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Abstract 
In this dissertation new contributions to the research area of fault detection and diagnosis in 

dynamic systems are presented. The main research effort has been done on the development 

of new on-line model-based fault detection and diagnosis (FDD) approaches based on black-

box models (linear ARX models, and neural nonlinear ARX models). From a theoretical point 

of view a white-box model is more desirable to perform the FDD tasks, but in most cases it is 

very hard, or even impossible, to obtain. When the systems are complex, or difficult to model, 

modelling based on black-box models is usually a good and often the only alternative. The 

performance of the system identification methods plays a crucial role in the FDD methods 

proposed. 

Great research efforts have been made on the development of linear and nonlinear FDD 

approaches to detect and diagnose multiplicative (parametric) faults, since most of the past 

research work has been done focused on additive faults on sensors and actuators. 

The main pre-requisites for the FDD methods developed are: a) the on-line application in a 

real-time environment for systems under closed-loop control; b) the algorithms must be 

implemented in discrete time, and the plants are systems in continuous time; c) a two or three 

dimensional space for visualization and interpretation of the fault symptoms. An engineering 

and pragmatic view of FDD approaches has been followed, and some new theoretical 

contributions are presented in this dissertation. 

The fault tolerance problem and the fault tolerant control (FTC) have been investigated, and 

some ideas of the new FDD approaches have been incorporated in the FTC context. 

One of the main ideas underlying the research done in this work is to detect and diagnose 

faults occurring in continuous time systems via the analysis of the effect on the parameters of 

the discrete time black-box ARX models or associated features. In the FDD methods 

proposed, models for nominal operation and models for each faulty situation are constructed 

in off-line operation, and used a posteriori in on-line operation. 

 

The state of the art and some background concepts used for the research come from many 

scientific areas. The main concepts related to data mining, multivariate statistics (principal 

component analysis, PCA), linear and nonlinear dynamic systems, black-box models, system 

identification, fault detection and diagnosis (FDD), pattern recognition and discriminant 

analysis, and fault tolerant control (FTC), are briefly described. A sliding window version of 

the principal components regression algorithm, termed SW-PCR, is proposed for parameter 
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estimation. The sliding window parameter estimation algorithms are most appropriate for 

fault detection and diagnosis than the recursive algorithms. 

 

For linear SISO systems, a new fault detection and diagnosis approach based on dynamic 

features (static gain and bandwidth) of ARX models is proposed, using a pattern classification 

approach based on neural nonlinear discriminant analysis (NNLDA). A new approach for 

fault detection (FDE) is proposed based on the application of the PCA method to the 

parameter space of ARX models; this allows a dimensional reduction, and the definition of 

thresholds based on multivariate statistics. This FDE method has been combined with a fault 

diagnosis (FDG) method based on an influence matrix (IMX). This combined FDD method 

(PCA & IMX) is suitable to deal with SISO or MIMO linear systems. 

 

Most of the research on the fault detection and diagnosis area has been done for linear 

systems. Few investigations exist in the FDD approaches for nonlinear systems. In this work, 

two new nonlinear approaches to FDD are proposed that are appropriate to SISO or MISO 

systems. A new architecture for a neural recurrent output predictor (NROP) is proposed, 

incorporating an embedded neural parallel model, an external feedback and an adjustable gain 

(design parameter). A new fault detection and diagnosis (FDD) approach for nonlinear 

systems is proposed based on a bank of neural recurrent output predictors (NROPs). Each 

neural NROP predictor is tuned to a specific fault. Also, a new FDD method based on the 

application of neural nonlinear PCA to ARX model parameters is proposed, combined with a 

pattern classification approach based on neural nonlinear discriminant analysis.  

 

In order to evaluate the performance of the proposed FDD methodologies, many experiments 

have been done using simulation models and a real setup. All the algorithms have been 

developed in discrete time, except the process models. The process models considered for the 

validation and tests of the FDD approaches are: a) a first order linear SISO system; b) a 

second order SISO model of a DC motor; c) a MIMO system model, the three-tank 

benchmark. A real nonlinear DC motor setup has also been used. A fault tolerant control 

(FTC) approach has been proposed to solve the typical reconfiguration problem formulated 

for the three-tank benchmark. This FTC approach incorporates the FDD method based on a 

bank of NROP predictors, and on an adaptive optimal linear quadratic Gaussian controller. 

  

Keywords: fault detection, fault diagnosis, fault tolerance, fault tolerant control, black-box 

models, dynamic systems. 



 vii

Résumé 
Dans cette dissertation, de nouvelles contributions sont présentées dans le domaine de la 

recherche en rapport à la détection et diagnostic de fautes (pannes, défauts) en systèmes 

dynamiques. Le principal effort de recherche a été fait sur le développement des nouvelles 

méthodologies en ligne pour détection et diagnostic de fautes (FDD), utilisant des modèles 

boîte noire (ARX linéaires et ARX neuronaux non linéaires). D'un point de vue théorique, un 

modèle boîte blanc est plus approprié pour exécuter les tâches FDD, mais dans la plupart des 

cas, il est très difficile, ou même impossible, à obtenir. Lorsque les systèmes sont complexes, 

ou difficiles à modéliser, la modélisation basée sur des modèles boîte noire est généralement 

bonne et, souvent, la seule alternative. La performance des méthodes d'identification de 

systèmes joue un rôle crucial dans les méthodologies FDD proposées. 

Grands efforts de recherche ont été réalisés sur le développement de méthodologies FDD 

linéaires et non linéaires pour détecter et diagnostiquer fautes multiplicatifs (paramétriques), 

puisque dans le passé la plupart des travaux de recherche a été fait sur fautes additifs en 

capteurs et en actionneurs. Les principales pré-requis pour les méthodes FDD sont: a) la 

application en temps réel pour les systèmes de contrôle en boucle fermée; b) les algorithmes 

doivent être mises en oeuvre en temps discret et les installations sont des systèmes en temps 

continu; c) deux ou trois dimensions spatiales pour la visualisation et l'interprétation des 

symptômes des fautes. Il a été suivie une perspective de ingénierie et pragmatique des 

approches FDD, et quelques nouveaux contributions théoriques sont présentés. 

La tolérance aux fautes et le contrôle tolérant aux fautes (FTC) ont été investigués et quelques 

idées des nouvelles approches FDD ont été incorporées dans le contexte FTC.  

L'une des principales idées qui est sous-jacent à la recherche effectuée est détecter et  

diagnostiquer les fautes survenants dans les systèmes en temps continu d’après l'analyse des 

effets sur les paramètres des modèles ARX ou caractéristiques associées. En ce qui concerne 

les méthodes FDD proposées, de modèles de fonctionnement nominale et de modèles pour 

chaque situation de faute sont construits hors ligne et utilisés en ligne a posteriori.  

 

L'état de l'art et certains concepts utilisés pour la recherche provienne de nombreux domaines 

scientifiques. Les principales concepts liées à l'extraction de données, statistique multivariée 

(analyse en composantes principales, PCA), systèmes dynamiques linéaires et non linéaires, 

modèles boîte noire, identification de systèmes, détection et diagnostic de fautes (FDD), la 

reconnaissance des patrons (formes) et analyse discriminante, et le contrôle tolérant aux 
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fautes, sont brièvement décrits. Une version de fenêtre coulissante de l'algorithme de 

régression en composantes principales est proposée pour l'estimation des paramètres, soyant 

plus approprié pour la détection et le diagnostic de fautes que les algorithmes récursifs. 

 

Pour les systèmes SISO linéaires, une nouvelle méthodologie FDD basée sur caractéristiques 

dynamiques (gain statique et bande passante) de modèles ARX est proposée, utilisant une 

approche de classification de patrons basée sur l'analyse discriminante neuronaux non linéaire 

(NNLDA). Il a été proposé une nouvelle approche de détection des fautes (FDE) basée sur 

l'application de la méthode PCA à l'espace de paramètres des modèles ARX; cela permet une 

réduction des dimensions et la définition de seuils fondé sur la statistique multivariée. Cette 

méthode basée en PCA a été combinée avec une méthode de diagnostic des fautes (FDG) 

fondée sur une matrice d'influence, et il est approprié pour systèmes linéaires. 

La plupart des recherches dans le domaine de la détection et diagnostic de fautes a été faite 

pour les systèmes linéaires. Il existe peu d'études rapportés avec les approches FDD en 

systèmes non linéaires. Dans ce travail, deux nouvelles approches non linéaires sont 

proposées pour FDD. Une nouvelle architecture pour un prédicteur neuronal récurrent 

(NROP) est proposée, intégrant un modèle parallèle, une retroaction externe et un gain 

réglable. Une nouvelle méthodologie FDD est proposée basée sur un ensemble de prédicteurs 

NROPs. Chaque prédicteur neuronal NROP est syntonisé à une faute. Aussi, une nouvelle 

méthode FDD est proposée, fondée sur l'application de PCA neuronal non linéaire aux 

paramètres du modèle ARX, combinée avec un schéma de classification de patrons.  

Afin d'évaluer la performance des methodologies FDD, de nombreuses expériences ont été 

effectuées en utilisant des modèles de simulation et une installation réelle. Tous les 

algorithmes ont été mis au point en temps discret, à l'exception des modèles de processus. Les 

modèles des processus considérés pour la validation et les tests sont: a) un système linéaire 

SISO de premier ordre; b) un système linéaire SISO de deuxième ordre (modèle d'un moteur à 

courant continu); c) un modèle d’un système MIMO (le banc d’essais à trois réservoirs 

COSY). Un moteur non linéaire DC a également été utilisé. Une approche de contrôle tolérant 

aux fautes a été proposé pour résoudre le problème typique de reconfiguration formulé pour le 

banc d’essais à trois réservoirs COSY. Cette approche intègre la méthode FDD fondée sur un 

ensemble de prédicteurs NROPs et un contrôleur optimal adaptative quadratique gaussien.  

Mots clés: détection de fautes (pannes, défauts), diagnostic de fautes, tolérance aux fautes, 

contrôle tolérant aux fautes, modèles boîte noire, systèmes dynamiques.  
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Resumo 
Nesta dissertação são apresentadas novas contribuições para a área de investigação em 

detecção e diagnóstico de falhas em sistemas dinâmicos. O principal esforço de investigação 

foi realizado no desenvolvimento de novas metodologias de detecção e diagnóstico de falhas 

(FDD) baseadas em modelos caixa-preta (modelos lineares ARX, e modelos neuronais NARX 

não-lineares) com aplicação em linha. De um ponto de vista teórico é preferível o uso de 

modelos caixa-branca para realizar as tarefas de FDD, mas na maioria das situações é muito 

difícil ou mesmo impossível obtê-los. Quando os sistemas são complexos, ou difíceis de 

modelizar, a modelização baseada em modelos caixa-preta é usualmente uma boa e 

frequentemente a única alternativa. O desempenho dos métodos de identificação de sistemas 

tem um papel crucial nos métodos de FDD propostos. 

Elevados esforços de investigação foram feitos no desenvolvimento de metodologias de FDD 

para detecção de falhas multiplicativas (paramétricas), dado que a maioria do trabalho de 

investigação tem se centrado nas falhas aditivas em sensores e actuadores. 

Os principais pré-requisitos dos métodos de FDD desenvolvidos são: a) a aplicação em linha 

em ambientes de tempo-real para sistemas controlados em anel fechado; b) os algoritmos 

devem ser implementados em tempo discreto, e as instalações são sistemas em tempo 

contínuo; c) uma visualização e interpretação a duas ou três dimensões dos sintomas das 

falhas. Uma perspectiva de engenharia e pragmática das metodologias de FDD foi seguida, e 

algumas contribuições teóricas são apresentadas nesta dissertação. 

O problema da tolerância a falhas em sistemas dinâmicos e o controlo tolerante a falhas foi 

investigado, e algumas ideias das novas metodologias de FDD foram incorporadas no 

contexto do FTC. 

Uma das ideias principais subjacente à investigação realizada neste trabalho é a detecção e 

diagnóstico de falhas que ocorrem em processos em tempo contínuo, através da análise do 

efeito nos parâmetros de modelos discretos caixa-preta do tipo ARX ou características 

associadas. Nos métodos de FDD propostos são construídos em diferido modelos para 

funcionamento nominal e modelos para funcionamento em várias situações de falhas, e 

usados à posteriori em funcionamento em linha. 

 

O estado da arte e alguns conceitos utilizados na investigação provêm de várias áreas 

científicas. Os conceitos principais, brevemente descritos, estão relacionados com análise 

exploratória de dados, estatística multi-variada (análise em componentes principais, PCA), 

sistemas dinâmicos lineares e não lineares, modelos caixa-preta, identificação de sistemas, 
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detecção e diagnóstico de falhas (FDD), reconhecimento de padrões e análise discriminante, e 

controlo tolerante a falhas (FTC). Uma versão do tipo janela deslizante do algoritmo de 

regressão por componentes principais, denominado SW-PCR, é proposto para estimação de 

parâmetros. Os algoritmos de estimação de parâmetros do tipo janela deslizante são mais 

apropriados para detecção e diagnóstico de falhas do que os algoritmos recursivos. 

 

Para sistemas lineares SISO, uma nova metodologia de detecção e diagnóstico de falhas é 

proposta sendo baseada em características dinâmicas (ganho estático e largura de banda) de 

modelos ARX, utilizando um método de classificação de padrões baseado em análise 

discriminante neuronal não linear (NNLDA). A análise discriminante NNLDA permite a 

definição de fronteiras de decisão necessárias para detecção e isolamento de falhas, sendo 

mais eficiente que as técnicas geométricas. Uma nova metodologia para detecção de falhas 

(FDE) é proposta tendo como base a aplicação da análise PCA ao espaço de parâmetros de 

modelos ARX; tal permite uma redução de dimensão, e a definição de limiares baseados em 

estatística multi-variada. Este método de FDE é combinado com um método de diagnóstico de 

falhas (FDG) baseado numa matriz de influência. Este método combinado para FDD (PCA & 

IMX) é apropriado para ser aplicado em sistemas lineares SISO ou MIMO. 

 

A maioria da investigação na área de detecção e diagnóstico de falhas tem sido realizada para 

sistemas lineares. Poucas investigações existem relacionadas com as metodologias FDD para 

sistemas não lineares. Neste trabalho, duas novas metodologias de FDD para sistemas não 

lineares são propostas, sendo apropriadas para sistemas SISO ou MIMO. Uma nova 

arquitectura para um preditor neuronal recorrente da saída (NROP) é proposta, incorporando 

um modelo neuronal paralelo embutido, um anel de retroacção e um ganho de ajuste 

(parâmetro de projecto). Um novo método de FDD para sistemas não lineares é proposto 

tendo como base um banco de preditores neuronais recorrentes (NROPs). Cada preditor 

neuronal NROP é sintonizado para uma falha específica. Também é proposto um novo 

método de FDD baseado na aplicação de PCA neuronal não linear aos parâmetros de modelos 

ARX de forma a lidar com sistemas não lineares, combinado com um método de classificação 

de padrões baseado em análise discriminante neuronal não linear. 

 

De forma a avaliar o desempenho das metodologias de FDD propostas, várias experiências 

foram realizados em modelos de simulação e num equipamento real. Todos os algoritmos 

foram desenvolvidos em tempo discreto. Os modelos dos processos considerados para a 

validação e testes das metodologias de FDD são todos em tempo contínuo: a) um sistema 



 xi

linear SISO de primeira ordem; b) um modelo de segunda ordem de um motor de corrente 

contínua; c) um modelo de sistema MIMO, o sistema de três tanques “three-tank benchmark”. 

Também foi usado um motor real de corrente contínua, com características não lineares, para 

teste das metodologias de FDD. Uma metodologia de controlo tolerante a falhas (FTC) foi 

proposta para resolver o problema típico de reconfiguração para o sistema de três tanques 

“three-tank benchmark”. Esta metodologia de controlo tolerante a falhas incorpora a 

metodologia de detecção e diagnóstico de falhas baseada num banco de preditores neuronais 

recorrentes (NROPs) proposta neste trabalho. 

 

Palavras-chave: detecção de falhas, diagnóstico de falhas, tolerância a falhas, controlo 

tolerante a falhas, modelos caixa-preta, sistemas dinâmicos. 
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Notation and Symbols 
 

Notation. 

AEM: abnormal event management 

ARX: auto-regressive linear model with exogenous input 

DAQ: data acquisition system 

DMI: data mining 

DPCA: dynamic PCA 

EKF: extended Kalman filter 

FDE: fault detection 

FF: feed-forward 

FIO: fault isolation 

FDA: Fisher Discriminant Analysis 

FDI: fault detection and isolation 

FID: fault identification (or analysis) 

FDG: fault diagnosis 

FDD: fault detection and diagnosis 

FTC: fault tolerant control 

IIR: infinite impulse response (filter) 

IMX: influence matrix 

MISO, MIMO: multi-input single-output system; multi-input multi-output system 

MLP: multi-layer perceptron 

MNT: monitoring 

MSE: mean of squared errors 

MVS: multivariate statistics 

NARX: nonlinear auto-regressive model with exogenous input 

NNLDA: neural nonlinear discriminant analysis 

NLPCA: nonlinear PCA 

NN: neural networks, also mentioned Artificial NN (ANN) 

PCA: linear principal components analysis 

PC: principal components 

PCR: principal components regression 

PID: proportional-integral-derivative 
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RLS: recursive least squares 

SISO: single-input single-output system 

SPE: square of prediction error 

SPV: supervision 

SPTC: Safeprocess Technical Committee 

SS: state-space (model) 

SSE: sum of squared errors 

SVD: singular value decomposition 

 

Symbols and Operators. 

Variables and scalars are represented by small letters in italic, (ex., x(t), α, …). Matrices are 

represented by capital letters in bold, (ex., X, X(:,:,k), Σ, …). Vectors are represented in small 

letters, in bold, (ex., x(:,k), y, …).  

 

t Continuous time variable 

k Discrete time variable 

x(t) Continuous time signal at instant time t 

x(k) Discrete time signal at discrete time k 

X(:,j), X(j,:) X(:,j), jth column of matrix X; X(j,:), jth line of matrix X 

X(:,:,k) Matrix X at time instant k 

y(k) Vector y of n samples at time k; y(k) = y(1:n,k) 

TZ{x(k)}  Z-transform of signal x(k); X(z) = TZ{x(k)} 

TZ-1{X(z)} Inverse Z-transform of X(z); x(k) = TZ-1{X(z)} 

q, q-1 Forward and backward shift operators: q y(k) = y(k+1); q-1 y(k) = y(k-1)

Ts Sampling period 

ℜn x m Euclidian “n x m” dimensional space 

Hlp(z, λ) Low pass IIR filter 

N(µ, σ 2) Normal distribution with mean µ and variance σ 2

  

Models  

G0(s) Transfer function of a plant in continuous time 

G0(z) Transfer function of a plant in discrete time 

θ Vector used to parameterize models; dimension = d 

M; M* Model structure; set of models 



 xv

M(θ)  Particular model corresponding to the parameter value θ 

MP Process model 

MX Auto-regressive linear model with exogenous input (ARX model); 

ARX(na, nb, nd); na, nb, nd are the model orders, and the pure time delay 

Myu(θ), Myr(θ) Input-output ARX model relating the output y with the input u, and 

reference-output ARX model relating the output y with the reference 

signal r 

MXN Nonlinear ARX model 

MNN Neural model 

MNP Neural predictor 

MNO Neural observer 

MNNLDA Neural model for nonlinear discriminant analysis 

MF; M*
F Fault model; set of fault models 

  

PCA  

X ∈ ℜn × m Data matrix for nominal operation (without faults) 

n, m Number of lines and columns of data matrix X 

MPCA Linear PCA model 

MNLPCA Nonlinear PCA model 

X
∧ Estimation of data matrix X from PCA model 

a Number of principal components retained by the PCA model (dimension 

of the scores subspace) 

V ∈ ℜm × m Matrix containing the loading vectors 
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1 Introduction  
 

If I were waiting for perfection, I never would have written this book (Tai T’ung, History of 

Chinese Writing, century XIII). 

 

1.1 Motivations 

The operation of industrial technical processes requires increasingly advanced supervision, 

fault detection and diagnosis (FDD) approaches, and fault tolerant control (FTC) methods to 

increase reliability, safety and economy. One of the main goals of the fault tolerant systems is 

to guarantee that faults do not cause dangerous failures, and even human fatalities. In many 

publications, the Abnormal Situation Management (ASM) Consortium estimates that the costs 

associated with some types of failures in technical processes are many million of euros per 

year, and that they can be drastically reduced if fault tolerant control systems are 

implemented. The ASM is a consortium of companies and universities that are concerned 

about the negative effects of industrial plant incidents. The FTC systems can also improve the 

maintenance policies, and increase the reliability of the overall plant. 

The research area related to fault detection and diagnosis, and to fault tolerant control, is a 

fascinating and complex area of research, mainly due to the interactions of different research 

areas like control, data mining, statistics, soft computing, etc. 

For the author of this dissertation, these are the main motivations to work in this research 

area.  

 

1.2 Main Goals and Contributions 

In the past, the main research efforts in the fault detection and diagnosis (FDD), and in fault 

tolerant control (FTC) areas, have been mostly done based on analytical approaches using 

white-box models, and considering mainly additive faults on sensors and actuators. 

The main goals of this dissertation are to focus on the detection and diagnosis of 

multiplicative (parametric) faults on process components, using FDD methods based on 
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black-box models (linear ARX models and nonlinear ARX neural models), and on (linear and 

nonlinear) principal component analysis, that do not require a precise mathematical model of 

the process. The faults can occur on the process, on the actuators, on the sensors, or on the 

controller. 

Mainly, two types of black-box models are considered in this work: the autoregressive ARX 

linear model, and the nonlinear ARX neural model. 

FDD approaches based on classical PCA and neural nonlinear PCA are proposed. 

The developed FDD and FTC methods were implemented in order to satisfy on-line and real-

time specifications, and to work in closed-loop operation. These specifications are important 

if one of the goals is to apply the FDD/FTC methods in real plants, like industry plants. 

The experience acquired along this work has shown that, in most of the situations, a 

combination of different FDD methodologies is necessary to implement practical and robust 

approaches.  

The basic philosophy underlying this dissertation is that a pragmatic approach is the road to 

success. One of the most important lessons to be learned from the numerous automatic control 

applications developed over the past half century is that simple solutions actually solve most 

problems quite well. 

Here, special efforts were made in the direction of the development of FDD methods with a 

geometrical interpretation in two or three dimensions. 

 

The main contributions given in this dissertation are described next. 

A new fault detection and diagnosis method based on dynamic features (static gain and 

bandwidth) of ARX models is proposed to deal with linear systems, where a pattern 

recognition method based on neural nonlinear discriminant analysis (neural NNLDA) is used. 

A new approach for fault detection in linear systems is proposed. This new statistical fault 

detection approach is based on the application of principal component analysis (PCA) to the 

parameters space of ARX models. This fault detection approach based on PCA is combined 

with a fault diagnosis approach based on an influence matrix (IMX) method. 

A new architecture for a neural output predictor (NROP) is proposed, incorporating an 

embedded parallel model, an external feedback, and an adjustable gain (design parameter). A 

new fault detection and diagnosis (FDD) approach for nonlinear systems is proposed based on 

a bank of neural recurrent output predictors (NROPs). Each neural predictor (NROP) is tuned 

to a particular fault. 
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A new FDD method based on the application of neural nonlinear PCA to ARX model 

parameters is proposed to deal with nonlinear systems. This method is combined with a 

pattern recognition method based on neural nonlinear discriminant analysis (neural NNLDA). 

The fault tolerance problem in dynamic systems and the fault tolerant control (FTC) have 

been investigated, and some ideas of the new FDD approaches have been incorporated in the 

FTC context. A fault tolerant control (FTC) approach has been proposed to solve the typical 

reconfiguration problem formulated for the three-tank benchmark. This fault tolerant control 

approach incorporates the fault detection and diagnosis method based on a bank of neural 

recurrent output predictors (NROPs) proposed in this work, and use an adaptive optimal linear 

quadratic Gaussian controller (LQGC). 

 

1.3 Dissertation Layout 

This dissertation is organized as follows. 

In Chapter 1, the motivations, the main goals and contributions, and the dissertation layout is 

presented. 

Chapter 2 contains the state-of-the-art and the background used for the research that comes 

from several scientific areas. The main concepts used in this dissertation are included and 

discussed. 

In Chapter 3, two new contributions for FDD in linear systems are described. The first 

contribution is the FDD method based on dynamic features of ARX models, and on neural 

nonlinear discriminant analysis (neural NNLDA). The other contribution is the statistical fault 

detection method based on Principal Component Analysis; this method is combined with the 

fault diagnosis method based on the influence matrix method. 

Chapter 4 is dedicated to fault detection and diagnosis approaches for nonlinear systems, 

where a brief review of the main approaches is described. The new neural recurrent output 

predictor (NROP) is presented. The proposed FDD approach based on a bank of neural 

recurrent output predictors (NROPs) is described. A new FDD method based on the 

application of neural nonlinear PCA to ARX model parameters is proposed to deal with 

nonlinear systems, combined with a neural nonlinear discriminant analysis (neural NNLDA) 

for pattern classification. 

The main experimental results obtained using the proposed fault detection and diagnosis 

approaches applied to process models and plants are presented in Chapter 5. Results for a 
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fault tolerant control (FTC) approach to solve the typical reconfiguration problem formulated 

for the three-tank benchmark are also shown. 

Finally, the conclusions and the future work appear in Chapter 6. 
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2 State of the Art  
 

A perfectly accurate and complete mathematical model of a physical system is never available 

(L. B. Palma). 

 

2.1 Introduction 

The state-of-the-art is presented, and the main concepts used in this work are included and 

discussed in this chapter. The ground work for this research comes from many scientific 

areas. Concepts related to data mining, multivariate statistics, linear and nonlinear dynamic 

systems, black-box models, system identification, fault detection and diagnosis (FDD) and 

fault tolerant control (FTC) are briefly reviewed. 

In the scientific and technical communities the terminology is not consensual. Some 

definitions are presented here in order to clarify any terms which may be misunderstood. It is 

beyond the scope of this document to give a complete treatment of all of these fields. Enough 

background information is included, so that the reader may follow the developments and 

extensions proposed in the subsequent chapters. 

It is the natural option to represent the signals in discrete time, primarily since observed data 

are always collected by sampling and processed by a personal computer. 

 

2.2 Data Mining 

Data mining is a science related to knowledge discovery (important information) from data 

(Berry & Linoff, 1997). Some common definitions are: a) “the science of extracting useful 

information from large data sets or databases”; b) “the nontrivial extraction of implicit, 

previously unknown, and potentially useful information from data”. To do this, data mining 

uses mainly computational techniques from statistics, pattern recognition, and machine 

learning. The concept of data mining is also known as Exploratory Data Analysis. 

The recent industrial plants are becoming more and more complex, requiring real-time 

supervision, and generating high quantities of process data. In the last two decades, mainly 

due to the use of high efficient dedicated computers and advanced instrumentation, the 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Machine_learning
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monitoring and supervision of industrial systems allows a high quality performance, and a 

wide understanding of the plant behaviour. The high quantity of available data requires an 

efficient extraction of information from this data. Based on the information, it is necessary to 

extract knowledge from the process, in order to perform many important tasks like 

monitoring, fault detection and diagnosis, control and supervision. An emergent paradigm in 

many sciences is:  “from data to information and knowledge”. According to Ackoff (1989) the 

content of the human mind can be classified into five categories: data, information, 

knowledge, understanding and wisdom. 

A great challenge in many areas, and in particularly in the area of supervision and process 

control, is to deal with high quantities of available data captured from sample-data systems 

with many experimental variables (eventually correlated). In this context, the increase of 

information in quantity is mainly due to the increase in the sampling frequency, and the 

increase of information in quality is mainly due to the increase of monitored variables (Lopes, 

2001). The development of intelligent knowledge-based methods that learn from data, like 

neural networks and fuzzy systems, allow engineers to deal with high quantities of data. The 

data mining concepts have been applied in many fields: fault detection and diagnosis, 

econometrics, chemometrics, data clustering, pattern classification, and multivariate statistics. 

The reduction of dimensionality is fundamental when the goal is to discover patterns that are 

not clear in multivariate data. The most popular data-driven method for reduction of 

dimensionality is the Principal Component Analysis (Jackson, 2003).  

 

2.3 Process Monitoring and Multivariate Statistics 

 

2.3.1 Introduction 

Multivariate statistics, or multivariate statistical analysis, is a statistical science that deals with 

observation and analysis of more than one statistical variable at a time. 

The effectiveness of the data-driven measures depends on the characterization of the process 

data variations. There are two types of variations for process data (Ogunnaike & Ray, 1994; 

Chiang, et al., 2001): common cause and special cause. The common cause variations are 

those due to random noise (e.g., associated with sensor readings), whereas special cause 

variations account for all the other data variations. Since variations in the process data are 

unavoidable, statistical theory plays an important role in most process monitoring schemes. 

http://en.wikipedia.org/w/index.php?title=Statistical_observation&action=edit
http://en.wikipedia.org/wiki/Statistical_analysis
http://en.wikipedia.org/w/index.php?title=Statistical_variable&action=edit
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The application of statistical theory to process monitoring relies on the assumption that the 

characteristics of the data variations are relatively unchanged, unless a fault occurs in the 

system. If a Fault is defined as “an abnormal process condition” (Chiang, et al., 2001), this is 

a reasonable assumption. It implies that the properties of the data variations, such as the mean 

and variance, are repeatable for the same operating conditions; the repeatability of the 

statistical properties allows the establishing of thresholds for certain measures. 

Multivariate statistical techniques have been applied in many scientific and technological 

areas (Piovoso & Kosanovich, 1996; Chiang, et al., 2001). The majority of applications of 

some techniques of multivariate statistics have been in chemical process industries, power 

plants, and nuclear plants. 

Within the scope of the present work, the main focus is on the areas of process monitoring 

and fault detection and diagnosis in dynamic systems modeled by black-box models. 

This section will describe briefly the main techniques of multivariate statistics used: Principal 

Component Analysis (PCA), and Principal Component Regression (PCR). There is special 

emphasis on how to use statistical methods for process monitoring, in particular methods 

using the multivariate T2 statistics and the Q statistics computed based on the PCA approach. 

PCR is used for estimation of ARX model parameters. 

 

2.3.2 Data Pre-Processing 

To extract the information in the data relevant to process monitoring, it’s often necessary to 

pre-process the data in the training set. The training set contains off-line data available for 

analysis prior to the on-line implementation of the process monitoring schemes, and is used to 

develop the measures representing the nominal operations (without faults) and the faulty 

situations. The pre-processing procedures consist of three tasks (Chiang, et al., 2001): 

removing variables, auto-scaling, and removing outliers.  

Inappropriate variables in the training set that have no information relevant to process 

monitoring should be removed before further analysis. 

The second task, auto-scaling (also termed standardization), is usually necessary to avoid 

particular variables dominating the process monitoring method, especially in those methods 

based on dimensionality reduction techniques, such as Principal Component Analysis (PCA). 

Auto-scaling standardizes the process variables, ensuring that for each variable an equal 

weight is given. Each variable is subtracted by its sample mean (µ), so to capture the variation 

of the data from the mean. Then each variable of the mean-centered data is divided by its 

standard deviation (σ). These two steps scale each variable to mean zero, and unit variance. 
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When auto-scaling is applied to new process data, the mean to be subtracted and the standard 

deviation to be divided are taken from the training set. 

Finally, the outliers should be removed. Outliers are isolated measurement values that are 

erroneous. These values may significantly influence the estimation of statistical parameters 

(or other parameters) related to a given measure. 

 

2.3.3 Normal Distribution 

The normal distribution, also called Gaussian distribution, is a probability distribution of great 

importance in many fields such as statistical data analysis, fault detection and diagnosis, 

medicine, psychology, biology, financial studies, etc. The normal distribution is probably the 

most important distribution in both the theory and application of statistics. A definition of its 

probability distribution function (PDF) is given next. 

 

Definition 2.1. If y is a normal random variable, in continuous time, then the probability 

distribution function of y is given by (Montgomery, 1991): 

 

f(y) = 
1

 σ 2π
 e

-
1
2 (

y - µ
σ )

2

   -∞ < y < +∞ 

Eq. 2.1 

 

The parameters of the normal distribution are the mean µ (-∞ < µ < +∞) and the variance 

σ 2 > 0. A typical notation, y ~  N(µ, σ 2), is used to imply that y is normally distributed. 

■ 

 

The standard univariate normal distribution is the normal distribution with a mean of zero  

(µ = 0) and a variance of one (σ 2 = 1). The normality assumption is at the core of a majority 

of standard statistical procedures. The graph of its probability distribution function (PDF) 

resembles a symmetric bell-shaped curve. The best visual way to evaluate how far the data are 

from Gaussian is to look at a graph and see if the distribution deviates from a bell-shaped 

normal distribution. 

 

Definition 2.2. If y is a normal random variable, then the cumulative normal distribution 

function is defined as the probability that the normal variable y is less than or equal to some 

value b (Montgomery, 1991): 

 

http://en.wikipedia.org/wiki/Probability_distribution
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Eq. 2.2 

■ 

 

Several methods exist to test normality, for example the Kolmogorov-Smirnov test, the 

normal probability (rankit) plot, the Lilliefors test, the Shapiro-Wilk test, the D’Agostino-

Pearson omnibus test, etc.  

 

The normal distribution is often assumed as the appropriate probability model for a random 

variable. In many instances, it is difficult to check the validity of this assumption; however, 

the central limit theorem is often a justification of approximate normality (Montgomery, 

1991). The so-called central limit theorem (CLT) formulated by H. Cramér around 1937 

appears in many different forms. All forms have in common the purpose of stating conditions 

under which the sum of several random variables, regardless of the distributions of the 

individual variables, may be approximated by a normal random variable. The central limit 

theorem can be stated as follows: if the sample size is large, the theoretical sampling 

distribution of the mean can be approximated closely with a normal distribution. Another 

formulation of this theorem is given below (Conover, 1999). 

 

Theorem 1. Central Limit Theorem. 

Let Σn be the sum of n random variables x1, x2, …, xn, let µn be the mean of Σn, and let σn
2 be 

the variance of Σn. Under some general, easily met conditions, as n, the number of random 

variables, goes to infinity, the distribution function of the random variable 

 

Σn − µn

σn
 

Eq. 2.3 

 

approaches the standard normal distribution function. 

■ 

 

In practice, the number of random variables summed never goes to infinity. The normal 

approximation is usually considered to be reasonably good for a large n, i.e., n > 30 (Conover, 
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1999). In general, if the variables xi are identically distributed, and the distribution of each xi 

does not depart radically from the normal distribution, then the central limit theorem works 

quite well even for a small value of random variables (Montgomery, 1991). These conditions 

are met frequently in monitoring and quality-control problems. Measurements contain random 

errors due to, e.g., the sampling, the sample pre-treatment, noise, etc. These random errors 

will tend to a normal distribution as the number of measurements becomes larger. 

As a consequence of the central limit theorem we know that regardless of the distribution of 

the data (population), the sampling distribution of the sample mean is approximately normal. 

So it is expected that, for a stationary dynamic process under nominal operation, some 

stochastic signals (features and residuals) used for fault detection and diagnosis purposes 

follow approximately a normal distribution. 

 

2.3.4 Univariate Statistical Monitoring 

A univariate statistical approach to limit sensing can be used to determine the thresholds for 

each observation variable (a process variable observed through a sensor reading); these 

thresholds define the boundary for nominal (“in-control”) operations, and a violation of these 

limits with on-line data would indicate a fault. This approach is typically employed using a 

Shewhart control chart (Fig. 2.1), and has been referred to as limit sensing, and limit value 

checking (Chiang, et al., 2001). 

 

y

t

µ

0 Time

χuµ+3σ

µ−3σ χo

 

Fig. 2.1 - Typical Shewhart control chart for a dynamic process. 

 

The values of the upper and lower thresholds (χu and χo) on the Shewhart chart are critical to 

minimizing the rate of false alarms, and the rate of missed fault detections. 

 10
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A false alarm is an indication of a fault, when in fact a fault has not occurred. A missed 

detection is no indication of a fault, though a fault has occurred. For fault detection, there is 

an inherent trade-off between minimizing the false alarm and missed detection rates.  

 

Given certain threshold values, statistical hypothesis theory can be applied to predict the false 

alarm and missed detection rates based on the statistics of the data in the training sets (Chiang, 

et al., 2001). Assuming for a process variable y that any deviations from a desired value µ are 

due to inherent measurement and process variability described by a normal distribution 

N(µ, σ 2) with standard deviation σ, then the probabilities that y is in certain intervals are 

given by: 

 

Pr{y < (µ - cα/2σ)} = Pr{y > (µ + cα/2σ)} = α / 2  

Pr{(µ - cα/2σ) ≤ y ≤ (µ + cα/2σ)} = 1 - α  

Eq. 2.4 

 

In Eq. 2.4, cα/2 is the standard normal deviate corresponding to the 1 - α/2 percentile, α being 

the level of significance, which specifies the degree of trade-off between the false alarm rate 

and the missed detection rate. Some typical standard normal deviate values are 

{3.0; 2.81; 2.58} (Chiang, et al., 2001; Montgomery, 1991). For a standard normal deviate 

cα/2 = 3 the probability Pr{(µ - cα/2σ) ≤ y ≤ (µ + cα/2σ)} = 99.73 %. This value (3-sigma) is 

used in this work, and is termed 3-sigma (control) limit for thresholds in monitoring tasks, 

based on a typical Shewhart control chart. 

Process monitoring schemes based on Shewhart charts may not provide adequate false alarm 

and missed detection rates. These rates can be improved by employing measures that 

incorporate observations from multiple consecutive time instants, such as the cumulative sum 

(CUSUM) and the exponentially-weighted moving average (EWMA) charts (Montgomery, 

1991). For a given false alarm rate, these methods can increase the sensitivity to faults over 

the measures using the Shewhart charts and decrease the missed detection rate. This is 

achieved at the expense of increasing the detection delay, which is the amount of time 

expended between the start of the fault and time of detection. This suggests that the Shewhart 

charts are better suited for detecting abrupt large process shifts, and the CUSUM and EWMA 

charts are better for faults producing small persistent process shifts (Chiang, et al., 2001). 

The univariate statistical charts (Shewhart, CUSUM, and EWMA) determine the thresholds 

for each observation variable individually without considering the information contained in 

the other variables. Because these methods ignore the correlation between variables, they do 
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not accurately characterize the behaviour of most modern industrial processes (Chiang, et al., 

2001). The next section describes the multivariate T2 statistics, which takes into account the 

correlations between the observation variables. 

 

2.3.5 Multivariate T2 Statistics 

Let the data in the training set, consisting of m observation variables and n observations for 

each variable, be stacked into a data matrix X ∈ ℜn × m, then the sample covariance matrix of 

the training set is equal to 

 

S = 
1

n-1 XT X . 
Eq. 2.5 

 

An eigenvalue decomposition of the matrix S ∈ ℜm × m obtained by singular value 

decomposition (SVD), 

 

S = V Λ VT Eq. 2.6 

 

reveals the correlation structure for the covariance matrix, where Λ ∈ ℜm × m is a diagonal 

eigenvalue matrix and V ∈ ℜm × m is an orthogonal eigenvector matrix, i.e. VT V  = I where I 

is the identity matrix (Chiang, et al., 2001; Golub & Loan, 1996). The projection y = VT x of 

an observation vector x ∈ ℜm × 1 decouples the observation space into a set of uncorrelated 

variables corresponding to the elements of y. 

Assuming S is invertible and with the definition 

 

z = Λ-1/2 VT x Eq. 2.7 

 

the Hotelling’s T2 statistics is given by (Chiang, et al., 2001) 

 

T2 = zT z . Eq. 2.8 

 

The matrix V rotates the major axes for the covariance matrix of x, so that they directly  

correspond to the elements of y, and Λ scales the elements of y to produce a set of variables 

with unit variance corresponding to the elements of z. 
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The T2 statistics is a scaled squared 2-norm of an observation vector x from its mean. The 

scaling on x is in the direction of the eigenvectors and is inversely proportional to the standard 

deviation along the eigenvectors. This allows a scalar threshold to characterize the variability 

of the data in the entire m-dimensional observation space. Appropriate thresholds for the T2 

statistics based on the level of significance α can be determined by assuming that the 

observations are randomly sampled from a multivariate normal distribution. When the actual 

covariance matrix for the nominal region is estimated from the sample covariance matrix (Eq. 

2.5), faults can be detected for observations taken outside the training set using the threshold 

given by 

 

T2
α = 

m (n-1) (n+1)
n (n-m)  Fα (m, n-m) 

Eq. 2.9 

 

where Fα (m, n-m)  is the Fisher’s F-distribution with m and n-m degrees of freedom 

(Montgomery, 1991). Given two sample vectors originating from two chi-square 

distributions, the F-distribution is given by the ratio of the estimated variances of the two 

distributions. The set T2 ≤ T2
α  is an elliptical confidence region in the observation space. The 

threshold given by Eq. 2.9 assumes that the observation at one time instant is statistically 

independent to the observations at other time instants. This can be a misleading assumption 

for short sampling periods. However, if there is enough data in the training set to capture the 

normal process variations, the T2 statistics can be an effective tool for process monitoring, 

even if there are smooth deviations from the normality or statistical independence 

assumptions. 

The above T2 tests are multivariable generalizations of the Shewhart chart used in the scalar 

case. The single variable CUSUM and EWMA charts can also be generalized to the 

multivariable case in a similar manner. 

The quality and quantity of the data in the training set have a large influence on the 

effectiveness of the T2 statistics as a process monitoring tool. The required number of 

observations needed to statistically populate the covariance matrix for m observation variables 

is approximately 10 times the dimensionality of the observation space (n ≅ 10 m),(Chiang, et 

al., 2001). The number of observations n is given by the amount of data needed to produce a 

threshold value sufficiently close to the threshold obtained by assuming infinite data in the 

training set.    
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2.3.6 Principal Component Analysis (PCA) 

In processes where redundancy or correlation between variables exists, it is advantageous to 

reduce the number of variables, maintaining an important quantity of original information. 

Dimensionality reduction techniques can greatly simplify and improve process monitoring 

procedures, since they project the data into a lower-dimensional space that accurately 

characterizes the state of the process (Chiang, et al., 2001; Jackson, 2003; Jolliffe, 2002). 

Principal Component Analysis (linear PCA) is one of the most popular dimensionality 

reduction techniques. PCA is a multivariate statistical technique in which a number of related 

variables are transformed to a smaller set of uncorrelated variables. PCA is also known as 

Empirical Orthogonal Function Analysis (EOFA). The terminology Karhunen-Loeve 

Transform (KLT), or expansion, is in common use in some disciplines to denote PCA in 

continuous time domain. 

PCA preserves the correlation structure between the process variables, and captures the 

variability in the data. The application of linear PCA as a dimensionality reduction tool for 

monitoring industrial processes has been studied by several academic and industrial 

engineers. For many applications, most of the variability in the data can be captured in two or 

three dimensions, and the visualization can be done on a single plot (Chiang, et al., 2001). 

This one-plot visualization assists the operators and engineers in interpreting the significant 

trends of the process behaviour. 

PCA can produce lower-dimensional representations of data, and therefore, improve the 

proficiency of detecting and diagnosing faults. The structure abstracted by PCA can be useful 

in identifying either the variables responsible for the fault and/or the variables most affected 

by the fault. PCA can separate the observation space into two subspaces: the signal subspace 

capturing the systematic trends of the process and the noise subspace containing essentially 

the random noise. 

PCA is a linear dimensionality reduction technique that captures the variability of the data. It 

determines loading vectors (orthogonal vectors) ordered by the amount of variance explained 

in the loading vector directions. Given a training set of n observations and m process variables 

stacked into a data matrix X ∈ ℜn × m, the loading vectors are computed by solving the 

stationary points of the optimization problem (Chiang, et al., 2001): 

 

max
v≠0

 (
vT XT X v

vT v )
Eq. 2.10 
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where v ∈ ℜm × 1. The stationary points of Eq. 2.10 can be computed via a Singular Value 

Decomposition (SVD) 

 

1
n-1

 X = U Σ VT Eq. 2.11 

 

where U ∈ ℜn × n and V ∈ ℜm × m are unitary matrices, and the matrix Σ ∈ ℜn × m contains the 

non-negative real singular values of decreasing magnitude along its main diagonal 

(σ1 ≥ σ2 ≥ … ≥ σmin(m,n) ≥ 0), and zero off-diagonal elements. The loading vectors are the 

orthonormal column vectors in the matrix V, and the variance of the training set projected 

along the ith  column of V is equal to σ2
i . Solving Eq. 2.11 is equivalent to solving an 

eigenvalue decomposition of the sample covariance matrix S (Chiang, et al., 2001), 

 

S = 
1

n-1 XT X = V Λ VT Eq. 2.12 

 

where the diagonal matrix Λ = ΣT Σ (Λ  ∈ ℜ m × m) contains the non-negative real eigenvalues 

of decreasing magnitude (λ1 ≥ λ2 ≥ … ≥ λm ≥ 0) and the ith  eigenvalue equals the square of 

the ith  singular value (i.e., λi = σ2
i  ). 

