0 

violation 
0 alert 0 alert 

C1 ZINC000299770618 High No Yes No No Yes No 
Yes; 0 

violation 
0 alert 0 alert 

C1 ZINC000827360794 High Yes No No No Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

C1 ZINC000035373220 High No No No Yes No No 
Yes; 0 

violation 

1 alert: 

catechol_A 
1 alert: catechol 

C1 ZINC000072430969 High Yes Yes Yes Yes Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

C1 ZINC000078648574 High Yes No Yes Yes Yes No 
Yes; 0 

violation 
0 alert 0 alert 

C1 ZINC000005344596 High Yes No No Yes No No 
Yes; 0 

violation 
0 alert 0 alert 

C1 ZINC000069348668 High Yes Yes Yes Yes Yes Yes 
Yes; 0 

violation 
0 alert 1 alert: triple_bond 

C2 ZINC000057999653 High Yes Yes Yes Yes Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

C2 ZINC000002877267 High No Yes Yes Yes Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

C2 ZINC000408693879 High No No No Yes No Yes 
Yes; 0 

violation 

1 alert: 

ene_six_het_A 

2 alerts: 

michael_acceptor_1, 

michael_acceptor_4 

C2 ZINC000000880008 High No No Yes Yes Yes Yes 
Yes; 0 

violation 
0 alert 

1 alert: 

thiocarbonyl_group 

C2 ZINC000006664413 High Yes Yes Yes Yes Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

C2 ZINC000001408226 High Yes Yes No No No No 
Yes; 0 

violation 
0 alert 1 alert: imine_1 

C2 ZINC000001045477 Low No Yes Yes Yes Yes No 

Yes; 1 

violation: 

MLOGP>4.15 

0 alert 
1 alert: 

thiocarbonyl_group 

C2 ZINC000005493735 High No No Yes Yes No Yes 
Yes; 0 

violation 
0 alert 0 alert 

C2 ZINC000001641702 High Yes Yes Yes Yes Yes No 
Yes; 0 

violation 
0 alert 0 alert 

C2 ZINC000000302628 High Yes Yes Yes No No No 
Yes; 0 

violation 
0 alert 0 alert 

C2 ZINC000095418373 High No Yes Yes Yes Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 

C2 ZINC000006750553 High Yes Yes Yes No Yes No 
Yes; 0 

violation 
0 alert 0 alert 

C2 ZINC000097002851 High No Yes No No Yes No 
Yes; 0 

violation 
0 alert 0 alert 

C2 ZINC000005776998 High No No No No Yes No 
Yes; 0 

violation 

1 alert: 

indol_3yl_alk 
0 alert 

C2 ZINC000004663101 High Yes Yes Yes No Yes No 
Yes; 0 

violation 

1 alert: 

anil_alk_ene 

1 alert: 

isolated_alkene 

C2 ZINC000005604766 High No Yes Yes No No No 
Yes; 0 

violation 
0 alert 

2 alerts: imine_1, 

imine_2 

C2 ZINC000225173433 High No Yes Yes Yes No Yes 
Yes; 0 

violation 
0 alert 

1 alert: 

thiocarbonyl_group 

C2 ZINC000034720963 High No Yes Yes Yes No No 

Yes; 1 

violation: 

MLOGP>4.15 

1 alert: 

ene_five_het_B 

1 alert: 

michael_acceptor_1 

C2 ZINC000409066936 High Yes Yes Yes Yes Yes Yes 
Yes; 0 

violation 
0 alert 

1 alert: 

michael_acceptor_1 
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C2 ZINC000014750115 High No No No No No No 
Yes; 0 

violation 
0 alert 0 alert 

C2 ZINC000059677349 High Yes Yes Yes No Yes Yes 
Yes; 0 

violation 

1 alert: 

indol_3yl_alk 
0 alert 

C2 ZINC000002690402 Low No No No Yes No Yes 
Yes; 0 

violation 
0 alert 

1 alert: 

thiocarbonyl_group 

C2 ZINC000020572602 High No No No Yes No Yes 
Yes; 0 

violation 

1 alert: 

hzone_phenol_B 
1 alert: imine_1 

C2 ZINC000408729576 High No No No No No No 
Yes; 0 

violation 
0 alert 1 alert: imine_1 

C2 ZINC000009660785 High No No No Yes Yes Yes 
Yes; 0 

violation 
0 alert 1 alert: hydantoin 

C2 ZINC000334160398 High No No No Yes Yes Yes 
Yes; 0 

violation 
0 alert 0 alert 
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Table B3 

