21 research outputs found

    Gas Turbine Engine Prognostics Using Time-Series Based Approaches

    Get PDF
    In todays market, the increasing demand on utilizing gas turbine engines can be quite costly if users rely only on traditional time-based maintenance schedules. Meeting both the safety and the economical aspects of such systems could be realized by using an appropriate maintenance strategy in which the prediction of the engine health condition is employed to ensure that the system is maintained only if necessary. Towards this end, in this thesis the prognosis problem in the gas turbine engines is investigated. As in every rotational mechanical equipment, gas turbine rotating components also degrade during the engine operation which may deteriorate their performance. The engine degradation may originate from different sources such as aging, erosion, fouling, corrosion, etc. Hard particles mixed with the air can remove the materials from the flow path components (erosion) and cause aerodynamic changes in the blades, which can consequently reduce the affected components performance. Accumulated particles on the flow path components and annulus surfaces of the gas turbine (fouling) can also reduce the flow rate of the gas and consequently decrease the power and efficiency of the affected components. Among different degradation sources in the engine, erosion and fouling are considered as two well-known degradation phenomena and their effects on the engine system prognostics are studied in this thesis. Towards the above end, a controller is designed to control the thrust level of the engine and a Matlab/Simulink platform is employed to incorporate the effects of the above degradation factors and the engine dynamic model. The engine performance degradation trends are modeled by using three types of time-series based techniques namely, the autoregressive integrated moving average (ARIMA), the vector autoregressive (VAR) and the hybrid fuzzy autoregressive integrated moving average (hybrid fuzzy ARIMA) models. One of the challenges associated with time-series approaches is selecting a proper model which represents the structure of the time-series and is employed for prediction and prognosis purposes. Two widely used criteria namely, the Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC) are used in order to select the best model. The challenges of coping with the uncertainties due to variety of sources such as measurement noise, insufficient data and changing operating conditions are inevitable factors. Taking the above facts into account, it may not be practical to obtain or be concerned with an exact prediction information. Therefore, we construct instead confidence bounds that provide a realistic boundary for the prediction and this is applied to all our proposed approaches in this thesis. The first method in this thesis deals with modeling a measurable parameter using its historical data which is a fine-tuned version of the ARMA model for non-stationary time series analysis. The second method, VAR model, models the measurable parameters by fusing historical data with the current and past data of some other engine measurable data in a vector form so that one can get benefit of more measurement parameters of the engine. The third method deals with fusing two measurable parameters using a Takagi-Sugeno fuzzy inference engine. In this thesis we are focused on modeling the engine performance degradations due to the fouling and the erosion which are the two main causes of gas turbine engine deterioration. In order to evaluate the performance of the proposed methods, they are applied to three different scenarios. These scenarios include the compressor fouling, turbine erosion phenomena and their combination with different severities. Our numerical simulation results show that the performance of the hybrid fuzzy ARIMA model is superior to that of the ARIMA and VAR methods

    Utilization of Models for Online Estimation in Combustion Applications

    Get PDF
    The emerging environmental and energy system related requirements urge renewed combustion systems, with a focus on extended flexibility and decreased emissions. At the same time, monitoring and measurement reliability requirements are increasing. All these requirements also increasingly affect existing combustion plants.To tackle the increasing needs and requirements of existing combustion processes, this thesis’ objective is to integrate process and domain knowledge, models, and online estimation to provide cost effective and practically feasible solutions for online emission monitoring and control in existing combustion processes. These solutions are domain specific, comprising power level, main fuel, boiler technology, process environment, and market. This thesis presents a framework to provide practically justified, online monitoring and control solutions that is applied to selected combustion applications.The first application is combustion control of small-scale (100 MW). A novel, first principle combustion model was developed for these. The generic combustion model interlinks the combustion related measurements distributed within any boilers regardless of boiler type or fuels. The interlinking enables combustion processes to be considered as an entity that reveals if a measurement provide realistic readings compared with others. The static, computationally light model enables simultaneous data reconciliation and gross error detection and hence several attractive online applications, such as reliable estimation of unmeasured variables, and separation of process disturbances from sensor malfunctions.The results verify that the process performance improved in all studied practical applications, providing feasible solutions for increasing requirements

    The 1st International Conference on Computational Engineering and Intelligent Systems

    Get PDF
    Computational engineering, artificial intelligence and smart systems constitute a hot multidisciplinary topic contrasting computer science, engineering and applied mathematics that created a variety of fascinating intelligent systems. Computational engineering encloses fundamental engineering and science blended with the advanced knowledge of mathematics, algorithms and computer languages. It is concerned with the modeling and simulation of complex systems and data processing methods. Computing and artificial intelligence lead to smart systems that are advanced machines designed to fulfill certain specifications. This proceedings book is a collection of papers presented at the first International Conference on Computational Engineering and Intelligent Systems (ICCEIS2021), held online in the period December 10-12, 2021. The collection offers a wide scope of engineering topics, including smart grids, intelligent control, artificial intelligence, optimization, microelectronics and telecommunication systems. The contributions included in this book are of high quality, present details concerning the topics in a succinct way, and can be used as excellent reference and support for readers regarding the field of computational engineering, artificial intelligence and smart system