When the goal is to minimize the effect of random noise that corrupt the PCA representation, 

and to optimally capture the variations of data, then only the loading vectors corresponding to 

the a largest singular values must be retained in the PCA model. PCA projects the observation 

space into two subspaces: the scores subspace and the residual subspace. Selecting the 

columns of the loading matrix P ∈ ℜm × a to correspond to the loading vectors V ∈ ℜm × m 

associated with the a largest singular values, the projections of the observation data 

X ∈ ℜn × m into the lower-dimensional space are contained in the scores matrix T ∈ ℜn × a 

 

T = X P Eq. 2.13 

 

and the projection of T back into the m-dimensional observation space is given by 

 

X
∧

 = T PT . 
Eq. 2.14 
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The difference between X and X
∧

 is the residual matrix E, 

  

E = X - X
∧ Eq. 2.15 

 

that captures the variations in the observation space spanned by the loading vectors associated 

with the m-a smallest singular values. The subspaces spanned by X
∧

 and E are usually 

denominated scores space and residual space, respectively. A more accurate representation of 

the process is given by X
∧

, since the subspace contained in the matrix E, that has a small 

signal-to-noise ratio, is removed. 

 

The Square of Prediction Error (SPE), also known as the Q statistics, is computed based on 

the residual space, and is given by q(k) ∈ ℜ1 × 1 for each time instant k, assuming a window of 

length one: 

 

q(k) = e(k) e(k)T Eq. 2.16 

 

where the estimation error is e(k) = x(k) - x
∧
(k), and x(k) = X(k,:) ∈ ℜ1 × m is a line vector. 

The distribution of the Q statistics has been approximated by Jackson & Mudholkar (1979): 

 

Qα = θ1 [ 
h0 cα 2θ2

θ1
 + 1 + 

θ2h0(h0-1)

θ 2
1

 ]1/h0 
Eq. 2.17 

 

where θi = ∑
j=a+1

m
  λj

i, h0 = 1 - 
2 θ

1
 θ

3

3 θ 2
2

 , and cα is the normal deviate corresponding to the (1-α) 

percentile. Given a level of significance, α, the threshold for the Q statistic can be computed 

using Eq. 2.17 and used to detect faults. 

 

Defining ti to be the ith  column of T in the training set, the following properties can be shown 

(Piovoso & Kosanovich, 1994): 

1. Var(t1) ≥ Var(t2) ≥ … ≥ Var(ta), where Var(.) means variance. 

2. Mean(ti) = 0; ∀i 
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3. ti
T tj = 0; ∀ i ≠ j 

4. There is no other orthogonal expansion of a components that captures more variations of 

the data. 

A new observation (column) vector in the testing set for a given time instant k, x(k) ∈ ℜm × 1, 

can be projected into the lower-dimensional scores space ti = xT pi. The ith loading vector is pi, 

the transformed observations are the scores ti, and the transformed variables are the principal 

components. Using the PCA dimensionality reduction technique, only a ≤ m variables needed 

to be monitored, as compared with m variables without the use of PCA. 

The text above introduces the main ideas of classic linear PCA. It is also possible to 

implement linear PCA using neural networks, and nonlinear PCA based on neural networks or 

on principal curves. 

Since the Principal Components Regression (PCR) method is directly related to SVD and 

PCA, it will be briefly introduced in the next section. This method belongs to the class of 

parameter estimation/identification methods.  

 

2.3.7 Principal Components Regression (PCR) 

Principal Components Regression (PCR) can be understood as an extension of Principal 

Component Analysis (PCA) to the modelling of some Y data from the X data (Geladi & 

Kowalsky, 1986; Wise & Ricker, 1990; Piovoso & Kosanovich, 1996). The approach to 

defining this relationship is accomplished in two steps. The first is to perform PCA on the X 

data, and the second is to regress the scores onto the Y data. 

According to Wise & Ricker (1990) parameterized models identified by classical least-

squares (LS) are generally as good as models identified by PCR. The exception to this is 

when conditions are extremely adverse, e.g. there is poor input excitation in the data and the 

noise level is very high. The concept of input persistent excitation is particularly important in 

noisy systems. The input signals must verify the Persistent Excitation Conditions (PEC) when 

it is desired to obtain good consistency of the parameter estimates (Soderstrom & Stoica, 

1989; Ljung, 1999).  

PCR can be understood as an extension of LS and PCA. In the first step, the principal 

components are computed. All the scores or the most important for principal components are 

used as the basis for the LS with the target data y. The main advantages of PCR over LS are: 

a) the noise remains in the residuals, since the eigenvectors with low eigenvalues represent 

only parts of the data with low variance; b) the regression coefficients b are more stable, due 
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to the fact that the eigenvectors are orthogonal to each other. The great disadvantage of PCR 

over LS is that it does not have a simple recursive version like the recursive least squares 

(RLS) algorithm (Soderstrom & Stoica, 1989; Mosca, 1995). 

The Parameter Estimation Problem for the case of ARX models can be formulated as follows. 

Assuming that for a time series of data the vector of the output variable is y ∈ ℜn × 1, and the 

input matrix X ∈ ℜn × m consists of past values of process outputs and inputs, the estimation 

problem can be expressed in the form (Eq. 2.18), where b ∈ ℜm × 1 is the parameter vector. 

 

y = X b. Eq. 2.18 

 

The most obvious way to estimate the parameter vector b is by least squares (LS) (Soderstrom 

& Stoica, 1989; Ljung, 1999; Wise, 1991):  

 

b
∧

 = (XT X)-1 XT y . Eq. 2.19 

 

The main problem with the LS approach is that the matrix (XT X)-1 may be poorly 

conditioned. If the independent data block is nearly rank deficient (the covariance matrix has 

some eigenvalues near zero), then the solution to the normal regression equation can change 

drastically with just a small change in data, for example due to corruption from noise. 

To obtain a better conditioned problem for the estimation of the parameter vector b it is 

common to use Principal Components Regression (Wise & Ricker, 1990; Piovoso & 

Kosanovich, 1996). Either PCA or SVD can be used to decompose the X matrix 

 

X = T PT = U S VT     Eq. 2.20 

 

where T = U S and PT = VT. Here, the PCA decomposition will be used, where the scores 

matrix T has orthogonal columns and the loadings matrix PT has orthonormal columns. The 

vectors in PT are arranged in such a way that each lies in the direction of greatest remaining 

variance in X, after the variance in the previous vector directions is removed. The PCA 

decomposition provides a new basis set PT for the X matrix, where each successive basis 

vector describes the remaining trend in the X matrix. 

For the case of SISO systems and without loss of generality, the estimation problem via PCR 

is formulated here as a theorem inspired in previous algorithm formulations (Geladi & 

Kowalsky, 1986; Wise & Ricker, 1990; Piovoso & Kosanovich, 1996). A proof is also given.  
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Theorem 2. Principal Components Regression (PCR) theorem. 

For the parameter estimation problem y = X b (Eq. 2.18), let a data matrix X ∈ ℜn × m consists 

of past values of process outputs y ∈ ℜn × 1 and inputs u ∈ ℜn × 1. The number of parameters 

to estimate is given by m, and the number of principal components is given by a ≤ m. If 

n >> m and the persistent excitation conditions are verified then it is feasible to decompose 

the X matrix by Principal Component Analysis (PCA). Estimates of the parameter vector b 

(b = θ) can be obtained using the first a vectors in PT (principal components, or PCs) and in T 

according to 

 

b
∧

 = Pa (Ta
T Ta)

-1 Ta
T y   Eq. 2.21 

 

with b
∧
 ∈ ℜm × 1, Pa ∈ ℜm × a, and Ta ∈ ℜn × a.  

■ 

 

Proof. If the PCA decomposition of matrix X, X = Ta Pa
T (Eq. 2.20), is substituted in the 

least-squares equation b
∧

 = (XT X)-1 XT y (Eq. 2.19), then Eq. 2.21 is obtained, provided that 

(Pa Pa
T)-1 = I, according to the following developments: 

b
∧

 = (XT X)-1 XT y   and   X = Ta Pa
T ; 

b
∧

 = ((Ta Pa
T)T (Ta Pa

T))-1 (Ta Pa
T)T y = 

= ((Pa Ta
T)(Ta Pa

T))-1 (Pa Ta
T) y = 

= (Pa Pa
T)-1 Pa (Ta

T Ta)
-1 Ta

T y = 

= Pa (Ta
T Ta)

-1 Ta
T y  

■ 

 

 

Note that the PCR problem is well conditioned. Since the score vectors in T are orthogonal, 

the matrix (Ta
T Ta) is non-zero on the diagonal only, and its inverse is easily calculated. The 

main idea in the PCR estimation is to invert only the major trends in X when estimating b, 

assuming implicitly that the major trends in X and in y are causally linked. In practice, when 

using the PCR estimation method it is common to use a = m when good estimates are 

desirable, since generally as principal components are added the model error gets smaller, 

going through a minimum (Geladi & Kowalsky, 1986; Wise & Ricker, 1990). 
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A sliding window Principal Components Regression (PCR) algorithm is proposed here to 

compute on-line an estimation of the ARX parameter vector. The sliding window length d 

must be selected according to the dominant process time constant. The pseudo-code of the 

algorithm is given afterwards. A comparison of the algorithms RLS, sliding window LS and 

sliding window PCR is presented in section 5.5. 

In a fault situation, one sliding window algorithm with finite time horizon, like the SW-PCR, 

guarantees that a time instant exist from which all the information reflects the fault behaviour.  

 

Algorithm 1. Sliding Window Principal Components Regression (SW-PCR). 

Notation: 

 k: current time instant; 

 Ts: sampling period; 

 d: window length in seconds; w: window length in samples; 

 na, nb, nd: ARX model orders; 

θ(k): ARX parameter vector; 

 u: [u(1) … u(k)]: vector of input signal; 

 y: [y(1) … y(k)]: vector of output signal;  

 a: number of principal components; 

Initialization: 

 w = round(d / Ts); a = na + nb; nc = nd + nb - 1; 

0. at time instant k: 

1. ka = k - w + 1; // first sample of sliding window 

2. yv = y(ka:k); // vector of output signal for a sliding window 

3. X = [-y(ka-1:k-1) … -y(ka-na:k-na) +u(ka-nd:k-nd) … +u(ka-nc:k-nc)]; // data matrix 

4. [U, S, V] = svd(X); // singular value decomposition of X 

5. T = U S; // scores matrix     

6. P = V; // loadings matrix 

7. Pa = P(:,1:a); // loadings matrix associated with a principal components    

8. Ta = T(:,1:a); // scores matrix associated with a principal components 

9. θ(k) = Pa (Ta
T Ta)

-1 Ta
T yv; // vector of parameters estimated at time k   

10. rg(k) = [-y(k-1) … -y(k-na) +u(k-nd) … +u(k-nc)]; // regressor vector at time k 

11. yp(k) = rg(k)T θ(k); // output predictor value 

■ 

 



It is worth understanding the relationship between SVD, PCA, and eigenvector 

decompositions. The principal components PT are equal to the singular vectors VT, and these 

are also equal to the eigenvectors of (XT X). Besides, the singular values of X are equal to the 

square roots of the eigenvalues of (XT X). 

A relation also exists between the covariance matrix and the correlation matrix (Chiang, et al., 

2001; Wise, 1991). If the variables (columns) in the data matrix X have been mean centered 

(scaled to have zero mean), then (XT X)  / (n - 1) (where “n ” equals the number of samples) is 

referred to as the covariance matrix of X. If the data matrix X is auto-scaled (a standardization 

transformation is made in order for columns scaled to have zero mean and unit variance) then 

(XT X)  / (n - 1) is mentioned as the correlation matrix. The eigenvectors of the correlation 

matrix are equal to the principal component vectors. 

 

2.3.8 Pattern Recognition and Discriminant Analysis 

Today’s industrial processes are heavily instrumented, with a large amount of data collected 

on-line and stored in computer databases. If the data collected during nominal operation and 

faulty situations have been previously diagnosed, then the data can be categorized into 

separate classes where each class is associated to a particular fault (Chiang, et al., 2001). 

If hyper-surfaces can separate the data in different classes, these hyper-surfaces can define the 

decision boundaries for each of the fault regions. In general the decision boundaries are 

nonlinear, and this is the reason why here they are named hyper-surfaces. Once a fault is 

detected using on-line data observations, the fault can be diagnosed by determining the fault 

region in which the observations are located, assuming the fault is represented in the database. 

The assignment of data to one of several classes (or categories) is the problem addressed by 

Pattern Recognition theory (Marques de Sá, 2001; Duda, et al., 2000; Salvador Marques, 

1999). The human perception is a paradigm in the area of Pattern Recognition. The pattern 

recognition systems try to emulate human capabilities, and their main goal is to take a 

decision between a set of classes.  

 

Features (patterns)
Extraction Classifier

PatternsData Decision

 

Fig. 2.2 - Classical structure of a pattern recognition system. 
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The classical structure of a pattern recognition system is composed of two blocks (Salvador 

Marques, 1999), as depicted in Fig. 2.2. The first block is a features (patterns) extraction 

block, and the second is a classifier. The first block, selects the important information for the 

decision, transforming the data into a set with fewer values named features or patterns. 

Finally, the patterns are used by the classifier to select the class, or hypothesis, that best 

describes the real world. 

 

Typically, it is assumed that the extracted patterns (features) belong to a finite set of discrete 

features, for example, Sd = {1, 2, …, M}, or a set Sc ∈ ℜn of continuous features. For the first 

case, the observed pattern is a scalar contained in the set Sd, while for the second case the 

pattern is a vector with n real components, v = [v1 v2 … vn]
T. The set S is often termed the 

space of patterns (features). The main goal of the classifier block is to assign a class c ∈ Ω to 

each observed pattern, where Ω = {c1, c2, …, cm} is the set of admissible classes, and m = #Ω. 

The typical pattern recognition system assigns an observation vector to one of several classes 

via three steps: feature extraction, discriminant analysis, and maximum selection. The 

classifier executes the steps of discriminant analysis and maximum selection. Several 

approaches exist to solve the problem of pattern recognition. The most common are classical 

statistical parametric approaches, and neural approaches. 

For the linear case, the Discriminant Analysis can be implemented based on Fisher 

Discriminant Analysis (FDA) (Chiang, et al., 2001). FDA is a linear statistical dimensionality 

reduction technique that has been extensively studied in the pattern classification literature. It 

takes into account the information between the classes and has advantages over PCA for fault 

diagnosis. FDA is optimal in terms of maximizing the separation amongst the classes. For the 

nonlinear case, the Nonlinear Discriminant Analysis (NLDA) can be implemented using 

neural networks (Asoh & Otsu, 1990; Gallinari, et al., 1991). In the neural network training 

phase, the minimization of the performance functions (sum of squared errors SSE, or mean of 

squared errors MSE) corresponds to a maximization of the discriminant criterion (Gallinari, et 

al., 1991). The neural NLDA (NNLDA) is used in this work, and will be explained in Chapter 

3 (section 3.3) in a fault detection and diagnosis context. The discriminant analysis NNLDA 

allows the definition of decision boundaries needed for fault detection and isolation, and is 

more efficient than the geometrical techniques. 

 



 23

2.4 Dynamic Systems and Black-Box Models 

 

2.4.1 Introduction 

The concepts of Signals and Systems arise in an extremely wide range of fields, and the ideas 

and techniques associated with these concepts play an important role in such diverse areas of 

science and technology (Oppenheim, et al., 1983). Here is assumed that systems are dynamic, 

since the work developed is focused on technical processes. The main focus is on sampled 

data systems (data captured from continuous time systems), and the concepts proposed were 

developed in discrete time. 

Inferring Models from observations and studying their properties is really what science is 

about. The models (”laws of nature”, “hypothesis”, “paradigms”, etc) may be of more or less 

formal character, but they have the basic feature that they attempt to link observations 

together into some pattern (Ljung, 1999). 

 

2.4.2 Dynamic Systems, Signals and Models  

Sometimes, it is a good idea to remember and to write elementary definitions, since more 

complex concepts are based on them, and they can also be beneficial to develop new 

concepts. Clearly the notions of a system and of a signal are broad concepts, and it is not 

surprising that they play an important role in modern science (Ljung, 1999). 

 

Definition 2.3. Signal. 

A signal is a function of one or more independent variables, and typically contains 

information about the behaviour or nature of some phenomenon (Oppenheim, et al., 1983). 

■ 

 

Definition 2.4. System. 

A system responds to particular input signals by producing other output signals (Oppenheim, 

et al., 1983). Another definition is: a group of interacting, interrelated, or interdependent 

elements forming a complex whole. In loose terms, a system is an object in which variables of 

different physical nature interact and produce observable signals (Ljung, 1999).  

■ 

 



Usually, the interesting observable signals are the output signals y(k). The system is also 

affected by external signals. The external signals that can be manipulated by the operator are 

called input signals u(k). Others are called disturbances, and can be divided into those that are 

directly measured w(k) and those that are only observed through their influence on the system 

output v(k) (Fig. 2.3). 

 

System

w(k)

u(k)

v(k)

y(k)

 

Fig. 2.3 - A system with inputs, disturbances and outputs. 

 

When we interact with a system, we need some concept of how its signals (variables) relate to 

each other. 

 

Definition 2.5. System model. 

A model of a system is an assumed relationship among observed signals (Ljung, 1999).  

■ 

 

System models may come in various shapes and be stated with varying degrees of 

mathematical formalism. The intended use will determine the degree of sophistication that is 

required to make the model purposeful. A model for fault detection and diagnosis does not 

need to be equal to a model for control; it can be simpler, or more complex. 

 

Basically, there are two ways of constructing mathematical models (Ljung, 1999; Soderstrom 

& Stoica, 1989): physical (mathematical) modeling, and system identification. Physical 

modeling is an analytical approach based on basic laws from physics of the phenomenon or 

process. System identification is an experimental approach. Based on experiments, a model 

(usually a black-box model) is fitted to the captured data by assigning suitable numerical 

values to its parameters. System identification is relevant in many applications, e.g., 

simulation, prediction, control systems design, and fault detection and diagnosis. 
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The real systems are objects of a different kind than physical models. Taking a pragmatic 

view of models, the modeling should be guided by “usefulness” rather than “truth” (Ljung, 

1999).  

 

The terminology used by the control scientists and engineers is not consensual. The terms 

Estimator, Predictor, and Observer, are in some situations used improperly. Some definitions 

used in the work in the field of dynamic systems are presented below. An output signal of a 

dynamic process is a signal directly measured by a sensor. 

 

Definition 2.6. Estimator. 

An estimator is a system that tries to estimate (approximately) the value of a parameter (or a 

set of parameters) of a model associated with a stochastic process. The parameters being 

estimated can assume a constant value, or not. If the parameters change, then the estimator 

must include a re-tuning mechanism; in this case, the estimator tries to estimate the instant 

value of the parameter. The estimator does not know, a priori, any intrinsic dynamic 

characteristic of the variation of the parameters.  

■ 

 

Definition 2.7. Predictor. 

A predictor is a system that reproduces the evolution of a measurable signal, with temporal 

anticipation (or in synchronism) relative to the real signal. The predictor structure can 

incorporate, or not, a feedback mechanism. A predictor incorporates a dynamic model of the 

process in question. 

■ 

 

Definition 2.8. Observer. 

An observer is a system that reproduces the evolution of a non-mensurable signal, with 

temporal anticipation (or in synchronism) relative to the real signal. The observer structure 

can incorporate, or not, a feedback mechanism. An observer incorporates a dynamic model of 

the process in question. 

■ 

 

Both predictors and observers try to reproduce the evolution of signals associated with 

dynamic processes, and their structure incorporates a dynamic model that takes into account 

the dynamic characteristics of the process. 
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Other definitions can be found in (Ljung, 1999; Soderstrom & Stoica, 1989). 

In some literature the term observer is used as a structure that incorporates the predictor 

structure. 

 

2.4.3 Black-Box Models and System Identification 

In this work, the proposed fault detection and diagnosis (FDD) and fault tolerance 

methodologies are based mainly on black-box system models. 

Linear ARX models and nonlinear ARX neural models are used in this work. These models 

are especially important due to their high potential and simplicity. 

Some definitions are presented next. 

 

Definition 2.9. Black-Box Model. 

A model, whose parameters are basically viewed as vehicles for adjusting the fit to the data 

and do not reflect physical considerations in the system, is called a black-box model (Ljung, 

1999). 

■ 

 

Input-output models were considered, instead of state-space models, since the proposed FDD 

and FTC methods are based on this type of models. It is assumed that the systems under study 

can be modeled by stochastic processes. The concept of a stochastic process is presented 

below. Important contributions in this area were made by the mathematician Kolmogorov 

around 1930.  

 

Definition 2.10. Stochastic Process. 

A stochastic process (random process) can be regarded as a family of stochastic variables 

x(k), k ∈ T (Astrom & Wittenmark, 1997). The stochastic variables are indexed with the 

parameter k, which belongs to the set T, called the index set. In stochastic control theory, the 

variable k is interpreted as discrete time. For sampled-data systems, the set T contains the 

sampling instants, that is, T = {1, 2,…, k-1, k, k+1, …}. 

■ 

 

Here, two types of black-box models are mainly used and discussed: the autoregressive linear 

ARX model, and the nonlinear ARX neural model. 
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Definition 2.11. ARX Model. 

An ARX linear model is an input-output parametric model that can be expressed by a linear 

difference equation (Ljung, 1999): 

 

y(k) + a1 y(k-1) + …+ ana y(k-na) = b1 u(k-nd) + …+ bnb u(k-(nd+nb-1)) + e(k) . Eq. 2.22 

 

Introducing the polynomials A(q-1) and B(q-1) given by  A(q-1) = 1 + a1 q
-1 + … + ana q

-na and 

B(q-1) = b1 q
-nd + b2 q

-(nd+1) + … + bnb q
-(nd+nb-1), the ARX model can be written in the form 

A(q-1) y(k) = B(q-1) u(k) + e(k), and its predictor can be expressed in the form 

y
∧
(k|θ)  = B(q-1) u(k) + [1 - A(q-1)] y(k) , or  

 

y
∧
(k|θ)  = ϕΤ(k) θ   . Eq. 2.23 

 

The vector of adjustable parameters is expressed by θ  = [a1 a2 …  ana  b1 …  bnb]
T, and 

ϕ(k) = [-y(k-1) … -y(k-na)  +u(k-nd)  + … +u(k-(nd+nb-1))]T is the regression (data) vector. 

The ARX model can be viewed as a possible realization of a stochastic process (Astrom and 

Wittenmark, 1997). The predictor (Eq. 2.23) defines a linear regression, and this property 

makes the ARX model a prime choice in many applications. 

■ 

 

Here, the construction of the black-box ARX model is carried out via System Identification. 

Based on experiments, the black-box model is fitted to the captured data by assigning suitable 

numerical values to its parameter vector θ. The estimation problem can be viewed as an 

optimization problem (Ljung, 1999; Soderstrom & Stoica, 1989). The most common 

parameter estimation methods applied to the determination of θ in linear ARX models are the 

Least-Squares (LS) method, the Kalman Filter (KF), and the Instrumental Variable (IV) 

method (Soderstrom & Stoica, 1989; Ljung, 1999). Most of these methods are based on the 

Kalman filter approach (Haykin, 2002), and recursive versions exist (recursive LS, etc). 

Another method is the Principal Component Regression (PCR) based on PCA and LS, 

described in section 2.3.7. These methods require a finite number of parameters, and that is 

the reason they are called parametric estimation methods. System identification may also be 
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achieved based on nonparametric estimation methods (Soderstrom & Stoica, 1989): transient 

analysis, frequency analysis, correlation analysis, spectral analysis, etc.  

 

The ARX model is a suitable model for modeling linear systems. In order to develop 

Nonlinear Models to model nonlinear dynamic systems, two main approaches can be adopted: 

1) a natural approach based on a nonlinear model (white-box model, neural model, fuzzy 

model, etc); 2) a multi-model approach based on a set of linear models (ARX, state-space, 

etc). From a theoretical point of view a nonlinear white-box model is more desirable, but in 

most cases is very hard or even impossible to obtain. When the systems are complex, or hard 

to model, modelling based on nonlinear black-box models (neural models, fuzzy models, etc) 

is usually a good and the only alternative. 

The artificial Neural Networks (NN) play an important role in many scientific fields such as 

modelling and identification of dynamic systems, control, pattern recognition, fault detection 

and diagnosis (Narendra & Parthasarathy, 1990; Norgaard, et al., 2003; Haykin, 1994; Hagan, 

et al., 1995). A brief history of the development of neural networks, and a broad range of 

applications areas (automotive, banking and financial, electronics, manufacturing, fault 

detection and diagnosis, medical, telecommunications, etc), can be found in Hagan, et al., 

1995. There does not seem to be one consensual definition of a neural network. The definition 

of a neural network that can be viewed as an adaptive machine is presented here. 

 

Definition 2.12. Neural Network. 

An (artificial) neural network is a massively parallel distributed processor that has a natural 

propensity for storing experiential knowledge and making it available for use. It resembles the 

brain in two respects (Haykin, 1994): a) knowledge is acquired by the network through a 

learning process; b) inter-neuron connection strengths known as synaptic weights are used to 

store the knowledge.  

■ 

 

For multilayer perceptron neural networks, the Neuron (Node, or Unit) is a processing 

element that takes a number of inputs, weights them, sums them up, and uses the result as the 

argument for the activation function. An illustration of the Neuron Model is depicted in Fig. 

2.4 (Norgaard, et al., 2003; Hagan, et al., 1995). 
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Fig. 2.4 - A neuron model. 

 

Mathematically, the neuron model can be expressed by Eq. 2.24. The inputs to a neuron can 

either be outputs of other units or they can be external inputs. The displacement bi is called 

the bias. The activation function fi can take any form, but most often it is monotonic. Some 

common activation functions are: a) the bipolar; b) the linear; c) the Gaussian; d) the 

hyperbolic tangent sigmoid.  

 

yi = fi(hi) = fi( ∑
j=1

m
  ωi,j uj+bi) 

Eq. 2.24 

 

When the goal is to obtain models of dynamic nonlinear systems, or applications of process 

control, the linear activation function f(x) = x and the hyperbolic tangent sigmoid activation 

function f(x) = tanh(x) = (ex - e-x) / (ex + e-x) are commonly adopted. The hyperbolic tangent 

sigmoid is monotonic, smooth and its range is -1 ≤ f(x) ≤ +1. 

Neurons can be combined into a network in various network architectures (Norgaard, et al., 

2003; Hagan, et al., 1995; Haykin, 1994). The most common neural network architecture is 

the feedforward (FF) multilayer perceptron (MLP) neural network (NN).  
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Fig. 2.5 - Feedforward multilayer perceptron neural network (FF-MLP-NN). 
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Definition 2.13. A feedforward (FF) multilayer perceptron (MLP) neural network (NN).  

The basic FF-MLP-NN is constructed by ordering the neurons in layers, letting each neuron 

in a layer take as inputs only the outputs of neurons in the previous layer or external inputs 

(Hagan, et al., 1995; Haykin, 1994). Each neuron obeys the model (Eq. 2.24), and its 

architecture is depicted in Fig. 2.4. A general typical architecture of a FF-MLP-NN, with 3 

input signals and 1 output signal, is given in Fig. 2.5. 

■ 

 

Fig. 2.5 shows a MLP-FF-NN with three layers. The input layer (IL) is a pseudo-layer which 

receives the input signals. The second layer is the hidden layer (HL) with activation functions 

fi(.) in each neuron. Finally, the output layer (OL) has an activation function Fi(.) in each 

neuron. All the neurons have a bias input. 

 

The training or learning of the network is the task of determining the weights from the 

examples. It is basically a conventional estimation problem from system identification. That 

is, the weights are estimated from the examples in such a way that the network, according to 

some metric, models the true relationship as accurately as possible. In most applications, the 

training phase is usually carried out in off-line operation, since it commonly requires high 

computational load and a long time. Some applications need an on-line training. In this work 

the training is carried out off-line using the Levenberg-Marquardt optimization algorithm 

(Hagan, et al., 1995). A set of data is used for training and a different set is used for 

validation. During the training the weights and biases of the network are iteratively adjusted 

to minimize the network performance function. The most common performance functions 

used to validate the neural network model are the sum of squared errors (SSE) and the mean 

of squared errors (MSE). Assuming the vector p ∈ ℜ1 × m is the input vector, t is the target 

vector, y is the vector estimated by the neural network, and e = t - y is the prediction error, the 

performance functions are given by 

 

ΓSSE = e eT and ΓMSE = 
1
m ∑

i=1

m
  ei

2 . 
Eq. 2.25 

 

A FF-MLP neural network may be viewed as a practical vehicle for performing a nonlinear 

input-output mapping of a general nature from a p-dimensional Euclidean input space to a q-

dimensional Euclidean output space, f : ℜp ⇒ ℜq (Haykin, 1994). Many researchers 

(Cybenko, Funahashi, and Hornik) contribute to demonstrate the Universal Approximation 
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Theorem that is directly applicable to FF-MLP neural networks. The theorem states that “a 

single hidden layer is sufficient for a FF-MLP-NN to compute a uniform ε approximation to a 

given training set represented by the set of inputs {u1,…, up} and a desired (target) output 

f(u1,…, up)” (Haykin, 1994). In some sense, the task of capturing a certain input-output 

relationship encapsulated in the training data by means of a neural network, and via a learning 

mechanism, can be understood as a nonlinear regression method. 

The feed-forward MLP neural networks establish a static transformation (relationship) 

between the input space u ∈ ℜp and the output space y ∈ ℜq. It is possible to introduce 

dynamics in the FF-MLP-NN if the input vector is composed of past input and output data 

(Narendra & Parthasarathy, 1990). Next, a definition of a nonlinear ARX (NARX) neural 

model is presented, assuming that a NARX model is given by 

 

y(k) = f(y(k-1), …, y(k-na), u(k-nd), …, u(k-(nd+nb-1))) , Eq. 2.26 

 

where f(.) is a nonlinear function. 

 

Definition 2.14. NARX Neural Model. 

A feed-forward MLP neural network, with sigmoidal activation functions in the hidden layer, 

is able to approximate any nonlinear function according to the universal approximation 

theorem described above. Theoretically a FF-MLP-NN is able to model the dynamic 

behaviour of a nonlinear ARX (NARX) model (Eq. 2.26). 

A NARX neural model, written as an output predictor, can be parameterized by 

 

y
∧
(k) = g(ϕ(k),W)

Eq. 2.27 

 

where g(.) represents a nonlinear transformation due to the neural model, W congregates the 

weight matrices, and ϕ(k) = [y(k-1), …, y(k-na), u(k-nd), …, u(k-(nd+nb-1))]T is the regression 

vector at time instant k. According to this approach, the general expression (Eq. 2.27) can be 

written in the form (Eq. 2.28), where g(.) ≡ f
∧
(.) represents an estimation of f(.), y(k) and u(k) 

are the output signal and input signal, respectively, at time instant k. 

This NARX neural structure is commonly known as a series-parallel model (Narendra & 

Parthasarathy, 1990).  
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y
∧
(k) = g(y(k-1), …, y(k-na), u(k-nd), …, u(k-(nd+nb-1)),W)

Eq. 2.28 

 

■ 

 

2.4.4 Low Pass Filtering 

A first order low pass digital filter Hlp(z, λ), in discrete time, used in this work is described 

next. In the area of fault detection and diagnosis, the low pass filtering of fault alarm signals is 

very important, in order to reduce the false alarm rates. In this work, the fault detection signal 

is obtained from low pass filtering the fault alarm signal. The fault isolation signal, obtained 

by statistical or geometrical methods, is usually also low pass filtered. 

 

For a given input signal vi(k) the infinite impulse response (IIR) low-pass filter Hlp(z) 

computes the output signal vf(k) according to the difference equation given by 

 

vf(k) = λ vf(k-1) + (1-λ) vi(k)  Eq. 2.29 

  

where λ (λ ≥ 0)  is a design parameter (the pole location at the z-plane). The transfer function 

of the low pass IIR filter, with unitary static gain, is expressed by 

 

Hlp(z) = 
Vf(z)
Vi(z) = 

1-λ
1-λ z -1 . 

Eq. 2.30 

 

In this work, this low pass filter is termed Hlp(z, λ). 

 

For application in fault detection and isolation the choice of the pole location of the filter 

(parameter λ) its not a simple task. The pole location λ must be chosen in order to obtain a 

desired commitment between the rate of false alarms Ψfa, the rate of missed fault detections 

Ψfm, the detection delay dd or the isolation delay di. Since the tasks of fault detection and 

isolation are separate, the delay is here represented by d, for both tasks. So, the pole location λ 

can be expressed by the function λ = fa(Ψfa,Ψfm, d). 

For the case of FDD methods that are based on system identification, like most of the FDD 

approaches proposed in this work, the delay d is a function of the window length w of the 
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sliding window parameter estimation algorithm, i.e., d = fb(w). For this case, the pole location 

λ can be expressed by the function λ = fp(Ψfa,Ψfm, w).   

 

2.5 Supervision, Fault Detection and Diagnosis 

 

2.5.1 Introduction 

Research areas related to control engineering and signal processing are in continuous 

evolution. Due to research, new ideas and concepts emerge, and when reach maturity and a 

large spectrum allows the creation of new scientific research areas. The Supervision (SPV), 

Monitoring (MNT), Fault Detection and Diagnosis (FDD), and the Fault Tolerant Control 

(FTC), are emerging research areas having a strong link with the domain of process control 

(Isermann, 1997). 

 

For certain critical and industrial systems, the FDD techniques are extremely important since 

some faults can cause serious failures. Some of the most critical systems are located in 

nuclear plants, aeronautics, chemical plants, power plants, transportation systems, supplying 

systems, and communications systems. Nowadays, almost all complex systems incorporate 

basic fault detection modules. Advanced methods of supervision and fault detection and 

diagnosis are needed (Isermann, 2004; Frank, et al., 2000a; Chen & Patton, 1999). 

 

Fault tolerance in automatic control systems is gaining more and more importance, and can be 

achieved either by passive or by active strategies (Blanke, et al., 2003; Patton, 1997). 

It is useful to classify the plant faults into three categories: actuator faults, component faults 

(faults in the framework of the process), and sensor faults, as shown in Fig. 2.6 (Frank, 1996).  

The faults can commonly be described as input signals. There is always modeling uncertainty 

due to un-modeled disturbances, noise and model mismatch. This may be not critical for 

system operation, but may obscure the fault detection by raising false alarms. The modeling 

uncertainty is usually taken into consideration by vectors of unknown inputs. Faults can also 

occur in other systems like controllers and supervision systems. 
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Fig. 2.6 - Definition of faults in a plant.  

 

Fig. 2.7 shows the historic development of the fault detection and diagnosis theory (Frank, et 

al., 2000b); the work done here is based on the research areas marked. Starting as a special 

application of observer theory around the year 1970, model based FDD theory went through a 

dynamic and fast development. Nowadays FDD theory is becoming an important field of 

automatic control theory. In the first twenty years, it was the control community that made the 

decisive contributions, while in the last years the trends have been marked by an increasing 

number of contributions from the computer science and artificial intelligence communities 

associated with the combination of different FDD approaches. 

 

Fig. 2.7 - Historic development of FDD theory. 
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2.5.2 FDD Terminology and Tasks 

The fault detection and diagnosis (FDD) terminology according to the Safeprocess Technical 

Committee (SPTC) can be found in (Isermann & Balle, 1997). The main definitions of fault, 

failure, fault detection, fault diagnosis, etc, are resumed in Appendix A. The overall concept 

of FDD consists mainly of the following two tasks (Isermann, 1997): fault detection and fault 

diagnosis. The fault diagnosis includes the tasks of fault isolation and fault identification 

(analysis). In the majority of applications, the FDD approaches only implements the fault 

detection and isolation (FDI) methods. 

A typical model based fault detection and diagnosis (FDD) architecture is depicted in Fig. 2.8 

(Isermann, 2004; Moseler & Muller, 2000). Based on measured input and output signals, fault 

detection approaches generate features using a plant model. The features may include physical 

or model parameters, residuals, etc. The features computed on-line are compared to the 

features in the nominal (fault-free) case. The respective deviations are compared to 

thresholds, and symptoms are obtained. Ideally, for each interesting fault a unique pattern 

should be associated. The symptoms are processed by a knowledge based system which maps 

the symptoms to the respective faults. The knowledge can be stored in trained references 

patterns (classification methods, etc) or in the form of rules (fuzzy rules, etc). 

Actuators Process Sensors

FAULTS

Input
Signals

Fault Detection

Process (plant) model

Generation of Features

Computer

Detection of Deviations

Features

Fault Symptoms

Fault Diagnosis

Knowledge Base

Detected and
Isolated Faults

Output
Signals

 

Fig. 2.8 - Typical model-based FDD architecture. 
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To perform the FDD procedure three steps have to be taken (Frank, 1996). The first step is the 

residual (symptom) generation (fault detection, FDE), i.e. the generation of signals or 

symptoms which reflect the faults. The second is the residual evaluation (fault isolation, FIO, 

or classification), i.e. logical decision-making on the time of occurrence and the location of a 

fault. The third one is the fault analysis step (fault identification, FID), i.e. determination of 

the type of fault, size and cause. This three-stage process is illustrated in Fig. 2.9 (Frank, 

1996). Note that the first two steps constitute the concept of fault detection and isolation 

(FDI).  

 

Residual (symptom)
generationProcess Residual evaluation Fault analysis

 

Fig. 2.9 - Schematic representation of the FDD procedure.  

 

A Fault can be defined as a non-permitted deviation of at least one characteristic property of a 

variable from an acceptable behaviour (Appendix A). Therefore, the fault is a state that may 

lead to a malfunction or failure of the system. The time dependency of faults can be 

distinguished as shown in Fig. 2.10 (Isermann, 2004): a) abrupt fault (stepwise); b) incipient 

fault (drift-like); c) intermittent fault.  

Process

Fault

Change of feature, f = ∆ F

a
b

cf

t
 

Fig. 2.10 - Time dependency of faults: a) abrupt; b) incipient; c) intermittent. 

 

With regard to the process models, the faults can be further classified (Isermann, 2004). 

According to Fig. 2.11, additive faults influence a variable y by an addition of the fault f, and 
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multiplicative faults by the product of variable y with f. Additive faults appear as offsets on 

sensors and actuators, whereas multiplicative faults are parameter changes within a process. 

 

b
y

f

yf = y + f

(a) (b)

y

f = ∆b

yf = (b+∆b) y =
b y + f y

 

Fig. 2.11 - Basic models of faults: a) additive faults; b) multiplicative faults. 

 

Some faults do not affect the system structure and are termed non-structural faults, and others 

affect the system structure and are designated structural faults (Blanke, et al., 2003). 

For non-structural faults, the only changes they cause are in the mathematical expressions of 

the constraints. Parametric faults, in which only the values of the parameters are changed, are 

an example of non-structural faults. An example, is a change on a resistor from the nominal 

value Rn to a faulty value, 0 < Rf < ∞. The occurrence of the fault just changes the constraint 

u - Rn i = 0 into the constraint u - Rf i = 0. 

Structural faults change the set of the constraints and variables which are to be considered. 

For a resistor, an example of such faults is Rf = 0 (a complete short-circuit), changing the 

constraint into u = 0. Other examples of structural faults are blocked valves and leaks in water 

tank (liquid level) systems. 

 

2.5.3 Fault Detection Methods 

Fault Detection is the task of determination of the faults present in a system, and the time of 

detection, as described in Appendix A. 

A number of different fault detection approaches making use of either hardware or software 

methods have been proposed over the years (Frank, et al., 1997; Isermann & Balle, 1997; 

Chen & Patton, 1999). 

Depending on the method of features (residuals, etc) generation, the methods of fault 

detection can be divided into three main categories, as depicted in Fig. 2.12. The main sub-

categories are also shown. 
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Fig. 2.12 - Scheme of features (residuals, etc) generation approaches. 

 

A good overview of the historical development of model-based fault detection is presented in 

the paper (Isermann & Balle, 1997). The main development began at various places in the 

early 1970’s. Beard (1971) and Jones (1973) reported an observer-based fault detection 

method for linear systems. The development of fault detection methods up to the respective 

times is summarized in the books Pau (1981), Chen & Patton (1999), and in survey papers by 

Gertler (1988), Frank (1990) and Isermann (1994).  

 

The signal/data-based approaches to FDE that are not based on models are well established in 

practice. Typical symptoms are the magnitudes of the measured signals, quadratic mean 

values, limit values, trends, spectra power densities, correlation coefficients, covariances, etc. 

These signal-based approaches are limited in their efficiency, in particular for the detection of 

faults that occur in the dynamics of the system under investigation (Frank, 1996). 

More powerful than the non model-based approaches are the model-based approaches to FDE. 

The most powerful fault detection (FDE) approaches are those based on a process model, 

where either analytical, data-based or knowledge-based models, or combinations of them can 

be used. 
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The basic idea behind the model-based fault detection approach is to use the nominal model 

of the system to generate features (residuals, etc) that contain information about the faults, as 

depicted in Fig. 2.13 (Isermann, 1997). The quality of the model is of crucial importance for 

both fault detectability and isolability, and also to guarantee a low rate of false alarms. 
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Fig. 2.13 - Scheme for model based fault detection. 

 

If only output signals can be measured, Signal Model-Based Methods for FDE can be applied. 

In particular, vibrations, which are related to rotating machinery or electrical circuits, can be 

detected. Parametric signal models like ARMA type models, which allow the main 

frequencies and their amplitudes to be directly estimated (Isermann, 2004), can be used. 

Signal Model-Based Methods for FDE are essentially based on (Isermann & Balle, 1997): a) 

bandpass filters; b) spectral analysis (FFT); c) maximum-entropy estimation. 

 

The Classical Analytical Model-Based Approaches (Parity Space, Observer, and Parameter 

Estimation / Identification) to residual generation deserves special attention due not only to 

their historical impact on the development of all the FDD techniques, but also to the impact 

on the applications developed. Clearly a perfect analytical model represents the deepest and 

most concise knowledge of the process. But in practice, precise analytical models are usually 

not or hardly ever available.  

 

The Model-Based Data-Driven Approach for FDE is based directly on process data. In large-

scale industries (chemical, manufacturing, nuclear, etc) which incorporate complex systems, 

the data-driven FDD methods are those most used, in order to avoid high cost analytical 
 39
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models (Chiang, et al., 2001). The strength of data-driven techniques is their ability to 

transform the high-dimensional data into a lower dimension, in which the important 

information is captured, and can be interpreted by operators and engineers. The main 

drawback of data-driven measures is that the performance is highly dependent on the quality 

and quantity of the process data. The FDE approaches based on Neural Networks are 

extremely important especially when the systems are nonlinear (Chen & Patton, 1999). 

 

The Knowledge-Based Approach for fault detection and process monitoring use knowledge 

based methods such as causal analysis (signed direct graphs, symptom trees), expert systems 

(knowledge base and inference engine) and pattern recognition (data patterns and fault 

classes) (Chiang, et al., 2001). These techniques are based on qualitative models, which can 

be obtained through causal modeling of the system, expert knowledge, fault-symptom 

examples, or a detailed description of the system. 

 

Features (physical or model parameters, residuals, variances, etc) are generated in the fault 

detection task. The symptoms are the set of deviations of the features from the nominal case. 

The symptoms must reflect a fault univocally. In order to perform the isolation and the 

identification of a fault, the symptoms must be introduced in an intelligent decision making 

system (knowledge-based system) that maps the symptoms into the respective faults. 

Since the early work of Beard (1971), system models common in control theory have been 

used for the design of FDE systems. It is well known that different types of applications 

require different types of models. Usually, for control system analysis and design, the system 

model has to represent the dynamic input-output behaviour of the system, and should be as 

simple as possible; in some cases, the model is drastically simplified and linearized ignoring 

many of the attributes of the physical nature of the system. Usually, for fault detection a 

representative model of high accuracy is needed, which is in general of higher complexity 

than the one for control. But under certain circumstances, models for FDE can also be simpler 

than those for control, which has often been overseen in the FDD society. The key point is 

that for FDE only that part of the model which reflects the faults of interest is needed and, 

with respect to robustness, is not or only weakly affected by disturbances and modeling 

uncertainty (Frank, et al., 1997).  

 

Typically, input/output models in a form of difference equation or state-space models can be 

used to represent dynamic systems (linear or nonlinear, SISO or MIMO) in continuous-time 

or in discrete-time. A brief introduction to the subject is given here: Process Models and Fault 



 41

Modeling in Linear Systems. More information can be found in (Isermann, 2004; Isermann, 

1995). Processes of SISO type with lumped parameters which can be linearized around one 

operating point can be described by a difference equation (ARX model) in discrete time: 

 

y(k) + a1 y(k-1) + … + ana y(k-na) = b1 u(k-nd) + … + bnb u(k-(nd+ nb-1)) Eq. 2.31 

 

The process model can be written in vector form: 

 

y(k)  = ϕ (k) Τ θ Eq. 2.32 

 

with the parameter vector and the data vector given by, respectively,  

θ  = [a1 a2 …  ana  b1 …  bnb]
T, ϕ(k) = [-y(k-1)  - … -y(k-na)  +u(k-nd)  + … +u(k-(nd+nb-1))]T 

 

Additive (offset) faults fu(k) and fy(k) at the input and the output signals can be modelled by: 

 

y(k)  = ϕ (k) θ + ∆ϕΤ(k) θ + fy(k
Τ ) Eq. 2.33 

 

∆ϕ(k) = [-y(k-1)  - … -y(k-na)  +fu(k-nd)  + … + fu(k-(nd+nb-1))]T Eq. 2.34 

 

For multiplicative (parametric) faults ∆θ, the fault model comes: 

 

y(k)  = ϕ (k) [θ + ∆θ(k)Τ ] Eq. 2.35 

 

A state-space representation for a MIMO linear process is 

 

x(k+1)  = A x(k) + B u(k) 

y(k) = C x(k) 

Eq. 2.36 

 

with p input signals u(k), and r output signals y(k). Offset changes fL(k) of the states x(k) and 

fM(k) of the output y(k) are then modelled by 

 

x(k+1)  = A x(k) + B u(k) + L fL(k) 

y(k) = C x(k) + M fM(k) 

Eq. 2.37 
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For parametric faults (∆A, ∆B, ∆C), it holds 

 

x(k+1)  = [A + ∆A] x(k) + [B + ∆B] u(k) 

y(k) = [C + ∆C] x(k) 

Eq. 2.38 

 

A brief introduction of the main classical analytical model-based approaches to symptom 

(residual) generation in linear systems is given here. A more profound treatment of this 

subject can be found in (Isermann, 2004; Frank, et al., 1997; Chen & Patton, 1999; Gertler, 

1998). The three most important analytical model based fault detection methods are: parity 

equations, state estimation (or observer), and parameter estimation / identification. Many 

people consider the Chow-Willsky scheme (Chow & Willsky, 1984) the parity relation 

(equations) approach. 