Critical Nodes Identified From the Network Analysis or the DPI-287/DOR System and 

the Top 8 Compound Systems 
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Table B4 

The Optimal Path of the Transmission and Tyrosine Toggle Switch Generated From the 

Network Analysis for the Crystal Complex and the Top 8 Compounds 

Molecular Switch Optimal Path 

crystal CC1 CC17 C1 01 C1 02 C1 06 C1 09 C2 01 C2 05 

Transmission Switch 

Ligand Ligand Ligand Ligand Ligand Ligand Ligand Ligand Ligand 

W274 W274 W274 W274 W274 I304 V281 Y308 N131 

F270 F270 F270 F270 F270 L306 I279 S312 F133 

G268 V266 V266 G268 V267 C273 A275 N314 F137 

L264 M262 M262 L264 V265 A269 V271 Y318 T140 

R261 R258 R258 R261 M262 V265 G268 M262 V144 

R258 S255 S255 R258 R258 M262 V265 R258 R146 

S255   S255 S255 R258 R261 S255 I259 

     S255 R258  S255 

      S255   

7 total 6 total 6 total 7 total 7 total 8 total 9 total 7 total 8 total 

 4 same 4 same 7 same 4 same 2 same 4 same 2 same 1 same 

 

crystal CC1 CC17 C1 01 C1 02 C1 06 C1 09 C2 01 C2 05 

Tyrosine Toggle Switch 

Ligand Ligand Ligand Ligand Ligand Ligand Ligand Ligand Ligand 

G307 Y308 Y308 S311 S311 Y308 S311 Y308 S311 

N310 S311 N310 N314 P315 N310 N314 S312 N314 

N314 N314 N314 Y318 Y318 N314 Y318 N314 Y318 

Y318 Y318 Y318   Y318  Y318  

4 total 4 total 4 total 3 total 3 total 4 total 3 total 4 total 3 total 

 2 same 3 same 2 same 1 same 3 same 2 same 2 same 2 same 
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Figure B1  

Top 10 Low Vibrational Modes From the NMA Based on the Active Conformation DOR 

Agonist DPI-287 System 
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Figure B2  

Top 10 From the FDA Approved Drug Compounds for the Crystal Conformation 

 

 

 

 

 

No FDA approved drugs/ Structure/ 
Docking score 

No FDA approved drugs/ 
Structure/ Docking score 

1 Lobivon; Nebivolol 
 

Docking Score: -8.467 kcal/mol 

6 Eluxadoline 

 
Docking Score: -7.297 kcal/mol 

2 Lanreotide 

 
Docking Score: -8.037 kcal/mol 

7 Oxamniquine; Mansil 

 
Docking Score: -7.202 kcal/mol 

3 Dobuject; Dobutamine 

 
Docking Score: -7.638 kcal/mol 

8 Hydroxyethyl cellulose 

 
Docking Score: -7.132 kcal/mol 

4 Lercanidipine 

 
Docking Score: -7.504 kcal/mol 

9 Terbutaline; Brethaire 

 
Docking Score: -7.054 kcal/mol 

5 Nylidrin; Arbid 

 
Docking Score: -7.482 kcal/mol 

10 Fenoterol; Alveofen 

 
Docking Score: -6.965 kcal/mol 
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Figure B3  

Cα RMSD of the Top Zinc Compounds During 200ns MD Simulation in Reference to the 

Crystal Active Conformation 
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Figure B4  

Comparison of 32 Zinc Compounds for the Crystal Conformation in the Docked Pose 

(Blue) and the MD Simulation Pose (Red) 
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Figure B5  

Comparison of 11 Zinc Compounds for the First Representative Structure From the MD 

Crystal Conformation in the Docked Pose (Blue) and the MD Simulation Pose (Red) 
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Figure B6  

Comparison of 26 Zinc Compounds for the Second Representative Structure From the 

MD Crystal Conformation in the Docked Pose (Blue) and the MD Simulation Pose (Red) 
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Figure B7  

Protein-Ligand Contacts During MD Simulations for the Top 8 Compounds 
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Figure B8  

Protein Secondary Structure Elements (SSE) of the Receptor in Complex With the Top 8 

Compounds 
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Figure B9  

The Cα Root Mean Square Fluctuation (RMSF) of the Receptor in Complex With the Top 

8 Ligands 
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