    Fault Detection, Diagnosis and Fault Tolerance Approaches in Dynamic Systems based on Black-Box Models

    Get PDF
    In this dissertation new contributions to the research area of fault detection and diagnosis in dynamic systems are presented. The main research effort has been done on the development of new on-line model-based fault detection and diagnosis (FDD) approaches based on blackbox models (linear ARX models, and neural nonlinear ARX models). From a theoretical point of view a white-box model is more desirable to perform the FDD tasks, but in most cases it is very hard, or even impossible, to obtain. When the systems are complex, or difficult to model, modelling based on black-box models is usually a good and often the only alternative. The performance of the system identification methods plays a crucial role in the FDD methods proposed. Great research efforts have been made on the development of linear and nonlinear FDD approaches to detect and diagnose multiplicative (parametric) faults, since most of the past research work has been done focused on additive faults on sensors and actuators. The main pre-requisites for the FDD methods developed are: a) the on-line application in a real-time environment for systems under closed-loop control; b) the algorithms must be implemented in discrete time, and the plants are systems in continuous time; c) a two or three dimensional space for visualization and interpretation of the fault symptoms. An engineering and pragmatic view of FDD approaches has been followed, and some new theoretical contributions are presented in this dissertation. The fault tolerance problem and the fault tolerant control (FTC) have been investigated, and some ideas of the new FDD approaches have been incorporated in the FTC context. One of the main ideas underlying the research done in this work is to detect and diagnose faults occurring in continuous time systems via the analysis of the effect on the parameters of the discrete time black-box ARX models or associated features. In the FDD methods proposed, models for nominal operation and models for each faulty situation are constructed in off-line operation, and used a posteriori in on-line operation. The state of the art and some background concepts used for the research come from many scientific areas. The main concepts related to data mining, multivariate statistics (principal component analysis, PCA), linear and nonlinear dynamic systems, black-box models, system identification, fault detection and diagnosis (FDD), pattern recognition and discriminant analysis, and fault tolerant control (FTC), are briefly described. A sliding window version of the principal components regression algorithm, termed SW-PCR, is proposed for parameter estimation. The sliding window parameter estimation algorithms are most appropriate for fault detection and diagnosis than the recursive algorithms. For linear SISO systems, a new fault detection and diagnosis approach based on dynamic features (static gain and bandwidth) of ARX models is proposed, using a pattern classification approach based on neural nonlinear discriminant analysis (NNLDA). A new approach for fault detection (FDE) is proposed based on the application of the PCA method to the parameter space of ARX models; this allows a dimensional reduction, and the definition of thresholds based on multivariate statistics. This FDE method has been combined with a fault diagnosis (FDG) method based on an influence matrix (IMX). This combined FDD method (PCA & IMX) is suitable to deal with SISO or MIMO linear systems. Most of the research on the fault detection and diagnosis area has been done for linear systems. Few investigations exist in the FDD approaches for nonlinear systems. In this work, two new nonlinear approaches to FDD are proposed that are appropriate to SISO or MISO systems. A new architecture for a neural recurrent output predictor (NROP) is proposed, incorporating an embedded neural parallel model, an external feedback and an adjustable gain (design parameter). A new fault detection and diagnosis (FDD) approach for nonlinear systems is proposed based on a bank of neural recurrent output predictors (NROPs). Each neural NROP predictor is tuned to a specific fault. Also, a new FDD method based on the application of neural nonlinear PCA to ARX model parameters is proposed, combined with a pattern classification approach based on neural nonlinear discriminant analysis. In order to evaluate the performance of the proposed FDD methodologies, many experiments have been done using simulation models and a real setup. All the algorithms have been developed in discrete time, except the process models. The process models considered for the validation and tests of the FDD approaches are: a) a first order linear SISO system; b) a second order SISO model of a DC motor; c) a MIMO system model, the three-tank benchmark. A real nonlinear DC motor setup has also been used. A fault tolerant control (FTC) approach has been proposed to solve the typical reconfiguration problem formulated for the three-tank benchmark. This FTC approach incorporates the FDD method based on a bank of NROP predictors, and on an adaptive optimal linear quadratic Gaussian controller

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Advances in PID Control

    Get PDF
    Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications

    Applications of Mathematical Models in Engineering

    Get PDF
    The most influential research topic in the twenty-first century seems to be mathematics, as it generates innovation in a wide range of research fields. It supports all engineering fields, but also areas such as medicine, healthcare, business, etc. Therefore, the intention of this Special Issue is to deal with mathematical works related to engineering and multidisciplinary problems. Modern developments in theoretical and applied science have widely depended our knowledge of the derivatives and integrals of the fractional order appearing in engineering practices. Therefore, one goal of this Special Issue is to focus on recent achievements and future challenges in the theory and applications of fractional calculus in engineering sciences. The special issue included some original research articles that address significant issues and contribute towards the development of new concepts, methodologies, applications, trends and knowledge in mathematics. Potential topics include, but are not limited to, the following: Fractional mathematical models; Computational methods for the fractional PDEs in engineering; New mathematical approaches, innovations and challenges in biotechnologies and biomedicine; Applied mathematics; Engineering research based on advanced mathematical tools
    corecore