For the case of linear systems, relationships exist between some of these FDE methods 

(Gertler, 2000). Parity equations (relations) are equivalent to observers, since any Luenberger 

residual generator may be implemented as a set of parity relations. PCA based FDD of 

additive (actuator and sensor) faults is linked to parity equations. 

  

For the parity equations (or parity space) approach mainly two types of equations can be used 

to generate residuals: output error equation and polynomial error equation. In the z-domain, 

the output error equation is given by 

 

Re(z) = (GP(z) - GM(z)) U(z) Eq. 2.39 

 

with GM(z) = BM(z) / AM(z) being the discrete transfer function of a reference (fixed) model, 

and GP(z) = BP(z) / AP(z) is a model identified on-line. The polynomial error equation is given 

by 

 

Re(z) = AM(z-1) Y(z) - BM(z-1) U(z) Eq. 2.40 

 

with AM(z-1) = 1 + a1 z
-1 + … + ana z

-na and BM(z-1) = bnd z
-nd + … + bnd+nb-1 z

-(nd+nb-1). 

 

For the state observer (or estimator) the generation of residuals can be carried out using one of 

the following equations. Changes of state estimates given by 
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∆x
∧
(k) = x(k) - x0(k) Eq. 2.41 

 

or output errors expressed by 

 

re(k) = y(k) - C x
∧
(k) Eq. 2.42 

 

or filtered output errors written in the form 

 

Rf(z) = W(z) Re(z) Eq. 2.43 

 

with Re(z) = TZ(re(k)) is the Z-transform of the output error re(k), and W(z) represents a filter. 

It is also possible to use output predictor equations for FDE purposes. 

 

The parameter estimation / identification approach usually generate residuals in two forms: 

changes of model parameter estimates or changes of process physical coefficients. The 

equation for the changes of model parameter estimates is given by 

 

∆θ(k) = θ
∧
(k) − θ0

∧ Eq. 2.44 

 

and the changes of process physical coefficients is written in the form 

 

∆p
∧
(k) = p

∧
(k) - p0

Eq. 2.45 

 

with p
∧
(k) = f -1(θ(k)

∧
). 

 

Parity space and state estimation approaches have advantages for additive faults, and are 

therefore feasible for faults in sensors, actuators and in some cases for processes. For MIMO 

processes the analytical redundancy between the measured inputs and outputs increases; this 

is an advantage for the detection of sensor faults where the real input signal is unknown, and 

also for the detection of actuator faults if the actuator output is not measurable. Nevertheless, 

it is harder to obtain accurate process models with the cross-couplings for MIMO processes. 

The parameter estimation / identification approach is especially suitable for multiplicative 

faults that change the dynamics of the process, actuators or sensors. It can also be used to deal 
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with additive faults at the input and output. Parameter Identification consists of the estimation 

of model parameters. The procedure of Parameter Estimation consists of a transformation of 

the mathematical parameters into the physical ones, which is often not unique and in many 

cases only feasible if the order of the model is low (Frank, et al., 2000a). A further problem 

with the application of the parameter estimation and adaptive observer approaches is the fact 

that the process always needs an input excitation verifying the persistent excitation conditions 

(PEC). 

 

2.5.4 Fault Diagnosis Methods 

Fault diagnosis is the task of determination of the kind, size, location and time of detection of 

a fault, as described in Appendix A. It follows fault detection, including fault isolation and 

identification (analysis). In most applications only the tasks of fault detection and isolation 

(FDI) are performed. 

The fault diagnosis methods can be classified into two main categories (Isermann & Balle, 

1997): classification methods, and reasoning methods. If several symptoms change differently 

for certain faults, one of the first ways of determining a fault is to use classification methods 

which indicate changes of symptom vectors. Some classification methods are: a) geometrical 

distance and probabilistic methods; b) artificial neural networks; c) fuzzy clustering. If more 

information about the relations between symptoms and faults is available in the form of 

diagnostic models, methods of reasoning can be applied. Diagnostic models can be expressed 

in the form of symptom-fault causalities. The causalities can be expressed as “if-then” rules. 

Then analytical as well as heuristic symptoms (from operators) can be processed. By 

considering them as inaccurate facts, probabilistic or fuzzy-set descriptions lead to a unified 

symptom representation. By forward and backward reasoning, probabilities or possibilities of 

faults are obtained as a result of diagnosis. Typical approximate reasoning methods are: a) 

probabilistic reasoning; b) possibilistic reasoning with fuzzy logic; c) reasoning with artificial 

neural networks. 

Two main approaches are widely used for fault isolation: a) directional residuals, in response 

to a particular fault, the residual vector lies in a fault specific direction; b) structured residuals, 

each residual is sensitive to a subset of faults while insensitive to the rest. Diagonal residuals 

are a special case of both the directional and structured residuals, whereas each residual 

responds to a single fault. Directional residuals can be characterized by an influence matrix 

(Ono, et al., 1987; Doraiswami & Stevenson, 1996). Structured residuals are usually 
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characterized by a binary structure called the fault to residual incidence matrix or residual 

structure (Gertler, 1998). Residuals appear on the rows and faults on the columns. 

Residuals are designed for the following requirements (Gertler, 2000): a) disturbance 

decoupling: residuals have to be insensitive to the disturbances while maintaining sensitivity 

with respect to (some) faults; b) isolation enhancement: residuals need to have special 

properties to support fault isolation; c) resilience to noise: the detection and isolation of faults 

from the residuals, even in the presence of (non-excessive) noise, should be possible. 

A single residual may be sufficient to detect faults, but for fault isolation a set (vector) of 

residuals is usually required (Gertler, 2000). The enhancement of residuals can be obtained 

via two steps: a) first the computation of a primary residual set, and afterwards a 

transformation; b) the direct generation of enhanced residuals. Noise resilience can be 

achieved by low-pass filtering, and a threshold test. 

Among the most important properties of a FDI system is not only the fact that it has to be 

sensitive to faults in order to detect incipient faults, but it also has to be robust with respect to 

the unknown inputs in order to avoid false alarms. The quality of fault detection can be 

assessed with the aid of the ratio of fault sensitivity to the frequency of false alarms. The 

quality of fault isolation is highly dependent upon the available information about the system.  

 

2.5.5 Trends and Applications 

Each process monitoring and FDD methodology has its strengths and limitations. The 

combination of different FDD schemes can result in better process monitoring performance 

for many applications (Isermann, 1997; Gertler, 1998; Chen & Patton, 1999; Chiang, et al., 

2001; Palma, et al., 2005d). 

As in most situations the model parameters are unknown, commonly the parameter estimation 

method is first applied. Typical combinations of FDE methods are (Isermann, 1995): a) 

parameter estimation to obtain the model, state estimation for fast change detection, and 

parameter estimation (on request) for deep fault diagnosis; b) parameter estimation to obtain 

the model, parity equations for change detection with fewer computations, and parameter 

estimation (on request) for deep fault diagnosis. The integration procedure depends on the 

process, the fault types and the allowable computational effort. In some cases, for example in 

rotating electrical machines, a good FDE performance can be obtained by integrating the 

process model based FDE methods with the signal model based FDE methods. 

An FDD approach designed to provide satisfactory sensitivity to faults, associated with the 

necessary robustness with respect to modeling uncertainty, is called a robust FDD scheme 
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(Chen & Patton, 1999). The effect of modeling uncertainties is therefore the most crucial 

point in the model-based FDD concept, and the solution to this problem is the key for its 

practical applicability. When residuals cannot be made robust against system uncertainty, the 

robust FDD can be achieved by robust decision making; for example, a supervisor based on a 

fuzzy logic approach can be used for residual evaluation and decision-making. In a practical 

application, a situation where the conditions for a perfectly robust residual generation are met 

will rarely be found. One possible solution to increase the robustness of the FDD schemes is 

the combination of different approaches (analytical and data based, data based and knowledge 

based, etc). In most practical problems of fault detection and diagnosis a hybrid (combined) 

approach is required to guarantee a reasonable performance (Isermann, 2004; Palma, et al., 

2005c). This hybrid approach combines different FDD methodologies. 

 

Because of the many publications and increasing number of applications, it is interesting to 

show some trends. Peter Ballé has performed a literature study of Conference Preprints 

(Isermann & Balle, 1997) and presents some results. Only 165 contributions with applications 

were taken into account in the study: a) simulation of real processes (#55); b) full-scale 

industrial processes (#48); c) large scale pilot processes (#44); d) small-scale laboratory 

processes (#18). Mechanical and electrical processes, especially the DC motor, are those 

mostly investigated. Parameter estimation (PE) and observer-based (OB) methods are used in 

the majority of applications on this kind of processes, followed by parity space (PS) and 

combined methods. Neural nets (NN) are used less frequently. Thermal and chemical 

processes are also investigated less frequently, and the most used FDE methods are the model 

data-based methods, mainly the data-driven and neural networks approaches. Most nonlinear 

processes under investigation belong to the group of thermal and fluid dynamic processes. 

OB and PE methods for fault detection methods are mostly applied; they are used on nearly 

70% of all the applications considered. More than 50% of sensor faults are detected using 

observer-based methods, while PE, PS and combined methods play a less important role. The 

OB method is also the one mostly used for detection of actuator faults, and is followed by PE 

and NN methods. The detection of process faults is mostly carried out with PE methods. 

Some methods can be used for the detection of more than one fault class. Linear (or 

linearized) process models have been used much more than nonlinear models. On processes 

with nonlinear models, OB methods are the most applied, but PE and NN also play an 

important role. The number of nonlinear process applications using nonlinear models has 

clearly increased over the years. 
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The evaluation of fault diagnosis methods is more difficult because of a lack of data. The field 

of classification approaches, especially with neural networks and fuzzy logic, has steadily 

been growing. Rule-base reasoning methods, especially with fuzzy logic, are also increasing. 

Also evident is an increase on the application of neural networks both for residual generation 

and for classification. 

 

2.6 Fault Tolerance 

A brief introduction to the fault tolerance problem is presented here. More ideas are given in 

Chapter 5, with an application related to the reconfiguration problem of the three-tank 

benchmark (Heiming & Lunze, 1999). The Fault Tolerance (FT) problem is gaining more and 

more importance due to the requirements of the industrial modern control systems, since they 

are complex systems requiring a high level of automation, an increase of product quality, the 

reduction of costs, high reliability, high availability, and high security levels. From the point 

of view of control, the Fault Tolerant Control (FTC) problem belongs to the domain of 

complex systems, where it is necessary to incorporate multi-disciplinary information mainly 

from the control area and from the computational intelligent domain. A good book in the area 

of fault tolerant control is (Blanke, et al., 2003), and a good survey paper is (Patton, 1997). 

Every system can be subject to faults, where a fault on a single component can have effects on 

the performance and availability of the system as a whole, or even cause a critical failure. Our 

modern society depends strongly upon the availability and correct operation of complex 

technological processes like manufacturing systems, energy production systems, 

telecommunications systems, etc. In the general sense, a Fault is something that changes the 

behaviour of a technological system in such a way that the system no longer satisfies its 

original purpose (Blanke, et al., 2003). 

In order to avoid a decrease in system performance or damage to machines and humans, faults 

must be quickly found, and fast decisions must be taken in order to stop the propagation of 

their effects. One of the goals of the supervision and control systems is to make the overall 

system fault tolerant. From a systems-theoretic viewpoint, Fault Tolerant Control concerns 

the interaction between a given system (plant subject to a fault f) and a controller as depicted 

in Fig. 2.14 (Blanke, et al., 2003). In a fault tolerant system the term controller is used in an 

extended sense, including not only the usual feedback or feed-forward control law, but also 

the decision making layer that determines the control configuration. The decision layer 



analyzes the plant behaviour in order to identify faults and changes the control law to 

guarantee that the closed-loop system falls within a region of acceptable performance. 

 

Plant

f

Fault tolerant
controller

 

Fig. 2.14 - Fault tolerant system. 

 

A fault tolerant controller has the ability to react to the existence of the fault by adjusting its 

activities to the faulty behaviour of the plant. In Fig. 2.14, the system is Fault Tolerant if it 

may be subjected to some fault f, but the fault effect is not perceptible to an external human 

observer, because the system remains available executing its purpose. Generally, the way to 

make a system fault tolerant consists of two steps that are carried out by a supervision system 

(Blanke, et al., 2003): 1) Fault Detection and Diagnosis, that is, any fault has to be detected 

and identified; 2) Control Re-Design, that is, the controller has to be adapted to the faulty 

situation so that the overall system continues to satisfy its goal. The supervision system must 

establish the control structure, and select the algorithm and parameters of the feedback 

controller. 

 

Research into fault tolerant control has been largely motivated by the control problems 

encountered in critical systems like aircraft system design. In aircraft systems one of the main 

goals is to provide a self-repairing capability to enable the pilot to land the aircraft safely in 

the event of a serious fault (Patton, 1997). Interest has been stimulated mainly by two 

commercial aircraft accidents in the late 1970’s. The paper written by Patton (1997) includes 

many references to application examples of FTC such as hazardous chemical plants, control 

of nuclear power plant reactors, space craft systems, aircraft systems, etc.  

 

Typical applications that illustrate how the FTC methods can be applied under real practical 

conditions are described in the book (Blanke, et al., 2003), including different plant types: a 

three-tank system, a chemical process, a ship propulsion system and a steam generator. 

 48



 49

 

2.7 Conclusions 

The state of the art in the area of fault detection and diagnosis (FDD) has been presented in 

this chapter. A brief introduction to the fault tolerance problem was given. 

An introduction to monitoring methods based on univariate and multivariate statistics was 

also presented. In processes where there is a redundancy or correlation between variables, it is 

advantageous to reduce the number of variables, maintaining an important quantity of original 

information. This dimensionality reduction can be achieved using linear or nonlinear Principal 

Components Analysis (PCA). 

From a theoretical point of view a white-box model is more desirable to perform the FDD 

tasks, but in most cases it is very hard or even impossible to obtain. When the systems are 

complex, or hard to model, modelling based on black-box models (ARX models, NARX 

neural models, fuzzy models, etc) is usually a good and probably the only alternative. Taking 

a pragmatic view of models, the modeling should be guided by “usefulness” rather than 

“truth” (Ljung, 1999). A model for fault detection and diagnosis does not need to be equal to a 

model for control; it can be simpler, or more complex. 

Typically different types of FDD approaches are more adequate to detect different kinds of 

faults. Model-based FDD methods based on parity equations and observers are most suitable 

to detect additive faults on actuators and sensors. The parameter estimation / identification 

approach is especially suitable for multiplicative (parametric) faults that change the dynamics 

of the process, actuators or sensors. The sliding window parameter estimation algorithms are 

most suitable to perform fault detection tasks than the recursive algorithms, since for a sliding 

data-window with length τ, it is known that the transient following a parameter jump lasts 

exactly τ - 1 samples. The principal components regression (PCR) was formulated in this 

chapter as a theorem, and a sliding window algorithm SW-PCR was proposed. 

Most of the efforts in the fault detection and diagnosis research area have been made on the 

development of methodologies based on linear models. A great challenge of recent years is 

the development of methodologies for nonlinear systems. 

In most practical problems of fault detection and diagnosis a hybrid (combined) approach, 

incorporating different FDD approaches, is required to guarantee a reasonable performance. 

Nowadays, almost all complex systems incorporate basic fault detection modules. Advanced 

methods of supervision, fault detection and diagnosis, and fault tolerant control are needed. 
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3 Fault Detection and Diagnosis (FDD) 

Approaches for Linear Systems  
 

 

Faults and failures can be good, if we learn with them (L. B. Palma). 

 

3.1 Introduction 

In Chapter 2, an introduction to fault detection and diagnosis (FDD) in dynamic systems was 

presented. In this chapter the focus is on FDD approaches for linear systems based on linear 

ARX black-box models, operating in closed-loop and with real-time constraints. 

In the past, most of the research in model-based fault detection of dynamic systems has been 

done using analytical white-box models. However, a perfectly accurate and complete 

mathematical model of a physical system is never available; this is mainly true for large-scale 

complex industrial plants. This is one of the reasons why black-box models are gaining more 

and more interest and application (Ljung, 1999). 

Even in linear systems, some faults can cause nonlinear effects. An example is a sensor fault 

that causes a saturation of the control signal, due to the controller action. In this situation, the 

linear models loose their validity. 

Representative models used for FDD purposes do not need to be of full order, nor do they 

need to be equivalent to the ones used for control purposes. First, the type of fault to be 

detected must be defined, additive or multiplicative, and their location (on the sensors, on the 

actuators, or on the process). Then these elements must be used as a guideline to build signals 

and process models for FDD. 

In this work, the main focus is on the detection and diagnosis of parametric (multiplicative) 

faults. Parameter estimation / identification methods need a process input excitation and are 

especially suitable for the detection of multiplicative faults (Isermann, 1997; Isermann, 2004).  

In most practical problems of fault detection and diagnosis a hybrid (combined) approach is 

required to guarantee a reasonable performance (Isermann, 2004; Palma, et al., 2005c). This 

hybrid approach combines different FDD methodologies. 



Most of the problems under study in this chapter (and in the dissertation) are restricted to 

single-input single-output (SISO) systems, but most of the proposed FDD methods can be 

extended to multi-input multi-output (MIMO) systems. The idea is to decompose the MIMO 

system in a set of multi-input single-output (MISO) systems. For this kind of MISO models, it 

is expected that the tasks of fault detection and isolation be simpler even when the aim is to 

detect more faults, since more models are available for the generation of features. 

 

3.2 Fault Detection and Diagnosis based on ARX models 

 

3.2.1 Introduction 

In most practical problems white box models are not available, or they are hard and time 

consuming to obtain. Sometimes the only alternative is to use black-box models obtained via 

identification techniques. For the case of linear systems, the ARX model is a very popular 

black-box model (Ljung, 1999). 

In this chapter some new FDD approaches based on ARX models are proposed. The main 

underlying idea is to detect and diagnose faults on the physical parameters of the plant via 

their symptoms reflected on the variation of ARX model parameters.  

 

3.2.2 Problem Formulation 

Typically, most of the dynamic systems in industry work under closed-loop control, as 

depicted in Fig. 3.1. This is the main reason why the focus of this dissertation is on FDD 

methods operating in closed-loop and in real-time. 
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Clock
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ur(t) yr(t)

w(t) v(t)

y(k)

 

Fig. 3.1 - Closed-loop control architecture. 
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In Fig. 3.1, assuming a SISO system without loss of generality, the process plant is 

represented by the block P, and the blocks A and S represent, respectively, the actuator and 

the sensor. The blocks A/D and D/A are the analog-to-digital and the digital-to-analog 

converters. The digital computer implements the supervision, fault detection and diagnosis, 

and control algorithms. The digital signals are also represented in the figure: the reference 

signal, r(k), and the input and output signals, u(k) and y(k), respectively. The other signals are 

analog signals: the real process input, ur(t), and the real process output, yr(t). The signals, w(t) 

and v(t), are, respectively, the disturbance input to the plant, and the disturbance or noise in 

the sensor. 

For a single-input single-output (SISO) linear system, without loss of generality, the general 

problem under study in this chapter can be formulated as follows. 

 

Problem 1. Given a continuous time LTI SISO dynamic system with unknown transfer 

function G0(s), find an on-line methodology for fault detection and diagnosis (FDD) in real-

time operation. The main restrictions are: a) the process is modeled by a black-box ARX 

discrete time model Mx; b) the control architecture obeys the one depicted in Fig. 3.1; c) only 

the reference r(k), the input u(k) and the output y(k) signals are measured; d) the FDD method 

must detect parametric (multiplicative) faults, and if possible also additive faults.   

 

Assuming that a white box model is not available, it is necessary to perform system 

identification in order to obtain an acceptable low order ARX model. Different type of models 

relating the available signals in a system, under closed-loop (Fig. 3.1), can be used for fault 

detection and diagnosis. The most common models are: a) a model Myu(θ), relating the output 

signal y(k) and the input signal u(k); b) a model Myr(θ) relating the output signal y(k) and the 

reference signal r(k). If the aim is to detect only faults on the plant (sensors, actuators and 

process) then the model Myu(θ) can be sufficient, but if faults on the controller need also to be 

detected then the model Myr(θ) must be used.  

 

3.2.3 Fault Modeling and FDD based on ARX Models 

Assuming that a LTI SISO system is modeled by an input-output model Myu(θ), then the 

model extended to include faults can be represented in the frequency domain by Eq. 3.1, 

where Gu(z) is a known transfer function with state-space realization (A, B, C, D), i.e., 

Gu(z) = D + C (z I - A)-1 B.  The term ∆Y(z) includes the disturbances and model uncertainty, 
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F is an unknown vector that represent all possible faults, and Gf(z) is a known transfer 

function with state-space realization (A, Ef, C, Ff) (Frank, et al., 2000a): 

 

Y(z) = Gu(z) U(z) + ∆Y(z) + Gf(z) F(z) . Eq. 3.1 

 

For each type of fault the transfer function assumes a different expression. For the sensor fault 

Gf(z) = Ff , for the actuator fault Gf(z) = Gu(z), and for the component fault 

Gf(z) = C (z I - A)-1 Ef. A great limitation in many real situations is that the transfer function 

Gf(z) is usually unknown.    

 

Considering that the residual signal re(k) is expressed by the difference between the measured 

output value y(k) and the predicted value y
∧
(k), Ding and Frank (1990) introduced the 

following construction of LTI residual generators, where Rf(z) is a post-filter: 

 

Re(z) = Rf(z) (Y(z) - Y
∧
(z)) . Eq. 3.2 

 

The FDI system design problem can be formulated as finding Rf(z) so that the FDI system is 

stable and Re(z) is mostly sensitive to F(z) and robust to ∆Y(z). In real situations, when few 

sensors are available and the goal is to detect many faults, find the filter Rf(z) is usually a hard 

task.  

 

Observing only the behaviour of the output signal y(k) is not usually a good solution; it can be 

acceptable if combined with other fault detection techniques. The faults whose effects are not 

reflected persistently on the output signals are difficult to detect. In closed-loop, sometimes 

the controller masks the output effects of the faults. If we look only to an output signal, then 

mainly two approaches can be applied: a) a signal processing technique; b) a statistical data-

based approach. 

 

As mentioned earlier, the main goal of this work is to detect and diagnose parametric faults. 

Many authors argue that the parity equations and observers are most suitable for the detection 

of abrupt additive faults, and the parameter estimation / identification is more appropriate to 

detect parametric faults (Isermann, 1997; Gertler, 1998; Chen & Patton, 1999; Frank, et. al, 

2000a). 



Additive faults are usually detected using FDE approaches based on input-output behaviour 

Bu,y (Blanke, et al., 2003). The pairs (u, y) are called input/output pairs (I/O pairs). The 

nominal behaviour Bu,y of a plant is defined by the set of all possible pairs of trajectories u and 

y that may occur for the fault-free (faultless) case. 

The detection of multiplicative faults is commonly performed by FDE methods based on on-

line parameter estimation / identification. In this dissertation methods are proposed to detect 

and diagnose faults based on the parameter behaviour Bθ of ARX models, or features based on 

them. In fact, the ARX model parameters represent a “pseudo-state” of the process.  

The great advantage of identification methods is that they can be used to detect both 

multiplicative and additive faults (Gertler, 1998). This can be understood in the following 

manner, following this example. For the case of Problem 1 under investigation, and observing 

Fig. 3.2, additive faults on actuator ∆u or on sensor ∆y, or a parametric fault ∆MP(θP) on the 

plant, cause variations of the parameters associated with the ARX input-output model Myu(θ) 

identified on-line. 

Plant
MP(θP) + ∆MP(θP)

u

+

+ +

+

y

∆u ∆y
∆θ

ur yr  

Fig. 3.2 - Typical faults on a SISO system. 

 

For a LTI-SISO system, under nominal operating conditions (fault-free), the nominal ARX 

model in the predictor form can be expressed by 

 

y
∧

0(k|θ0)  = ϕ0
Τ(k) θ0(k). Eq. 3.3 

 

A typical fault (additive or multiplicative) usually causes a change in the system behaviour, 

Bθ. The system behaviour changes from fault-free Bθ0 to faulty Bθf. A fault usually causes a 

change in the regression vector from ϕ0
Τ(k) to ϕf

Τ(k) , and also a change in the parameter 

vector from θ0(k) to θf(k). Consequently, the faulty system can be modeled by the faulty ARX 

model: 
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y
∧

f(k|θf)  = ϕf
Τ(k) θf(k). Eq. 3.4 

 

In the next sections new FDD methods for linear systems based on the parameter behaviour 

Bθ of the ARX model are proposed, requiring on-line parameter estimation / identification. 

The main idea is to detect and diagnose faults via changes on the ARX model parameters or 

on features based on them. Some of the FDD approaches proposed in this chapter can be 

extended to deal with nonlinear systems, since the on-line parameter estimation allows the 

adaptation to the system dynamic changes. 

 

3.2.4 Closed-Loop Identification 

Since most of the fault detection and diagnosis methods proposed in this work need on-line 

identification in closed-loop, a brief review is carried out here for a typical architecture 

depicted in Fig. 3.3. 

Controller Plant
r(k) e(k)

u(k)

y(k)

+
-

du(k)dr(k)

 

Fig. 3.3 - Closed-loop control, and dither signals. 

 

In closed-loop identification, the data set must be informative. A data set is informative if it is 

capable of distinguishing between different models (Ljung, 1999). The controller must 

guarantee the persistence of input excitation, and an informative data set. In order to 

guarantee persistence of excitation, a dither signal must be added to the input signal, du(k), or 

to the reference signal, dr(k), as depicted in Fig. 3.3. In this work, a white (Gaussian) noise 

with normal distribution (mean zero and variance σ 2) has been used as a dither signal added 

to the reference signal r(k). Different approaches exist for closed-loop identification (Ljung, 

1999): a) the direct approach; b) the indirect approach; c) the joint input-output approach. 

In the direct approach the basic prediction-error identification method is applied, for example 

using the least-squares algorithm as a special case, or other derived algorithm. In 

identification of the ARX model Myu(θ), the output signal, y(k), and the input signal, u(k), are 

used in the same way as for open-loop operation, ignoring any possible feedback, and not 

using the reference signal, r(k). 
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The indirect approach consists in identifying the ARX model Myr(θ) from reference signal, 

r(k), to output signal, y(k),  and retrieve from that the input-output ARX model Myu(θ), 

making use of the known controller. 

For the joint input-output approach, the signals y(k) and u(k) are considered as outputs of a 

system driven by r(k) and noise. From this joint model it is possible to recover the knowledge 

of the system ARX model Myu(θ), and the controller. 

The parameter estimation methods give the best model within the chosen model structure. The 

crucial question is: is this best model good enough? This is the problem of model validation. 

The question reveals several aspects (Ljung, 1999): a) does the model agree sufficiently well 

with the observed data?; b) is the model good enough for the purpose?; c) does the model 

describe the true system? The method to answer these questions is to confront the model with 

as much information about the true system as it is possible in practice. 

Some typical methods for model validation are (Ljung, 1999; Soderstrom & Stoica, 1989): a) 

residual analysis (best fit criterion, statistical tests, etc); b) Akaike’s information criterion 

(AIC); c) Akaike’s final prediction error. In this dissertation, the best fit criterion and the 

Akaike’s information criterion are used to validate the ARX model structures. The best fit 

criterion gives the percentage of the output y variation that is explained by the model, and is 

given by χbfc. Assuming that the norm is expressed by ||.||, and the mean value of y by µy, then 

χbfc is expressed by 

 

χbfc = 100 × (1 - 
|| y - ŷ ||
|| y - µy ||

 ) , 
Eq. 3.5 

 

where y is the output signal, ŷ is the predicted model output, and µy is the output mean value. 

Many plant faults are best characterized as changes in some plant parameters. Also, model 

errors resulting from shifting operating points may be described in terms of changes in model 

parameters. The FDI of parametric discrepancies by parameter estimation involves the 

identification of a reference model, in a situation when it is known (assumed) that no 

discrepancies are present, followed by repeated re-identification on-line. The residuals are 

obtained by comparison between the on-line estimates and the reference model. 

 

When one (or more) of the plant parameters changes suddenly, a transient in the identified 

model parameters takes place. The estimate of the changed parameter does not follow the 
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change immediately. The sudden change of a single parameter causes transient errors in the 

estimate of the other parameters as well. This, of course, may be a major problem in the 

isolation of the change. To alleviate this problem, Gertler proposed a sliding window variant 

of the least squares algorithm (Gertler, 1998). In this dissertation a sliding window PCR 

parameter estimation algorithm is proposed; the equations and the pseudo-code of the 

algorithm can be found in section 2.3.7. If fault isolation is an objective, it is more 

advantageous to use a semi-batch algorithm for on-line parameter estimation, with a relatively 

short sliding data-window (Gertler, 1998). 

 

With a sliding data-window of length τ, it is known that the transient following a parameter 

jump lasts exactly τ - 1 samples. Therefore, any isolation decision has to be delayed by τ - 1 

samples following the detection of a change. The sliding window length τ must be selected 

according to the dominant process time constant. 

 

3.3 FDD Approach using Dynamic Features of ARX 

Models 

 

3.3.1 Introduction 

A new fault detection and diagnosis (FDD) approach for linear systems based on dynamic 

features (static gain and bandwidth), computed from black-box ARX models, is proposed 

here. The aim of the work described here can be summarized in the following problem. 

 

Problem 2. For a continuous time LTI SISO dynamic system with unknown transfer function 

G0(s), find an on-line methodology for fault detection and diagnosis (FDD) based on dynamic 

features (static gain and bandwidth) of ARX models. The main restrictions are: a) the process 

is modeled by a black-box ARX discrete time model Mx; b) the control architecture obeys the 

one depicted in Fig. 3.1; c) only the reference r(k), the input u(k) and the output y(k) signals 

are measured; d) the FDD method must detect parametric (multiplicative) faults, and if 

possible also additive faults.   

 



3.3.2 FDD Approach based on Dynamic Features of ARX Models 

The static gain and the bandwidth of ARX models are the two main dynamic features 

considered here for fault detection and diagnosis purposes. 

The static gain sg of a process model can be estimated, each time instant k, according to the 

transfer function (Eq. 3.6) of an ARX model at frequency z = 1: 

 

Gyu(θ, z)  = 
Y(z)
 U(z) = 

b1z
-nd + … + bnbz

-(nd+nb-1)

 1 + a1z
-1 + … + anaz

-na   

sg(k) = Gyu(θ, z = 1) = 
b1(k) +…+ bnb(k)

 1 + a1(k) +…+ ana(k) 

Eq. 3.6 

 

One important concept in system analysis is the bandwidth bw of a LTI system. There are 

many different ways in which to define bandwidth. The bandwidth bw, assuming a dynamic 

model with dominant poles of second order, can be approximately estimated on-line based on 

the estimated rise-time tr (computed from the step response) of the ARX model (Oppenheim, 

et al., 1983): 

bw(k) ≅ 
2 π 
tr(k) . 

Eq. 3.7 

 

Assuming that the faults on the physical parameters γ cause variations in the ARX model 

parameters θ, then each fault can be modeled by a different ARX model MX. For each 

different ARX model a different set of features (patterns) {sg , bw} is associated. Using the 

features sg and bw, a two dimensional features space is proposed in this work for fault 

detection and diagnosis as depicted in Fig. 3.4. The cluster F0 is associated with the nominal 

operation, and the clusters Fi (i = 1, 2,…, f) are associated with the other faults. 

 

sg

bw

F0

F2

F1

 

Fig. 3.4 - Features space based on static gain and bandwidth. 
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Here the fault detection (FDE) approach, the fault diagnosis (FDG) approach, and the 

combined FDD approach are presented. The general architecture is depicted in Fig. 3.5. Two 

types of ARX models can be used in this approach: a) an input-output ARX model Myu 

relating the output signal y(k) with the input signal u(k), or a reference-output ARX model Myr 

relating the output signal y(k) with the reference signal r(k). The sliding window principal 

components regression (SW-PCR) algorithm, described in section 2.3.7, is used on-line for 

estimation of model parameters.  

 

PLANT

Parameter
Estimation
(SW-PCR)

{u(k), r(k)}y(k)

Generation
of features

(ARX model)

Discriminant
Analysis
(NNLDA)θ(k)

sg(k)

bw(k)

Alarm
generator

LP filtering
&

thresholding

p(k) am(k)

hd
hf

fd(k)

Knowledge-Based System, KBS
(Fault Classification) LP filtering

Fault Detection

Fault Isolation

fi(k)

p(k)

fd(k)
fi0(k)

 

Fig. 3.5 - Architecture of the FDD approach based on dynamic features of ARX model. 

 

The fault detection and isolation approaches proposed here use parameter estimation and a 

pattern classification approach using neural nonlinear discriminant analysis (NNLDA). 

NNLDA is used to discriminate between one of the patterns (clusters) associated with each 

fault. NNLDA makes it possible to define decision boundaries for each of the fault regions. In 

general the decision boundaries are nonlinear, and this is the reason why they are named 

hyper-surfaces. NNLDA can be viewed as a nonlinear approach that extends the statistical 

Fisher discriminant analysis (FDA) for the nonlinear cases. The discriminant analysis 

NNLDA enables the definition of decision boundaries needed for fault detection and isolation, 

and is more efficient than the geometrical techniques. 

Fig. 3.6 depicts the architecture of the neural network (NN) used for nonlinear discriminant 

analysis (Asoh & Otsu, 1990). The NN acts as a pattern classifier, since it attributes a fault 

class to each data pattern. It is a feedforward multilayer perceptron neural network (FF-MLP-
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NN) with 4 layers, NN{a-b-c-d}(Wd, …). The NN has an input layer (IL), a hidden layer (HL1) 

with hyperbolic tangent sigmoid (tansig) activation functions, and a hidden layer (HL2) and 

the output layer (OL) with linear activation functions (purelin). The neural network is trained 

off-line via the Levenberg-Marquardt optimization algorithm (Hagan, et al., 1995). If the 

number of inputs is ni and the number of outputs is no, then the number of neurons in each of 

4 layers is given by [ni m no-1 no], and the value of m depends on the complexity of the 

classification problem (e.g., m = 10). 

In the training phase of the neural network, the input data vector x contains the data patterns 

(cluster data) associated with the features for each fault, and the output data vector p contains 

the class (pattern) associated. The length of the output vector is equal to the numbers of faults 

under study. Patterns with binary elements are used, i.e. for fault F0 the fault class is 1 and is 

given by the output vector [1 0 0 0], and for fault F1 the class 2 is given by the output vector 

[0 1 0 0], etc. Here, the neural model used for nonlinear discriminant analysis has the label 

MNNLDA. 

 

x

σ

σ

σ

φ

φ

φ

φ

... ......

...

IL HL1 OLHL2

p

 

Fig. 3.6 - Architecture of the neural network for NNLDA. 

 

Fault Detection Approach. The features static gain and bandwidth have been proposed for 

fault detection (FDE) in dynamic systems by Palma et al. (2002b). This FDE approach 

assumes that a fault in a plant can be detected on-line via changes on the estimated ARX 

model parameters, θ. This requires an on-line estimation of the ARX model parameters and 

the estimation of the dynamic features (static gain and bandwidth). 

The basic principle for fault detection is described next. The nominal behaviour corresponds 

to the fault F0, and is characterized by a data input pattern (cluster in a two dimensional 

graph) (Fig. 3.4). The on-line output (fault class) vector of the neural nonlinear discriminant 

analysis model MNNLDA is expressed in the form p = [p1  p2  p3  p4] for the case of 4 faults, i.e., 
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the ith  position on vector p is denominated p(i) = pi. For the case of nominal operation, 

corresponding to fault F0, p1 ≈ 1 and pi|i≠1 ≈ 0. 

A fault alarm signal is generated if the deviation from the nominal behaviour exceeds a 

certain threshold (hd):, i.e., p1 < hd. 

 

am(k) = 1 ⇐ p1 < hd Eq. 3.8 

 

The threshold hd is a design parameter. The threshold must be chosen in order to guarantee 

that the patterns (clusters in an n-dimensional space) for each fault are separated in the 

decision space of the neural network that implements the NNLDA. Typical values used here 

for the threshold hd are around 0.9. To obtain a fault detection signal fd(k), the fault alarm 

signal am(k) is low pass filtered. In the z-domain, assuming the Z-transform this is done by  

 

Fd(z) = Hlp(z, λ) Am(z) Eq. 3.9 

 

The low pass filter Hlp(z, λ) equations can be found in 2.4.4. Finally, the low pass filtered 

signal is compared to a threshold (a typical value is around 0.5): 

 

fd(k) = 1 ⇐ am(k) > hf Eq. 3.10 

 

Fault Diagnosis Approach. The task of fault isolation is executed after the task of fault 

detection. The isolation is based on a knowledge base system (KBS). The isolation is 

performed via the analysis of the output pattern (class), p = [p1  p2  p3  p4], generated by the 

neural nonlinear discriminant analysis model MNNLDA. The isolation of fault number j is 

achieved: 

 

fi0(k) = j ⇐ (round(pj+1) = 1) and (round(pi)|i≠j+1 = 0) Eq. 3.11 

 

where round(.) is the round function to nearest integer. The fault isolation signal is also low 

pass filtered (Hlp(z, λ), section 2.4.4): 

 

Fi(z) = Hlp(z, λ) Fi0(z) Eq. 3.12 
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Only the fault isolation has been described and implemented, but this approach can be used 

also for fault analysis (identification). According to the ideas explained, in the next sub-

section the algorithm proposed is described and an example of application is presented. 

 

Effective fault detectability and isolability is achieved if the input fault patterns (symptoms) 

are separated in a m-dimensional space, and also if the neural network model MNNLDA, that 

implements the nonlinear discriminant analysis, is able to separate well the input fault 

patterns. 

 

3.3.3 Algorithm and Example 

The main ideas of the new FDD methodology proposed in this work have been explained in 

the last section. Afterwards, the FDD algorithm is described, and an example is given. Here it 

is assumed that an input-output ARX model Myu relating the output signal y(k) with the input 

signal u(k) is used. A reference-output ARX model Myr, relating the output signal y(k) with 

the reference signal r(k), can also be used. 

Next the algorithm for implementation of the FDD approach applied to a SISO system is 

presented, based on the general architecture depicted in Fig. 3.5, assuming that the nominal 

behaviour is termed the fault F0, and also the existence of n more faults.  

 

Algorithm 2. Fault detection and diagnosis based on dynamic features of ARX models (FDD-

DF-ARX). 

In off-line operation, the following tasks must be executed: 

a. For each fault Fi of the set F = {F0, F1, …, Fn}, the features (static gain and bandwidth) 

must be estimated running the faulty system in closed-loop operation, and using the 

sliding window SW-PCR algorithm for estimation of the ARX model parameters θ. Each 

pattern (cluster in two dimensions) data associated with the respective fault must be saved.  

b. Proceed with the training of the neural network NN{a-b-c-d}(Wd, …) that implements the 

neural nonlinear discriminant analysis (NNLDA), using the patterns (clusters) for all the 

faults Fi of the set F = {F0, F1, …, Fn}. The Levenberg-Marquardt optimization algorithm 

is used for the neural network training. This discriminant neural model is expressed here 

by MNNLDA.  

c. Determine the thresholds and the low pass filters parameters, in order to obtain a desired 

trade-off between rate of false alarms, rate of missed fault detections, and detection and 
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isolation delays. Different sets of experimental nominal data must be used to compute and 

validate the thresholds and filters parameters. 

Each time instant k, the following steps must be executed on-line: 

1. Sample the process output signal y(k). 

2. Estimate the parameters θ(k) of the input-output ARX model Myu, based on past input-

output data vectors, y(k) and u(k), using the SW-PCR parameter estimation algorithm. 

3. Compute the dynamic features of the ARX model, i.e., the static gain sg(k) and the 

bandwidth bw(k). 

4. Compute the output vector p(k) of the neural network MNNLDA that implements the 

nonlinear discriminant analysis (NNLDA) approach. 

5. Generate an alarm, am(k) = 1, if the first element of vector p(k) termed p1 exceeds the 

threshold hd , i.e., p1 < hd. A typical value for the threshold is around 0.9. 

6. Compute the fault detection signal fd(k) by low pass filtering, Hlp(z, λ), the fault alarm 

signal, and by thresholding. The thresholding is expressed by the rule: if am(k) > hf  then 

fd(k) = 1 else fd(k) = 0. A typical value for the threshold is around 0.5. 

7. If a fault is detected, i.e. fd(k) = 1, then proceed to fault isolation. Using a knowledge based 

system (KBS) classify (map) each output vector pattern p(k) into the respective fault class 

Fi. The KBS system has been implemented using if-then rules, but fuzzy if-then rules or 

neural networks can also be used if a larger number of faults must be isolated. The signal 

fi0(k) is then obtained. Finally the fault isolation signal fi(k) is obtained by low pass 

filtering the signal fi0(k). 

■ 

 

The role of the low pass filtering of signals is of crucial importance in FDD systems. One of 

the main goals of the low pass filtering is to decrease the rate of false alarms. The drawback is 

the increase of the detection and isolation delays. 

 

Example 1. Fault detection and diagnosis (FDD) based on dynamic features of ARX models 

applied to a first order continuous time system. 

In this example, the proposed FDD approach based on dynamic features of an ARX model is 

applied to a first order system according to Algorithm 2. The transfer function of the 

continuous time system is given by G0(s) = Y(s) / U(s) = K / (τ s + 1), with nominal 



parameters K = 1 and τ = 1 s. It is assumed that the sensor signal of the plant has a low noise 

variance of 1×10-8 .  

Here, an ARX(na = 2, nb = 1, nd = 1) discrete time model is used for modelling the continuous 

time system G0(s), and also to compute the dynamic features: static gain sg and bandwidth bw. 

The discrete model ARX(2, 1, 1) can be expressed by the difference equation given by 

y(k) = -a1 y(k-1) -a2 y(k-2) +b1 u(k-1) + e(k). For nominal operation, using a sampling period 

of Ts = 0.11 s, the mean values of the identified ARX model parameters are given by 

[a1 a2 b1] = [-8.9×10-1 -4.1×10-3 1.0×10-1] . A dither signal with variance 1×10-3 has been 

added to the reference signal in order to guarantee persistent excitation conditions. 

 

Fig. 3.7 - Dynamic features of ARX model for fault F1. 

 

Fig. 3.7 shows the results obtained for a fault on the gain K of the continuous time model, for 

an experiment of 400 s. The gain K changes from a value of 1 to a value of 2. This 

corresponds to a transition from nominal operation (fault F0) to fault F1. From top to bottom, 

the signals can be observed: the gain K and time constant τ  (tau) of the continuous time 

system, and the ARX model parameters (th = {a1, a2, b1}) as a function of time. The 

penultimate graph shows the estimated static gain sg (in solid line) and the estimated 

bandwidth bw (in dash-dotted line). In the last graph a two dimensional graph for the 

 65



estimated features, static gain sg and bandwidth bw, can be observed. The two clusters 

(patterns) for faults F0 and F1 can be observed, the location of fault F2 (blue square symbol), 

and also the trajectories associated with the transients behaviours. The fault F2 is a changing 

in the time constant τ  from 1 to 2, not shown in this experiment. 

 

Fig. 3.8 - FDD signals for fault F1.  

 

For this experiment, the control action comes from a digital linear PI controller, with Kp = 0.4 

and Ti = 0.4 s, driving the system under closed-loop control (Astrom & Hagglund, 1988). 

Since here the parameters estimation is carried out using the sliding window SW-PCR 

algorithm, it is necessary to wait tx seconds after fault detection in order to perform the fault 

isolation accurately. The time tx is equivalent to the length of the sliding window of the SW-

PCR algorithm. Here, tx assumes the value of 10 seconds. 
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Fig. 3.8 shows, from top to bottom, the following signals: the reference signal r(k), the output 

signal y(k), the control input signal u(k), the alarm signal am(k), the fault detection signal fd(k), 

and the fault isolation signal fi(k). The fault analysis is not considered here. The fault F1 

occurs at time instant 240 s, and the detection delay is 0.8 s. The accurate fault isolation 

occurs around 10 s after fault occurrence. Theoretically, it is necessary to wait the time 

corresponding to the length of the sliding window of the SW-PCR parameter estimation 

algorithm; in this example, this length is 10 s. Both fault detection and isolation signals have 

been obtained by low pass filtering, Hlp(z, λ), with the pole located at λ = 0.9. The pole 

location λ of the low pass filter is a design parameter, and must take into account the length of 

the sliding window of the parameter estimation algorithm. 

 

In Example 2, an experiment is shown for different variances of sensor noise. The noise, an 

unpredictable disturbance, is particularly important in dynamic systems. The effect of 

increasing the variance of the sensor noise in the performance of the fault detection and 

diagnosis approach proposed is considered here. Similar noise effects also occur in other 

approaches proposed in this work, since most of them use on-line estimation of ARX models 

parameters. 

The FDD approach depends on dynamic features (static gain and bandwidth) of ARX models 

that are computed based on on-line estimated model parameters. Increasing the variance of 

the sensor noise will cause an increase on the variance of the estimated parameters. For high 

parameter variances, a significant increase on the dispersion of the fault clusters (patterns) 

occurs, causing a degradation of the FDD performance. The static gain presents a small 

variance, while the bandwidth presents a significant increase on the variance. The sensibility 

of the bandwidth with respect to the variations of the ARX models parameters is higher since 

the bandwidth (estimated based on the rise-time) depends on the locations of the poles and 

zeros, and these locations are very sensitive to parameter variations. For high variances, the 

detection and isolation of small faults in some directions is not possible, since the nominal 

region increases with the increasing of the variance of sensor noise. Example 2 shows how the 

variance of the features used for FDD varies as a function of the variance of sensor noise. 

 

Example 2. Effect of sensor noise in the model parameters and FDD features. 

Tab. 3.1 shows the corresponding variances in the dynamic features of the FDD proposed 

approach for different values of variance of sensor noise. 
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This example is based on data captured for nominal operation, for the model 

G0(s) = Y(s) / U(s) = K / (τ s + 1) described in Example 1, and for an ARX(2, 1, 1) model with 

parameters [a1 a2 b1] = [-8.9×10-1 -4.1×10-3 1.0×10-1] . Data has been captured under closed-

loop control, using a PI controller with parameters Kp = 0.4 and Ti = 0.4 s, and a dither signal 

with variance 1×10-3 added to the reference signal. 

The variance is denoted by σ 2(.), and is computed for the ARX parameters and for the static 

gain and bandwidth. The great difference between the variance of the static gain and the 

variance of the bandwidth is clear.  

For this FDD approach, when the variance of the sensor noise increases, it is necessary to 

compute a new nominal region larger than the old one, in order to avoid the increasing of the 

rate of false alarms. Another effect is the impossibility of detection and isolation of small 

faults in directions where the variance of the features is high. The use of adaptive thresholds 

can be considered to deal with different sensor noise situations. 

 

Tab. 3.1 - Effect of sensor noise on the model parameters and FDD features. 

 

 Variance σ 2(a1) σ 2(a2) σ 2(b1) σ 2(sg) σ 2(bw)

Var. of sensor noise       

1×10-8 1.4×10-4 1.2×10-4 1.1×10-6 7.0×10-10 3.6×10-3 

1×10-6 4.9×10-3 4.5×10-3 9.0×10-5 1.2×10-7 4.4×10-2 

1×10-4 5.3×10-3 5.9×10-3 2.9×10-3 6.1×10-6 2.7 

 

3.4 Fault Detection and Diagnosis based on the Influence 

Matrix (IMX) Method 

 

3.4.1 Introduction 

In typical real applications, it is not always possible to obtain residuals in the incidence matrix 

form that guarantee a strong isolation. 

The influence matrix (IMX) method based on a geometrical approach, described in this 

section, is an alternative method for fault isolation. The IMX method assumes that a fault in a 
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feedback control system manifests itself as the deviation of the physical parameters (sensor 

gains, resistance, etc) from nominal values. As was explained in section 3.2, a reasonable way 

to achieve fault detection and diagnosis is based on the variations of the ARX parameters. If a 

relationship between physical parameters and ARX model parameters can be established, then 

it is possible to detect and diagnose faults in a plant. The input-output model usually depends 

on the physical parameters in a nonlinear way, whether the system is linear or nonlinear 

(Gertler, 2000). But if the plant operates in steady-state then an approximately linear 

relationship between model parameters and physical parameters can be assumed. 

 

The main purposes of fault detection and diagnosis (FDD) of dynamic systems is to detect 

faults at the earliest stage as possible, before the performance of the system shows signs of 

marked abnormality, to locate the faulty part, and to estimate the degree of the fault. Many 

FDD methods have been investigated using various principles such as parity equations, 

observers, parameter estimation / identification, etc. The reason so many methods have been 

studied lies in the requirements for detection and diagnosis being so vast that it is usually 

difficult to satisfy all of these requirements by using only one FDD method. Sometimes, the 

alternative is to combine different methods in order to increase the performance (Isermann, 

1997; Chen & Patton, 1999). Considering these circumstances and placing stress on 

practicality, Ono and co-workers tried to develop a method that has a rather simple algorithm 

and yet performs effectively (Ono, et al., 1987). In this dissertation, the method is called the 

Influence Matrix (IMX) method. The influence matrix is the Jacobian of the model parameter 

vector with respect to the physical process parameters. 

Initially four themes have been studied by Ono and co-workers to be solved by the FDD IMX 

method. The first theme relates to the accuracy of the model of the system to be diagnosed. In 

most diagnostic methods, the Kalman filter is used to detect the error in the signal caused by 

the fault, and a statistical test is applied to detect and estimate the degree of the fault. In this 

case, if some differences exist between the actual system and the model used in the filter, 

there is a possibility of misjudgement. Therefore, the accuracy of the model is indispensable 

for accurate diagnosis. However, it is usually difficult to achieve an accurate modeling 

because of various errors that occur when modeling. Thus, a diagnostic method robust to 

model errors is desired. 

The second theme concerns the method for fault detection and diagnosis. A method that is 

able to not only to detect the fault but also to indicate its location and to estimate its degree is 

desirable, in order to achieve fast repairs. 



The third theme is about the type (mode) of the detectable faults. There are various types of 

faults, such as step changes, gradual changes, etc. A diagnostic system which can diagnose 

these various faults is desirable. 

The last theme relates to computer programs. Taking into account that the detection and 

diagnosis is performed in real time, the algorithm should be as simple as possible in order to 

minimize the computer load. 

On-Line
Identification

of System Model

Fault
Detection

Fault
Estimation
using the

Influence Matrix (IMX)

(Subsystem 1)

(Subsystem 2)

 

Fig. 3.9 - Architecture of the IMX FDD method. 

 

Taking these matters into consideration, the FDD method proposed by Ono and co-workers 

consists basically of on-line parameter estimation / identification, fault detection and fault 

diagnosis using the influence matrix (IMX) method. 

The FDD system consists of the following two subsystems as shown in Fig. 3.9 (Ono, et al., 

1987). Subsystem 1 is used at the parameter identification phase to estimate the system model 

on-line, and in real time operation. Mainly, two types of ARX models can be used: input-

output model Myu(θ), or reference-output model Myr(θ). Subsystem 2 works at the diagnostic 

phase to detect a fault by the deviation in the system model, and to estimate the degree of the 

deviation of the faulty physical parameter. In order to implement this approach it was chosen 

in this work to due successive identification and diagnosis, at each time instant k. 
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3.4.2 The IMX Method for Fault Detection and Diagnosis 

The influence matrix (IMX) method enables the detection, isolation and estimation of faults, 

and has been developed for systems represented by input-output models (Ono, et al., 1987; 

Doraiswami & Stevenson, 1996; Posthan, et al., 1997). Assuming that the model parameters 

are multi-linear in the physical parameters (resistance, controller gain, etc), the influence of 

each physical parameter on the model parameters (called the influence vector) can be 

interpreted as a fault template (pattern) line associated with that physical parameter. The 

influence matrix is assumed to have been computed off-line, and stored for later use in on-line 

fault detection and diagnosis. 

For FDD purposes, a low-order model, sometimes much lower than the true order, may be 

appropriate (Doraiswami & Stevenson, 1996; Posthan, et al., 1997). The identified model is 

merely a vehicle to estimate the faulty parameter, and not the true model of the system. 

 

Considering the parameter (feature) vector of an ARX(na, nb, nd) model as a column vector 

θ = [a1 a2 … ana b1 …  bnb]
T, and the physical process parameters denoted by the vector 

γ = [γ1 γ2 … γp]
T, the relationship between the model parameters and the physical parameters 

can be expressed as θ = f(γ). Let the nominal values of the physical parameters be denoted by 

γ nom, and the vector of their deviations due to a fault by ∆γ = [∆γ1 ∆γ2 … ∆γp]
T. The vector 

θ = f(γ nom + ∆γ) can be written in the form of a Taylor’s expansion, and assuming there is 

only a single fault and each component of the feature vector is multi-linear in the physical 

parameters, then the Taylor’s expansion will be simplified as (Posthan, et al., 1997): 

 

θ = θnom + 
∂θ
∂γi

|γ =γ nom  ∆γi
Eq. 3.13 

 

In (Eq. 3.13), the partial derivative of the feature vector, θ, with respect to the ith physical 

parameter, γi, is termed the ith influence vector, denoted by Ωi. For each physical parameter, γj, 

the associated influence vector is defined as: 

 

Ω nom
j  = 

∂θ
∂γj

|γ = γ nom  ; for j = 1,…, p . 
Eq. 3.14 

 

The influence matrix (IMX), Ω, given by (Eq. 3.15) is the matrix whose columns are the p 

influence vectors Ωi. The influence matrix is the Jacobian of the model parameter vector with 
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respect to the physical parameters, Ω = Ωθ, γ . The IMX matrix is computed off-line for the 

nominal operation (fault-free), and stored for later use in on-line FDD operation. 

 

Ω = [Ω1 … Ωp] = [
∂θ
∂γ1

 …  
∂θ
∂γp

]γ = γ nom 
Eq. 3.15 

 

Lemma 1. Alignment between feature vector and influence vectors. 

When a fault on a physical parameter ∆γi occurs, the feature vector deviation ∆θ will be 

aligned with the associated influence vector, Ωi (Ono, et al., 1987; Doraiswami & Stevenson, 

1996; Posthan, et al., 1997): 

 

∆θ = Ωi ∆γi . Eq. 3.16 

■ 

 

Proof. Due to the fact that the feature vector is multi-linear in the physical parameters then 

the Taylor’s expansion is simplified according to Eq. 3.13. This equation can be re-written in 

the form: ∆θ = θ - θnom = 
∂θ
∂γi

|γ=γ nom  ∆γi = Ωi ∆γi. 

■ 

 

The presence of noise will cause errors in estimation of ARX model parameters, θ, and the 

estimated ∆θ will never lie exactly in the direction of Ωi, but will be expected to have the 

largest projection on Ωi than on the other influence vectors, assuming that the influence 

vectors are well separated in the Euclidean space of feature vectors. 

After the faulty physical parameter, γi, has been determined, then an estimate of the value of 

its deviation, ∆γi, may be obtained by solving a least-squares (LS) estimation problem. The 

optimal solution to this LS estimation problem is 

 

∆γ*
i  = (Ω T

i Ωi)
-1 Ω T

i  ∆θ = (Ω T
i  ∆θ) / ||Ωi||

2 Eq. 3.17 

 

The magnitude of the projection of ∆θ on Ωi is given by Eq. 3.18, where Ω T
i

∧
 is the unitary 

vector in the direction of Ωi, and φ(.) denotes the angle function between two vectors.  
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P
∆θ
Ωi = ||Ωi ∆γ*

i  || = |Ω T
i  ∆θ | = ||∆θ|| cos(φ(∆θ, Ωi)

∧
) Eq. 3.18 

 

According to the analytical geometry, for an n-dimensional space, the projection of a vector u 

on a direction defined by a vector v is given by:  

 

projvu = u . (v / ||v||) = u . v
∧
 = ||u|| ||v

∧
|| cos(φ(u, v

∧
)) = ||u|| cos(φ(u, v)) 

||u|| = u . u = u1
2 + … + un

2

Eq. 3.19 

 

The following approach can be used for single fault isolation. 

 

Lemma 2. Fault isolation based on largest projection. 

Having estimated θ (hence ∆θ = θ − θnom), the index of the faulty physical parameter, γi, is 

determined by the largest projection of ∆θ on the influence vectors (Ono, et al., 1987; 

Posthan, et al., 1997). That is 

  

i = argmaxj {|Ω T
j  ∆θ|}; j = 1, …, 

∧
p Eq. 3.20 

■ 

 

Using the IMX concept and inspired by Lemma 2, a new fault isolation method (minimum 

angle criterion) is proposed in this work. The formulation is presented next in the form of a 

theorem. 

 

Theorem 3. Fault isolation based on a minimum angle criterion for the IMX method. 

Having estimated θ (hence ∆θ), the index of the faulty physical parameter, γi, is determined 

by the minimum angle (direct or indirect) between the feature vector deviation, ∆θ, and the 

influence vectors, Ωi (Palma, et al., 2005c). Direct angles are angles between ∆θ and each Ωi. 

Indirect angles are angles between ∆θ and each -Ωi. The angle between two vectors is denoted 

here by the function φ(.). The faulty physical parameter is the one with the minimum angle 

obtained from all (direct and indirect) angles according to the expression 

 

i = argminj {φ(∆θ, Ωj); φ(∆θ, −Ωj)} ; j = 1, …, p  . Eq. 3.21 
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If ∆θ is more aligned with Ωi then an increase in the physical parameter γi occurs, i.e., ∆γi > 0. 

If ∆θ is more aligned with -Ωi then a decrease in γi occurs, i.e., ∆γi < 0.  

■ 

 

Proof. According to Lemma 1, when a fault ∆γi occurs ∆θ = Ωi ∆γi. This means that ∆θ will 

be geometrically aligned in the direction of Ωi. Then for a positive fault, ∆γi > 0, the angle 

between vectors is φ(∆θ, Ωi) ≅ 0. For a negative fault, ∆γi < 0, the angle is given by 

φ(∆θ, Ωi) ≅ π ⇒ φ(∆θ, −Ωi) ≅ 0. 

Lemma 2 can also be used to prove the theorem. Lemma 2 states that the isolated fault is the 

one with maximum projection, P
∆θ
Ωi. The projection P

∆θ
Ωi = ||∆θ|| cos(φ(∆θ, Ωi)) is maximum if 

cos(φ(∆θ, Ωi)) is maximum. If cos(φ(∆θ, Ωi)) = 1 ⇒ φ(∆θ, Ωi) = 0, and if 

cos(φ(∆θ, Ωi)) = -1 ⇒ φ(∆θ, −Ωi) = 0. 

■ 

 

The angle between two vectors, u and v, in a n-dimensional space can be computed by: 

 

φ(u, v) = acos((u . v) / (||u|| ||v||)) Eq. 3.22 

 

The influence matrix method described presents a methodology for fault isolation and 

analysis, but does not establish a method for fault detection. 

 

A fault caused by a physical parameter change can be detected by a weighted sum of the 

squared of ∆θ(k) ∈ ℜm × 1 (Ono, et al., 1987). 

First, the parameter variation is computed, ∆θ(k) = θ(k) - θ nom, where θnom corresponds to a 

nominal reference model. The weighted sum squared of ∆θ(k) ∈ ℜm × 1 can be expressed by 

ν(k)2 = ∆θT(k) Wθ ∆θ(k), where Wθ is a weighting matrix. The purpose of Wθ is to give 

almost the same deviations, ν(k)2, to the minimum variations to be detected for every 

diagnosed parameter. Thus, almost the same fault detection performance can be obtained for 

all the parameters. By selecting the proper threshold value, η, the fault is detected as: 

ν(k) ≥ η   ⇒   fault at k = kf.  

 



 75

Afterwards, an algorithm for fault diagnosis (isolation and analysis) based on the influence 

matrix is presented. Here an input-output ARX model Myu relating the output signal y(k) and 

the input signal u(k) is assumed, but reference-output models of the type Myr relating the 

output signal y(k) and the reference signal r(k) can also be used. 

 

Algorithm 3. Fault diagnosis (isolation and analysis) based on the influence matrix (FDG-

IMX). 

In off-line operation, the following tasks must be executed: 

a. For each fault Fi of the set F = {F0, F1, …, Fn} estimate the ARX model parameters and 

save the information. 

b. For the faults of the set Ff = {F1, …, Fn} compute the influence matrix Ω, i.e., the Jacobian 

of the model parameter vector with respect to the physical parameters, Ω = Ωθ, γ . 

Each time instant k, the following steps must be executed on-line: 

1. Sample the process output signal y(k). 

2. Estimate the vector of ARX model parameters, θ(k), using the sliding window SW-PCR 

algorithm. 

3. Compute the deviation of the on-line parameter vector relative to the nominal parameter 

vector, ∆θ(k) = θ(k) - θnom. 

4. Compute direct and indirect angles between ∆θ(k) and each influence vector Ωj. 

5. Compute the fault isolation signal, fi(k), according to the minimum angle criterion 

formulated in Theorem 2. The fault isolated is given by fi(k) = i, where i is expressed by: 

 

i = argminj {φ(∆θ(k), Ωj); φ(∆θ(k), −Ωj)} ; j = 1, …, p  . Eq. 3.23 

 

6. Compute the fault analysis signal, fa(k), i.e. the fault magnitude according to the expression: 

 

P
∆θ
Ωj = ||Ωj ∆γ*

j  || = |Ω T
j  ∆θ(k) | = ||∆θ(k)|| cos(φ(∆θ(k), Ωj))

∧
 Eq. 3.24 

■ 

 

An example of influence vectors in a two dimensional space is presented below. 

 



a1

b1

0

θnom

θ(k)

∆θ(k)

Ω1

Ω2

Ω3

 

Fig. 3.10 - Influence vectors in two dimensional features space. 

 

Example 3. Influence vectors in two dimensional features space.  

If a continuous time system with transfer function G0(s) is to be modelled in discrete time by 

an ARX(na = 1, nb = 1, nd = 1) model, then it is possible to obtain a features space in two 

dimension, given by the ARX model parameters {a1, b1}. For this ARX model the transfer 

function is given by G0(z) = b1 z
-1 / (1+ a1 z

-1). In on-line operation, the parameter vector is 

estimated in real-time and expressed by θ(k) = [a1(k) b1(k)]. Fig. 3.10 shows a typical scenario 

for the space of feature vectors, with 3 influence vectors, Ωi, each one associated with a 

different possible fault. For this situation, the isolated fault is the fault F3, according to the 

minimum angle criterion (Theorem 3). Since the vector ∆θ(k) is more aligned with the vector 

Ω3 then an increase in the physical parameter γ3 occurs. 

 

The computation of the influence matrix (IMX) is done in off-line operation. Here, each of the 

physical parameters is perturbed from its nominal value, one-at-a-time, for a certain number 

of experiments (five, or more). The system is excited by a rich input signal, and the input-

output signals are recorded. Then a system identification algorithm is employed, assuming a 

certain ARX model structure, for each of the input-output data records, corresponding to each 

of the experiments. Finally, the estimated feature vector (model parameters) are plotted 

against the physical parameters, and the slopes of the fitted lines to these curves, 

corresponding to the elements of the estimated influence matrix, are computed for each curve. 

Instead of using all the ARX parameters θ ∈ ℜm for fault diagnosis, it is possible to use only a 

subset of parameters θp ⊂ θ, with θp ∈ ℜp and p < m. This subset θp must include the 

parameters which are more sensitive to the faults, i.e., the ones with high slopes in the 

influence matrix. 
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The influence matrix method can also be used to diagnose multiple faults, by considering each 

combination of simultaneous faults as a new fault template. 

The IMX method assumes a certain linear model for the system; hence it may be repeated for 

different orders. If the order of the system model is increased, then the deviations of the 

estimated parameters from linearity also increase. The assumption of linearity between 

physical parameters and the feature vector elements (model parameters) is usually valid in the 

continuous time domain and, in general, does not hold in the discrete time domain. 

 

The IMX method can be also used to infer the true order of the system, and to controller 

tuning (Poshtan & Doraiswami, 1994). Estimated parameters of models with orders lower 

than the true order of the system were shown to better preserve multi-linearity with respect to 

the physical parameters, and hence may be more effectively used for fault detection and 

diagnosis purposes. Models with orders equal or greater than the true order are shown to be 

more appropriate for controller tuning (performance improvement). A good model is, 

therefore, application-dependent and may not necessarily be the true model. 

 

Here a frequency interpretation for the FDD influence matrix method is given. The location of 

ARX model parameters in a nx dimensional parameter space, Pθ, corresponds to locations of 

poles and zeros in the plane Zp. In fact, each fault is characterized by a set of model 

parameters, θf = [a1 a2 … ana b1 b2 …  bnb], and consequently certain poles and zeros located 

in the plane Zp. 

In this section, an approach for FDD based on the influence matrix (IMX) was presented. This 

method requires the off-line computation of an influence matrix. The IMX is the Jacobian of 

the model parameters with respect to the physical parameters. The method was explained 

assuming the existence of a single fault, but the IMX method can be extended to deal with 

simultaneous faults. The main idea of the FDD IMX method is based on variations of the 

model parameters. A fault changes the nominal behaviour. When a fault occurs, the model 

parameters move to another region in a ℜnx dimensional space, assuming an ARX(na, nb, nd) 

model with nx = na + nb parameters. The IMX method presents a reasonable performance in 

terms of geometric (directional) fault isolation, but for fault detection it does not establish a 

way of defining a threshold region. In this work, this problem has conducted the research into 

a direction of finding a method for fault detection using a threshold based on statistical 

properties of the ARX parameters, as will be described in the next section. This fault detection 

method will be later combined with the influence matrix approach. 
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3.5 Fault Detection Approach based on PCA applied to 

ARX Model Parameters 

 

3.5.1 Introduction 

The data-driven approaches to fault detection and diagnosis (FDD) are based directly on 

process data, and their strength lies in the ability to transform the high dimensional data into a 

lower dimension, in which the important information is captured. Principal Component 

Analysis (PCA) is one of the most widely statistical multivariate techniques used in industry, 

especially in large-scale systems that produce a large amount of multivariate data (Jackson, 

2003; Jolliffe, 2002). 

In most applications, PCA is applied off-line using a data matrix from a batch process as in 

chemical reactors in pharmaceutical processes (Lopes, 2001), or from chemical process 

simulators (Chiang, et al., 2001), or in atmospheric science (Jolliffe, 2002). There have been 

thousands of applications of PCA over the years, and some of them are mentioned in the book 

by Jackson (2003): psychology and education, quality control and fault detection, economics 

and market research, anatomy and biology, agriculture, etc. Few works exist related to 

dynamic PCA (dPCA) with applications operating on-line, and most of them have been 

applied to simulated models. Wang and co-workers (2005) present a dPCA approach applied 

to a model of a fluid catalytic cracking unit, and Klancar (2000) shows a dPCA method 

applied to a simulated laboratory three-tank pilot plant. In this work, an FDD approach based 

on PCA is proposed to work in real-time operation. 

The PCA monitoring methods discussed previously in Chapter 2 assume implicitly that the 

observations at one time instant are statistically independent to observations at past time 

instances. For typical industrial processes, this assumption is valid only for long sampling 

periods. PCA can be used to take into account the serial (temporal) correlations by 

augmenting each observation vector with the previous h observations (Chiang, et al., 2001). A 

simple method to check whether correlations are present in the data is through the use of an 

autocorrelation chart of the principal components (Wei, 1990). If significant autocorrelation is 

present in the autocorrelation chart, the following approaches can be used: a) one approach is 
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to average the measurements over a data window; b) another approach is to incorporate 

cumulative sum or exponentially-weighted moving average charts (Montgomery, 1991). 

In this work a new method for fault detection based on the application of a PCA approach to 

the ARX model parameters estimated on-line (Palma, 2005c) is proposed. This is a model-

based FDD approach that combines an analytical approach (parameter estimation / 

identification) and a data based (statistical) approach based on principal components analysis. 

 

3.5.2 Fault Detection Approach based on PCA 

In the literature, the principal components analysis (PCA) method has been mostly applied 

directly to the input-output data (Chiang, et al., 2001; Jackson, 2003). But for some faults, the 

controller hides the fault effects and this render the FDI tasks difficult. In many faulty cases, 

the FDI based directly on model parameters can present a better performance than when based 

directly on the input/output data. 

Inspired by the idea of fault detection and diagnosis based on the variations of the ARX 

model parameters in a LTI system, in this work a new method for fault detection based on 

PCA (Palma, et al., 2005c) is proposed. The main idea is to detect faults in a reduced space of 

the original ARX(na, nb, nd) parameter space. If the dimension of the original parameter space 

is m = na + nb, then applying the PCA method to this space allows a dimension reduction to 

a < m principal components. This space reduction allows, typically, a reduction of dimension 

from five or more, to two or three dimensions, allowing a better visualization and 

understanding of the system behaviour. The PCA decomposition allows the extraction of the 

most relevant information from the model parameters, since the sensitivity of each model 

parameter relative to a change on the physical parameters is different. Theoretically PCA 

guarantees uncorrelated principal components (PC’s), and assuming the PC’s obey 

approximately a normal distribution, thresholds for fault detection can be defined based on 

statistics assuming a normal distribution. 

The application of PCA to all ARX parameters, [a1 a2 … ana b1 … bnb], allows the extraction 

of the most significant variability in all the parameters, and also the projection of the scores in 

a two or three dimensional space (Palma, et al., 2005c). Applying the linear PCA technique 

only the linear relations between data are captured.  

 

First, the PCA technique is explained through the construction of a PCA nominal model for 

the nominal region (without faults). This model will be used as a PCA reference model for 
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on-line fault detection. The on-line data will be projected onto the reduced space using this 

PCA reference model.  

The PCA technique will be explained in a concise form, applied to ARX model parameters. 

For a system modelled by an ARX(na, nb, nd) model, with m = na + nb elements in the 

parameter vector, θ(k) = [a1(k) a2(k) … ana(k) b1(k) b2(k) …  bnb(k)], if n samples of the 

signals are acquired in the nominal region, then a data matrix X ∈ ℜn × m will be available to 

compute the PCA nominal model, 

 

X = [x1 x2 … xm]; xi ∈ ℜn × 1 . Eq. 3.25 

 

First the original data (di = xi) is auto scaled via a standardization (transformation), in order to 

guarantee a zero mean and unity standard deviation, for each variable (each ARX parameter). 

This is done by 

 

xi = (di - µi) / σi . Eq. 3.26 

 

In the second step, the correlation matrix, S ∈ ℜm × m, is computed according to 

 

S = 
1

n-1 XT X = V Λ VT . 
Eq. 3.27 

 

The eigenvalue matrix Λ ∈ ℜm × m, and the eigenvector matrix V ∈ ℜm × m, are obtained by a 

singular value decomposition (SVD). 

The third step consists in choosing the number of principal components, a, to retain in the 

PCA model. A number of techniques are available, but none appears to be dominant. In this 

work, the percent variance test is used (Chiang, et al., 2001; Jackson, 2003). This method 

determines a by calculating the smallest number of loading vectors (principal components) 

needed to explain a specific minimum percentage of the total variance (generally, greater than 

80 %). The first a eigenvalues, λ1 ≥ … ≥ λa, explains the greatest variance, and the 

corresponding loading vectors define the scores space.  

In the fourth step, the scaled data is projected onto the scores space. Selecting the columns of 

the loading matrix Pa ∈ ℜm × a  to correspond to the loading vectors V ∈ ℜm × m associated 

with the first a eigenvalues, the projections of the observations X ∈ ℜn × m into the lower-

dimensional space are contained in the scores matrix, Ta ∈ ℜn × a, given by 
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Ta = X Pa . Eq. 3.28 

 

If the number of principal components is two, a = 2, then a two dimensional scores plot can 

be used to visualize the scores. In this scores space, the scores matrix for a window of length 

n can be represented in the form 

 

Ta = [t1 t2], ti ∈ ℜn × 1, i = 1, 2 . Eq. 3.29 

 

Each line of Ta is a score. Each score is a projection of the original data in a reduced scores 

space. The score with coordinates (t1, t2) is represented by a point in a two dimensional space.  

In the final step, it is necessary to compute the threshold region for the scores. In this section, 

it is assumed that only the first two principal components (a = 2) are retained in the PCA 

model. For this case and assuming that the data obeys a normal distribution, the confidence 

region, for the scores, is limited by an ellipse (threshold) according to the T2 statistics 

(Chiang, et al., 2001), and is given by 

 

t2
1

λ1
 + 

t2
2

λ2
 ≤ T2

α 

T2
α = 

a (n-1) (n+1)
n (n-a)  Fα(a, n-a) . 

Eq. 3.30 

 

In (Eq. 3.30), {t1; t2} are the projections along the orthogonal axes defined by the two main 

loading vectors, and {λ1; λ2} are the eigenvalues of greater variance. The T2 statistics 

threshold is T2
α, and Fα(a, n-a) can be obtained from a Fisher’s F-distribution table for a 

certain level of significance α (0.05, or other) (Jackson, 2003; Montgomery, 1991). This PCA 

reference model for the data captured in nominal operation (fault-free) must be saved, in order 

to be used later for on-line fault detection. 

The mean value and the standard deviation of the residuals computed based on the Q statistics 

must also be obtained off-line, and saved to be used later for on-line fault detection. The 

square of prediction error (SPE) q(k) ∈ ℜ1 × 1 associated with the Q statistics, computed at 

each time instant k, is given by 

 

q(k) = e(k) e(k)T Eq. 3.31 



 

where  e(k) = x(k) - x
∧
(k), and x(k) is a row vector given by x(k) = X(k,:) ∈ ℜ1 × m. 

 

Next, the new methodology proposed here for fault detection in on-line operation is presented. 

The fault detection approach compares the on-line scores with the nominal elliptical region 

computed off-line based on the PCA reference model. A fault causes a change in the ARX 

model parameters and consequently a change on the correlation matrix of the PCA model.  

 

t1

t2

q

 

Fig. 3.11 - Fault detection using the T2 and Q statistics. 

 

The scores subspace (here, a two dimensional space) and the SPE associated with the residual 

subspace (one dimensional space) of the PCA model are used to define a three dimensional 

space, as can be observed in Fig. 3.11. In on-line operation, a fault alarm is generated if the 

point P(k) = (t1(k), t2(k), q(k)), with coordinates given by the scores and the square of 

prediction error, fall outside the ellipsoidal nominal (fault-free) region. The fault detection 

signal is obtained from the fault alarm signal via low pass filtering.  

 

Next, the algorithm for fault detection that summarizes the main ideas is presented. A 

reference PCA model is constructed for nominal operation, i.e., for fault F0. 

 

Algorithm 4. Fault detection based on PCA applied to ARX model parameters (FDE-PCA-

ARX). 

In off-line operation, the following tasks must be executed: 

a. Capture informative data (ARX model parameters, θ(k)) from nominal operation, and 

standardize the data in order to obtain data with zero mean and unity variance. Save the 

mean µ and the variance σ of this nominal data for further use on-line.  

b. Build a nominal PCA model MPCA for the standardized data, assuming a two dimensional 

scores space, a = 2. Save this model for further application on-line. 
 82
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c. Determine the thresholds and the low pass filters parameters, in order to obtain a desired 

trade-off between rate of false alarms, rate of missed fault detections, and detection and 

isolation delays. Different sets of experimental nominal data must be used to compute and 

validate the thresholds and filters parameters. 

Each time instant k, the following steps must be executed on-line: 

1. Sample the process output signal y(k). 

2. Estimate the ARX model parameters, vector θ(k), using the sliding window SW-PCR 

parameter estimation algorithm.  

3. Define the input data vector, given by the ARX model parameters x(k) = θ(k), for the PCA 

model MPCA. 

4. Standardize (via auto-scaling) the data vector x(k), using the mean µ and the standard 

deviation σ captured off-line from the nominal data, obtaining the auto-scaled data 

xd(k) ∈ ℜ1 × m. 

5. Compute the scores ta(k) ∈ ℜ1 × a using the PCA model MPCA. Assuming that Pa ∈ ℜm × a, 

for the nominal PCA model MPCA, is a matrix containing the columns of the loading 

matrix corresponding to the loading vectors associated with the first a eigenvalues and 

ta(k) = [t1(k) t2(k)], the scores are given by 

 

ta(k) = xd(k) Pa Eq. 3.32 

 

6. Estimate the data xd(k) ∈ ℜ1 × m computing the signal xd

∧
(k) ∈ ℜ1 × m, using the nominal 

PCA model MPCA: 

 

xd

∧
(k) = ta(k) Pa

T Eq. 3.33 

 

7. Transform the data xd

∧
(k) to non auto-scaled obtaining the data xe(k). 

 

8. Compute the residual (prediction error), e(k) ∈ ℜ1 × m, by e(k) = x(k) - xe(k), and the square 

of prediction error (SPE), q(k) ∈ ℜ1 × 1, given by: 

 

q(k) = e(k) e(k)T Eq. 3.34 
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9. Generate a fault alarm signal when a violation of the threshold (two dimensional elliptical 

region) for the T2 statistics occurs, i.e., am2(k) = 1 if 

 

t2
1(k)
λ1

 + 
t2
2(k)
λ2

 > T2
α 

Eq. 3.35 

 

10. Generate a fault alarm signal when a violation of the threshold for the Q statistics (SPE) 

occurs, i.e., if q(k) > hq then amq(k) = 1 else amq(k) = 0. 

11. A fault alarm signal, am(k), is computed by weighted sum of the two alarms. Assuming 

equal weights, the fault alarm signal is expressed by am(k) = [am2(k) amq(k)] × [0.5 0.5]T. 

12. Compute the fault detection signal by low pass filtering, Hlp(z, λ), the fault alarm signal, 

and by thresholding. The thresholding is expressed by the rule: if am(k) > hf  then fd(k) = 1 

else fd(k) = 0. A typical value for the threshold is 0.49, i.e., a fault is detected if at least 

one alarm, am2(k) or amq(k), is activated during a certain time interval. 

■ 

 

In the PCA approach, the dimension of the reduced space a is equal to the dimension of the 

scores space. One way to define this dimension is to choose a dimension that explains a 

certain percentage of the total variance of the features data (parameters), for example 80 % or 

more. For many applications, only two or three principal components are retained in the PCA 

model (Chiang, et al., 2001). 

For a PCA model retaining only two principal components (a = 2), the next example shows a 

typical relation that exists between the explained variance (Eσ 2) and the number m of data 

variables, in this case the ARX parameters: an increase in m corresponds to a decrease of Eσ 2. 

The amount of variance explained by a principal components for a PCA model is given by 

(Chiang, et al., 2001; Jackson, 2003): 

 

Eσ 2(a) = ∑
i=1

a
 
Sd(i, i)
Γ(Sd)

 . 
Eq. 3.36 

 

In Eq. 3.36, Sd ∈ ℜm × m is a diagonal matrix with nonnegative diagonal elements 

(eigenvalues) in decreasing order obtained from singular value decomposition of the 

correlation matrix S ∈ ℜm × m. The function Γ(.) represents the trace of the matrix. 
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Example 4. Explained variance by a PCA model with two principal components, a = 2. 

In this example, the PCA analysis is applied to the parameters of ARX models of different 

orders, for data captured in nominal operation. The main goal is to compute the amount of 

variance explained by a PCA model that retains only two principal components (a = 2). 

For a plant expressed by a first order system with transfer function given by 

G0(s) = 
Y(s)
U(s) = 

K
τ s + 1, with parameters K = 1 and τ = 1 s, a set of ARX models with different 

orders are used here for discrete modeling. The ARX model parameters are obtained by 

closed-loop identification via the SW-PCR algorithm, with a sliding window length of 10 s. A 

PI controller, with Kp = 0.4 and Ti = 0.4 s, is used to control the plant. The variance of the 

sensor noise is 1×10-8, and the reference dither signal variance is 1×10-3. The sampling period 

is Ts = 0.11 s.   

An ARX(na=1, nb=1, nd=1) model, with parameters [a1 b1] = [-8.9×10-1 1.0×10-1], is obtained 

if the zero-order hold method is used for the discretization of the transfer function G0(s). In 

this example, ARX(na, nb=1, nd=1) models are used for modelling, and the PCA approach is 

applied to capture the variability in the ARX parameters. The number of parameters is given 

by m = na + nb, and two principal components (a = 2) are retained by the PCA model. The 

duration of the experiment is 400 s. The stationary data used for this example is from 10% to 

100% of the experiment, in order to avoid the initial transient behaviour of the ARX 

parameters. The results obtained are summarized in Tab. 3.2.  

 

Tab. 3.2 - PCA explained variance for a first order plant. 

 

ARX(na, nb=1, nd=1) model m Eσ 2 [%] with a = 2 

ARX(1, 1, 1) 2 ≅ 100 

ARX(2, 1, 1) 3 99.82 

ARX(3, 1, 1) 4 96.68 

ARX(4, 1, 1) 5 85.47 

 

Comments about the Example 4. This example shows that for a given plant an increase in the 

number of the ARX model parameters, due to a high order model, causes a decrease in the 

amount of variance explained by the PCA model with only two principal components (a = 2).  
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The performance of the proposed fault detection approach depends on the amount of variance 

explained (Eσ 2) by the PCA model. After a decision about a minimum percentage of Eσ 2 

acceptable, for example 80 %, an appropriate ARX(na, nb, nd) model must be selected for fault 

detection. An appropriate ARX model for fault detection is typically a model with an order 

smaller than the true model of the system, and one with small variances on the parameters. 

 

Instead of using all ARX parameters θ ∈ ℜm for fault detection, it is possible to use only a 

subset of parameters θp ⊂ θ, with θp ∈ ℜp and p < m. A method proposed here to choose the 

set θp is based on the influence matrix (IMX, described in section 3.4.2). Since the influence 

matrix Ω = Ωθ,γ  is the Jacobian of the model parameter vector with respect to physical 

parameters, the set θp must include the parameters most sensitive to the faults, i.e., the ones 

with high slopes in the influence matrix. 

 

3.6 Fault Detection and Diagnosis based on a Combined 

Approach (PCA & IMX) 

 

3.6.1 Introduction 

Since, in most cases, only one type of FDD approach is not sufficient to detect and diagnose 

correctly one set of faults, the hybrid techniques combining different approaches are usually 

needed and used, in order to guarantee a reasonable performance and robustness (Isermann, 

1997 & 2004; Palma, et al., 2005d). 

In this work, for the case of linear systems, a new combined approach for fault detection and 

diagnosis was proposed (Palma, 2005c). One FDD approach is used for fault detection, and 

another for fault diagnosis. 

 

3.6.2 The Combined FDD-PCA-IMX Approach 

A new combined fault detection and diagnosis approach (FDD-PCA-IMX) for linear systems 

is proposed in this work based on previous works (Palma, 2005c). The overall architecture is 

depicted in Fig. 3.12. 

 



LP filtering
& thresholding

PLANT

y(k) {u(k), r(k)}

Generation
of features

via PCA

Parameter
Estimation
(SW-PCR)

θ(k) Alarm
generator

ta(k),q(k)

h

am(k)

hf

fd(k)

Fault Detection

Isolation and diagnosis
using the IMX approach

θ(k)

fd(k)

LP filtering

fi0(k)

fa0(k)

Fault Diagnosis

fi(k)

fa(k)

 

Fig. 3.12 - Architecture of the FDD combined approach (FDD-PCA-IMX). 

 

This FDD approach was developed to be applied on-line, in real-time environments. Three 

main tasks can be observed: a) the on-line parameter estimation task; b) the fault detection 

(FDE) task; c) the fault diagnosis (FDG) task. This FDD approach is suitable for detection 

and diagnosis of parametric (multiplicative) process faults, but can also be used for additive 

faults on sensors and on actuators. 

The FDD-PCA-IMX approach combines the proposed fault detection approach based on PCA 

analysis applied to the ARX parameters (described in section 3.5.2), with the diagnosis 

approach based on the influence matrix (described in section 3.4.2). First, the fault is detected, 

and after is isolated and its fault magnitude is estimated. 

The algorithm of the proposed FDD-PCA-IMX approach is based on the architecture depicted 

in Fig. 3.12 and is presented next. It is a combination of Algorithm 4 for fault detection, and 

Algorithm 3 for fault diagnosis, both previously explained. A simplified version is presented 

here, in order not to repeat the various steps. 

 

Algorithm 5. Fault detection and diagnosis combined approach based on PCA & IMX. 

In off-line operation, the following tasks must be executed: 

a. Build a PCA model MPCA based on data captured from nominal operation, i.e., for fault F0. 

b. For the faults of the set Ff = {F1, …, Fn} determine the influence matrix IMX, Ω.  

Each time instant k, the following steps must be executed on-line: 
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1. Sample the process output signal y(k). 

2. Estimate the vector of ARX model parameters, θ(k), using the sliding window SW-PCR 

algorithm.  

3. Based on the nominal PCA model, MPCA, compute the features for fault detection, i.e., the 

scores ta(k) = [t1(k) t2(k)], and the square of prediction error (SPE) q(k). 

4. Generate a fault alarm am(k) by comparison of the scores and SPE with the respective 

thresholds. The vector of thresholds is termed here h. 

5. Compute the fault detection signal fd(k) by low pass filtering via Hlp(z, λ) the fault alarm 

signal am(k), and by thresholding. The thresholding is expressed by the rule: if am(k) > hf  

then fd(k) = 1 else fd(k) = 0. 

6. If a fault is detected, i.e. if fd(k) = 1, then isolate the fault according to the minimum angle 

criteria formulated in Theorem 3. 

7. If a fault is detected, i.e. if fd(k) = 1, then estimate the fault magnitude according to Eq. 

3.18. 

■ 

 

3.6.3 Example for the Combined Approach (PCA & IMX) 

Below, an example of application of the proposed combined approach (PCA & IMX) for fault 

detection and diagnosis is given. 

 

Example 5. A combined fault detection and diagnosis approach based on PCA & IMX 

applied to a first-order system.  

The purpose of this example is to show the application of the proposed combined fault 

detection and diagnosis approach based on PCA & IMX. The fault detection approach is 

based on Algorithm 4, and the fault diagnosis is based on Algorithm 3. 

In this example, it is assumed that a plant is expressed by a first order model in continuous 

time with the transfer function G0(s) = Y(s) / U(s) = K / (τ s + 1). For the nominal operation 

the plant parameters are K = 1, τ  = 1 s. An ARX(na=1, nb=1, nd=1) model, with parameters 

[a1 b1] = [-8.96×10-1 1.04×10-1], is obtained if the zero-order hold method is used for the 

discretization of the transfer function G0(s), for a sampling period of Ts = 0.11 s. Two ARX 

models are used for discrete modeling. An input-output ARX(2, 1, 1) model, relating the 

output signal y(k) and input signal u(k), is used for fault detection via PCA applied to model 

parameters; a higher order is used here, since the goal is a dimensional reduction via PCA 
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from three to two dimensions (2 principal components). For fault diagnosis based on the 

influence matrix (IMX) method, an ARX(1, 1, 1) model is more appropriate, since the 

parameters present a smaller variance. Both ARX models, relating the input signal u(k) and 

the output signal y(k), are identified on-line using a sliding window PCR algorithm, in closed-

loop operation. A digital controller is used based on the PI algorithm, with gains Kp = 0.4 and 

Ti = 0.4 s obtained via pole-placement, (Astrom & Hagglund, 1988). 

First, for the nominal operation, PCA and IMX models are constructed in off-line operation. 

All the signals, set point and the input-output signals, are scaled to the range [0; 1] . The 

operating conditions are: a) reference signal (set point) is 0.5; b) the duration of experiment is 

400 s; c) dither on reference signal with variance 1×10-3; d) the sensor noise has a variance of 

1×10-8. 

The nominal PCA model presents the following characteristics, assuming a = 2 principal 

components. It was created based on parameter data [a1 a2 b1] of ARX(2, 1, 1) model. PCA 

allows a reduction from 3 to 2 dimensions (scores space). The data has been standardized 

(auto-scaled) in order to have zero mean and unit variance. Each principal component 

explains the following variance, [8.7879×10-1  1.1940×10-1  1.8195×10-3]; this justifies the 

reduction to two dimension, since the two principal components explain more than 99 %. The 

threshold used for the T2 statistics is given by T2
α = 

a (n-1) (n+1)
n (n-a)  Fα (a, n-a), according to Eq. 

2.9 assuming that data obeys  a normal distribution. Here, the value T2
α has been multiplied by 

a factor Kf in order to decrease the rate of false alarms, since the data does not obey a 

perfectly normal distribution. The value of T2
α used is 12.2, for a = 2, n > 120, α = 0.05, 

Fα (a, n-a) = 3, and Kf = 2.  The threshold for the  SPE has been computed based on a three 

sigma limit (control chart) approach given by [µ − 3σ; µ + 3σ], where µ is the mean value and 

σ the is the standard deviation, since the threshold for the Q statistics proposed by Jackson & 

Mudholkar (1979) does not give satisfactory results. 

The IMX model was constructed varying each physical parameters (K,τ) in the range 

[0.6 0.8 1.0 1.5 2.0], maintaining the other fixed at nominal value. The influence matrix 

(Jacobian) obtained is given by  

 

Ω = [
∂θ
∂γ1

 …  
∂θ
∂γp

]γ=γ nom  = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤∂a1

∂Κ    
∂a1

∂τ

 
∂b1

∂Κ    
∂b1

∂τ

  = ⎣⎢
⎡

⎦
⎥
⎤ 5.0×10-5     -7.58×10-2

 1.04×10-1    -7.58×10-2  . 

 

Eq. 3.37 



The relationship between ARX model parameters and physical parameters can be observed in 

Fig. 3.13. The elements of the influence matrix are the slopes of the linear regression of the 

data. Theoretically, in the IMX method it is assumed that “the model parameters are multi-

linear in the physical parameters”. In practice this is not perfectly true (see Fig. 3.13). 

 

Fig. 3.13 - ARX model parameters versus physical parameters. 

 

Afterwards two experiments carried out using the combined PCA/IMX method for fault 

detection and diagnosis are shown. Two faults are considered: a) fault F1, a change on the 

gain K from 1 to 2; b) fault F2, a change on the time constant τ  from 1 to 2. 

 

Next, the experiment carried out with the fault F1 is presented, a change on the gain K from 1 

to 2. In Fig. 3.14 can be observed from top to bottom: the reference signal r(k), the output 

signal y(k), the control input u(k), the alarm signal am(k) and other signals (see the explanation 

next), the fault detection signal fd(k), the fault isolation signal fi(k), and finally the fault 

analysis signal fa(k). In the graph with label “am” it can be observed, from top to bottom, the 

alarm signal am(k), the fault trigger signal, the T2 statistics signal, and the Q statistics signal. 

In the “fd” graph, it can be observed the fault detection signal fd(k), and the non-filtered signal 

fd0(k) in dotted line. 

The fault occurs at time instant 240 s. The fault detection delay is 0.7 s, and the correct fault 

isolation delay is approximately 12 s (computed from the time of fault occurrence). A wrong 

isolation occurs after fault detection, due to the transient of the ARX model parameters. After 
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that, the fault is well isolated, and the estimation of the fault magnitude is correct (the value is 

near 1, see fa(k) signal) since the relation between the model parameters (a1, b1) and the 

physical parameter (K) is approximately linear, as can be observed in Fig. 3.13. 

 

Fig. 3.14 - Input-output and FDD signals for fault F1. 

 

Fig. 3.15 shows the evolution of the physical parameters (K, τ), and the evolution of the 

parameters for both ARX models. The parameters of ARX(2, 1, 1) model are depicted in the 

graph “th211”; the nominal values are given by [a1 a2 b1] = [-8.90×10-1 -5.22×10-3 1.04×10-1] 

.  The graph “th111” shows the parameters of ARX(1, 1, 1) model; the nominal values are 

given by [a1 b1] = [-8.96×10-1 1.04×10-1]. 

The wrong isolation during the first instants after fault detection is well understood here, 

observing the evolution of the model parameters in the graph “th111”. 
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The transient time on the ARX model parameters after a fault occurrence is equal to the 

length of the sliding window of the SW-PCR algorithm, i.e., a value of 10 s. 

 

 

Fig. 3.15 - Model parameters transient for fault F1. 

 

An experiment carried out with fault F2, a change on the time constant τ  from 1 to 2, is now 

presented. The fault detection and isolation performance, for this case, is better than for the 

case of fault F1, because the effect of this fault is softer on the transient behaviour of the ARX 

model parameters, θ.  

In Fig. 3.16 it can be observed, from top to bottom: the reference signal r(k), the output signal 

y(k), the control input u(k), the alarm signal am(k) and other signals (see the explanation next). 

Next, the fault detection signal fd(k), the fault isolation signal fi(k), and finally the fault 

analysis signal fa(k) appears. In the graph of the alarm signal am(k), can be observed from top 

to bottom, the alarm signal am(k), the fault trigger signal, and signals that indicate a violation 

of the T2 statistics and the Q statistics. In the “fd” graph, it can be observed the signal fd(k), 

and the non-filtered signal fd0(k) in dotted line. The fault detection delay is approximately 2 s, 

and the correct fault isolation delay is approximately 5 s. The fault is well isolated after fault 

detection since the parameters change in the correct direction. The estimation of the fault 

magnitude is not correct (the value is approximately 0.7, less than the correct value of 1.0, see 

fa(k) signal) since the relation between the model parameters (a1, b1) and the physical 

parameter τ are not linear enough, as can be observed in Fig. 3.13. 
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Fig. 3.16 - Input-output and FDD signals for fault F2. 

 

In Fig. 3.17 it can be observed, from top to bottom, signals obtained via the PCA model and 

used for fault detection: the scores space (t1(k), t2(k)) monitored by the T2 statistics, the first 

principal component t1(k), the second principal component t2(k), and the square of prediction 

error q(k) (Q statistics). When a fault occurs, in this case both statistics are violated. 

 

In Fig. 3.18, the IMX angles used for fault isolation can be observed. The signal ang01(k) is 

the angle between ∆θ(k) and the first influence vector 
∂θ
∂Κ. The signal ang02(k) is the angle 

between ∆θ(k) and the second influence vector 
∂θ
∂τ. Here, the fault F2 is well isolated 

according to the minimum angle criterion (Theorem 3).   
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Fig. 3.17 - PCA signals for fault F2. 

 

 

Fig. 3.18 - IMX signals for fault F2. 
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Finally, Fig. 3.19 shows the temporal behaviours of the ARX model parameters. It is clear 

that this fault causes a smooth transient in the model parameters. From top to bottom, the 

physical parameters (K, τ), and the parameters of both models, ARX(2, 1, 1) model and 

ARX(1, 1, 1) model, are depicted. 

 

Fig. 3.19 - Parameters transient for fault F2. 

 

3.6.4 Dimensionality Analysis of Features Space 

In this section, a dimensionality analysis of the features space for both the PCA approach for 

fault detection, and for the IMX approach for fault diagnosis is made. 

The scores contain information related to the differences between the objects (variables, 

features, etc). If the goal is to classify objects then uni-dimensional or bi-dimensional scores 

graphs are the most appropriate (Lopes, 2001). 

t1

t2

SPE

 

Fig. 3.20 - Three dimensional plot for scores and SPE. 
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For the PCA approach for fault detection, a two dimensional scores space based on the T2 

statistics is usually sufficient, if the Q statistics (also kwnon as the square of prediction error, 

SPE ) is also used. Using both statistics a three dimensional features space for fault detection 

is obtained, as shown in Fig. 3.20. 

A theoretical rule for the selection of the number of principal components in a PCA model 

does not exist, but several empirical rules exist (Chiang, et al., 2001; Lopes, 2001; Jolliffe, 

2002; Jackson, 2003). The most common empirical rules are: the percent variance test, the 

PRESS statistics, the correlation analysis, the cross validation. In this work, the percent 

variance test is used (Chiang, et al., 2001; Jackson, 2003); this method determines a by 

calculating the smallest number of loading vectors (“principal components”) needed to 

explain a specific minimum percentage of the total variance (generally, greater than 80 %). 

The first a eigenvalues, λ1 ≥ … ≥ λa, explains the greatest variance, and the corresponding 

loading vectors define the scores space. 

 

For the IMX approach for fault diagnosis (isolation and analysis) a method to determine the 

model parameters to use in the influence matrix, Ωθ,γ , is proposed here based on the 

following rules: 

a) The sensitivity to faults, ∂θj/∂γi, must be as high as possible; 

b) The influence vectors, Ωi, must be well separated in the Euclidean space of feature vectors; 

c) The features must be defined in a two or three dimensional space, in order to facilitate 

geometrical visualization, validation and interpretation. A three dimensional graph must be 

decomposed in three two dimension graphs to facilitate the visualization and interpretation. 

The number of graphs in two dimension for a n-dimensional space can be computed 

according to the combinatorial formula, Cn
p = n! / (p! (n-p)!) , with p = 2. 

 

3.6.5 Influence of Sensor Noise 

Here, the influence of the sensor noise on the performance of the fault detection and diagnosis 

(PCA & IMX) approach proposed is described. It is expected that an increase of the variance 

of the sensor noise will cause an increase of the variance of the model parameters, as was 

shown experimentally in Example 2. 

Since both the fault detection and the fault diagnosis approaches described in this section 

depend on the on-line estimated parameters, it is expected that an increase of the variance of 

the sensor noise will cause a decrease of the FDD performance. Two examples are given next, 
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in order to show the performance degradation due to the increase of the variance of the sensor 

noise. 

 

Example 6. Degradation of the fault detection performance due to the increase of variance of 

the sensor noise. 

The next table shows the results obtained for a set of five simulations done for the first order 

model G0(s) = Y(s) / U(s) = K / (τ s + 1), with process parameters K = 1 and τ = 1 s. For fault 

detection, an ARX(2, 1, 1) model has been used. The operating conditions are similar to the 

ones described in Example 5. The experiments use the thresholds for the nominal case, 

corresponding to a variance of sensor noise of 1×10-8.  For different values of variance of 

sensor noise, the rate of false alarms Ψfa has been computed and the mean value is shown. 

 

Tab. 3.3 - Rate of false alarms versus variance of sensor noise. 

 

Variance of 

sensor noise

µ(Ψfa) [%]

1×10-8 2.9 

1×10-7 80.1 

1×10-6 100 

 

If the variance of sensor noise increases, then to guarantee an acceptable rate of false alarms it 

is necessary to define a larger nominal region, and consequently to compute new threshold 

values. For high variances, the drawback is the impossibility of detection of small faults. The 

use of adaptive thresholds can be considered to deal with different sensor noise situations. 

 

Example 7. Influence of sensor noise on the FDD-PCA-IMX diagnosis performance. 

Some simulations have been performed for the first order model 

G0(s) = Y(s) / U(s) = K / (τ s + 1), with process parameters K = 1 and τ = 1 s, in order to 

evaluate the influence of the increase of the sensor noise on the fault diagnosis performance. 

For fault diagnosis, an ARX(1, 1, 1) model has been used in the IMX approach. The operating 

conditions are similar to the ones described in Example 5. The experiments use the thresholds 

for the nominal case, corresponding to a variance of sensor noise of 1×10-8. The fault 

diagnosis task based on the IMX approach takes place after fault detection.  



 

Fig. 3.21 - Parameters of ARX models for fault F1. 

 

The fault diagnosis approach is less sensitive to the influence of noise than the fault detection 

approach, because the fault diagnosis uses an ARX(1, 1, 1) model while the fault detection 

uses an ARX(2, 1, 1) model. Model ARX(1, 1, 1) is a better model for discrete modeling of 

the system G0(s) = Y(s) / U(s) = K / (τ s + 1). Fig. 3.21 shows some results obtained for a 

variance of sensor noise given by 1×10-4 (much larger than the nominal value of 1×10-8 

previously assumed). The first two graphs show the physical parameters K and τ . In the third 

graph the parameters (“th211”, [a1 a2 b1]) of the model ARX(2, 1, 1) used for fault detection 

can be seen, and the last graph shows the parameters (“th111”, [a1 b1]) of model ARX(1, 1, 1) 

used for fault diagnosis. It is clear that the variances of the ARX(2, 1, 1) model parameters are 

greater than the variances of the ARX(1, 1, 1) model parameters, and this justifies the larger 

sensitivity to noise of the fault detection approach. 

Fault isolability problems occur when noise variance is high and the angle between influence 

vectors is small, because noise causes variation of the angles between the influence vectors. 

For this situation, in certain directions, faults cannot be well isolated.  
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3.7 Conclusions 

In this section, new fault detection and diagnosis methodologies suitable to be applied on-line 

in linear systems have been proposed. In most practical problems white box models are not 

available, or they are difficult and time consuming to obtain. Sometimes the only alternative 

is to use black-box models obtained via identification techniques. That is the main reason why 

the focus of the research done was on black box models. A good model is application-

dependent and may not necessarily be the true model. The FDD approaches proposed are 

based on black-box ARX models and require on-line parameter estimation. The system 

identification is made in closed-loop, using the sliding window SW-PCR algorithm, and a 

small dither signal is added to the reference signal in order to guarantee good persistent 

excitation conditions. The proposed sliding window parameter estimation algorithm based on 

principal components regression shows a good performance. The FDD parameter 

identification methods are more suitable for detection and diagnosis of multiplicative 

(parametric) faults, but can also be used for FDD of additive faults on sensors and actuators. 

 

The first new fault detection and diagnosis methodology proposed is based on system 

dynamic features (static gain sg and bandwidth bw) computed on-line from ARX models. This 

approach can be applied to SISO systems. Both input-output ARX models Myu(θ) and 

reference-output ARX models Myr(θ) can be used for FDD. The fault detection and isolation 

is based on a pattern classification approach, where the input pattern is given by the dynamic 

features (static gain sg and bandwidth bw) and the output is the fault class. A neural network 

implements the pattern classifier according to a typical architecture associated with a neural 

nonlinear discriminant analysis (NNLDA). The discriminant analysis NNLDA allows the 

definition of decision boundaries needed for fault detection and isolation, and is more 

efficient than the geometrical techniques. The experiments carried out using process models, 

and shown in the examples, show a good FDD performance for the class of faults tested. The 

performance depends strongly on the consistency of the parameter estimates. An increase in 

the noise level in the sensor degradates the FDD performance since there is an increase in the 

variance of the ARX model parameters and in the variance of the dynamic features. Hence, 

high levels of noise renders the detection and diagnosis of small faults more difficult. 

 

Typically, principal components analysis (PCA) is applied to input-output data. Another new 

contribution given in this work is a fault detection methodology based on the application of 
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principal components analysis to ARX model parameters data, θ. Typically, parametric faults 

in the physical process parameters change the system dynamics, and their symptoms are 

deviations on the ARX model parameters from the nominal values. The PCA method allows 

the detection of these changes, and the definition of thresholds based on the T2 statistics and 

the Q statistics. This fault detection method based on PCA has been combined with an 

influence matrix method for fault diagnosis, and a new combined FDD approach was 

proposed. This combined FDD method is appropriate for application in SISO or MIMO 

systems modeled by ARX models. The experiments done using process models, and shown in 

the examples, show a good FDD performance for the class of faults tested. Some examples 

related to the influence of sensor noise on the FDD performance have been presented. 

 

The main aim of the examples presented is to elucidate the principles, and to show the 

advantages and drawbacks of each methodology. The FDD methodologies proposed here 

show a good effectiveness. The examples also show that the quality of the ARX models used 

is extremely important to guarantee a good FDD performance. Noise and nonlinear effects 

that occur in these types of FDD approaches decrease the overall performance. 

For nonlinear systems, the development of new approaches to FDD is a great challenge. This 

subject will be discussed in the next chapter. 
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4 Fault Detection and Diagnosis 

Approaches for Nonlinear Systems  
 

In the real world, almost all the systems are nonlinear (L. B. Palma). 

 

4.1 Introduction 

The majority of model-based fault detection and diagnosis (FDD) methods are based on linear 

system models. For nonlinear systems, the FDD problem has been traditionally approached in 

two steps (Chen & Patton, 1999): 1) the model is linearized around an operating point; 2) 

robust techniques are applied to generate features (residual signals, etc) which must be 

insensitive to model parameter variations within a small neighbourhood of the operating 

point. For systems with high nonlinearity and a wide dynamic operating range, the linearized 

approach fails to give satisfactory results. One possible solution is a multi-model approach 

using a large number of linearized models corresponding to a range of operating points; this is 

not very practical for real-time applications. 

 

It is necessary to develop FDD methods which tackle nonlinear dynamic system models 

directly. Chen & Patton (1999) mentioned some references which attempt to use nonlinear 

classical observers to solve nonlinear system FDD problems based on adaptive observers, 

identity observers, unknown input observers, etc; for some cases, no methods exist yet to 

design the gain matrix for ensuring the observer stability. There have also been some studies 

on nonlinear parity equations. Unlike linear systems, there is no direct link between parity 

equation and observer-based FDD approaches in the case of nonlinear systems. The parameter 

estimation approach for FDD can also be extended to deal with nonlinear systems; a great 

advantage of this approach is that it captures the system dynamics on-line. 

 

In many situations, it is very difficult to obtain the analytical models that the classical 

nonlinear observer FDD approaches require. Sometimes, the system cannot be modeled by 

explicit mathematical models. Without a model, the observer-based FDD approach cannot be 



 102

implemented. To overcome this problem, it is desirable to find a general approximate model 

which can be used to represent any nonlinear system approximately. The Neural Network 

(NN) is exactly such a powerful tool for handling nonlinear problems (Narendra & 

Parthasarathy, 1990; Haykin, 1994; Chen & Patton, 1999). FDD techniques based on neural 

networks are gaining more and more interest, mainly due to their ability to deal with nonlinear 

systems, and their robustness to noise (Patton, et al., 2000; Palma, et al., 2005b). 

In the use of neural networks for fault detection and diagnosis (FDD) there are two major 

problems accompanying the majority of early publications: 1) most studies only deal with 

steady-state processes; 2) the NN has been used mostly as a fault classifier based on output 

data. To achieve on-line FDD in the presence of transient behaviours, the system dynamics 

have to be considered. A diagnosis method which only utilizes output information could give 

incorrect information about faults in the system, when the system input has been changed; this 

is especially true for nonlinear systems. The solution is to use the residual generation concept, 

in which both the input and output signals are required, combined with neural networks in 

order to form a powerful FDD tool for nonlinear dynamic systems. In recent years, some 

authors have followed this research direction, mainly using neural predictors and neural 

observers; some references are (Chen & Patton, 1999; Frank, et al., 2000b; Koppen-Seliger & 

Frank, 1995; Marcu, et al., 1998; Marcu, et al., 1999). Some references on neural observers 

are in fact neural predictors without recurrency. Some examples are the papers written by 

Koppen-Seliger et al. (1999) and by Palma et al. (2003c), and the dissertation written by 

Genrup (2005). There are few works related to the application of neural observers with gain 

matrix (Zhou & Bennett, 1997), and neural predictors with recurrency (Palma, et al., 2004a; 

Palma, et al., 2005b). 

 

In some references, the term observer is used indistinctly for state observers (with gain 

matrix), and for output observers (in fact, the terminology used here is output predictors) with 

or without recurrency. 

In this dissertation, the basic observer concepts are only briefly introduced since it is assumed 

that the analytical models are not available. Two main contributions are given here. The first 

is a new FDD approach based on neural recurrent output predictors, inspired by the classical 

observer structure, and based on nonlinear NARX neural models with external recurrency. 

The second is a new FDD approach based on neural nonlinear principal component analysis 

(neural NLPCA) applied to the parameters of ARX models, combined with a neural nonlinear 

discriminant analysis approach for pattern classification. 
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4.2 Observers for Nonlinear Systems 

This section briefly reviews two main types of classical observer structures: the Luenberger 

observer and the Kalman filter. Intelligent neural and fuzzy observers with similar structure 

can also be constructed. 

In practice many nonlinear systems cannot be represented by linear models, in particular 

when they are not working at a fixed operating point. This is the usual case in FDD, because 

at the occurrence of a fault the process diverges from its operating point. Therefore, a 

nonlinear model should be used. 

 

For a dynamic system, S(x, y, u), an observer with state x, output y, and input u is another 

dynamic system S
∧
(x, y, u) having the property that the state x∧ of the observer S

∧
 converges to 

the state x of the process S, independent of the input u or the state x (Friedland, 1996). The 

concept of a classical observer for a dynamic process was introduced by Luenberger (1966). 

The generic “Luenberger observer”, however, appeared several years after the Kalman filter 

(KF). In fact, the Kalman filter (Kalman, 1960; Welch & Bishop, 2001) is an important 

special case of a Luenberger observer – an observer optimized for the presence of noise. 

 

For a nonlinear system, the structure of the classical observer is not so obvious as it is for a 

linear system (Friedland, 1996). Let us assume a nonlinear stochastic dynamic model for a 

nonlinear plant 

 

⎩
⎨
⎧x(k+1) = fm(x(k), u(k), Qp(k)) 
y(k) = gm(x(k), u(k), Rm(k))    

Eq. 4.1 

 

where x(k) ∈ ℜn is the state, u(k) ∈ ℜu is the input vector, y(k) ∈ ℜy is the output vector, and 

fm(.) and gm(.) are nonlinear functions. The matrices Qp(k) and Rm(k) are the process and 

measurement noises. Assuming the noise characteristics are known, an Extended Kalman 

Filter (EKF) can be used as a nonlinear observer (Friedland, 1996; Welch & Bishop, 2001). 

The EKF is difficult to implement in practice, since the spectral densities matrices Qp(k) and 

Rm(k) are hardly ever known to be better than an order of magnitude. 

 

Neglecting the noise terms, Qp(k) and Rm(k), the model (Eq. 4.1) represents a deterministic 

system, and for this situation the architecture of a general nonlinear Luenberger observer in 



discrete-time is depicted in Fig. 4.1; this structure was adapted from the version in continuous 

time explained by Friedland (1996). 

The observer equations are given by Eq. 4.2, and the observer gain Kn (a design parameter, 

fixed or adaptive) must make the state error equation, e(k) = x(k) - x
∧
(k), asymptotically stable:  

 

⎩⎪
⎨
⎪⎧x

∧
(k+1) = fm(x

∧
(k), u(k)) + Kn re(k) 

 y
∧
(k) = gm(x

∧
(k), u(k))  

 
Eq. 4.2 

 

In Eq. 4.2, re(k) is the output prediction error given by re(k) = y(k) - y
∧
(k) . 

 

Kn z -1

fm(.)

gm(.)

x(k+1) x(k)

Control input

u(k)

Plant model

-
y(k)

y(k)

^

^ ^

 

Fig. 4.1 - Structure of a discrete-time nonlinear Luenberger observer. 

 

Since neural networks and fuzzy systems can model nonlinear systems, they can be used for 

implementing nonlinear state observers and nonlinear output predictors. 

 

The next section will show how neural network models can be used for identification of 

nonlinear systems. Also described is how neural networks can be used for implementing 

neural output predictors without recurrency and with external recurrency. 

The great advantages of these neural models is the great potential to model SISO or MIMO 

nonlinear systems, if informative data is available in the training phase. 
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4.3 Neural Recurrent Output Predictors (NROP) 

 

4.3.1 Introduction 

Neural networks models can be classified also as nonlinear black-box models. Artificial 

neural networks can be used effectively for the identification and control of nonlinear 

dynamic systems, and also for fault detection and diagnosis. 

The identification of nonlinear systems can be made effectively by an artificial neural 

network, if the training data is rich enough. Two classes of neural networks (NN) which have 

received considerable attention in the area of artificial neural networks in recent years are the 

multi-layer neural networks, and the recurrent neural networks. Internal or external recurrence 

can be implemented in neural structures. From a systems theoretic point of view, multi-layer 

networks represent static nonlinear maps, while recurrent networks are represented by 

nonlinear dynamic feedback systems (Narendra & Parthasarathy, 1990; Hagan, et al., 1995). 

Some papers were published using neural output predictors without recurrency (Koppen-

Seliger, et al., 1999; Palma, et al., 2003c; Genrup, 2005). 

In this section, a new neural architecture for constructing Neural Recurrent Output Predictors 

(NROP) based on a neural parallel model with external recurrency is presented. 

 

4.3.2 Problem Formulation 

Assuming that we are dealing with a single-input single-output (SISO) nonlinear system, 

without loss of generality, the general problem under study in this section can be formulated 

as follows. 

 

Problem 3. Given a continuous time nonlinear SISO dynamic system modeled by a black-box 

nonlinear NARX neural model, find a neural structure for output prediction in real-time 

operation. 

 

Typically, most of the dynamic systems in industry work under closed-loop control, as 

depicted in Fig. 4.2. Assuming a SISO system, the process plant is represented by the block P, 

and the blocks A and S represent, respectively, the actuator and the sensor. The blocks A/D 



and D/A are the analog-to-digital and digital-to-analog converters. The digital computer 

implements the supervision, control and FDD algorithms. The digital signals are also 

represented in the figure: the reference signal, r(k), and the input and output signals, u(k) and 

y(k), respectively. The other signals are analog signals: the real process input, ur(t), and the 

real process output, yr(t). The signals, w(t) and v(t), are, respectively, the disturbance input to 

the plant, and the disturbance or noise in the sensor. 

 

Digital
Computer

Clock

D/A
u(k)

A P S A/D

r(k)
ur(t) yr(t)

w(t) v(t)

y(k)

 

Fig. 4.2 - Closed-loop control architecture. 

 

Let us assume that a nonlinear dynamic system is described by the SISO nonlinear NARX 

model (Eq. 4.3) without loss of generality, where k is the discrete-time instant, n is the system 

order, u(k) ∈ ℜu is the input vector, y(k) ∈ ℜy is the output vector, and F(.) is a nonlinear 

function. 

 

y(k) = F(y(k-1), …, y(k-n), u(k-1), …, u(k-n)) Eq. 4.3 

 

Neural prediction models can be used to implement the nonlinear mapping between the input 

data and the output data of a dynamic process. 

 

4.3.3 Neural Prediction Models 

Neural models can be used in different types of architectures. A multi-layer perceptron feed-

forward neural network (MLP-FF-NN) with weight matrix W can be used to model the 

nonlinear function expressed by the model (Eq. 4.3). 

Neural networks, in the form of neural one-step ahead predictors, can be used as neural 

NARX output prediction models (Narendra & Parthasarathy, 1990; Palma, et al., 2003a), 

expressed in the form (Eq. 4.4). NN{a-b-c}(W,…) denotes a neural network based nonlinear 

functional mapping, with height matrix W, with network structure {a-b-c} corresponding to 
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the number of neurons on each layer, respectively the input-layer (IL), the hidden layer (HL), 

and the output layer (OL). 

 

y∧nop(k) = NN{a-b-c}(W, y(k-1), …, y(k-n), u(k-1), …, u(k-n))  Eq. 4.4 

 

A parallel model expressed by (Eq. 4.5) can also be developed using neural networks 

(Narendra & Parthasarathy, 1990), where the predicted output depends on the past predicted 

output values, and on the input values. 

 

y∧nopp(k) = NN{a-b-c}(W, y∧nopp(k-1), …, y∧nopp(k-n), u(k-1), …, u(k-n)) Eq. 4.5 

 

Inspired by the neural parallel model and the observer structure with prediction and correction 

mechanisms, a new architecture for a neural recurrent output predictor (NROP) is proposed in 

this dissertation to be described below. 

 

4.3.4 Neural Recurrent Output Predictor (NROP) with external feedback 

The new neural output prediction structure was proposed by (Palma, et al., 2004a) with the 

aim of application in fault detection and diagnosis tasks, to deal with linear or nonlinear 

systems. In (Palma, et al., 2005b), the authors applied this methodology for FDD in a DC 

motor linear model using a bank of NROP predictors. 

The main idea is to have one NROP predictor tuned to each interested operational situation 

(nominal operation, and faulty cases). This is achieved via nonlinear system identification, 

i.e., off-line training of the neural network with informative data. Each neural network 

embedded model is trained with informative data captured for the operational situation, and 

by adjusting a predictor gain. 

Inspired by the neural parallel model and the observer structure with prediction and correction 

mechanisms, the NROP neural output predictor can be written in the form of a nonlinear 

function Φ(.): 

 

y∧nrop(k) = Φ(W, y∧nrop(k-1:k-n), u(k-1:k-n), y(k-1), Kn)  Eq. 4.6 

 

For the case of a SISO system, without loss of generality, the NROP predictor proposed in 

this work obeys Eq. 4.7, and the general architecture is depicted in Fig. 4.3. 



 

y∧nrop(k) = NN{a-b-c}(W, y∧nrop(k-1), …, y∧nrop(k-n), u(k-1), …, u(k-n)) + Kn re(k-1)  

re(k-1) = y(k-1) - y∧nrop(k-1)  

Eq. 4.7 

 

MLP-FF
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z -n

z -1

z -n

+

...
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u(k)
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Fig. 4.3 - Architecture of neural recurrent output predictor (NROP). 

 

Each neural network NN{a-b-c}(W,…) is trained off-line, based on the data captured in closed-

loop operation, according to a one-step ahead predictor neural model (Eq. 4.4), by 

minimization of the output prediction error. 

The neural predictor (NROP) proposed incorporates two embedded mechanisms: a parallel 

model (Eq. 4.5) acting as a prediction mechanism, and the term Kn re(k-1) acting as a 

correction mechanism, where the predictor gain Kn has an important role. The output residual 

is given by re(k) = y(k) - y∧nrop(k). This predictor structure is similar to the operation of the 

classical state observers (Luenberger observer and Kalman filter): a time update (“predict”), 

and a measurement update (“correct”). 

This approach can be extended to deal with MIMO systems. Assuming that a MIMO system 

is decomposed in a set of MISO systems, a set of neural output predictors (NROP) based on 

MISO system models can be designed to predict each system output. 

 

4.3.5 Training of Neural Models for the NROP Predictor 

In order to implement nonlinear models based on neural networks, different neural networks 

(NN) can be used according to the type of activation functions: radial basis function RBF-NN 

and multi-layer perceptron MLP-NN (Hagan, et al., 1995). RBF neural networks have the 
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following features: a local response due to the Gaussian activation function, a high number of 

neurons in the hidden layer, and are fast to train (an advantage for on-line algorithms). MLP 

neural networks have the following features: a global response due to the sigmoid activation 

function, a lower number of neurons in the hidden layer, and are slower to train. 

The MLP neural networks have been chosen to be used as nonlinear models in the neural 

NROP structures proposed in this dissertation, since they have global response and can be 

trained off-line. A nonlinear NARX neural model with three layers is sufficient for nonlinear 

dynamic modeling (Haykin, 1994 ; Hagan, et al., 1995): one input layer, one hidden layer 

(sigmoid), and one output layer (linear). 

In this work, the Levenberg-Marquardt optimization algorithm was used for the training of the 

neural networks (Hagan, et al., 1995). 

For the MLP neural networks, the optimal number of neurons in the hidden layer is still an 

open question in the neural networks scientific community. Theoretically, the number of 

neurons in the hidden layer is a function of the complexity of the system dynamics. In this 

work, an empirical rule is suggested to choose the number of neurons in the hidden layer for 

the case of neural predictor models: “must be approximately equal to the number of inputs”, 

i.e., the number of elements of the regression vector [y(k-1) … y(k-n) u(k-1) … u(k-n)], since 

the model order must reflect the complexity of the system dynamics. 

 

4.3.6 Dynamic Analysis of Neural Predictor NROP 

In Eq. 4.7 for the neural predictor NROP, the gain Kn is a design parameter. The value of the 

gain must guarantee a stable dynamics, and a small residual. For a given operating condition, 

the main goal of the NROP is to guarantee that the residual re(k) = y(k) - y∧nrop(k) be small. 

According to (Eq. 4.7), the residual is given by: 

 

re(k-1) = (
1
Kn

) (y∧nrop(k) - NN{a-b-c}(W, y∧nrop(k-1),…, y∧nrop(k-n), u(k-1), …, u(k-n)))
  

Eq. 4.8 

 

Observing Eq. 4.8, theoretically it can be asserted that: “a small residual re(k-1) of the NROP 

can be achieved using a high gain, unless the residual y∧nrop(k) - NN{a-b-c}(.) of the parallel 

model is small enough”. In practice, high values for the gain, Kn, usually produce some 

oscillations on the output signal, y∧nrop(k). So, a practical rule is: “the gain must be low”. In 
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many experimental tests, typical empirical values obtained for the FDD purposes are, usually, 

in the range ]0; 1[. 

 

Stability plays a very important role in the control theory. Also in system identification one 

must sometimes deal with the stability issue. It does not, however, play the same vital role as 

in the control theory. In a neural network (NN) model with only bounded activation functions, 

such as hyperbolic tangent sigmoids, the output is always bounded; this is the case of the 

neural structures used in this dissertation. 

For linear discrete time invariant systems it is well-known that bounded-input bounded-output 

(BIBO) and asymptotic stability are obtained if the eigenvalues of the system matrix 

(corresponding to the poles of the transfer function) are strictly inside the stability area, i.e., 

the unit circle. For the case of time varying nonlinear systems and models, such as neural 

network models with time-varying inputs, the analysis is much more complicated. 

Under the assumption that the time-variation is sufficiently slow, the stability of the neural 

network or the control system can be established by evaluating the eigenvalues of the 

linearized system. In heuristic terms, in a stable system the signals should not “explode” and 

deviate to far from its reference signals. Typically stability problems will be that the system 

output signals go into excessive oscillations instead of being smooth, or the signals will 

saturate (Norgaard, et al., 2003). 

Next, a new theorem related to the convergence of the neural recurrent output predictor 

(NROP) is proposed in this work. The underlying ideas are inspired on the heuristic notion of 

stability previously described. 

 

Theorem 4. Convergence of neural recurrent output predictor (NROP). 

For a given SISO (or MISO) system, the output y∧nrop(k) of the neural recurrent output 

predictor (NROP) in the form  

 

y∧nrop(k) = NN{a-b-c}(W, y∧nrop(k-1),…, y∧nrop(k-n), u(k-1), …, u(k-n)) + Kn re(k-1) Eq. 4.9 

 

converges to the output process signal y(k), if the embedded neural model NN{a-b-c}(W,…) is a 

good one step ahead predictor, i.e., the residual re(k) is small enough. The predictor gain Kn 

allows an adjustment of the predictor output error (residual) re(k) = y(k) - y∧nrop(k). 

■ 
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Qualitative Reasoning for Theorem 4. If the embedded neural model NN{a-b-c}(W,…) is a 

good one step ahead predictor then a stable behaviour can be guaranteed for data similar to 

the one used in the training phase. For these conditions the equation is valid: 

 

y∧nrop(k) ≈ NN{a-b-c}(W, y∧nrop(k-1), …, y∧nrop(k-n), u(k-1), …, u(k-n)) . Eq. 4.10 

 

If Eq. 4.10 is valid, and taking into account Eq. 4.9, then the predictor output error 

re(k) = y(k) - y∧nrop(k) is approximately zero assuming Kn ≠ 0, i.e, re(k) ≅ 0. Consequently, the 

NROP predictor output converges to the ouput process model since the expression is valid 

y∧nrop(k) ≈ y(k). 

■ 

 

Since in practice there is always some kind of non modeled dynamics, the neural model does 

not perfectly models the plant behaviour, and this causes a non-zero small residual 

re(k) = y(k) - y∧nrop(k) ≠ 0. The predictor gain (Kn, design parameter) allows the adjustment of 

the amplitude of output residual signal according to Eq. 4.8. Some experiments performed 

shown that the gain Kn must be small, approximately in the range ]0; 1[, in order to guarantee 

stability and a small residual. 

 

There are three main advantages of the new neural recurrent output predictor (NROP) 

proposed in this work: a) the training is done off-line; b) only input-output data is required; c) 

it can be applied in real-time FDD applications for SISO or MIMO nonlinear systems. 

 

4.4 FDD Approach based on a Bank of NROP Predictors 

 

4.4.1 Introduction 

For nonlinear systems, some investigations have been carried out related to the application of 

a bank of classical extended Kalman filters (EKF) to FDD purposes. The main difficulties of 

this type of approach are: a) obtaining an accurate process model; b) the estimation of the 

process noise matrix. If these two requirements are not satisfied, the filter can diverge and the 
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stability is not achieved. These reasons have motivated researchers to develop nonlinear 

observers based on intelligent (neural and fuzzy) techniques (Zhou & Bennett, 1997; 

Isermann, 1997; Patton, et al., 2000; Chen & Patton, 1999), and nonlinear neural output 

predictors (Palma, et al., 2004a; Palma, et al., 2005b). 

The neural FDD approach proposed here is carried out only by the evaluation of the plant 

output y(k), control input u(k), and delayed versions of these signals. Therefore, the FDD 

approach does not depend directly on the order of the plant. The embedded neural model must 

be a good output predictor model for the plant dynamics. 

An FDD approach based on a bank of neural recurrent output predictors (NROP) described in 

section 4.3 is presented later. The main idea is to have a NROP tuned to each faulty situation, 

and one for the nominal operation. For FDD purposes, the NROP residuals (output predictors 

errors) are used as output residual generators. When a fault occurs, the NROP tuned to this 

faulty case must present the lower residual re(k) = y(k) - y∧nrop(k) compared to the other NROP 

residuals. 

 

4.4.2 The FDD-NROP Approach 

The main question to be solved in this section is formulated next, assuming a nonlinear 

process and a nonlinear NARX model. 

 

Problem 4. Given a continuous time nonlinear SISO (or MISO) dynamic system S modeled 

by a black-box nonlinear neural NARX model MXNN in discrete time, find a methodology for 

fault detection and diagnosis (FDD) in real-time operation. 

 

The main idea used to solve this problem was inspired by the NROP predictor proposed in 

this work, where for each fault an embedded neural model must be identified via off-line 

training and tuned by adjusting the gain Kn. To solve this problem a bank of NROP predictors, 

each one given by Eq. 4.11, as described in the last section, is proposed according to the 

architecture (Fig. 4.4). Each NROP is labeled as Ψ(.), its architecture is depicted in Fig. 4.3, 

with input data y(k) and u(k), and output y∧nrop(k). 

 

y∧nrop(k) = NN{a-b-c}(W, y∧nrop(k-1), …, y∧nrop(k-n), u(k-1), …, u(k-n)) + Kn re(k-1)  Eq. 4.11 
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Fig. 4.4 - Architecture of the bank of NROP predictors. 

 

Based on the input-output available data, for the nominal operation conditions and for each 

faulty case, neural output predictor models NN{a-b-c}(W, y(k-1), …, u(k-1), …) are trained off-

line and saved in neural structures. Each neural model is used as an embedded model tuned to 

each faulty situation in a NROP predictor ΨFi(.). The NROP predictor ΨF0(.) is the one tuned 

for the nominal operating conditions (the case of fault F0), and ΨFi(.) is the one tuned for fault 

Fi. This means that for detection of n faults, n+1 NROP predictors are required. 

 

Fault Detection (FDE) Approach. For the fault detection task, a residual generator can be 

obtained directly from the residual (output prediction error) of the NROP predictor tuned for 

the nominal operation, ΨF0(.). The FDE approach can use a threshold based on a three sigma 

limit, or a more robust method based, for example, on an adaptive CUSUM algorithm 

(Gustafsson, 2001; Palma, et al., 2004b). Here, a three sigma limit is used. 

A fault alarm is based on the square of prediction error (SPE), q(k) ∈ ℜ1 × 1, computed based 

on the residual r0(k) = y(k) - y∧0(k), with r0(k) ∈ ℜw × 1. For a sliding window of length w, the 

SPE signal is given by 

 

q(k) = r0(k-w+1:k)T r0(k-w+1:k). Eq. 4.12 
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A fault alarm is generated if the SPE, q(k), exceeds the threshold values h, i.e., am(k) = 1. 

Otherwise, no fault alarm occurs.  For the three sigma limit method, the thresholds are given 

by [µ − 3σ ; µ + 3σ], where µ is the mean value and  σ  is the standard deviation of the SPE 

signal computed using data captured for nominal operation. The fault detection signal fd(k) is 

obtained by low pass filtering the fault alarm signal am(k) and by thresholding. 

 

Fault Diagnosis (FDG) Approach. The proposed fault diagnosis approach depends on the 

performance of each NROP predictor. If the FDD system is designed to isolate only two 

faults, then a bank of three neural observers is required. One predictor ΨF0(.) tuned to the 

nominal operating region (without faults, F0), one predictor ΨF1(.) tuned to the fault F1, and 

another ΨF2(.) tuned for the fault F2. If fault F1 occurs, then the associated residual 

r1(k) = y(k) - y∧1(k) of NROP predictor ΨF1(.) will tend to a small value near zero, and the other 

residuals will tend to a non-zero value or even present some oscillations. The square of 

prediction error (SPE) is computed based on each residual, and after low pass filtering 

Hlp(z, λ) the isolated fault is determined by the lower square of prediction error. 

 

The general architecture (Fig. 4.5) based on the ideas described before related to the FDD 

approach based on a bank of NROP predictors is presented next.  
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Fig. 4.5 - Architecture of the FDD approach based on a bank of NROP predictors. 
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4.4.3 Algorithm and Example 

Next the algorithm used for fault detection and diagnosis based on a bank of neural recurrent 

output predictors (NROP) is presented. Without loss of generality, the algorithm considers the 

case of a SISO system. It is straightforward to extend the algorithm for the case of MISO 

systems. 

 

Algorithm 6. Fault detection and diagnosis based on a bank of neural recurrent output 

predictors (FDD-NROP). 

In off-line operation, the following tasks must be executed: 

a. For each fault Fi of the set F = {F0, F1, …, Fn} proceed with the training of the neural 

network output predictor model NN{a-b-c}(Wi, y(k-1), …, u(k-1), …) tuned to the respective 

fault Fi, using the Levenberg-Marquardt optimization algorithm. A set of neural predictor 

models is obtained, where each predictor is characterized by a different weight matrix Wi. 

b. Initialize the output y∧nrop(k) of the NROP predictor with the process output y(k) under 

nominal conditions during the start-up.  

c. Determine the thresholds and the low pass filters parameters, in order to obtain a desired 

commitment between rate of false alarms, rate of missed fault detections, and detection 

and isolation delays. Different sets of experimental nominal data must be used to compute 

and validate the thresholds and filters parameters. 

Each time instant k, the following steps must be executed on-line: 

1. Sample the process output signal y(k). 

2. Compute the output predictor signal, for each faulty case, based on the neural recurrent 

output predictor (NROP) approach proposed in the work. The output predictor signal, for 

the NROP tuned to fault Fi, and denoted by ΨFi(.), is given by: 

 

y∧nrop(k) = NN{a-b-c}(Wi, y
∧

nrop(k-1),…, y∧nrop(k- na), u(k-nd),…, u(k-nc)) + Kn_i re(k-1)
  

Eq. 4.13 

3. Compute the output residual signal, ri(k) = y(k) - y∧nrop(k), for each NROP predictor. A set of 

residuals R = {r0(k), r1(k), …, rn(k)} is obtained for the bank of NROP predictors. 

4. If the SPE, q(k), associated with the residual of the nominal NROP predictor ΨF0(.), for a 

sliding window, exceeds the thresholds, then a fault alarm am(k) is generated. It is 

assumed that the threshold is computed using a three sigma limit approach. 

5. Compute the fault detection signal fd(k) by low pass filtering via Hlp(z, λ) the alarm signal 

am(k), and by thresholding. 



6. If a fault is detected, i.e. fd(k) = 1, compute the signal fi0(k) according to the smallest SPE 

error in the set Qn = {q0(k), q1(k), …, qn(k)}:  

 

fi0(k) = argmin j {qj(k); j = 0, 1, …, n}  Eq. 4.14 

 

7. The fault isolation fi(k) is obtained by low pass filtering fi0(k) using a LP filter Hlp(z, λ) 

(described in section 2.4.4). 

■ 

 

Next, an example of application of the NROP fault detection and diagnosis methodology is 

presented. 

 

Example 8. Fault detection and diagnosis approach based on a bank of NROP predictors 

applied to a DC motor model. 

In this example, the proposed approach based on a bank of NROP predictors is applied to a 

DC motor model. 

The continuous time DC motor model (described in more detail in section 5.3.2) is expressed 

by the transfer function: 

 

Gm(s) = 
ωr(s)
ua(s)  =  

Km

(L J) s2 + (L Kf + R J) s + (R Kf + Km Kb) 
 . 

Eq. 4.15 

 

The general architecture of the plant model under study is depicted in Fig. 4.6. 
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Fig. 4.6 - DC motor model with low pass filters. 

 

In this example, parametric faults on the sensor gain Ks are considered. The nominal value of 

Ks is 4.1. The set of faults is denoted by F = {F0, F1, F2, F3}. The nominal operation is 

denoted by fault F0, and the other faults correspond to the multiplication of the nominal 

sensor gain by the set of values {0.1, 0.3, 5}. 
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A bank of four NROP predictors, each one tuned to a specific fault, has been constructed and 

used in this example. All the NROP predictors have the same gain Kn = 0.1. 

The neural NARX(…) structures used in the predictor models use a time horizon equivalent 

to an ARX(na = 3, nb = 1, nd = 2) model relating the output signal y(k) and the input signal 

u(k). For each neural predictor model NN{a-b-c}(…), the number of neurons in each layer is 

a = 4; b = 4; c = 1. The transfer functions for the hidden layer and for the output layer used 

are, respectively, the hyperbolic tangent sigmoid (tansig) and the linear (purelin). The neural 

predictor models have been trained off-line using the Levenberg-Marquardt backpropagation 

(LMBP) algorithm. 

The system is controlled by a linear discrete PI controller (Astrom & Hagglund, 1988). After 

tuning via a pole-placement approach, the controller gains obtained are Kp = 2.56 and 

Ti = 2.02 s. The sampling time is Ts = 0.11 s. 

 

The DC motor model is linear, but the faults considered cause a nonlinear effect (actuator 

saturation). The next figures show the results obtained for the fault F1, corresponding to an 

abrupt decrease of the sensor gain (Ks). The sensor gain changes from the nominal value (4.1) 

to a faulty value (0.1*4.1 = 0.41). The variance of the sensor noise is 1×10-8. 

 

Fig. 4.7 shows, from top to bottom, the following signals for fault F1. 

The reference signal r(k) with a dither signal with variance 1×10-4 added, the output signal 

y(k), and the input signal u(k). Next, the fault alarm signal am(k), the fault detection signal 

fd(k) and the fault isolation signal fi(k) are shown. Here, an analysis of the fault magnitude is 

not considered, and for that reason the fault analysis signal fa(k) is zero. 

For an experiment of 400 s of duration, the fault occurs at time instant tk = 240 s. The 

detection delay is 0.5 s, and the isolation delay is nearly 6 s. 

As observed, some false alarms occur. The low pass filtering of the alarm signal am(k) avoids 

the activation of the fault detection signal fd(k). The low pass filtering plays an important role 

in most FDD approaches, since it renders the system more robust with respect to false alarms. 

 



 

Fig. 4.7 - Signals for FDD based on NROP applied to a DC motor model. 

 

The residuals obtained from the bank of NROP predictors are used for fault detection and 

isolation. The first graph of Fig. 4.8 shows the reference signal r(k) (red line), the output 

signal y(k) (blue line) and the input signal u(k) (green line). This fault causes the saturation of 

the actuator at the maximum value (magnitude around 1). Since the nominal static gain of the 

plant model is 1, when the fault occurs the output signal tends to the value 0.1. The residual 

r0(k) for the nominal NROP predictor is shown next. After, the residuals (ri(k); i = 1, …, 3) of 

the NROP predictors tuned to each fault can be seen. The Square of Prediction Error (label 

rq), q(k), for the nominal predictor used for fault detection is shown next, and also the 

threshold values. The SPE signal is computed based on a sliding window of length ws= 1 s, 

i.e., a sliding window with 9 samples. Finally, the fault isolation signal fi(k) is depicted. Fault 

F1 is isolated since the output residual of the associated NROP predictor is the smallest. 
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Fig. 4.8 - Output residual signals for NROP predictors. 

 

This FDD approach is appropriate for many faulty cases, including some faulty cases where 

other approaches fail, such as situations of saturation and oscillatory behaviours. Neural 

network predictor models are able to capture this type of nonlinear behaviours. In some cases 

of saturation, the persistent excitation conditions (PEC) are not good enough and this fact 

causes an increase on the variance of the on-line estimated parameters of the ARX models. In 

the top graph (label th-yu) of Fig. 4.9, the parameters θ(k) = [a1(k) a2(k) b2(k)] of an 

ARX(2, 1, 2) model Myu(θ) are depicted; the nominal values are given by 

[a1 a2 b2] = [-1.76 7.84×10-1 2.48×10-2]. Next (label th-yr), the parameters of an ARX(2, 1, 2) 

model Myr(θ) are shown; the vector [a1 a2 b2] = [-1.79 8.56×10-1 6.18×10-2] shows  the 

nominal values. The last signal (label fas) is the fault activation (trigger) signal. The on-line 

parameter estimation has been made using the sliding window SW-PCR algorithm. 
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Fig. 4.9 - Parameter estimates in actuator saturation case. 

 

4.5 FDD Approach based on Neural Nonlinear PCA and 

Neural NNLDA  

 

4.5.1 Introduction 

The data-driven approaches to fault detection and diagnosis (FDD) are based on models built 

directly from process data. The great strength of data-driven techniques is their ability to 

transform the high dimensional data into a lower dimension, in which the important 

information is captured. This is particularly important in large-scale industrial systems 

(chemical plants, nuclear plants, etc) that produce a large amount of multivariate data. 

The Principal Component Analysis (PCA) described in Chapter 2 is a linear technique, and is 

the most widely statistical multivariate technique used in industry (Jackson, 2003; Jolliffe, 

2002). 

In many situations the relations between data are not linear, so the linear PCA techniques are 

not the most appropriate. For the cases of nonlinear relations in the data, a better solution is 

the application of nonlinear PCA techniques. The nonlinear principal component analysis 
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(NLPCA) is a generalization of PCA to nonlinear systems. The two main NLPCA techniques 

are based on Principal Curves (Hastie, 1984; Harkat, 2003), and on Kramer’s Neural NLPCA 

(Kramer, 1991; Harkat, 2003). The linear PCA technique extracts the linear relations between 

variables, and the aim of nonlinear PCA is to extract the linear and nonlinear relations, as 

observed in Fig. 4.10 (Harkat, 2003). 

 

v1

v2

v1

v2

 
a) Linear PCA. b) Nonlinear PCA. 

Fig. 4.10 - Linear PCA and nonlinear PCA. 

 

The nonlinear principal components do not obey a normal distribution. The confidence 

regions cannot be derived from the normal distribution, but can be obtained using 

approximations based on kernel functions (Lopes, 2001). The kernel functions can be used as 

estimators of the probability density functions. A stochastic kernel function is assumed to be 

independent and identically distributed, thus it can be used as an estimator of the probability 

density function (PDF) of a stochastic process in discrete time. 

There is an extended list of publications related to linear PCA. With respect to nonlinear 

PCA, the number of publications is reduced. Some publications related to NLPCA applied 

directly to input-output data with applications to real systems are the papers (Dunia, et al., 

1995; Antory, et al., 2004; Antory, et al., 2005; Palma, 2006).  

 

In this section the possibility of application of neural nonlinear PCA to input-output data is 

discussed, and also to ARX model parameters identified on-line. 

A new approach to FDD in nonlinear systems based on neural nonlinear principal component 

analysis (neural NLPCA) is proposed. Instead of the classical approach where NLPCA is 

applied to input-output data, here NLPCA is applied to the set of parameters of an adaptive 

ARX model identified on-line. Fault detection and isolation is performed using neural 

nonlinear discriminant analysis (NNLDA). Both the two dimensional scores and the SPE 
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signal are used as features for FDD. This methodology can be applied to SISO or MIMO 

systems. 

 

4.5.2 Review of Classical and Neural Linear PCA 

Classical PCA is a linear technique, based on multivariate statistics, for mapping 

multidimensional data into lower dimensions with minimal loss of information. Since PCA 

has been described in many references and also in Chapter 2, only a brief summary of 

classical linear PCA is given here. 

Let X ∈ ℜn × m represent a data matrix (n = number of observations, m = number of variables), 

in which the observations are mean centered and appropriately scaled. PCA is an optimal 

factorization of X into two matrices, T ∈ ℜn × a called the scores matrix, and P ∈ ℜm × a called 

the loadings matrix, plus a matrix of residuals E ∈ ℜn × m: 

 

X = T PT + E Eq. 4.16 

 

In Eq. 4.16, the number of principal components (factors) is given by a (the number of 

columns of matrices T and P). The condition of optimality on the factorization is that the 

Euclidean norm of the residual matrix, ||E|| = ||X - X̂||, must be minimized for the given 

number of principal components, a. To satisfy the criterion, the columns of P are the 

eigenvectors corresponding to the a  largest eigenvalues of the covariance matrix of  X. 

PCA can be viewed as a linear mapping of data from ℜm to ℜa. Taking PT P = I  , without 

loss of generality, the mapping has the form: 

 

Tr  = Xr P Eq. 4.17 

 

In Eq. 4.17, Xr represents a row of matrix X, a single data vector. The vector Tr represents the 

corresponding row of T, or  the coordinates of Xr in the reduced features (scores) space. The 

loadings P are the coefficients for the linear transformation. The information lost in this 

mapping can be assessed by reconstruction of the data by reversing the projection back to ℜm: 

 

Xr
^  = Tr P

T Eq. 4.18 

 

According to equations Eq. 4.16 and Eq. 4.18, the error vector is given by 
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Er = Xr - Xr
^ . Eq. 4.19 

 

For a smaller dimension of the scores (features) space, a greater resulting error is obtained.  

 

The linear PCA multivariate statistics technique can also be implemented using neural 

networks (Kramer, 1991; Diamantaras, 1996). The architecture of the neural network is 

similar to the one presented in the next sub-section related to nonlinear neural PCA, but only 

a three layer with linear activation functions is necessary. 

 

4.5.3 Kramer’s Neural Nonlinear PCA 

The principal curves method and the Kramer’s neural NLPCA method are the two main 

approaches to extend PCA to deal with nonlinear systems (Harkat, 2003). The Kramer’s 

neural approach was used in this work, and will be briefly described. Kramer’s NLPCA 

approach has been developed motivated by the combination of concepts from a data-driven 

approach (PCA), and from a knowledge-based technique (neural networks). 

In Kramer’s NLPCA approach, the mapping into the features (scores) space is generalized to 

allow arbitrary nonlinear functionalities (Kramer, 1991). By analogy to Eq. 4.17, we seek a 

mapping in the form: 

 

Tr = G(Xr) Eq. 4.20 

 

where G  is a nonlinear vector function, composed of a individual nonlinear functions; the 

vector G = {G1, G2, …, Ga} is analogous to the columns of matrix P, such that Tri represents 

the ith element of  Tr:  

 

Tri  = Gi(Xr) Eq. 4.21 

 

By analogy to the linear case, G1 is referred to as the first nonlinear principal component (or 

primary nonlinear factor), and Gi is the ith nonlinear principal component of Xr.  

The inverse transformation, restoring the original dimensionality of data, analogous to Eq. 

4.18, is implemented by a second nonlinear vector function H = {H1, H2, …, Hm}: 

 



Xr
^  = H(Tr)

Eq. 4.22 

 

The loss of information is again measured by Er = Xr - Xr
^ , and the nonlinear functions G and 

H are selected to minimize the error matrix, ||E|| = ||X - X̂||. 

Kramer (1991) showed that an auto-associative neural network (NN), with the architecture 

depicted in Fig. 4.11, is able to implement the nonlinear transformations (mapping G and de-

mapping H) required by the nonlinear PCA method. This architecture allows the simultaneous 

determination of a nonlinear principal components (factors). The extraction of nonlinear 

principal components can be done using two algorithms (Karkat, 2003). For the series 

algorithm, each principal component is obtained one at a time, using only one neuron in the 

bottleneck layer. The parallel algorithm, which is used in this work, extracts the principal 

components (#PC = “a”) at once, using “a” neurons in the bottleneck layer. 
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Fig. 4.11 - Schematic diagram of an auto-associative neural network used in NLPCA. 

 

As it can be observed, the auto-associative neural network architecture proposed by Kramer 

consists of five layers: an input (buffer) layer (IL), a mapping layer (ML), a bottleneck layer 

(BL), a de-mapping layer (DL), and an output layer (OL). The training of the NN can be 

performed using the Levenberg Marquardt optimization algorithm, or other methods based on 

the back-propagation algorithm. To implement a neural nonlinear PCA approach, the 

activation functions (σ) of the neurons in the mapping and de-mapping layers are usually of 

the type sigmoid (tansig, or logsig), and usually linear functions (φ ) are used in the bottleneck 

and output layers. The input layer receives the measured process variables (or related 

variables) expressed by matrix X. For a given observation, vector Xr, the values of the 
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nonlinear scores variables are given by the output of the bottleneck layer, Tr = G(Xr). The 

residual vector of the reconstruction is given by Er = Xr - Xr
^  = Xr - H(G(Xr)). 

In the linear PCA approach it is possible to quantify the explained variance by a certain 

number of principal components, as described in section 3.5.2 by Eq. 3.36. For the nonlinear 

PCA approach, it is also possible to compute the amount of explained variance by the 

nonlinear principal components, and this value is given in percentage by 

 

Eσ 2(a) (%) = 100 × (1 - 
tr(ET E)
 tr(XT X))

Eq. 4.23 

 

where X ∈ ℜn × m is the data matrix, E ∈ ℜn × m is the residual matrix given by E = X - X̂ 

obtained after the neural network training, and the function tr(.) gives the trace of a matrix. 

The predicted data by the NLPCA model is given by X̂.  

There is no definite method for deciding a priori the dimensions of the mapping and de-

mapping layers (henceforth, collectively referred to as the mapping layers). The number of 

neurons in the mapping layers is related to the complexity of the nonlinear functions that can 

be generated by the neural network. 

For the nonlinear optimization to work well the input variables must be standardized, i.e. 

auto-scaled. Proper scaling of the input data is essential to avoid having the nonlinear 

optimization algorithm searching for parameters with a wide range of magnitudes. Due to the 

presence of multiple minima in the cost function, the NLPCA is generally less stable than 

linear PCA (Hsieh, 2001). 

If the goal is to implement a neural linear PCA approach, then all activation functions must be 

linear (φ ), and only a three layer neural network is necessary (Kramer, 1991). 

 

4.5.4 FDD Classical Approach Based on Neural Nonlinear PCA 

Traditionally, the nonlinear principal component analysis (NLPCA) approach is applied to 

input-output data signals in multivariable nonlinear systems (Diamantaras, 1996; Harkat, 

2003; Antory, et al., 2005). In MIMO plants, the number of input and output signals is, in 

many situations, greater than ten variables (Antory, et al., 2004). The classical neural NLPCA 

approach can also be applied to SISO systems using Kramer’s neural nonlinear PCA approach 

(Palma, et al., 2006). In this section, the main difference relative to other previous works in 

this area is the application of neural NLPCA to a SISO plant, instead of MIMO systems. Next 



the traditional approach for FDD based on neural nonlinear PCA is described concisely, and 

an architecture is proposed in Fig. 4.12. The approach is described for SISO systems, without 

loss of generality. The general problem to be solved can be formulated as follows. 

 

Problem 5. Given a nonlinear continuous time system, find a method for fault detection and 

diagnosis based on input-output data, using nonlinear principal component analysis (NLPCA). 
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Fig. 4.12 - FDD architecture based on classical neural NLPCA. 

 

The FDD methodology proposed here follows the architecture depicted in Fig. 4.12, and is 

described afterwards. The main idea is to detect and diagnose faults in the scores space and 

residual space of the NLPCA model. Many FDD methods based on NLPCA are founded on 

geometrical approaches and traditional statistical approaches. Here an FDD approach based 

on a pattern classification method using a neural nonlinear discriminant analysis is proposed, 

similar to the one described in section 3.3.2. 

First, a neural NLPCA model is constructed for the nominal operating region, using input-

output signals. In the approach presented here, both the two dimensional scores and the SPE 

error are used for fault detection and diagnosis. The neural nonlinear discriminant analysis 

(NNLDA) is used for FDD based on a data pattern given by the scores t1(k) t2(k) and the 

square of prediction error q(k) (SPE, obtained from the residual) represented by the vector 

[t1(k) t2(k) q(k)]. Each fault is classified to a certain class, i.e., neural NNLDA maps an input 

(pattern) into an output (class). 
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The NLPCA model can be a local model around a certain reference (set-point), or a global 

model for the whole range of set-points. The auto-associative neural network is trained off-

line with the output data matrix equal to the input data matrix, i.e, Xout = Xin = X with X 

representing the data matrix for nominal operation. The data matrix X, used for building the 

NLPCA model, has row vectors in the form of Xr(k) = [y(k) y(k-1) y(k-2) u(k-2)] for the case 

of a NARX(2, 1, 2) model; k is the discrete-time, and y(k) and u(k) are, respectively, the 

output and the input signals. All the data is captured in closed-loop, and with a persistent 

excitation signal added to the reference signal (set-point). For this data matrix, the number of 

neurons in each layer can be given by: IL(#4), ML(#5), BL(#2), DL(#5), OL(#4). The data 

signals are compressed to two dimensions (scores space), since the number of neurons in the 

bottleneck layer (BL) is 2. The number of neurons in the input and the output layer is equal to 

the number of input signals, since the input data is equal to the output data in the training 

phase of the neural network. The auto-associative neural network is trained using the 

Levenberg-Marquardt optimization algorithm (Hagan, et al., 1995). The activation functions 

used are the hyperbolic tangent sigmoid (“tansig”) for the nonlinear function σ, and the linear 

function (“purelin”) for the function φ.  

In on-line operation, the on-line vector (pattern) v(k) = [t1(k) t2(k) q(k)] is obtained from the 

NLPCA model, and the neural classifier based on NNLDA assigns a pattern to the respective 

fault class Fi. 

 

The FDD architecture depicted in Fig. 4.12 is similar to the architecture previously proposed 

in Chapter 3 and depicted in Fig. 3.5, and the algorithms are consequently also similar. That is 

the reason why it is not described here. 

 

Afterwards, an example of application of this type of FDD approach based on input-output 

data is presented. 

 

Example 9. FDD neural NLPCA-NNLDA approach using input-output data applied to a 

SISO system. 

In this example, the classic FDD neural NLPCA approach described using input-output data is 

applied to a real nonlinear DC motor (the DCM-RA setup). The FDD methodology obeys the 

architecture depicted in Fig. 4.12. 

The setup is a nonlinear system, and exhibits a small time variant behaviour. An anti-aliasing 

analog filter with cutoff frequency fc1 = 1 Hz has been used at the system output. More 
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detailed information about the DCM-RA motor setup can be found in section 5.3.3. An IIR 

low pass digital filter, with transfer function Hlp(z, λ) described in section 2.4.4, has been 

introduced at the system output, in order to reduce the system bandwidth. A value of λ = 0.7 

was selected. The sampling period used is Ts = 0.11 s. 

Here, in off-line, a neural NLPCA model has been created with standardized data, i.e., data 

auto-scaled. The data has been auto-scaled to guarantee approximate data with mean zero and 

unitary variance for the nominal operating region (a set point around 0.7). For this case, data 

with mean zero and unitary variance is not perfectly achieved since the system is nonlinear 

and time variant. For the nonlinear PCA approach, the input data is given by the row vector 

Xr(:,k) = [y(k) y(k-1) y(k-2) u(k-2)], assuming a NARX(2, 1, 2) model. In the training phase of 

the auto-associative neural network, a sum of squared errors (SSE) around 2×10-3 was 

obtained at the end of 200 epochs. The number of neurons in each layer is given by, 

respectively, {4, 5, 2, 5, 4}. 

The row input pattern vector given by the scores and the SPE, [t1(k) t2(k) q(k)], is classified by 

a neural network implementing the nonlinear discriminant analysis (NNLDA). This type of 

NNLDA approach, described in section 3.3.2, has been also used in Example 1. Assuming the 

existence of four faults, the fault F0 (nominal operation) is classified as belonging to the class 

F0 ([1 0 0 0]), to fault F1 corresponds the class F1 ([0 1 0 0]), etc. In the training phase of the 

neural network, a SSE error around 4×10-3 was obtained at the end of 500 epochs. The 

number of neurons in each layer are given by, respectively, {3, 10, 3, 4}. 

Four faults are considered in this example. The nominal operating region for a set point 

around 0.7 is termed the fault F0. Faults F1 and F2 correspond, respectively, to a blocking of 

sensor at the values 0.5 and 0.8. Finally, fault F3 corresponds to a change to a critical 

operating region (a set-point around 0.4) outside the nominal region, where the speed of the 

motor is near a minimum acceptable value.   

 

The fault clusters, in the scores space, are shown in Fig. 4.13. It can be observed that the 

cluster F0 associated with the nominal operation region is not centered on the point (0, 0), 

since the system is nonlinear and time variant, and also the data does not obey a perfectly 

normal distribution. The dispersion observed in clusters F0 and F3 are due to small 

oscillations in the system caused by the existence of a dither signal added to the reference 

signal. This cluster information from the scores and also from the square of prediction error 

(SPE) signal of the residual are used as patterns for training the discriminant neural network 

of the NNLDA approach. This neural network acts as a pattern classifier. 



 

 

Fig. 4.13 - Fault clusters in scores space. 

 

In this example, results are presented which have been obtained with the fault F1, 

corresponding to a sensor blocked at the value 0.5. The fault F1 considered in this example is 

a blocking of a sensor at a certain value (0.5), making the plant unobservable because the 

information link between the plant and the controller is broken. An experiment, under closed-

loop control, of duration 400 s was performed. An adaptive optimal linear quadratic Gaussian 

controller (LQGC) is used to control the speed of the DC motor, based on an input-output 

ARX(2, 1, 2) model identified on-line, and using a design parameter of r0 = 0.4 to adjust the 

closed-loop dynamics (Lewis, 1996). A brief description of the LQG controller can be found 

in section 5.4. At the start-up, a PI controller with gains Kp = 1 and Ti = 2 s is used, and after 

the supervisor switch to the adaptive LQG controller. 

 

Fig. 4.14 shows for fault F1, from top to bottom, the reference signal r(k), the output signal 

y(k), and the control input signal u(k). Next, the fault alarm signal am(k) is depicted. The fault 

detection signal fd(k) and the fault isolation signal fi(k) are also shown. The fault analysis 

signal fa(k) is not considered here. The fault occurs at time instant tk = 240 s. The detection 
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delay is 1.5 s, and the isolation is achieved 8 s after fault occurrence. The fault is well 

isolated, since the fault isolation signal tends to the value 1 after the transient. All the fault 

detection and fault isolation signals are low pass filtered. The switching between the 

controllers (PI and LQGC) occurs at time instant tk = 80 s, and this is evident in the variance 

of the control signal u(k). This fault causes the saturation of the actuator. 

 

Fig. 4.14 - Input-output and FDD signals for fault F1. 

 

In this experiment, in on-line operation, for each time instant k the input data vector is given 

by the vector of input-output signals [y(k) y(k-1) y(k-2) u(k-2)]. The criterion used to select 

this vector is based on the data used in the ARX(2, 1, 2) model. Fig. 4.15 shows some signals 

for this experiment associated with the neural NLPCA. The first graph shows the input data X 

(green lines) as a function of time. The first graph also shows the predicted data values Xe 
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(blue lines) by the neural network that implements the neural NLPCA approach. The square 

of prediction error (SPE, in blue line) then appears,  given by q(k) obtained from the NLPCA 

residual, and also the threshold values (red lines). In the third graph, the scores of the two 

principal components are shown as a function of time; PC1 in red line, and PC2 in green line. 

Finally, the last graph shows the two dimensional scores space, Ta(k) = [t1(k) t2(k)], where it 

can be observed the first principal component versus the second principal component. All the 

graphs show the signals for a time instant greater than 40 s. In nominal operation (fault- free 

case, F0), the on-line scores are located around the cluster F0. When fault F1 occurs, the on-

line scores move towards the cluster F1, passing near the cluster F3 and this is the reason why 

in Fig. 4.14 the non filtered fi0(k) signal temporarily assumes the value 3. 

 

Fig. 4.15 - NLPCA scores and SPE for fault F1. 

 

This FDD approach based on NLPCA applied to input-output data is not appropriate for 

detecting small parametric faults like changes on the filter bandwidth, etc. In fact, this type of 

fault must be detected using features based on model parameters, or other related variables. 

Many authors argue that the parity equations and observers are most suitable for detection of 

abrupt additive faults, and the parameter identification is more appropriate for detecting 

parametric faults (Isermann, 1997; Gertler, 1998; Chen & Patton, 1999; Frank, et al., 2000a). 

In fact, this statement has been confirmed in this work. 
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Some tests have been performed in order to evaluate if this FDD methodology based on 

neural classical NLPCA and neural NNLDA is also able to detect some types of additive 

faults. In fact, the results show that this approach can detect and diagnose also some types of 

additive faults. 

Results for an additive fault on the real actuator signal (termed F4) corresponding to a voltage 

offset of -1.5 V are shown next. For a set point around 0.7 (nominal region) the real actuator 

voltage is around 3.2 V. When this fault occurs, the controller increase the control action in 

order to compensate the offset caused by the fault. Using the NLPCA model considered in 

Example 9, Fig. 4.16 shows the location of the scores associated with fault F4 in the last graph 

(PC1 and PC2). It can be observed that the cluster is outside the nominal operation (cluster 

F0), and consequently this fault can be detected. The isolation can also be performed, since 

the cluster F4 is not superimposed on others, although it is near the cluster F1. 

This figure also shows the reference signal r(k) (red line), the output signal y(k) (blue line), 

and the input signal u(k) (green line). This fault almost cause a saturation of the control signal 

u(k). The ARX(2, 1, 2) model Myu parameters (th-yu) are also shown; the parameters 

θ(k) = {a1(k) a2(k) b2(k)} are depicted using different colours, respectively, blue, green and 

red. The static gain (sg) is a good feature for FDD purposes in this case.  

 

Fig. 4.16 - NLPCA scores and signals for fault F4. 
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4.5.5 FDD Approach Based on Neural NLPCA and Neural NNLDA 

The classic approach to FDD based on NLPCA has been detailed in the section 4.5.4. The 

classic approach uses the input-output available data as input patterns. 

Here, a new FDD approach based on neural nonlinear (NL) principal component analysis 

(PCA) and on neural nonlinear discriminant analysis (NNLDA) is proposed, applied to the 

ARX model parameters estimated on-line. In this approach, the input patterns are the 

parameters of ARX models. 

The main contributions given here are: a) the use of the ARX model parameters θ(k) as 

features for FDD, instead of using the input-output available signals; b) the combination of 

the two neural methods NLPCA and NNLDA. 

The problem to be solved here can be formulated as follows. 

 

Problem 6. Given a nonlinear SISO continuous time system, without loss of generality, find a 

method for fault detection and diagnosis based on model parameters or related features, using 

nonlinear principal component analysis.  

 

Assuming that the faults on the nonlinear continuous time system are reflected on the ARX 

model parameters estimated on-line, the following new fault detection and diagnosis approach 

is proposed here. This approach allows the detection of multiplicative (parametric) and also 

some kinds of additive faults. 

The main idea is to detect and diagnose faults in the scores space and residual space of the 

NLPCA, assuming the features used for FDD purposes are the parameters of an ARX model. 

The neural nonlinear PCA approach allows a dimensionality reduction similar to the linear 

PCA case described in Chapter 3. This approach requires the on-line estimation of ARX 

parameters. Here, this is done by the sliding window PCR estimation algorithm. This new 

FDD approach was developed for nonlinear systems inspired by some ideas proposed in this 

dissertation for the linear systems described in Chapter 3, but now extended to deal with 

nonlinear systems. 

 

The architecture proposed here to solve the problem under study is depicted in Fig. 4.17. 

Assuming a SISO continuous time system (plant), without loss of generality, with input signal 

u(k) and output signal y(k), the sliding window PCR estimation algorithm is used to estimate 

on-line the ARX model parameters, θ(k). A neural approach is used to implement the 

nonlinear principal component analysis (NLPCA) according to the Kramer’s method (section 

4.5.3). If the neural NLPCA method extracts two principal components from data, then a two-



dimensional scores space is obtained, ta(k) = [t1(k) t2(k)], and one-dimensional residual space 

with SPE given by q(k). 

The features, neural NLPCA scores and SPE of the residual, define a three dimensional space, 

and this space is used for fault detection and diagnosis. The neural nonlinear discriminant 

analysis (NNLDA) previously described in section 3.3.2 is used for pattern classification, so 

to each on-line input feature vector v(k) = [t1(k) t2(k) q(k)] a fault class Fi is assigned.  
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Fig. 4.17 - Architecture of FDD approach based on neural NLPCA and neural NNLDA.  

 

The fault detection and diagnosis approaches are based on pattern classification via a neural 

nonlinear discriminant analysis (neural NNLDA) previous explained in section 3.3.2. A brief 

description is now given here. 

 

Fault Detection Approach. The nominal behaviour corresponds to the fault F0, and is 

characterized by a three dimensional cluster (pattern) in the features space defined by the 

NLPCA scores and the SPE of residual. The on-line output (fault class) vector of the neural 

nonlinear discriminant analysis model MNNLDA is expressed in the form p = [p1  p2  p3  p4] for 

the case of 4 faults, i.e., the ith  position of vector p is denominated p(i) = pi. For the case of 

nominal operation, corresponding to fault F0, p1 ≈ 1 and pi|i≠1 ≈ 0. 

A fault alarm signal is generated if the deviation from the nominal behaviour exceeds a 

certain threshold (hd), i.e., p1 < hd. Typical values of the threshold hd are around 0.9. To obtain 
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a fault detection signal, the fault alarm signal is low pass filtered. The low pass filter Hlp(z, λ) 

equations can be found in section 2.4.4. Finally, the low pass filtered signal is compared to a 

threshold (a typical value is 0.5) and the fault detection signal fd(k) is obtained. 

 

Fault Diagnosis Approach. The task of fault isolation is executed after the task of fault 

detection. The isolation is based on a knowledge base system (KBS). The isolation is 

performed via the analysis of the fault class (pattern) generated by the neural nonlinear 

discriminant analysis model MNNLDA. The isolation of fault number j is achieved if 

round(pj+1) = 1 and round(pi)|i≠j+1 = 0, where round(.) is the round function to nearest integer. 

The fault isolation signal is also low pass filtered. Only the fault isolation has been described 

and implemented, but this approach can be used also for fault analysis. 

The new proposed FDD approach in the algorithmic form is described next, and obeys the 

architecture depicted in Fig. 4.17. 

 

Algorithm 7. FDD neural approach based on neural nonlinear principal component analysis 

and neural nonlinear discriminant analysis (FDD-NLPCA-NNLDA). 

In off-line operation, the following tasks must be executed: 

a. For the nominal operation (fault F0), train the neural auto-associative network 

NN{a-b-c-d-e}(W0, …) for the nonlinear Kramer’s PCA approach based on neural architecture 

depicted in Fig. 4.11, using the Levenberg-Marquardt optimization algorithm. This neural 

nonlinear PCA model is expressed here by MNLPCA. 

b. Proceed with the training of the neural network NN{a-b-c-d}(Wd, …) that implements the 

neural nonlinear discriminant analysis (NNLDA), using the clusters data for all the faults 

Fi of the set F = {F0, F1, …, Fn}. The Levenberg-Marquardt optimization algorithm is 

used for the neural network training. This discriminant neural model is expressed here by 

MNNLDA.  

c. Determine the thresholds and the low pass filters parameters, in order to obtain a desired 

trade-off between rate of false alarms, rate of missed fault detections, and detection and 

isolation delays. Different sets of experimental nominal data must be used to compute and 

validate the thresholds and filters parameters. 

Each time instant k, the following steps must be executed on-line: 

1. Sample the process output signal y(k). 



 136

2. Estimate the model parameters θ(k) using the sliding window SW-PCR estimation 

algorithm based on input-output data, u(k) and y(k), or r(k) and y(k), depending on the 

type of ARX model. 

3. Compute the two dimensional scores ta(k) = [t1(k) t2(k)], and the one-dimensional SPE of 

residual, q(k), using the nonlinear PCA model MNLPCA. 

4. Compute the class (pattern) output vector p(k) of the discriminant neural model MNNLDA, for 

an input vector given by v(k) = [t1(k) t2(k) q(k)]. 

5. Generate an alarm, am(k) = 1, if the first element of vector p(k) termed p1 exceeds the 

threshold hd , i.e., p1 < hd. A typical value for the threshold is 0.9. 

6. Compute the fault detection signal by low pass filtering via Hlp(z, λ) the fault alarm signal, 

and by thresholding. The thresholding is expressed by the rule: if am(k) > hf  then fd(k) = 1 

else fd(k) = 0. A typical value for the threshold is around 0.5. 

7. If a fault is detected, i.e. fd(k) = 1, then proceed to fault isolation. Using a knowledge based 

system (KBS) classify (map) each output vector pattern p(k) into the respective fault class 

Fi. The KBS system has been implemented using if-then rules, but fuzzy if-then rules or 

neural networks can also be used if a large number of faults must be isolated. The signal 

fi0(k) is then obtained. Finally the fault isolation signal fi(k) is obtained by low pass 

filtering the signal fi0(k). 

■ 

 

An example of application of the proposed FDD methodology is given next, with application 

to a nonlinear real motor setup (DCM-RA setup). 

 

Example 10. FDD approach based on neural nonlinear PCA and neural nonlinear 

discriminant analysis (NNLDA) applied to ARX model parameters. 

In this example, some experiments performed with the dc motor (DCM-RA) setup used also 

in Example 9 are shown; the setup is described in more detail in section 5.3.3. All operating 

conditions are the same as used in Example 9. An LQG controller is also used to control the 

DC motor setup. 

Typically, the classical NLPCA approach based on input-output data is not able to detect and 

isolate some types of parametric faults. In this example, it will be shown that the new FDD 

approach proposed, based on model parameters, can detect and isolate parametric faults, such 

as the changing of a time constant of a sensor. 



Four faults are considered here in this example. The fault F0 corresponds to the nominal 

operation, for a set point around 0.7. Faults F1 and F2 are cases of blocked sensors at values 

0.5 and 0.8. The last fault, F3, corresponds to the removal of the digital filter Hlp(z, λ) from 

the process output, putting a zero value on the filter design parameter, λ = 0, and 

consequently turning the system faster. 

The NLPCA approach is applied here to an ARX(2, 1, 2) model that relates the input signal 

u(k) and the output signal y(k). For the neural network used for NLPCA at the end of 200 

epochs of training, a SSE error of 1.1×10-2 was achieved. 

 

 

Fig. 4.18 - Fault clusters in scores space, and SPE signal. 

 

Fig. 4.18 shows the scores (PC1 and PC2) and the SPE (q) signal used for training the neural 

classifier used of the neural NNLDA approach using pattern classification. These data have 

been captured during different faulty situations. The clusters associated with faults F0 and F3 

are not overlapped, but a small overlapping exists between fault clusters F1 and F2. When the 

clusters are very near, or slight overlapping occurs, large sum of squared errors (SSE) are 

obtained in the neural network classifier training. Here, for 500 epochs a high SSE error of 

11.6 was obtained, for 14400 (3600×4)  samples. For another training, a mean squared error 
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(MSE) of 1.99×10-4 was achieved for the same training data. A high SSE error in the neural 

network error means that the neural classifier cannot separate some patterns very well, 

causing fault isolability problems. In this experiment, the cluster superposition occurs because 

these faults cause saturations and, consequently, a degradation of the persistent excitation 

conditions. For weak persistent excitation conditions, an increase in the variance of the ARX 

model parameters occurs, and that is reflected on the NLPCA scores and SPE signal.  

 

Fig. 4.19 - Input-output and FDD signals for fault F1.  

 

Results obtained with the fault F1 are depicted in Fig. 4.19, where a sensor stays blocked at 

the value 0.5. The graph show, respectively, the reference signal r(k), the output signal y(k), 

and the input signal u(k). Next, the fault alarm signal am(k), the fault detection signal fd(k), and 

the fault isolation signal fi(k) are shown. The fault analysis fa(k) is not considered here. 
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The fault occurs at time instant tk = 240 s, the detection delay is 1.5 s, and the proper isolation 

occurs 15 s after fault occurrence. Here the great advantage of low pass filtering the fault 

isolation signal is clear. Some wrong fault isolations occured during the experiment, and the 

low pass filtering minimizes this problem. This isolation problem is to be expected since the 

fault clusters associated with faults F1 and F2 are very near, as depicted in Fig. 4.18. 

 

Fig. 4.20 - Input-output and FDD signals for fault F3.  

 

In Fig. 4.20 results obtained with the fault F3 are shown. In this fault the system bandwidth is 

increased by removing the low pass digital filter Hlp(z, λ) from the process output. The 

classical NLPCA approach based on input-output data was not able to detect this fault, but the 

new proposed approach can detect and isolate this fault well, since the ARX model 

parameters are sensitive to the change of the system bandwidth, as it will be shown next. The 
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signals presented in Fig. 4.20 are the same as those described in the experiment shown for 

fault F1. The detection delay is 3.5 s, and the isolation takes place 12 s after fault occurrence. 

 

Fig. 4.21 shows in the first graph the ARX model parameters that are the input data (green 

lines) for the NLPCA approach. The predicted values (blue lines) are also shown. Next the 

SPE q(k) (blue line) appears and also the thresholds (red lines). The third graph show the 

scores as a function of time (PC1 in red line, and PC2 in green line). The last graph shows the 

scores space (PC1 and PC2). In fact, the clusters for faults F0 and F3 are very near, although 

they are not superimposed. The centres for each fault cluster are also depicted. 

 

Fig. 4.21 - NLPCA signals for fault F3. 

 

The FDD methods based on parameter identification techniques are most suitable to detect 

parametric faults, and some structural faults, that cause deviations on the model parameters. 

But these methods can also be used for detection and diagnosis of additive faults. The great 

advantage of identification methods is that they can be used to detect both multiplicative and 

additive faults (Gertler, 1998). 

Some tests have been performed in order to evaluate if this FDD methodology based on 

neural NLPCA and neural NNLDA is also able to detect some types of additive faults on 

sensors and actuators. The experiments show that this is possible in some faulty situations, but 
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not possible in others. Additive faults that cause significant variations of the ARX model 

parameters can be detected and diagnosed using this FDD approach, for example in plants 

with strong nonlinear behaviour.  

Faults that cause small parameter deviations cannot be detected and diagnosed very well, as 

shown in the next experiment. Fig. 4.22 shows results obtained with the FDD approach 

proposed here. The same additive fault considered in Example 9 (section 4.5.4), a voltage 

offset of -1.5 V on the real actuator signal, is tested here. In this figure, the reference signal 

r(k) (red line), the output signal y(k) (blue line), and the input signal u(k) (green line) are 

observed. This fault almost causes a saturation of the control signal u(k). The ARX model Myu 

parameters (th-yu) are also shown, as well the corresponding static gain. The static gain is a 

good feature for FDD purposes in this case. The last graph shows a zoom view of the scores 

space, where the superposition between clusters F0 and F4 can be observed; the red square 

symbol indicates the cluster F0 centre. Hence, this fault cannot be correctly detected and 

isolated using this FDD approach. FDD approaches based on parity equations, observers or on 

the NLPCA approach based on input-output data, usually, exhibit a better performance for 

this type of additive faults. 

 

Fig. 4.22 - NLPCA scores and signals for fault F4. 
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4.6 Conclusions 

In general, most of the fault detection and diagnosis (FDD) approaches for linear systems can 

also be applied to nonlinear systems assuming they work on steady-state operation. If it is 

possible, nonlinear FDD approaches must be used when dealing with nonlinear systems. Most 

of the research efforts have been made in linear FDD methodologies applied to linear systems, 

and little research has been oriented to the development of nonlinear FDD approaches. 

The main contributions to the FDD nonlinear techniques given here are based on nonlinear 

NARX neural models. The neural networks prove to be an effective tool to perform the tasks 

of fault detection and fault diagnosis. The great advantages of neural networks are their vast 

potential for nonlinear modeling, and their robustness properties in terms of noise influence 

and non modeled dynamics. Neural networks have been used for output prediction, for 

nonlinear principal components analysis (NLPCA) and for nonlinear discriminant analysis 

(NNLDA). 

A Neural Recurrent Output Predictor (NROP) has been proposed in this work for prediction 

of output signals in SISO or MISO systems. The NROP predictor proposed contains an 

embedded parallel neural model and external feedback. The NROP gain is a design parameter 

guaranteeing the stability and adjustment of the convergence properties. 

A new FDD approach for nonlinear systems based on a bank of Neural Recurrent Output 

Predictors (NROPs) was proposed. This FDD approach, based on input-output data, is 

appropriate for additive faults, for some multiplicative faults, and for some faulty cases where 

other approaches normally fail, like situations of saturations, structural faults and oscillatory 

behaviours. The great potential of this FDD approach based on NROPs is the fact that each 

neural NROP predictor contains an embedded neural model that is able to capture nonlinear 

dynamic behaviours.  

Inspired by the fault detection approach based on PCA applied to the ARX parameters 

proposed in section 3.5 for linear systems, this chapter describes a new combined FDD 

approach for nonlinear systems based on neural nonlinear PCA (NLPCA) applied to ARX 

parameters, and on neural nonlinear discriminant analysis (NNLDA). In order to obtain a 

reasonable performance for this FDD method, the identification algorithm must give 

parameter estimates with small variances, and the patterns for each fault must be well 

separated in the features space. This approach is more suitable to detect and diagnose 

parametric faults, in spite of being able to deal also with some types of additive faults, 

especially those whose symptoms are deviations on the ARX model parameters.  



5 Experimental Results 
 

The experiments help to understand the theory better. (L. B. Palma). 

 

5.1 Introduction 

Typically, most industrial dynamic systems work under closed-loop control, as depicted in 

Fig. 5.1. This is the main reason why the focus on this dissertation is on the development of 

fault detection and diagnosis (FDD) methods operating in closed-loop, on-line and with real-

time constraints.  

 

Digital
Computer

Clock

D/A
u(k)

A P S A/D

r(k)
ur(t) yr(t)

w(t) v(t)

y(k)

 

Fig. 5.1 - Closed-loop control architecture. 

 

Assuming a SISO system, without loss of generality, the process plant is represented by the 

block P, and the blocks A and S represent, respectively, the actuator and the sensor. The 

blocks A/D and D/A are the analog-to-digital and digital-to-analog converters. The digital 

computer implements the supervision, control and FDD algorithms. The digital signals are 

also represented in the figure: the reference signal, r(k), and the input and output signals, u(k) 

and y(k), respectively. The other signals are analog signals: the real process input, ur(t), and 

the real process output, yr(t). The signals, w(t) and v(t), are, respectively, the disturbance input 

to the plant, and the disturbance or noise in the sensor. Usually, the signals ur(t), yr(t), w(t) and 

v(t) are not available for FDD purposes. The typical situation is to perform the FDD tasks 

based only on the available input-output discrete time signals u(k) and y(k), or based on the 

signals r(k) and y(k). 

In this work, a white (Gaussian) noise with normal distribution N(µ = 0, σ 2) (zero mean and 

variance σ 2) has been used as a dither signal added to the reference signal r(k). This dither is 
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used to guarantee the good persistent excitation conditions needed to perform identification in 

closed-loop operation. A white noise was also added to the sensor signal for the plant models. 

In all the experiments performed in this work, the saturation does not occur exactly at the 

values zero (0) and one (1). The saturation occurs in positive values, around zero and around 

one. A dither signal has been added to the saturation limits zero (0) and one (1), in order to 

guarantee that under saturation situations the persistent excitation condition is reasonable. The 

variance of this dither signal is 1×10-5. The persistent excitation conditions must be satisfied 

in parameter estimation algorithms for fault detection and diagnosis, and also for adaptive 

control. 

In this work, the proposed FDD methodologies have been first tested on model plants, before 

the test on real plants. This strategy allows a better validation of the methods and also saves a 

lot of time. Compared to real plants, the models have a great advantage: a greater number of 

fault types can be tested. 

Most of the experiments shown in this dissertation have a duration of 400 s. A duration of 600 

s is used for the three-tank benchmark experiments. For most cases, the fault occurs at around 

60% of the duration, and the fault detection and diagnosis task is activated from 40% of the 

duration.  

All the FDD approaches proposed require the low pass filtering of signals to obtain the fault 

detection and the fault isolation signals. This is done using a digital low pass filter, Hlp(z, λ), 

and the design parameter (pole location) used is around λ = 0.9. The filter equations can be 

found in section 2.4.4. 

The sampling period used in all experiments is Ts = 0.11 s. 

 

5.2 Matlab Programming and Hardware Interfaces 

The algorithms of modelling, simulation, control, fault detection and diagnosis and 

supervision developed in this work have been implemented in the Matlab® environment, in 

discrete time and with real time constraints. 

One of the aims of this work was the implementation of a software framework able to emulate 

real situations. So, the process models have been implemented in continuous time, and 

simulated using the Matlab function “ode45(.)”. The function “ode45(.)” solves ordinary 

differential equations. 
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The interface to the real setups has been done via a data acquisition board PMD-1208LS 

connected to the USB port, manufactured by Measurement Computing®. 

The Matlab code has been developed in a modular way using scripts, functions, and structs. 

More than 24000 lines of code have been written throughout the work. Structs are very 

important in the programming since they support a set of variables (or other structs) within. 

As an example, a “sensor struct” can be constructed according to: sensor.id = ‘sensor.id’; 

sensor.y(time.k) = 0.8.  

The time consumed by the routines in each program cycle depends on the granularity of the 

called routines, but is less than 0.1 s, for a PC equipped with a Pentium processor running 

with a clock of 2.8 GHz and 1 GB of RAM. The sampling period used in all experiments is 

Ts = 0.11 s. 

 

5.3 Models and Real Setups 

In this work system models and real plants were used to test the new proposed FDD 

methodologies. It was assumed that we are dealing with continuous time plants and models. 

From the point of view of FDD algorithms they were implemented in discrete time using 

mainly linear ARX models and neural nonlinear NARX models. 

For the case of linear ARX models, the choice of the model orders was based on good low 

order models suggested by the system identification toolbox of Matlab. This toolbox tests a 

set of models with different orders and delays, and indicates the best models. In this set, three 

models usually satisfy the criteria: the model with the Best Fit, the model that minimizes 

Akaike's criterion (AIC), and the model that minimizes Rissanen's MDL criterion. The model 

selected and used in the FDD approaches proposed here is one of the low orders in the set. 

Next the models and real setups used in the experiments are presented. 

 

5.3.1 A Continuous-Time First-Order Model 

A simple continuous-time LTI SISO model for a first-order system can be expressed by a 

transfer function in the frequency domain s, given by Eq. 5.1 where K is the static gain and τ 

is the time constant. 

 

G0(s) = 
Y(s)
U(s) = 

K
τ s + 1 

Eq. 5.1 
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Although it is a simple model, it has been used in this work to illustrate various concepts. A 

discretization by the zero-order-hold (ZOH) method will give an ARX(na=1, nb=1, nd=1) 

model (Eq. 5.2), with the static gain given by G0(z=1) = b1 / (1 + a1) = K.  

 

y(k) = -a1 y(k-1) + b1 u(k-1) + e(k) Eq. 5.2 

 

If the nominal parameters assume the values K = 1 and τ = 1 s then the ARX(1, 1, 1) 

parameters are given by [a1 b1] = [-8.96×10-1 1.04×10-1], for a sampling period of Ts = 0.11 s. 

For some experiments in this work, other high order discrete models are used for modeling 

this first order continuous time model. 

 

5.3.2 A Continuous-Time Linear DC Motor Model 

Mechanical and electrical processes, especially the DC motor, have been used in many 

simulations and real applications related to FDD & FTC, as described in several publications. 

Here a simplified model of a DC motor in continuous-time is presented. In armature 

controlled DC motors, the applied voltage ua(t) controls the angular velocity ωr(t) of the shaft. 

A simplified continuous-time transfer function of the DC motor is given by a 2nd order system 

(Kuo, 1995): 

 

Gm(s) = 
ωr(s)
ua(s)  =  

Km

(L J) s2 + (L Kf + R J) s + (R Kf + Km Kb) 
 

Eq. 5.3 

 

where Km is the torque constant, L is the armature inductance, R is the armature resistance, J 

is the rotor inertia, Kf  is the viscous-friction coefficient, and Kb is the back-emf constant. The 

nominal values, in S.I. units, used for the simulations are: Km = Kb = 0.1 N m / A, L = 0.5 H, 

R = 2 Ω, J = 0.02 kg m2 / s2, and Kf = 0.2 N m s. The poles are located at s1 = -9.8, s2 = -4.1. A 

gain with value Ks = 4.1 has been added in series at the output to guarantee a unitary static 

gain. 

In the simulations presented, at the model input and at the model output of the DC motor 

model, digital low pass filters Hlp(z, λ) have been added in series in order to guarantee a 

slower dynamics. The design parameter λ determines the pole location. For a value λ = 0.7, 

converting the filter to continuous time, via the zero-order-hold method, a transfer function 



Ff(s) with a pole located at sf = -3.24 it is obtained, for a sampling period of Ts = 0.11 s. The 

general architecture used for the simulations with the DC motor model is depicted in Fig. 5.2. 

The blocks A/D and D/A represent the analog-to-digital converter and the digital-to-analog 

converter, respectively. 

 

LP filter
Ffa(z)

DC motor model
Gm(s)

Gain
Ks

LP filter
Ffs(z)

u(k) y(k)
D/A A/D

 

Fig. 5.2 - Architecture of the DC motor model with LP filters. 

 

5.3.3 A Nonlinear DC Motor Setup 

A DC motor setup, with the short-name DCM-RA, was developed in the control laboratory of 

DEE-FCT-UNL, during the years 2004-2005, by Rui Almeida within the scope of the final 

project course. Fig. 5.3 depicts the overall architecture of the system and a lateral image of the 

setup. The main goal was the development of real equipment for testing FDD algorithms, for 

both additive and parametric faults. 

 

 

a) 

 

 

b) 

Fig. 5.3 - DCM-RA motor setup: a) architecture; b) lateral image. 

 

The DCM-RA setup is a nonlinear system, since the static gain depends on the operating 

point. Some experiments have shown that for the vector of scaled set-points 
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r = [0.4 0.5 0.6 0.7 0.8 0.9] the vector of static gains is approximately given by 

sg = [0.81 0.93 1.04 1.15 1.21 1.27] . It also presents a time-varying behaviour depending on 

the operating temperature. These behaviours are due to the electronic and mechanical 

components. A temperature increase causes an increase on the static gain. 

 

The supervisor and the controller are implemented in Matlab® software on a PC. The interface 

is made via a data acquisition usb-board (PMD-1208LS from Measurement Computing®). 

The actuator is a power driver based on a pulse-width modulation (PWM) circuit. The motor 

is a DC motor with permanent magnets supporting input voltages between zero and twelve 

Volt. The speed sensor includes an optical encoder and a frequency-to-voltage converter 

circuit. The frequency-to-voltage converter has a slow dynamic. 

In order to convert the signals to a scaled range [0; 1], it was necessary to use gains in 

software for the actuator and the sensor. The actuator gain is 5 since the control voltages are 

in the range [0; 5] V, and the sensor gain is 0.1 since the sensor voltages are in the range 

[0; 10] V. It is assumed in this work that the nominal operating region, for the set-point 

(reference) signal, of this DC motor setup is in the scaled range from 0.5 to 1.0. A reference 

(set-point) value of 0.4 is very near the critical minimum admissible speed. For lower set-

points the system cannot work because the applied voltage is not sufficient to guarantee the 

motor rotation. 

 

Additive faults and multiplicative faults in hardware can be tested using the DCM-RA setup. 

A switch allows a change among three available analog anti-aliasing filters at the process 

output. The filter cutoff frequencies belong to the set {fc1, fc2, fc3} = {1, 12, 30} Hz. For a 

sampling period of Ts = 0.11 s, the most appropriate anti-aliasing filter is the filter with cutoff 

frequency fc1, since the Nyquist-Shannon theorem theoretically imposes the condition to avoid 

aliasing: Fs > 2×Fmax, i.e., the sampling frequency Fs must be, at least, twice the maximum 

signal frequency Fmax. The anti-aliasing filter with cutoff frequency fc1 was used in the 

experiments carried out in this work. In practice, the relation Fs / Fmax must be greater than 10 

or more, depending on the applications. For Ts = 0.11 s, Fs = 9.1 Hz, and consequently the 

cutoff frequency fc of the anti-aliasing filter must obey the relation  fc < Fs / 2 ⇔ fc < 4.5 Hz. 

In the experiments, a digital first order low pass filter Hlp(z, λ), with pole located at pz = 0.7, 

was added in series, in software, to the system output. 

 



5.3.4 The Three-Tank Benchmark 

The Three-Tank Benchmark has been elaborated within the COSY program of the European 

Science Foundation, in order to perform initial investigations of the control reconfiguration 

problem under severe structural faults. The general problem to be solved is to find a new 

control strategy if a fault in the technical plant has occurred. 

The benchmark problem is made up of the three coupled tanks depicted in Fig. 5.4, being a 

multi-input multi-output (MIMO) system. A more detailed description of the system can be 

found in the paper written by Heiming & Lunze (1999). These tanks are connected by pipes 

which can be controlled by several on-off valves. Water can be let into the left and right tank 

using two identical pumps (P1 and P2). Measurements available from the process are the 

continuous water levels {h1(t), h2(t), h3(t)} in each tank, and discrete water levels hd assuming 

values {low, medium, high} from two capacitive proximity switches attached to the central 

tank. For the central tank T3, these qualitative values are low = [0; 9] cm, medium = [9; 11] 

cm and high = [11; 60] cm. The aim is to provide a continuous water flow QN to a consumer 

by maintaining the level h3(t) = medium in tank T3. The reservoir-tank T1 is filled by pump P1 

up to a nominal water level of h1 = 50 cm. 

 

Fig. 5.4 - Three-tank benchmark system. 

 

In the fault-free situation, only the left tank T1 and the middle tank T3 are used as shown in 

Fig. 5.4; tank T2 and pump P2 are not used. A continuous time PI-controller or other type of 

controller can be used to control the level around 0.5 m at tank T1. A switching (on-off) 

controller opens and closes valve V1 thus maintaining the level around 0.1 m at the central 

tank T3. All other valves are closed, and the right tank T2 is empty. Tank T2 and pump P2 are 

used as redundant hardware, if needed. The connecting pipes between the tanks are placed at 

the bottom of the tanks and at a height of 30 cm (at the middle of the tanks). 
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Three typical faults scenarios are considered by Heiming & Lunze (1999): blocking valves 

and leaks. The first fault scenario F1 is valve V1 closed and blocked, and the aim is to 

maintain the water level in tank T3 still medium. The fault F2 is valve V1 opened and blocked, 

and the aim is to maintain the water level in tank T3 still medium (around 0.1 m). The last 

fault scenario, fault F3, is a leak in tank T1, and the aim is to maintain the water level in tank 

T3 still medium and guarantee a minimal loss of water from tank T1. 

 

The fault tolerance for this type of faults in this benchmark requires system reconfiguration. 

The reconfiguration task involves finding a new control structure by the selection of actuators 

and sensors, new control laws and new set-points for the control loops in such a way that the 

control aims are reached. The idea of reconfiguration cannot be satisfied by simply changing 

the parameters of the controller, but a structural change of the system is necessary. 

 

From the theoretical point of view, the three coupled tanks are a typical hybrid system 

(Heiming & Lunze, 1999). Depending on the water levels and the position of the valves, 

different nonlinear state space models are valid. In general, the water flow Qij from tank Ti 

into tank Tj can be calculated using the Toricelli law 

 

Qij = az S sgn(hi - hj) 
 2 g |hi - hj| , 

Eq. 5.4 

 

where az is a flow correction term, S the cross-section area of the connecting valve, g the 

gravity constant, hi and hj the water levels above the connecting pipe, and sgn(.) the sign 

function. The change of water volume V in a tank can be computed as 

 

dV
dt  = A 

dh
dt  = ∑Qin - ∑Qout , 

Eq. 5.5 

 

where ∑Qin is the sum over all water inflows into the tank and ∑Qout the sum over all water 

outflows from the tank. The water level in the tank is h and A is the cross-section area of the 

cylindrical tank. 
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In general, the nonlinear differential equations for the three tanks are 

 

dh1(t)
dt  = 

Q1
P1 - Q13

V1 - Q13
V13 - QLeak

V1L

A   

dh2(t)
dt  = 

Q2
P2 - Q23

V2 - Q23
V32

A   

dh3(t)
dt  = 

Q13
V1 + Q13

V13 + Q23
V2 + Q23

V32 - QN

A   , 

 

 

Eq. 5.6 

 

where the flows Qij depend on the levels h1, h2 and h3 in the tanks, as well as on the position 

of the valves. The valve positions Pos(.) can be 0 (closed) or 1 (opened), and the outflow from 

pumps P1 and P2 are the terms Q1
P1 and Q2

P2. Depending on the water level hi < 30 cm or 

hi ≥ 30 cm, there are eight different operating modes for the three-tank system (Heiming & 

Lunze, 1999). 

The nominal operating mode is given by the equations 

 

h1 ≥ 0.3 m, h2 < 0.3 m, h3 < 0.3 m 

Q13
V1 = az S sgn(h1 - 0.3)  2 g |h1 - 0.3| Pos(V1) 

Q23
V2 = 0

 

Eq. 5.7 

 

where Pos(V1) denotes the position of valve V1. For this nominal operating mode, the level in 

tank T1 must be around 0.5 m, and the level of tank T3 must be medium (i.e., in the range 

[9;11] cm). 

 

The model of the three-tank benchmark available on the internet has been implemented using 

the Simulink®  software. In this work, a Matlab version was developed based on the function 

“ode45(.)”.  The specifications used for the simulations are shown in Tab. 5.1. 

In the simulations presented in this dissertation, all the values have been scaled to the range 

[0; 1]. Let us again remember, that a continuous-time model is used for the three-tank system 

in the experiments, but all the supervision (including FDD and FTC tasks) and the control 

algorithms have been implemented in discrete-time. This was an underlying philosophy of the 

work done in this dissertation, i.e., plant models developed in continuous time and algorithms 

in discrete time, in order to have operating conditions similar to those occurring in real plants. 
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Tab. 5.1 - Parameters for the three-tank benchmark.  

 

Parameter Value 

az 1 

A 0.0154 m2

g 9.81 m / s2 

S 3.6×10-5 m2

Qmax  0.1×10-3 m3 / s 

hmax 0.6 m 

 

5.4 Digital Controllers 

During the research work several digital controllers were implemented and tested on different 

plant models and real setups. The controllers tested are the classical PID controller, the fuzzy 

controller and the adaptive optimal linear quadratic Gaussian controller (LQGC). A brief 

description of each controller is given next. 

 

The classical linear Proportional-Integral-Derivative (PID) controller is by far the most 

common control algorithm used in industry (Astrom & Hagglund, 2000a; Jussila, 1992). The 

incremental PI version has been implemented here. For low order systems, a pole-placement 

approach has been used for tuning the parameters (Astrom & Hagglund, 1988). The paper by 

Astrom & Hagglund (2000b) describes a collection of systems suitable for testing PID 

controllers. 

 

The Fuzzy controller was used in some experiments to deal with nonlinear systems. Fuzzy 

Control has encountered great interest in industrial applications over the past few years, and 

also among manufacturers of control equipment (Driankov, et al., 1996; Yager & Filev, 1994; 

Farinwata, et al., 2000). A discrete time fuzzy PI controller based on the Mandani type of 

inference has been implemented. The general architecture can be found in Palma et al. 

(2005d) and Ramos (1998), inspired by the PID-like fuzzy knowledge based controller 

(Driankov, et al., 1996). A simplified version of the fuzzy PID controller using a common 

rule base for the two components PI and PD was used in some experiments of this work, but 
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not reported in this document. Intelligent nonlinear controllers are those based on intelligent 

computational techniques like fuzzy logic and neural networks. Neural controllers were not 

used in this dissertation, but they can be a good solution especially when dealing with 

nonlinear systems (Narendra & Parthasarathy, 1990). 

 

For a restricted class of faults, fault tolerance can be reached by means of control methods 

based on robust control and/or adaptive control (Blanke, et al., 2003). For this reason, in this 

work, an adaptive optimal linear quadratic Gaussian controller (LQGC), in the polynomial 

form, was used to control nonlinear plants. If the ARX model parameters are estimated on-

line, the LQGC acts as an adaptive optimal LQG controller, and hence can be applied to 

nonlinear and time-varying systems. The design of the polynomial version of the LQG 

controller can be found in the book written by Lewis (1996). It is briefly reviewed here. Let us 

consider a SISO dynamic system described by the polynomial form: 

 

A(z-1) y(k) = z-d B(z-1) u(k),  Eq. 5.8 

 

where y(k) is the output signal and u(k) is the control input. The system delay is denoted d. In 

this discrete time formulation z-1 denotes the unit delay. Let us assume that the denominator 

polynomial is expressed by A(z-1) = 1 + a1 z
-1 + … + an z

-n, and the numerator by 

B(z-1) = b0 + b1 z
-1 + … + bm z-m. The performance index J(k) for this LQGC is given by: 

 

J(k) = (P y(k+d) - Q w(k))2 + (R u(k))2  Eq. 5.9 

 

In Eq. 5.9, the weighting polynomials P(z-1), Q(z-1) and R(z-1)  are design parameters selected 

by the engineer, and w(k) is a reference or command signal. The tracking problem may be 

solved by selecting P = Q = 1, and R = r0; a delayed version of the output signal y(k) tries to 

follow a reference input signal w(k). The polynomial tracker is easy to implement and it is 

causal, in contrast to the state-space LQR tracker where a non-causal feed-forward signal is 

needed. To obtain the optimal control action u(k) that minimizes the performance index in 

minimum phase systems (e.g., all roots of B(z-1)  stable) it is necessary to solve the 

Diophantine equation 1 = A F + z-d G for the intermediate polynomials F(z-1) and G(z-1). In 

terms of the Diophantine equation solution, the optimal control sequence is given by the 

equation: 
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(P B F + (r0 / b0) R) u(k) = - P G y(k) + Q w(k). Eq. 5.10 

 

The optimal LQG polynomial controller is called a two-degrees-of-freedom regulator, 

because it has feedback and feed-forward components. Such a controller can influence the 

closed-loop poles as well as zeros. The LQGC requires full state feedback because the 

complete state is given by y(k), y(k-1), …, y(k-n), u(k-d), …, u(k-(d+m)). A polynomial self-

tuning regulator (STR) can be obtained directly from the LQGC if the design parameter r0 

assumes the zero value. If the ARX parameters are estimated on-line (the typical situation), 

the LQGC acts as an adaptive optimal LQG controller, and hence can be applied to nonlinear 

and time-varying systems. The design parameter r0 in this work has been selected in order to 

guarantee closed-loop stability and also good persistent excitation conditions.  

 

Some faults cause abrupt changes on the ARX model parameters used by the adaptive optimal 

LQG controller. In order to minimize the possibility of loss of control due to the abrupt 

changes of the controller gains, it is recommended to low pass filter the LQG controller gains. 

In this work, in saturation situations, a small dither signal is added to the saturated signal, in 

order to guarantee the persistent excitation conditions. 

In some cases the LQG controller can act as a fault tolerant controller (FTC) accommodating 

some faults effects. On systems subject to hardware reconfiguration, in some situations, the 

LQG controller can adapts to new system dynamics (Palma, et al., 2003b). 

In the process start-up, and on some faulty situations, a non-adaptive controller must be used. 

The principal reason is that the estimated model is not good enough, and for these cases an 

adaptive controller cannot guarantee the stability of the closed-loop system, in some faulty 

cases. 

 

In this work, the stability of switched systems was not investigated, but is certainly an 

important pointer for future research. Stability properties of a switched system in general 

depend on the switching signal. A switched system is stable if all individual subsystems are 

stable and the switching is sufficiently slow, so as to allow the transient effects to dissipate 

after each switch (Liberzon, 2003). This stability subject is particularly important when 

dealing with adaptive systems, like the case in some experiments carried out in this work 

where an adaptive optimal LQG controller is used. In this work, the LQG controller gains 

have been low pass filtered in order to avoid abrupt transitions, and also to try to prevent the 

loss of the plant controllability. 
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5.5 Comparison of Parameter Estimation Algorithms 

In this experiment three parameter estimation algorithms are compared. The algorithms are 

the sliding window least squares (SW-LS), the exponentially weighted recursive version of 

least squares (EW-RLS), and the sliding window PCR (SW-PCR). The least squares (LS) 

algorithm can be found in section 2.3.7, and the adaptation to a sliding window version is 

straightforward. The EW-RLS algorithm, with time horizon T0 = 1 / (1 - λ) and a forgetting 

factor λ, can be found in (Mosca, 1995). The SW-PCR algorithm is described in section 2.3.7. 

To test the algorithms a first order continuous time model with transfer function given by 

 

G0(s) = 
Y(s)
U(s) = 

K
τ s + 1 

Eq. 5.11 

 

is used, considering K = 1 and τ = 1 s. A discretization by the zero-order-hold (ZOH) method 

will give an ARX(na=1, nb=1, nd=1) model of the form  

 

y(k) = -a1 y(k-1) + b1 u(k-1) + e(k). Eq. 5.12 

 

For a sampling period of Ts = 0.11 s, the model parameters are given by 

[a1 b1] = [-8.96×10-1 1.04×10-1]. A sliding window of length 10 s was used for all the 

algorithms, corresponding to 91 samples. The identification is done in closed-loop, and the 

active controller is a PI controller (incremental version) with gains Kp = 0.4 and Ti = 0.4 s 

(Astrom & Hagglund (1988). The reference signal assumes the value 0.5, and a white noise 

dither with variance 1×10-3 was added. A white noise with variance 1×10-6 was also added to 

the sensor signal. 

 

The first experiment shows the results for nominal operating conditions. An experiment with 

a duration of 400 s was performed and the estimates of the model parameters of 

ARX(na=1, nb=1, nd=1) are shown in Fig. 5.5. The sliding window algorithms SW-LS and 

SW-PCR show the same good performance, i.e., the estimated parameters (blue lines) are 

almost equal and have good convergence properties. The recursive EW-RLS algorithm 

presents the worst convergence (green lines) and the greatest MSE estimation errors, as 



described later. The nominal model parameters [a1 b1] = [-8.96×10-1 1.04×10-1] are shown in 

solid black lines. 

 

 

Fig. 5.5 - Estimated parameters for EW-RLS and SW-PCR algorithms. 

 

The mean of squared errors (MSE) function is used here to compare the various parameter 

estimation algorithms. The MSE is a performance function given by 

 

ΓMSE = 
1
m ∑

i=1

m
  ei

2, 
Eq. 5.13 

 

where ei is the prediction error, and m is the number of samples. 

For nominal operation, without faults, Tab. 5.2 shows the obtained MSE errors. The samples 

corresponding to the first 40 s of the experiment were not considered for the MSE calculus. It 

is clear that the MSE error for the EW-RLS algorithm is around eight times greater than the 

MSE error for the SW-PCR algorithm.  
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Tab. 5.2 - Comparison of MSE errors for algorithms EW-RLS and SW-PCR. 

 

 a1 parameter b1 parameter 

EW-RLS algorithm, ΓMSE 9.31×10-4 9.31×10-4

SW-PCR algorithm, ΓMSE 1.19×10-4 1.19×10-4

 

When a fault occurs, a great degradation on the performance of EW-RLS algorithm happens, 

as shown in Fig. 5.6. The fault occurred is a change on the static gain from K = 1 to K = 2 at 

time instant tk = 240 s. For the sliding window algorithms, SW-LS and SW-PCR (blue lines), 

the transient following a parameter change (jump) lasts exactly 10 s, i.e., the duration of the 

window length. For the EW-RLS algorithm (green lines) the fault transient is around 70 s, i.e., 

a value seven times greater.  

 

Fig. 5.6 - Performance of EW-RLS and SW-PCR algorithms for a faulty situation. 

 

Remarks. 

According to Wise & Ricker (1990) parameterized models identified by classical least-

squares (LS) are generally as good as models identified by PCR. This fact has been confirmed 

in the experiments carried out in this work for the sliding window versions of LS and PCR, 
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and also in this example. The exception to this is when conditions are extremely adverse, e.g. 

there is poor input excitation in the data and the noise level is very high. 

For fault detection and diagnosis tasks it is advantageous to use sliding window parameter 

estimation algorithms instead of recursive algorithms (Gertler, 1998). This fact was confirmed 

in the experiments done in this work. 

With a sliding window of length w, the transient following a parameter change (jump) lasts 

exactly w-1 samples. Therefore, any isolation decision has to be delayed by w-1 samples 

following the detection of a change, but one may be certain that there is no spreading of the 

parameter jump to the estimates of other parameters. 

The length w of the sliding window plays a crucial role. The variance of the parameter 

estimates increases with decreasing window length. A shorter window is clearly advantageous 

from the point of view of isolation delay, but a drawback is higher noise sensitivity as the 

window length decreases. 

The great advantage of the sliding window (SW-PCR, SW-LS, etc) algorithms over the 

recursive algorithms (EWM-RLS, etc) is the fast adaptation after fault occurrence, and this is 

the main reason why the SW-PCR algorithm was used in this work. A drawback of the sliding 

window algorithms is a heavier computational load compared to the recursive algorithms. 

 

5.6 Normality Tests 

The normal distribution, also called Gaussian distribution, is a probability distribution of great 

importance in many fields, such as statistical data analysis, fault detection and diagnosis, 

medicine, psychology, biology, financial studies, etc. The normal distribution is probably the 

most important distribution in both the theory and application of statistics. A definition of its 

probability distribution function was given in section 2.3.3. 

As a consequence of the central limit theorem we know that regardless of the distribution of 

the data (population), the sampling distribution of the sample mean is approximately normal. 

So it is expected that, for a stationary dynamic process under nominal operation, some 

stochastic signals (features and residuals) used for fault detection and diagnosis purposes 

follow approximately a normal distribution. 

In this experiment, some tests are applied to evaluate if the ARX model parameters estimated 

on-line approximately obey a normal distribution. Considering a plant model in continuous 

time with a transfer function expressed by 

 

http://en.wikipedia.org/wiki/Probability_distribution
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G0(s) = 
Y(s)
U(s) = 

K
τ s + 1 

Eq. 5.14 

 

with a static gain K = 1 and a time constant τ = 1 s. A discretization by the zero-order-hold 

(ZOH) method gives an ARX(na=1, nb=1, nd=1) model of the form  

 

y(k) = -a1 y(k-1) + b1 u(k-1) + e(k). Eq. 5.15 

 

For a sampling period of Ts = 0.11 s, the model parameters are given by 

[a1 b1] = [-8.96×10-1 1.04×10-1]. The identification is carried out in closed-loop, and the active 

controller is a PI controller (incremental version) with gains Kp = 0.4 and Ti = 0.4 s (Astrom 

& Hagglund (1988). The reference signal assumes the value 0.5, and a white noise dither with 

variance 1×10-3 was added. A white noise with variance 1×10-6 was added to the sensor 

signal. An experiment with duration of 400 s was performed and the model parameters of an 

ARX(na=1, nb=1, nd=1) were computed. A sliding window of length 10 s, corresponding to 91 

samples, was used by the SW-PCR parameter estimation algorithm (described in section 

2.3.7). 

To test the normality of the ARX model parameters three tests have been performed using the 

Matlab available functions on toolboxes: a) the normal probability (rankit) plot; b) the 

Lilliefors test; c) the D’Agostino-Pearson omnibus test. 

Results shown here are for the estimated model parameter a1(k). The data has been auto-

scaled in order to guarantee a zero mean and unitary variance. Similar results are obtained for 

the parameter b1(k). Fig. 5.7.a) shows the parameter a1(k), i.e., the data. The first 40 samples 

of the experiment are not shown, and were not considered since they contain transient start-up 

data. The data histogram appears in Fig. 5.7.b), where it can be observed that the distribution 

does not deviate significantly from a symmetric bell-shaped curve typical of a normal 

distribution. 

Fig. 5.8 depicts the normal probability (rankit) plot. The rankit plot is a graphical method for 

determining whether sample data conform to a normal distribution, based on a subjective 

visual examination of the data. If the data comes from a normal distribution, the plot will 

appear linear. Other probability density functions will introduce curvature in the plot. Since 

the plotted data points (marked with “+”) do not deviate significantly from the straight line, 

the data is approximately normally distributed. 

 



 
a) Data, parameter a1. b) Histogram 

Fig. 5.7 - Data and histogram. 

 

 
Fig. 5.8 - Rankit plot for parameter a1. 
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The Lilliefors test of normality is a modification of the Kolmogorov-Smirnov test, and can be 

found in (Conover, 1999). The null hypothesis, H = 0, of this test is that the data is normally 

distributed, considering the result given by H. If H = 1 we can reject the null hypothesis, i.e., 

the data is not normally distributed. This normality criterion was also applied to the data, 

considering an α-level (significance level, probability associated with the criterion) of 5 %, 

and the result was that the data is not normally distributed. 

Some authors argue that the D’Agostino-Pearson omnibus test presents, in most cases, a 

better performance than the methods based on the Kolmogorov-Smirnov test. The 

D’Agostino-Pearson omnibus test for assessing normality of data using skewness and kurtosis 

can be found in (Zar, 1999). In this experiment an algorithm written by Trujillo-Ortiz and 

Hernandez-Walls was used; the algorithm can be found on the site 

http://www.mathworks.com. The D’Agostino-Pearson omnibus test, for a significance level 

of 5 %, indicates that the data is normally distributed. The skewness is a measure of the 

asymmetry of the data around the sample mean. The skewness of the normal distribution (or 

any perfectly symmetric distribution) is zero. To the estimated parameter a1 the skewness is 

7.4×10-2. The kurtosis is a measure of the shape of the distribution, indicating how outlier-

prone a distribution is. The kurtosis of the normal distribution is 3. To the estimated 

parameter a1 the kurtosis is 2.9.   

Different normality tests can give different results, as shown in the experiment. As a 

conclusion, different analytical tests must be performed in order to draw conclusions about 

the normality of data, and to take decisions about the type of statistics used for process 

monitoring. It is certain that the statistical properties of the ARX model parameters depend on 

the input persistent excitation conditions, and also on the performance of the parameter 

estimation algorithm.  

 

PCA models have the advantage that the scores variables produced which are linear 

combinations of the original variables, are more normally distributed than the original 

variables themselves. This is a consequence of the central limit theorem. Thus, we would 

expect the scores, which are a weighted sum like a mean, to be approximately normally 

distributed (Gnanadesikan, 1997; Wise and Gallagher, 1996). If there is enough data in the 

training set to capture the normal process variations, the T2 statistics can be an effective tool 

for process monitoring, even if there are smooth deviations from the normality or statistical 

independence assumptions. In section 5.8, a two dimensional scores space in Fig. 5.21 is 

shown for the case of data variables given by ARX model parameters, for a dynamic process 
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under nominal operation. The scores are approximately normally distributed. Since the data 

does not obey a perfectly normal distribution and the relations between data (model 

parameters) are not perfectly linear, the value T2
α must be adjusted experimentally, in order to 

obtain a desired rate of false alarms.  

 

Remarks. 

The assumption of normality for the data is particular important to compute thresholds used 

for fault detection and fault diagnosis. In this work, the assumption of normality for the FDD 

features signals, under nominal operating conditions, is quite reasonable. To reduce the false 

alarm rates, in this work, the fault detection and isolation signals are low pass filtered. If 

necessary the thresholds obtained assuming the data is normally distributed can be 

experimentally adjusted to guarantee a reasonable FDD performance in terms of ratio of false 

alarms. 

 

5.7 FDD in LTI Systems based on Dynamic Features of 

ARX Models 

For single-input single-output (SISO) linear and time-invariant (LTI) systems, in section 3.3.2 

a new fault detection and diagnosis (FDD) method based on dynamic features (static gain and 

bandwidth) of black-box ARX models has been proposed. 

To compute these dynamic features, it is necessary to estimate the ARX model parameters on-

line. The static gain is simple to compute. The bandwidth is computed based on the rise-time, 

and the rise-time is obtained from the step response of the ARX model. The sliding window 

SW-PCR estimation algorithm, proposed in this work, is used for on-line estimation of the 

ARX model parameters. The sliding window length here is 10 s, corresponding to 91 samples, 

for a sampling period of Ts = 0.11 s. 

The on-line FDD methodology applied here has been proposed in section 3.3.2. The FDD 

architecture depicted in Fig. 5.9 is briefly reviewed next. Based on input-output data, 

u(k) and y(k), the sliding window SW-PCR algorithm estimates the ARX model parameters, 

θ(k), on-line. The dynamic features of the ARX model, static gain sg(k) and bandwidth bw(k), 

are computed on-line based on θ(k). These features are used for fault detection and diagnosis. 

The neural nonlinear discriminant analysis classifies the on-line data pattern, [sg(k) bw(k)], 



into a certain fault class p(k). In the two-dimensional space defined by the features sg(k) and 

bw(k), the nominal operation is characterized by a pattern (cluster), and the faults by other 

clusters. A fault alarm signal, am(k) = 1, is generated if the on-line feature data computed at 

time k,  (sg(k), bw(k)), falls outside the nominal cluster, i.e., if the corresponding class is 

different from the nominal class associated with fault F0. A fault detection signal, fd(k), is 

obtained by low pass filtering the fault alarm signal and by thresholding. The fault isolation 

signal, fi(k) is obtained by fault classification using a knowledge-based system, and by low 

pass filtering. 
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Fig. 5.9 - Architecture of the FDD approach based on dynamic features of ARX model. 

 

Results for an experiment applying this FDD methodology to a LTI SISO system, a 

continuous time DC motor linear model, are presented here. The complete description of the 

DC motor model is given in section 5.3.2. The simplified continuous-time transfer function of 

the DC motor is given by a 2nd order system (Kuo, 1995): 

 

Gm(s) = 
ωr(s)
ua(s)  =  

Km

(L J) s2 + (L Kf + R J) s + (R Kf + Km Kb)
 . 

Eq. 5.16 

 

The transfer function relates the angular velocity ωr(t) of the shaft and the applied voltage 

ua(t). 
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The description and values of each model parameter (resistance R, etc) are given in section 

5.3.2. The experiments were performed using the following architecture: 

 

LP filter
Ffa(z)

DC motor model
Gm(s)

Gain
Ks

LP filter
Ffs(z)

u(k) y(k)
D/A A/D

 

Fig. 5.10 - DC motor model architecture with filters. 

 

The overall system shown in Fig. 5.10 has a nominal unitary static gain, since Gm(s=0) = 1/4.1

, Ks = 4.1, and the low pass filters have unitary static gain. A white (Gaussian) noise with 

variance 1×10-8 has been added at the sensor output. In order to guarantee the persistent 

excitation conditions (PEC), a white noise dither signal with variance 1×10-4 was added to the 

reference signal r(k). 

 

In closed-loop operation, the general architecture used in this work depicted in Fig. 5.11 has 

been adopted here, as also in the other experiments shown in this dissertation. Here, a discrete 

time PI controller was used for speed control, with gains Kp = 2.55 and Ti = 2.02 s obtained 

using a pole placement approach (Astrom & Hagglund, 1988). All the supervision and fault 

detection and diagnosis algorithms have been implemented in discrete time. 

 

Digital
Computer

Clock

D/A
u(k)

A P S A/D

r(k)
ur(t) yr(t)

w(t) v(t)

y(k)

 

Fig. 5.11 - Closed-loop control architecture. 

 

All the values have been scaled to the range [0; 1]. The nominal operation, corresponding to 

fault F0, is assumed for a reference signal around 0.5. Parametric faults are considered here. 

Two faults on the motor resistance are considered in this experiment, and one fault on the 

output filter. Fault F1 is an increase of 50 % in the motor resistance from R = 2 Ω to R = 3 Ω. 

Fault F2 is a decrease of 70 % in the motor resistance from R = 2 Ω to R = 0.6 Ω. Fault F3 is 

an increase of the design parameter (λ, pole location) of the output low-pass filter 
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Ffs(z) = (1-λ) / (1-λ z -1) from 0.7 to 0.95, and the effect is a decrease of the system bandwidth. 

The results obtained for the experiments are shown later. 

 

For the fault F1, an increase of 50 % in the motor resistance from R = 2 Ω to R = 3 Ω, Fig. 

5.12 shows the input-output and FDD signals. 

 

Fig. 5.12 - Input-output and FDD signals for fault F1. 

 

The reference signal r(k), the output signal y(k), and the input signal u(k) can be observed in 

Fig. 5.12. The fault alarm signal am(k) and the fault detection signal fd(k) appear next. The 

fault isolation signal fi(k) indicates a correct isolation, assuming the value one due to fault F1. 

The magnitude is not considered here, and that is the reason the fault analysis signal fa(k) is 
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zero. The fault occurs at time instant tk = 240 s. The fault detection delay is 2.8 s, and the fault 

isolation delay is 8 s. For this fault, the PI controller is able to compensate the fault effect, 

since the control error is maintained around zero after the fault occurrence. 

 

Fig. 5.13 shows the parameters (label “th-yu”) of the input-output ARX(2, 1, 2) model Myu, 

θyu(k), for a model relating the output signal y(k) with the input signal u(k); the nominal values 

are given by [a1 a2 b2] = [-1.76 7.84×10-1 2.48×10-2]. The static gain sg and the bandwidth bw, 

used here as features for FDD, are computed using the parameters θyu(k) = [a1(k) a2(k) b2(k)]. 

The parameters (label “th-yr”) of the reference-output ARX(2, 1, 2) model Myr, θyr(k), are also 

shown; the nominal values are given by [a1 a2 b2] = [-1.79 8.56×10-1 6.18×10-2]. The model 

Myr relates the output signal y(k) and the reference signal r(k). This fault causes changes on 

the parameters of both models, so both models can be used for FDD purposes. Finally, the 

fault activation (trigger) signal fas(k) is depicted. 

 

 

Fig. 5.13 - Evolution of ARX model parameters. 

 

In Fig. 5.14 the parameters of the input-output ARX model, Myu, are depicted. Next, the static 

gain and the bandwidth appear. Finally, the two dimensional features space appears where the 

fault trajectory from cluster F0 to cluster F1 can be observed. The clusters centres are shown.  
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Fig. 5.14 - Features (static gain and bandwidth) for FDD. 

 

 

Fig. 5.15 - Fault clusters used for NN training of neural NNLDA. 

 

In Fig. 5.15, the patterns (clusters), for each fault, used for training the neural network that 

implements the neural nonlinear discriminant analysis (neural NNLDA) are shown. 
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A feed-forward neural network is used for implementing the neural NNLDA for fault 

classification. The training is done off-line for 500 epochs, using the Levenberg-Marquardt 

optimization algorithm. The sum squared error (SSE) performance function was selected, and 

the value obtained at the end of the 500 epochs was around SSE = 1.1×10-2. 

In this figure, it is clear that the faults F1 and F2 are isolated mainly due to the effect on the 

static gain. For the case of fault F3, the expected decrease of the bandwidth is confirmed. For 

the faults F2 and F3, the variance of the parameters is lower than for the faults F0 and F1. 

Looking again at Fig. 5.15, some regards can be drawn about fault detectability and fault 

isolability. If some fault cluster, Fi, is overlapped or adjacent with the nominal fault cluster, 

F0, then the fault Fi cannot be detected very well. This situation also causes problems in the 

neural network training associated with the neural NNLDA, since the training algorithm 

cannot guarantee a reasonable performance, i.e., the sum squared error (SSE) stays high. 

Consequently, the neural NNLDA cannot separate the fault patterns very well. A similar 

situation occurs, for the isolation task, when clusters associated with faults Fi and Fj are 

overlapped or near. Both fault detection and fault isolation tasks are influenced by the noise 

variance and by the persistent excitation conditions, since both tasks depends on the on-line 

estimated ARX parameters, θ(k).  

 

Now, the results obtained with fault F2, a decrease of 70 % in the motor resistance from 

R = 2 Ω to R = 0.6 Ω are presented. 

Fig. 5.16 shows the reference signal r(k), the output signal y(k), and the input signal u(k). The 

other graphs show the fault alarm signal am(k) and the fault detection signal fd(k). 

The fault isolation signal fi(k) indicates a correct isolation, assuming the value two due to fault 

F2. The magnitude is not considered here, and that is the reason the fault analysis signal fa(k) 

is zero. 

The fault occurs at time instant tk = 240 s. The fault detection delay is 0.8 s, and the fault 

isolation delay is 12 s. The fault isolation task, using the sliding window SW-PCR estimation 

algorithm, can only guarantee a correct value after the window length of the SW-PCR 

algorithm, i.e., for this case after at least 10 s. 

For this fault, the output shows some oscillations, since the PI controller with fixed gains is 

not very well tuned for this faulty situation. Also, a situation of actuator saturation occurs in 

certain time instants.  

 



 

 

Fig. 5.16 - Input-output and FDD signals for fault F2. 

 

Fig. 5.17 shows, from top to bottom, the ARX model parameters (label “th-yu”), the static 

gain as a function of time, and the bandwidth as a function of time. Finally, the two 

dimensional features space formed by static gain sg(k) and bandwidth bw(k) appears, where the 

fault trajectory from cluster F0 to cluster F2 can be observed. 

As seen, when the fault occurs, the estimated static gain increases from 1 to approximately 

3.2. The variation on the mean value of bandwidth is insignificant, but the variance value 

decreases significantly. 
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Fig. 5.17 - Features (static gain and bandwidth) for FDD. 

 

Finally, the results for the fault F3 are presented next. 

The fault F3 corresponds to an increase of the design parameter (λ, pole location) of the 

output low-pass filter Ffs(z) = (1-λ) / (1-λ z -1) from 0.7 to 0.95. This fault is very difficult to 

detect looking only at the input-output signals. A decrease of the system bandwidth is 

expected, since the pole location moves from 0.7 to a higher value near 1. 

Fig. 5.18 shows the reference signal r(k), the output signal y(k), and the input signal u(k). The 

other graphs show the fault alarm signal am(k) and the fault detection signal fd(k). The fault 

isolation signal fi(k) indicates a correct isolation, assuming the value three due to fault F3. The 

magnitude is not considered here, and that is the reason the fault analysis signal fa(k) is zero in 

this experiment. 

The fault occurs at time instant tk = 240 s. The fault detection delay is 8.2 s, and the fault 

isolation delay is 13 s. 
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Fig. 5.18 - Input-output and FDD signals for fault F3. 

 

As observed in Fig. 5.18, this fault is particularly difficult to detect and diagnose, since the 

symptoms are not visible looking only at the input-output signals. 

This FDD approach is able to detect and diagnose this type of parametric fault, since the 

symptoms are changes on the parameters of the ARX model, as depicted in Fig. 5.19 (label 

“th-yu”). Since the filter Ffs(z) has a unitary static gain, the fault can only be isolated via the 

effect on the bandwidth (feature), as observed in the graphs of Fig. 5.19. 
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Fig. 5.19 - Features (static gain and bandwidth) for FDD. 

 

Remarks.  

The experimental results obtained with this proposed on-line fault detection and diagnosis 

(FDD) approach, based on dynamic features of ARX SISO models, show a good performance 

for the class of faults tested. In fact, the static gain and the bandwidth computed on-line based 

on ARX models are two features that can be used for fault detection and diagnosis tasks. 

The parameter estimation of ARX models plays a crucial role here, since both fault detection 

and diagnosis tasks depend on it. The sliding window PCR algorithm presents a good 

performance, since the estimates are consistent. 

The FDD approach requires good persistent excitation conditions, in order to obtain a good 

accuracy for the parameter estimates and small parameters variances. 

Here, the FDD approach was applied using an input-output ARX model Myu relating the 

output signal y(k) and the input signal u(k). Nevertheless, this FDD method can also be based 

on a reference-output ARX model Myr, relating the output signal y(k) and the reference signal 

r(k). 
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This FDD approach was proposed in Chapter 3 (section 3.3) to deal with linear systems. In 

fact, it can be applied also to nonlinear systems, since the on-line parameter identification 

allows an on-line adaptation of the ARX model to the plant changes. 

 

5.8 Combined FDD Approach for Linear Systems based 

on PCA & IMX 

A new on-line combined fault detection and diagnosis (FDD) approach for linear systems was 

proposed in section 3.6. The control architecture is here again depicted, in Fig. 5.20, and used 

in this experiment. 
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Fig. 5.20 - Architecture of the combined FDD approach (FDD-PCA-IMX). 

 

The fault detection is achieved via the application of principal component analysis (PCA) to 

the parameters θ(k) of an ARX model. The sliding window PCR algorithm is used to estimate 

θ(k) on-line. PCA generates the features, two dimensional scores ta(k) and square of 

prediction error q(k), for fault detection. The fault diagnosis is based on the influence matrix 

(IMX) method using the Jacobian of the model parameter vector, θ, with respect to the 

physical parameters, γ. 
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Some experimental results obtained for an application of the FDD methodology to a 

continuous time DC motor model used in the section 5.7, and described in more detail in 

section 5.3.2, are presented here. 

This combined fault detection and diagnosis methodology use the ARX model parameters as 

features for FDD, and can be applied using input-output ARX models Myu as described in 

Chapter 3 (Example 5), or based on reference-output ARX models Myr. In the experiments 

shown here, a reference-output ARX(2, 1, 2) model, Myr, relating the output signal y(k) and 

the reference signal r(k), is used. Using reference-output ARX models, both faults on the plant 

and on the controller can be detected and diagnosed. The parametric faults under 

consideration in this experiment are a fault on the motor resistance R and a fault on the 

proportional gain Kp of the PI controller.  

 

Fig. 5.21 - Two-dimensional scores space for nominal operation. 

 

In nominal operation, an experiment is performed in order to obtain nominal data, i.e., 

nominal ARX model parameters, θn. The mean value and the standard deviation of each 

parameter are computed, in order to standardized the parameter values. The mean values for 

the ARX nominal model parameters [a1 a2 b2] are µn = [-1.79  8.56×10-1  6.18×10-2]. The 

standard deviations for each parameter are given by the vector 

σn = [1.24×10-2  6.95×10-3  9.60×10-3]. 

The PCA analysis is applied to the ARX model parameters in order to perform the fault 

detection task. The T2 statistics and the Q statistics are used for fault detection. Fig. 5.21 
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shows the two-dimensional scores space obtained from data (ARX model parameters) 

captured during an experiment in nominal operation. For this nominal PCA model, the 

amount of variance explained by a = 2 principal components is more than 99 %. The ARX 

model parameters (data) have been standardized, in order to obtain a zero mean and unitary 

variance. Theoretically, for a multivariate normal distribution according to the T2 statistics 

presented in Chapter 2, the threshold for the elliptical region in the scores space is given by 

 

T2
α = 

a (n-1) (n+1)
n (n-a)  Fα (a, n-a). 

Eq. 5.17 

 

Here, this theoretical threshold value for the T2 statistics is an approximated value. In this 

experiment, since the relations between data (model parameters) are not perfectly linear and 

the data does not obey a perfectly normal distribution, the value T2
α must be adjusted 

experimentally, in order to obtain a reasonable rate of false alarms. As observed in Fig. 5.21 

the original data, θ(k), does not obey a perfectly normal distribution, but the deviation from 

normality is not significant. The value used in the experiment is T2
α = 12.2; this value was 

obtained assuming a = 2, n > 120, α = 0.05, Fα (a, n-a) = 3, and was multiplied by an 

empirical value (Kf = 2) to compensate the deviation from normality. The threshold for the Q 

statistics (square of prediction error, SPE) has been computed using a three sigma limit 

approach, and the values used for the mean and the standard deviation are 

[µ σ] = [6.13×10-9  8.36×10-9]. 

  

For fault diagnosis (isolation and analysis) the influence matrix (IMX) method is used. 

The influence matrix is computed off-line based on data obtained from faulty situations. The 

influence matrix obtained in this experiment is given by Eq. 5.18. 

The elements of the influence matrix are the slopes of the Jacobian. These slopes are 

computed based on data depicted in Fig. 5.22, where the nonlinear relations between model 

parameters and physical parameters can be observed. The values for the nominal operation are 

R = 2.0 Ω and Kp = 2.55, and the others are values for faulty situations. The influence matrix 

method assumes that the model parameters are multi-linear in the physical parameters. 

The theoretical multi-linearity assumption is not verified in most practical systems as 

observed in Fig. 5.22. The consequence is the increased difficulty of detection of small faults 

that have influence vectors near each other, and the degradation of the overall FDD 

performance. 



Ω = [
∂θ
∂γ1

 …  
∂θ
∂γp

]γ=γ nom  = 

⎣⎢
⎢
⎢⎡

⎦⎥
⎥
⎥⎤

∂a1

∂R     
∂a1

∂Kp

 
∂a2

∂R     
∂a2

∂Kp
 

 
∂b2

∂R     
∂b2

∂Kp

 = 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ 4.52×10-2    3.42×10-3

 -7.98×10-2   2.84×10-3

  -3.74×10-2   6.29×10-3
 

 

 

Eq. 5.18 

 

 

Fig. 5.22 - Influence matrix slopes, and nonlinear relations. 

 

For the fault F1 considered here, an increase of the motor resistance from R = 2 Ω to R = 3 Ω, 

experimental results are shown next. 

The fault occurs at time instant tk = 240 s. In Fig. 5.23, the first graphs show the reference 

signal r(k), the output signal y(k), and the input signal u(k). Next, from top to bottom, the fault 

alarm signal am(k), the trigger fault signal, the alarm associated with the T2 statistics, and 

finally the alarm associated with the Q statistics (SPE) appear. Next, the fault detection signal 

 176



fd(k) in solid line and the respective signal without low-pass filtering and thresholding in 

dotted line appear. The isolation signal fi(k) appears next, with a signal that indicates an 

increase or a decrease of the physical faulty parameter. Finally, the fault analysis signal fa(k) 

is depicted. The real fault magnitude is 1, and fa(k) exhibits a high variance around the real 

value due to the properties of the ARX model parameters. The FDI tasks perform well, but the 

fault analysis does not give a good estimation of the fault magnitude. The fault occurs at time 

instant tk = 240 s. The fault detection delay is 1.4 s, and the fault isolation is 5 s.  

 

Fig. 5.23 - Input-output and FDD signals for fault F1. 

 

The signals used for fault detection based on the PCA are shown in Fig. 5.24. 
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The graph at the top shows the scores space (t1(k), t2(k)). The cluster associated with fault F0 

(nominal operation) is centered at the point (0; 0). The cluster associated with fault F1 is 

centered approximately at the point (t1 = -7.3; t2 = 10.1). 

The other graphs show the scores evolution for the first principal component (t1) and for the 

second principal component (t2), and finally the Q statistics (square of prediction error, SPE), 

i.e., the signal q(k). 

 

 

Fig. 5.24 - Signals for fault detection based on PCA. 

 

The signals for fault diagnosis are depicted in Fig. 5.25, and Fig. 5.26. 

When a fault ∆γi occurs, the feature vector deviation ∆θ(k) = θ(k) - θnom will be aligned with 

the associated influence vector, Ωi. In Fig. 5.25, the graphs show the angles between ∆θ(k) 

and each influence vector Ωi, along the experiment. 

The first influence vector Ω1 is associated with the fault on the physical parameter R, and the 

second Ω2 is associated with the controller proportional gain Kp. According to the minimum 

angle criterion for fault isolation, fault F1 is isolated. 
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Fig. 5.25 - Signals for fault diagnosis based on IMX. 

 

Fig. 5.26 presents a three dimensional graph, and the various projections on two-dimensional 

planes. 

Here, a three dimensional graph is used because the ARX(2, 1, 2) model used has three 

parameters, [a1 a2 b2]. The coordinates (p1, p2, p3) correspond to each ARX model parameter, 

respectively, (a1, a2, b2). The feature vector deviation ∆θ(k) is represented by a dashed 

(magenta) line, and the influence vectors Ωi are represented in solid lines. 

The first influence vector Ω1 associated with the fault on the physical parameter R of the 

motor is the bigger line (red line), and the smaller line (green line) indicates the second 

influence vector Ω2. 

As it can be observed, ∆θ(k) is more aligned with Ω1, which means that fault F1 is isolated. 

Since the angle between ∆θ(k) and Ω1 is less than 90º this indicates an increase of the physical 

parameter, as expected. 
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Fig. 5.26 - Feature vector deviation and influence vectors. 

 

The second fault, F2, is an increase in the proportional gain of the PI controller. 

The gain is increased from Kp = 2.55 to Kp = 25.5, causing oscillations on input and output 

signals. The reference signal r(k), the output signal y(k) and the input signal u(k) are shown in 

the first graphs of Fig. 5.27. The description of the signals is the same used in the previous 

experiment. 

When the fault occurs, around tk = 240 s, the system stays oscillatory, since the PI controller 

with fixed gains is not tuned for this faulty situation. Afterwards, the fault alarm signal am(k) 

and the fault detection signal fd(k) are shown. The low pass filtering of the fault alarm signal 

is crucial here to avoid false detections. 

The fault isolation signal fi(k) assumes the value 2, and hence fault F2 is isolated. Finally, the 

fault analysis signal fa(k) indicates an estimation of the fault magnitude around 46, a value 

approximately the double of the real fault magnitude. This estimation error is due to the 

nonlinear relations that exist between ARX model parameters and physical parameters. 

The fault occurs at time instant tk = 240 s, the fault detection delay is 1.2 s, and the fault 

isolation delay is 5.5 s. 
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Fig. 5.27 - Input-output and FDD signals for fault F2. 

 

The system exhibits oscillations after fault occurrence, and for this case the ARX model 

parameters present a small variance compared to the case of fault F1. Indirectly, this is 

reflected in the angles between the feature vector deviation ∆θ(k) = θ(k) - θnom and the 

influence vectors Ωi as depicted in Fig. 5.28. 

A positive angle (label “ang02”) near zero indicates a positive fault magnitude on fault F2, as 

shown in the magnitude graph (signal fa(k) in Fig. 5.27). 
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Fig. 5.28 - Signals for fault diagnosis based on IMX. 

 

In the experiments shown before, in this section, the process (plant) works in steady-state 

around a set-point. In the next experiment some variations on the set-point are done, and the 

effect on the FDD performance is described. For the fault detection and diagnosis approaches 

based on on-line parameter identification, it is expected that the set-point variations be 

understood as temporary faults. After a set-point variation new input-output is available, and 

the sliding window parameter estimation algorithm (SW-PCR) needs a certain time 

(equivalent to its window length) to adapt to the new operating conditions. In fact, this is what 

is observed in the experiment. 

Fig. 5.29 depicts the reference (set-point) signal r(k), the output signal y(k), and the input 

signal u(k). Next, the parameters of the ARX reference-output model Myr, that relates the 

output signal y(k) and the reference signal r(k) appear. Finally, the fault detection signal fd(k) 

appears where the temporary faults are observed. The duration of each pulse on the fault 

detection signal is approximately given by {11; 13; 12; 14} s. This duration is a function of 

the window length (10 s, here) of the SW-PCR parameter estimation algorithm, and also 

depends on the delay introduced by the low pass filtering of the fault alarm signal. 

One possible solution to avoid this drawback is to temporarily deactivate the fault detection 

task during a change on the set-point.  
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Fig. 5.29 - Set-point variations and transient effects. 

 

Remarks. 

For the parametric faults evaluated, the overall performance of the proposed FDD 

methodology is reasonable. Both tasks of fault detection and fault diagnosis require the on-

line estimation of ARX model parameters, and hence good persistent excitation conditions are 

required. This FDD approach can be applied to SISO or MIMO systems. 

For the fault detection approach based on PCA applied to the ARX model parameters, the 

feature vector is based on the scores and on the SPE (Q statistics). The scores are monitored 

using the T2 statistics, and a three sigma limit is used to monitor the SPE. The data does not 

obey a perfectly normal distribution, but the normality assumption used for definition of 

thresholds gives a reasonable performance in terms of false alarms. In practical situations, 

sometimes the thresholds must be adjusted to guarantee a better performance. The low pass 

filtering of signals also plays an important role, avoiding wrong fault detections and 

isolations. 

The performance of the fault diagnosis approach based on the influence matrix method 

depends strongly on the multi-linearity between model parameters and physical process 

parameters. In practice, for small deviations on the physical parameters this multi-linearity is 

verified. For high deviations, the relations deviate from the multi-linearity and cause a 

degradation of the performance, rendering the diagnosis of small faults difficult. 
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For nonlinear systems, it is also possible to apply this FDD combined method using a multi-

model approach. A set of PCA and IMX models must be obtained for each set-point. The 

implementation of this multi-model approach requires a supervisor system to manage a 

switching strategy between models. 

 

5.9 FDD Approach for Nonlinear Systems based on 

NROP Predictors 

For nonlinear systems, a new fault detection and diagnosis approach was proposed in section 

4.4. The FDD architecture proposed is here again depicted in Fig. 5.30. This FDD approach is 

based on a bank of neural recurrent output predictors (NROP). One NROP is tuned to the 

nominal operating region, and the others are tuned to each faulty situation. A fault alarm am(k) 

is generated if the square of prediction error q(k) exceeds the threshold values, h. A fault is 

detected by low pass filtering am(k) and by thresholding. Fault isolation is executed based on 

the best tuned NROP predictor, i.e., the one with the smallest square of prediction error, qj(k). 
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Fig. 5.30 - Architecture of the FDD approach based on a bank of NROP predictors. 
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Experimental results obtained with the nonlinear DC motor (DCM-RA) setup are presented 

later. Four neural predictor models have been trained off-line for each faulty situation. Each 

NROP predictor Ψi(Wi,…), i = 0, …, 3, has an embedded neural predictor model. In this 

experiment, neural nonlinear NARX(3, 1, 2) models are used to model the process. The 

nonlinear NARX neural process models relate the output y(k) and the input u(k) signals. After 

the off-line training phase, the output predictor models are incorporated in the NROP 

architecture (Fig. 4.3), in order to be used on-line for fault detection and isolation. A gain of 

Kn = 0.1 was selected for each NROP neural predictor (Eq. 4.7). 

 

This FDD method based on a bank of NROP predictors is applied to a nonlinear DC motor 

setup (DCM-RA). The setup is described in detail in section 5.3.3. The operating conditions 

used in this experiment are the following. An adaptive optimal linear quadratic Gaussian 

controller (LQGC) is used in this experiment to control the speed of the DC motor setup, 

using a design parameter r0 = 0.4, and low pass filtering the LQGC gains by an IIR filter 

Hlp(z, λ) with pole located at λ = 0.9. At the start-up, a PI controller is used, with parameters 

Kp = 1, and Ti = 2 s. A dither with variance 1×10-3 has been added to the reference signal.  

 

The set of faults is denoted by F = {F0, F1, F2, F3}.  The nominal operating region, assumed 

for set-points greater than 0.5, is denoted by fault F0. Here, a set-point of 0.7 is used for tests. 

Fault F1 corresponds to a decrease of the actuator gain in 50%. Fault F2 corresponds to a 

blocked sensor at value 0.6, making the plant unobservable. Fault F3 corresponds to a change 

to a critical operating region (a set-point around 0.4) outside the nominal region, where the 

speed of the motor is near a minimum acceptable value. 

At the startup a PI controller is used, and at time instant tk = 80 s the supervisor switches to 

the adaptive optimal LQG controller based on an ARX(2, 1, 2) model identified on-line. 

 

In the first experiment, the first two faults (F1 and F2) occur at different time instants, as it can 

be observed in Fig. 5.31 looking at their effect on the output signal y(k). The reference signal 

r(k), the output signal y(k), and the input signal u(k) can be observed. Next the fault alarm 

signal am(k), the fault detection signal fd(k), and the fault isolation signal fi(k) appear. The fault 

magnitude is not considered here, and that is the reason fa(k) assumes the zero value. 

 



Fault F1 occurs at time instant tk = 240 s, its duration is 40 s, the detection delay is 2.1 s, and 

the isolation delay is 10 s. For the fault F2, it occurs at tk = 320 s and continues until the end 

of the experiment. The detection delay is 2.3 s, and the fault isolation delay is 11 s. Both 

faults cause a saturation of the actuator. 

 

Fig. 5.31 - NROP approach. FDD signals for faults F1 and F2. 

 

Fig. 5.32 shows the square of prediction errors (SPE’s) computed on-line based on the NROP 

output residuals. These signals are used for fault detection, and for fault isolation as described 

in the proposed approach (section 4.4). The SPE signal for the NROP tuned to fault F1 is 

indicated with the corresponding label F1. As expected, when fault F1 occurs (between 240 s 

and 280 s), the SPE signal (red line) for the nominal region (fault F0) exceeds the thresholds, 
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and the SPE signal (green line) for the NROP tuned to fault F1 goes to a value around zero. 

The isolation is performed according to the smallest SPE signal criterion. It is interesting to 

observe the output oscillations occuring on some NROP neural predictors, when no faults 

occur. This happens because the NROP predictors have been trained off-line based on specific 

faulty data, and each one has an embedded faulty model. Each NROP predictor Ψi(Wi,…) 

converges well when the associated fault Fi occurs. This occurs if the embedded neural model 

has been trained with richness data for the faulty case. The fault signal F2 is represented by 

the blue line, and the fault signal F3 by the magenta line. 

 

Fig. 5.32 - SPE of output residuals for fault detection and isolation. 

 

In Fig. 5.33, some signals can be observed for faulty situation F3. The system changes from 

the set-point 0.7 to 0.4, and this new set-point here is considered a critical operating region (a 

faulty situation), since the motor speed is near the minimum admissible value. For lower set-

points the system cannot work, because the applied voltage is not sufficient to guarantee the 

rotation of the DC motor. When the fault occurs, during a small time interval, the real motor 

speed goes to zero. In Fig. 5.33, the first three graphs show, respectively, the reference (set-

point) signal r(k), the output signal y(k), and the input signal u(k). Next the fault alarm signal 

am(k) can be observed. The fault detection signal fd(k) appears next, and the detection delay is 
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2.5 s. The isolation delay is 12 s, as depicted in the signal fi(k). The fault analysis signal fa(k)  

is zero, since it is not considered here. 

 

Fig. 5.33 - NROP approach. FDD signals for fault F3. 

 

In the first graph of Fig. 5.34 the reference signal (red line) and the input-output signals 

(green line and blue line, respectively) are shown. The other graphs show the output process 

signal y(k) (in dotted line) and each output NROP predictor signal y∧nrop(k) for each faulty 

situation in solid line. The second graph shows that, in nominal operation, the output predictor 

signal for the NROP tuned to fault F0 is approximately equal to the process output signal, as 

expected. 
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After fault occurrence, for the NROP tuned to nominal operation (fault F0), the output 

predictor error y(k) - y∧nrop(k) increases, and the fault is detected since the SPE exceeds the 

threshold. 

After fault occurrence, the best tuned NROP predictor is the one shown in the last graph, i.e., 

the NROP tuned to fault F3. 

 

Fig. 5.34 - Output predictor signals for NROP approach. 

 

The gain Kn of the neural NROP predictor is a design parameter, allowing the engineer to 

adjust the predictor performance, and consequently the FDD performance. Some experiments 

have been performed with the DC motor setup (DCM-RA), varying the gain Kn for the NROP 

predictor tuned to the nominal operation (fault F0). 

Tab. 5.3 shows the mean values obtained for the square of prediction error (SPE), q(k), for 

different gains. A decrease of the SPE error can be seen and then an increase. There is a range 

of gains with low acceptable SPE errors; a value in this range must be chosen. The value 

chosen for the gain of the NROP should guarantee a stable behaviour of the output predictor, 

and also good fault isolation properties. 
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Tab. 5.3 - Square of prediction error (SPE) versus gain for NROP predictor. 

 

Gain, Kn Mean(q(k))

0 4.3×10-2

0.05 1.9×10-3

0.1 5.5×10-4

1 9.6×10-6

2 3.3×10-6

5 2.5  

10 2.5 

 

 

Fig. 5.35 - SPE of residual signals for NROP predictors. 

 

An experiment was performed with the DC motor setup (DCM-RA) for 200 s. The SPE for 

each NROP predictor with gain Kn = 0.1, are depicted in Fig. 5.35, for the case of nominal 

operation (fault F0). For the FDD approach proposed in this work, the fault isolation criterion 

is based on the NROP predictor with the smallest SPE signal. As expected in this experiment 

 190



 191

for nominal operation, the NROP tuned to fault F0 is the one with the smallest SPE signal, 

with a mean value of 5.5×10-4 as observed in Tab. 5.3. 

 

Remarks. 

The results obtained with this new fault detection and diagnosis approach based on neural 

recurrent output predictors (NROP) show a good performance for the set of faults considered. 

This approach is appropriate to detect different kinds of faults: additive faults, some 

parametric faults, faults that cause strong output oscillations, and some kinds of structural 

faults like blocked sensors, saturations, etc. The great potential of this FDD approach is the 

fact that it is based on neural network predictor models, and these neural models are able to 

captured nonlinear behaviours. 

The performance of this FDD approach is heavily dependent on the quality of the embedded 

neural output predictor models. For each faulty situation, it is necessary to identify a neural 

output predictor model off-line, by training a FF-MLP neural network with informative data. 

The NROP predictor performance can be adjusted by selecting different gain values, Kn. This 

design parameter, Kn, allows to settle the magnitude of the output prediction error, and 

consequently the fault detection and isolation performance. 

 

5.10 FDD Based on Neural NLPCA and Neural NNLDA 

In this section some results are presented which were obtained for the combined fault 

detection and diagnosis (FDD) approach based on neural nonlinear principal component 

analysis (NLPCA) and on neural nonlinear discriminant analysis (NNLDA). This nonlinear 

FDD approach, described in detail in section 4.5.5, obeys the architecture depicted in Fig. 

5.36.  

On-line estimation of ARX model parameters is performed based on the SW-PCR algorithm. 

The NLPCA approach is applied to the ARX model Myr parameters estimated on-line, 

generating the features for FDD. The features are the two dimensional scores ta(k) and the 

square of prediction error q(k). A different feature (pattern vector) is associated to each fault. 

This pattern is classified by a neural NNLDA discriminant approach, and a class is attributed. 

A fault alarm am(k) is generated if the on-line pattern is outside the nominal region. The fault 

detection signal fd(k) is obtained by low pass filtering am(k), and by thresholding. The fault 

isolation is achieved by fault classification and low pass filtering. 
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Fig. 5.36 - Architecture of FDD approach based on neural NLPCA and neural NNLDA. 

 

The experiments shown here were performed with the nonlinear DC motor setup (DCM-RA) 

described in detail in section 5.3.3.  The input data has been auto-scaled, removing the mean 

and divided by the standard deviation of the nominal data used for building the NLPCA 

nominal model. The input data are the ARX model parameters. Auto-scaling standardizes the 

process variables, ensuring that for each variable an equal weight is given; this means, for this 

case, that both ai and bj parameters have the same weight. 

An ARX(2, 1, 2) model Myr, relating the output signal y(k) and the reference signal r(k), has 

been considered in this experiment for modeling the closed-loop system dynamics. This 

model enables the detection and diagnosis of faults on the process and also on the controller. 

A neural network has been trained for the NLPCA, with nominal data captured around the set 

point 0.7, during 200 epochs using 3636 samples, and a SSE error of 1.0×10-2 was achieved. 

The explained variance by the NLPCA model for the nominal training data, computed 

according to Eq. 4.23, is greater than 99 %. 

The ARX model Myr presents a smaller variance on the parameters than the parameters of the 

model Myu, since the dither signal is added to the reference signal and the identification of Myr 

can be considered in open-loop. The SW-PCR parameter estimation algorithm is used for on-

line estimation of the ARX parameters, using a window length of 10 s. 

The faults considered in this experiment are the nominal operation termed fault F0 and three 

more faults. The parametric fault F1 corresponds to the removal of the digital filter Hlp(z, λ) 

from the process output, putting a zero value on the filter design parameter, λ = 0, and 
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consequently turning the system faster. A sensor blocked at value 0.5 is designated fault F2, a 

structural fault. The parametric fault F3 is a change on the design parameter r0 of the LQG 

controller from 0.4 to 0, causing output oscillations. Each fault corresponds to a different set 

of ARX model parameters, and consequently a different set of scores and SPE signal, as 

shown in Fig. 5.37. 

The neural network that implements the neural discriminant analysis (NNLDA) has input 

patterns given by the scores and the SPE signal, both shown in Fig. 5.37. For this neural 

network, after 500 epochs of training and using 14400 samples, a SSE error of 5.1×10-4 was 

reached. 

 

 

Fig. 5.37 - Fault clusters in scores space, and SPE signal. 

 

In nominal operation, the input data for the neural network used for NLPCA are the three 

ARX parameters {a1(k), a2(k), b2(k)}, and the output data are the two dimensional scores 

{t1(k), t2(k)} and the SPE signal q(k) of the residuals. 
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The nominal operating point is around 0.7, and the variance of the dither signal added to the 

reference signal is 1×10-3. From start-up and until 80 s the classical PI controller is the active 

controller, using gains Kp = 1 and Ti = 2 s. After, the supervisor switches to the adaptive 

optimal LQG controller. The LQG controller parameters are computed on-line based on a 



linearized ARX(2, 1, 2) model Myu. A value of 0.4 is used for the design parameter r0 of the 

LQG controller, in order to adjust the closed-loop dynamics. The nominal parameters of 

ARX(2, 1, 2) model Myu are given by [a1 a2 b2] = [-1.86 0.87 1.57×10-2]. For the ARX(2, 1, 2) 

model Myr, the nominal vector is given by [a1 a2 b2] = [-1.83 0.90 6.74×10-2]. 

 

Fig. 5.38 - Input-output and FDD signals for faults F1 and F2. 

 

In the first experiment, only the faults F1 and F2 appear, occurring at time instants tk = 240 s 

and tk = 320 s, for 40 s each. The results are depicted in Fig. 5.38, which shows the reference 

signal r(k), the output signal y(k), and the input signal u(k). Next, the fault alarm signal am(k), 

the fault detection signal fd(k), and the fault isolation signal fi(k) appear. The fault magnitude 

is not considered here, and that is the reason fa(k) assumes the zero value. 
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In the faulty situation F1 the system becomes faster, since the filter Hlp(z, λ) is removed by 

setting the filter parameter, λ = 0. The detection delay is 2.3 s, and the isolation delay is 10 s. 

By only observing the input and output signals, this fault is difficult to detect and diagnose. 

For the fault F2 the sensor stays blocked at value 0.5, a positive control error occurs and 

consequently the actuator saturates. The detection delay is 1.5 s, and the isolation delay is 10 

s. The isolation delay depends on the length of the sliding window (10 s) and on the low pass 

filter design parameter. 

 

Fig. 5.39 - Input-output signals and ARX model parameters for faults F1 and F2. 

 

Fig. 5.39 shows, in the top graph, the reference signal r(k) (red line), the output signal y(k) 

(blue line) and the input signal u(k) (green line). The middle graph shows the parameters of 

the ARX model Myu, not used in this experiment. In the last graph, the ARX model (Myr) 

parameters used in this experiment are depicted, and the different faulty regions are indicated. 

When the fault F2 occurs can be observed the high derivative on the ARX model parameters, 

and also the change of the model parameters after the length (10 s) of the sliding window 

(SW-PCR) parameter estimation algorithm. 
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Some experimental results are shown next for the faulty case F3. This fault is an abrupt 

change of the design parameter r0 of the LQG controller, from 0.4 to 0. One of the symptoms 

of this fault is the high variance of the control input signal u(k), as observed in Fig. 5.40. 

 

Fig. 5.40 - Input-output and FDD signals for fault F3. 

 

Input-output and FDD signals can be observed in Fig. 5.40. From top to bottom, the reference 

signal r(k), the output signal y(k), and the input signal u(k) are depicted. Next, the fault alarm 

signal am(k), the fault detection signal fd(k), and the fault isolation signal fi(k) appear. The fault 

analysis is not considered here, and that is the reason why the signal fa(k) is zero.  
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The fault detection delay is 2.3 s, and the isolation takes place 14 s after fault occurrence. The 

main visual symptom of this fault is the strong oscillations on the system input. 

The variation of the real speed motor is also significant, but here this is not perceptible due to 

the various low pass filters embedded into the DCM-RA motor setup. The slow dynamics is 

due to the frequency-to-voltage converter, the anti-aliasing filter, and the digital low pass 

filter. 

 

In Fig. 5.41, in the first graph the input data X (ARX model parameters, in green lines) can be 

observed, and also the estimated values Xe (blue lines) by the NLPCA model. Next, the SPE 

error appears, q(k), computed from the NLPCA residual. The next graph shows the evolution 

of the scores (PC1 in red line and PC2 in green line) as a function of the time. Finally, the last 

graph shows the two dimensional scores space (associated with the principal components PC1 

and PC2) where the square symbols show the location of each fault cluster (pattern) centre. 

 

 

Fig. 5.41 - NLPCA inputs, scores, and SPE signal. 
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Remarks. 

In this experiment, carried out with a nonlinear system, the neural approaches used for FDD 

showed a good performance, even in situations of a small time variant behaviour. The 

robustness property of the neural networks with respect to noise and non modelled dynamics 

is well known from relevant literature and from the results of many experiments, and here it 

has been confirmed once again. 

 

In the FDD approaches based on system identification the performance of the controller 

influences the performance of the FDD approach. In the experiments, for the case of fault F2, 

this is clear. For the faulty case F2, an abrupt change of the design parameter r0 (Eq. 5.10) of 

the adaptive LQG controller, from 0.4 to 0, causes oscillations on the system. 

 

In this work, although the stability of switched systems was not investigated, it is certainly an 

important pointer for future research. Stability properties of a switched system in general 

depend on the properties of the switching signal. A switched system is stable if all individual 

subsystems are stable and the switching is sufficiently slow, so as to allow the transient 

effects to dissipate after each switch (Liberzon, 2003). This stability subject is particularly 

important when dealing with adaptive systems, as in the case of this experiment where an 

adaptive optimal LQG controller is used. In this work, the LQG controller gains have been 

low pass filtered, in order to avoid abrupt transitions and also to try to prevent the loss of the 

plant controllability. 

 

The interaction between controller and fault detection and diagnosis is also a subject that 

deserves special attention. For the FDD approaches based on the system identification this is 

particularly important, since the FDD methods require persistent excitation conditions and 

these conditions must be guarantee by the controller. For the case of adaptive controllers, also 

based on system identification, some faulty situations cause abrupt changes on the model 

parameters and this can provoke situations of failures. These failures are situations where the 

adaptive controller degrades its performance and can no longer guarantee a small control 

error. To solve some of these faulty cases is necessary to implement strategies based on fault 

tolerant control. 



 

5.11 Fault Tolerant Control Experiments 

In this section, some ideas related to Fault Tolerance and to Fault Tolerant Control (FTC) are 

presented first. This introduction to the fault tolerant control problem is very important for the 

experiment carried out with the three-tank benchmark to be understood. The ideas of fault 

detection and diagnosis are incorporated in this FTC context. 

Later, a fault tolerant control approach is applied to the three-tank benchmark system, and 

some results are presented. The fault detection and diagnosis methodology based on a bank of 

neural recurrent output predictors (NROP), proposed in this dissertation, is used here in a 

context of fault tolerant control. 

 

5.11.1 Introduction 

First a definition of fault according to Blanke, et al., (2003), is given: a Fault in a dynamic 

system is a deviation of the system structure or the system parameters from the nominal 

situation. 

In this section, the focus is on faults associated with structural changes. Structural faults 

change the set of the constraints and variables which are to be considered, as described in 

section 2.5.2. Examples of structural changes are the loss of a sensor, the blocking of an 

actuator (valve, etc), or the disconnection of a system component. In most situations, all these 

faults cause deviations of the dynamic input/output (I/O) properties of the plant from the 

nominal values, and change the performance of the closed-loop system. 

 

Plant

f

Fault tolerant
controller

 

Fig. 5.42 - Fault tolerant system. 

 

For a more detailed analysis of the impact of a fault let us consider the plant in Fig. 5.42 from 

the viewpoint of the controller. Here (in section 5.11), the term controller is used in a very 
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broad sense. The fault is denoted by f, and F is the set of all faults; the fault-free (faultless) 

case should also be included in the fault set F, and is denoted here by f0. The pairs (u, y) are 

called input/output pairs (I/O pairs), i.e., the input and output process signals. 

Blanke et al. (2003) define the behaviour B of a plant as the set of all possible pairs of 

trajectories u and y that may occur for the fault-free case. A graphical interpretation is given 

in Fig. 5.43. The behaviour B is a subset of the space U x Y of all possible combinations of 

input and output signals. The dot A represents an I/O pair consistent with the system 

dynamics, whereas the dot C is not consistent with the system dynamics. 

 

U x Y

B

A.

. C

 

Fig. 5.43 - Graphical illustration of the system behaviour. 

 

In discrete-time, the input u is represented by the sequence u = {u(1),…, u(k)}, and the output 

is described by the sequence y = {y(1),…, y(k)}. The behaviour is a subset of the Cartesian 

product, B ⊂ Rk x Rk, which includes all sequences u and y that may occur for the fault-free 

plant. For dynamic systems, the I/O pair is a pair of (u, y) of sequences rather than a pair 

(u(k), y(k)) of current signal values. 

 

Example 11. System behaviour of a static system.  

Consider a static system described by the equation y(k) = sg u(k), where sg is the static gain. 

The input and output are elements of the set R of real numbers. The set of all I/O pairs is 

given by B = {(u(k), y(k)) : y(k) = sg u(k)}, which can be graphically represented as a straight 

line in the u/y coordinate system. Faults are found if the measured I/O pair (u(k), y(k)) does 

not belong to the behaviour B. 

 

A fault changes the behaviour, as can be observed in Fig. 5.44 (Blanke, et al., 2003). In a 

fault-free situation the I/O pair (u(k), y(k)) belongs to the region of the behaviour B0; when a 

fault occurs, the I/O pair (u(k), y(k)) moves towards the region of behaviour Bf. If a common 
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input U is applied to the fault-free and the faulty system, then both systems respond with 

different outputs YA and YB, respectively. The points A = (U, YA) and B = (U, YB) are located 

in different behaviour regions making the fault detection and isolation possible, unless the I/O 

pair (point C) lies in the intersection of B0 and Bf. 

 

U x Y

B0

Bf

A. . .
BC

 

Fig. 5.44 - System subject to faults. 

 

For Fault Tolerant Control (FTC), dynamic models of the plant subject to faults f ∈ F have to 

be considered. These models describe the behaviour of the fault-free and the faulty system, 

i.e. they restrict the possible I/O pairs to those that appear in the behaviours B0 and Bf in Fig. 

5.44. So, models represent constraints that the signals u(k) and y(k) satisfy in order to be 

relevant for the plant (Blanke, et al., 2003). 

 

For many decades engineers have investigated the faults impact, and different notions have 

been defined like safety, reliability, availability and dependability (Blanke, et al., 2003; 

Isermann & Balle, 1997). Safety describes the absence of danger; a safety system protects a 

technological system from permanent damage. Reliability is the probability that a system 

performs its intended function for a specified period of time under normal conditions; fault 

tolerant control (FTC) cannot change the reliability of the plant components, but it changes 

the reliability of the overall system. Availability is the probability of a system to be 

operational when needed; this system property depends on the maintenance policies. 

Dependability includes the three properties of safety, reliability and availability; a dependable 

system is a fail-safe system with high reliability and availability. 

Due to its great importance, the relationship between fault tolerance and safety must be 

detailed. Assuming that the system performance can be described by two variables y1 and y2, 

in a two dimensional space, then different regions have to be considered as depicted in       
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Fig. 5.45 (Blanke, et al., 2003). During nominal operation, the controller must guarantee that 

the system remains in the region of required performance. In some situations, mainly when 

small faults occur, the controller “hides” the effects of faults, and this makes the detection and 

diagnosis tasks more difficult. A fault cause the system to move to the region of degraded 

performance, and the fault tolerant controller (FTC) should be able to initiate recovery 

actions. A safety system must interrupt the operation of the overall system so as to avoid 

danger, if the performance reaches the safety threshold. A fault tolerant controller and the 

safety system work in separate regions of the signal space, they are usually implemented in 

separate units, and that allows an independent design. 
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Fig. 5.45 - Performance regions. 

 

5.11.2 Elements of Fault Tolerant Control 

A typical architecture for Fault Tolerant Control (FTC) is depicted in Fig. 5.46  (Blanke, et 

al., 2003). At the supervision level, where there is a supervisor, the two blocks that carry out 

the two steps of fault tolerant control can be seen: the detection and diagnosis block, and the 

controller re-design block. The diagnostic block uses the measured I/O signals, or related 

features, and tests their consistency with the plant model. The re-design block uses the fault 

information, and adjusts the controller to the faulty situation. 
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Here (in section 5.11), the term controller is used in a very broad sense. The re-design of the 

controller may result in new controller parameters (re-tuning), or in new control architecture; 

the new and the old controllers may differ, not only with respect to the parameters, but also 

with respect to the input and output signals that they use. 
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Fig. 5.46 - A typical architecture for fault tolerant control. 

 

Two major types of methods for ensuring fault tolerance are well established: passive 

methods and active methods. To a certain extent, fault tolerance can also be attained without 

the structure given in Fig. 5.46, by means of control methods based on robust control and 

adaptive control; this is possible only for a restricted class of faults. 

Passive fault tolerance can be obtained using a robust controller, where a fixed controller is 

designed to tolerate changes of the plant dynamics. This type of controller works 

suboptimally for the nominal plant because its parameters are obtained as a trade-off between 

performance and robustness (Patton, 1997). 

Active fault tolerance can be obtained using adaptive control techniques (Astrom & 

Wittenmark, 1995; Mosca, 1995; Patton, 1997). In this case, the controller parameters are 

adapted to changes of the plant parameters, assuming the changes are caused by some fault. 

The theory of adaptive control shows that this principle is more effective if the plants are 

described by linear models and the faults cause slowly varying parameters. 

If the faults cause severe effects that cannot be solved by robust and adaptive control 

techniques, then the ideas of fault tolerant control must be implemented. 
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Modern technological systems consist of several, often many subsystems, which are strongly 

connected. The effect of a fault in a single component is usually propagated throughout the 

overall system, as depicted in Fig. 5.47. If a fault causes the safety system to shut off the 

whole system, then the fault has caused a system failure. 

1 2

3

4

f

 

Fig. 5.47 - Fault propagation in interconnected systems. 

 

The first task of Fault Tolerant Control concerns the Fault Detection and Diagnosis (FDD) of 

existing faults. Assuming that a dynamic system with input u and output y is subjected to 

some fault, f, the system behaviour depends on the fault f ∈ F, where the element f0 of the set 

F symbolises the fault-free case.  The FDD problem can be formulated as follows. 

 

Problem 7. If the I/O pair (u, y) consists of sequences u = {u(1),…, u(k)}, and 

y = {y(1),…, y(k)}, then the fault detection and diagnosis (FDD) problem can be formulated 

as follows (Blanke, et al., 2003): for a given I/O pair (u, y), find the fault f. 

 

For Fault Tolerant Control (FTC) the location and the magnitude of the fault have to be 

found. In summary, the fault detection and diagnosis principle can be described as follows 

(Blanke, et al., 2003). For given models that describe the behaviour Bf of the system subject to 

the faults f ∈ F, test whether the I/O pair (u, y) satisfies the relation (u, y) ∈ Bf. 

Fault Detection: if the I/O pair is not consistent with the behaviour B0 of the fault-free 

(faultless) system, (u, y) ∉ B0, then a fault has occurred. 

Fault Diagnosis (isolation and identification): If the I/O pair is consistent with the behaviour 

Bf, (u, y) ∈ Bf, then the fault f may have occurred. Fault f is a fault candidate. 

 

In a fault tolerant controller context, controller re-design considers the problem of changing 

the control structure and the control law after a fault has occurred in the plant. The goal is to 
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satisfy the closed-loop specifications. Two principal ways of controller re-design can be 

distinguished (Blanke, et al., 2003): fault accommodation, and control reconfiguration. 

In fault accommodation, if there is a control law so that the faulty plant can achieve the 

control goal, then this law is used; this means to adapt the controller parameters to the 

dynamic properties of the faulty plant. If fault accommodation is impossible, then the control 

loop has to be reconfigured. 

Control reconfiguration includes the selection of a new control architecture where alternative 

input and output signals are used. Control reconfiguration is necessary after the occurrence of 

severe faults that lead to serious structural changes of the plant dynamics, for example: a) 

sensor faults that break the information link between the plant and the controller, and make 

the plant partially unobservable; b) actuator faults that make the plant partially uncontrollable; 

c) plant faults that cannot be tolerated by any control law. 

 

The main advantage of Fault Tolerant Control (FTC) over other fault tolerance methods is the 

fact that it makes intelligent use of the analytical redundancies included in the system, and the 

information about the system in order to increase the availability of the system (Blanke, et al., 

2003). No method can guarantee a complete description of all possible system faults; hence 

no 100 % fault tolerance is possible. For many applications, only the most critical faults have 

to be investigated and tolerated. In some cases, FTC methods cannot be sufficiently tested in 

operation because in practice it is usually impossible to provoke some types of faults in the 

plant in order to test the reaction, so for these cases the simulation of faulty behaviours plays a 

very important role. Small faults are difficult to detect but easy to correct, whereas severe 

faults are easy to identify but difficult to correct. 

 

5.11.3 FTC Approach applied to the Three-Tank Benchmark 

The Three-Tank Benchmark has been elaborated within the COSY program of the European 

Science Foundation, in order to perform investigations of the control reconfiguration problem 

under severe structural faults. 

The general problem to be solved is to find a new control strategy if a fault in the technical 

plant has occurred. More detailed information about the three-tank benchmark can be found in 

section 5.3.4. The severe faults (blocked valves and leaks) considered in this benchmark 

require the application of a fault tolerant control approach. 

 



Many fault detection and diagnosis approaches, and fault tolerant control approaches, have 

been applied and tested on the three-tank benchmark, to deal with the reconfiguration 

problem. Some references using neural predictors, without a recurrent structure, are the papers 

of Koppen-Seliger, et al., (1999), and Marcu, et al., (1999).  

 

A new fault tolerant control (FTC) approach is proposed here to solve the reconfiguration 

problem formulated for the three-tank benchmark. Let us remember here that a continuous-

time model is used for the three-tank system, but all the algorithms have been implemented in 

this work in discrete-time. The three-tank benchmark is described in detail in section 5.3.4, 

and depicted here in Fig. 5.48 (Heiming & Lunze, 1999). 

 

 

Fig. 5.48 - Three-tank system. 

 

The fault tolerant control architecture used here follows the architecture depicted in Fig. 5.49 

(Patton, 1997). This figure is shown for the case of a SISO system, without loss of generality. 

The thick lines represent signal flow, and the thin lines represent adaptation (tuning, 

scheduling or reconfiguration). The supervision system plays a crucial role in FTC 

applications. The supervisor must take decisions about adaptation when faults occur, in order 

to maintain the desired system performance and preserve the stability of the overall system. In 

most critical situations, the final decisions are taken by the humans. 

In some non-severe faulty cases, the supervisor only needs to perform the re-tuning of the 

controller. When severe structural fault occurs, the supervisor usually needs to change the 

control strategy using other sensors, actuators, re-tuning the controllers and also changing the 

set-points. 
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Fig. 5.49 - Fault tolerant control architecture. 

 

The FTC approach used incorporates the FDD approach based on neural recurrent output 

predictors (NROP) proposed in this work (section 4.4). The FDD architecture is depicted 

again in Fig. 5.50. 
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Fig. 5.50 - Architecture of the FDD approach based on a bank of NROP predictors. 

 

In this problem a MISO system model is used, instead of the SISO model. The FDD approach 

is based on a bank of neural recurrent output predictors (NROP). One NROP is tuned to the 

nominal operating region, and the others are tuned to each faulty situation. A fault alarm am(k) 

is generated if the square of prediction error (SPE), q(k), associated in the NROP tuned to the 

nominal situation (fault F0), exceeds the thresholds h. The fault detection signal fd(k) is 
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obtained by low pass filtering am(k) and by thresholding. The fault isolation signal fi(k) is 

computed based on the best tuned NROP predictor, i.e., the one with the smallest square of 

prediction error (SPE). 

 

The reconfiguration problem for the three-tank benchmark is, in this work, formulated as 

follows. 

 

Problem 8. For the three fault scenarios caused by severe faults, blocking valves and leak, 

find a new control strategy in order to maintain the main goal of the system. The main goal is 

to provide a continuous water flow QN to a consumer by maintaining the level h3(t) = medium  

in the central tank, T3. The fault tolerant control system implemented must guarantee that 

severe faults do not cause failures, i.e., the interruption of the system's ability to perform the 

required goal. 

 

The problem to be solved is the reconfiguration benchmark problem for the three-tank system, 

and the three fault scenarios are considered in the experiments (Heiming & Lunze, 1999). 

First, severe structural faults must be detected and diagnosed, and after it is necessary to find 

a new control strategy. The FTC systems usually need a supervisor system to take decisions.  

 

The three-tank system is a multi-input multi-output (MIMO) system, and the main aim is to 

provide a continuous water flow QN to a consumer by maintaining the level h3(t) = medium  in 

the central tank T3. The level medium = [9; 11] cm. 

The fault detection and diagnosis (FDD) methodology proposed here is based on a bank of 

neural recurrent output predictors (NROP) proposed in this work (section 4.4). For each fault 

scenario (F0, F1, F2, F3) a neural NROP predictor has been created. Each NROP predictor 

ΨFi(.) is tuned to the respective fault Fi, and expressed in the general form, for the case of 

SISO systems, by 

 

y∧nrop(k) = NN{a-b-c}(W, y∧nrop(k-1), …, y∧nrop(k-n), u(k-1), …, u(k-n)) + Kn re(k-1) . Eq. 5.19 

 

The signal y(k) is the output signal, y∧nrop(k) is the output prediction signal, and u(k) is the input 

signal. 

The NROP predictor can also be applied to MIMO systems. The MIMO system is 

decomposed on a set of MISO systems, as described next. A MLP-FF neural network 



implements a neural predictor model NN{a-b-c}(W,…). The predictor gain Kn has been chosen 

to guarantee stability and low predictor residuals.  

The three-tank benchmark is a MIMO system (Fig. 5.48). For the fault scenarios of the 

reconfiguration problem, two MISO neural models are proposed here to implement the FDD 

approach based on NROP predictors. These neural models are based on output predictors of 

the system outputs h1(k) and h3(k), respectively, the water levels in tanks T1 and T3. Each 

neural predictor model embedded in the NROP predictor obeys the architecture depicted in 

Fig. 5.51, where the output h
∧

i(k) represents either h
∧

1(k) or h
∧

3(k). The neural network inputs are 

the values for the sample k-1 of the water level in tank T1, h1(k-1), the water level in tank T3, 

h3(k-1), the flow from pump P1, q1(k-1), and the discrete water level at tank T3, h3d(k-1). All 

signals have been scaled to belong to the range [0; 1], except the signal h3d(k) that assumes 

discrete values {-1; 0; +1} corresponding to the water levels {low, medium, high} in the 

central tank. Each neural network predictor was trained off-line with data captured, in closed-

loop, for each faulty situation, using the Levenberg-Marquardt optimization algorithm. 

Experiments with a duration of 600 s have been performed, and after each fault occurrence 

the data captured during 120 s was used for training the neural network embedded predictors. 

The number of neurons in each layer are, respectively, {IL, HL, OL} = {4, 4, 1}. After 

training during 400 epochs, using 3272 samples, SSE errors around 5×10-5 were reached for 

each neural network predictor. 

 

Neural predictor

NN{a-b-c}(Wi,...)

h1(k-1)

hi(k)^h3(k-1)

q1(k-1)

h3d(k-1)
 

Fig. 5.51 - Architecture of neural output predictor embedded in the NROP. 

 

Based on the neural output predictor, two neural recurrent output predictors (NROP) can be 

built, each one for the water levels in tanks T1 and T3. Assuming low order models, the 

equations for each neural recurrent output predictor (NROP) are given by 

 

h
∧

1_nrop(k) = NN{a-b-c}(W1, h
∧

1_nrop(k-1), h3(k-1), q1(k-1), h3d(k-1)) + Kn re(k-1) Eq. 5.20 
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h
∧

3_nrop(k) = NN{a-b-c}(W3, h1(k-1), h
∧

3_nrop(k-1), q1(k-1), h3d(k-1)) + Kn re(k-1) . Eq. 5.21 

 

In the experiments shown next, only the NROP predictor, h
∧

1_nrop(k), for the water level in tank 

T1 has been used for FDD purposes. A bank of four NROP predictors of this type is used, 

each one tuned to a different faulty situation {F0, F1, F2, F3}. The gains for each NROP have 

been selected to obtain a good FDD performance, and they are given by {0.1; 0.1; 0.1; 1.2}.  

 

In the experiments carried out with the three-tank benchmark model, at the start-up a PI 

controller was used to control the water level in tank T1, and after the supervisor switch to an 

adaptive optimal LQG controller. The gains of the LQG controller are computed on-line 

based on a linearized ARX(2, 1, 1) model relating the water level h1(k)) and the input flow 

q1(k). The sliding window SW-PCR algorithm is used for a window length of 20 s. A set point 

of 0.5 m is used to the level h1(k) in tank T1, which corresponds to 0.5/0.6 = 0.83 in scaled 

values since 0.6 m is the maximum height of each tank. The gains selected for the PI 

controller are Kp = 1 and Ti = 0.8 s. The design parameter of the LQG controller is given by 

r0 = 0.03, selected to guarantee stability for the different faulty cases and good persistent 

excitation conditions. For the central tank T3, a switching (on-off) controller is used to 

guarantee a level h3(k) in the range [0.09; 0.11] m, i.e., [0.15; 0.18] in scaled values. 

In the paper written by Heiming & Lunze (1999), where the definition of the three-tank 

benchmark problem and the typical fault scenarios are given, a PI controller is used to control 

the water level in tank T1. In this work, an LQG controller is used. For the case of fault F3, a 

PI controller is used to control the water level in tank T2 (redundant hardware). The gains of 

the PI controller are the same used for the PI controller acting on the start-up on tank T1, i.e., 

Kp = 1 and Ti = 0.8 s. 

 

For the three-tank reconfiguration problem, the three typical fault scenarios and the proposed 

remedial actions are shown in Tab. 5.4. The nominal operation (without faults) corresponds to 

fault scenario F0. Three typical faults scenarios are considered by Heiming & Lunze (1999): 

blocking valves and leaks, i.e., typical severe structural faults in the plant. 

The first fault scenario F1 is valve V1 closed and blocked, and the aim is the water level in 

tank T3 still medium (around 0.1 m). The fault F2 is valve V1 opened and blocked, and the aim 

is the water level in tank T3 still medium. The last fault scenario, fault F3, is a leak in tank T1, 
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and the aim is to maintain the water level in tank T3 still medium and guarantee a minimal loss 

of water from tank T1. 

 

Tab. 5.4 - Fault scenarios and proposed remedial actions for the three-tank benchmark. 

 

Fault Scenario Remedial Action 

F1: valve V1 closed  

and blocked  

Use valve V13 and pump P1 to control water level 

in tank T3. This is by achieved opening valve V13 and 

setting a new set-point of 0.2 m for the level h1(k),  

i.e., a scaled value of 0.2/0.6 = 0.33.  

F2: valve V1 opened  

and blocked 

Use pump P1 to control water level in tank T3. Here,  

this is performed by adjusting the set-point for the  

level h1(k) to the value 0.4 m (a scaled value of  

0.4/0.6 = 0.67). 

F3: valve V1L is open  

(simulating a leak in 

tank T1) 

Use of redundant hardware (tank T2 and pump P2).  

Here the following tasks are performed: a) use a PI  

controller to act on the pump P2, with a set-point  

of 0.2 m for the level h2(k); b) open the valve V32;  

c) maintain the valve V13 open while the condition 

h1(k) > h3(k) is true. 

 

All the three fault scenarios have been tested, and the results are presented later. Four 

experiments are shown. A fault is detected if the SPE computed based on the NROP residual 

exceeds the thresholds. The thresholds have been computed according to a three sigma limit 

approach given by [µ − 3σ; µ + 3σ]. Here, the mean value µ and the standard deviation σ  

obtained are given by [µ σ] = [1.2×10-5 2.4×10-5].  

 

5.11.3.1 Experiment for fault F3 without reconfiguration 

In the first experiment, the faulty scenario F3 is tested, the fault is detected and diagnosed, and 

the system reconfiguration is not performed. The main idea, of this experiment without 

reconfiguration, is to understand what the main symptoms associated with this fault scenario 

are, and also to evaluate the performance of the FDD approach for the whole experiment. The 

other experiments are performed for each faulty scenario. After the correct fault detection and 



isolation, the supervisor takes the appropriate actions to reconfigure the control system in 

order to tolerate the faults and guarantee that the severe faults do not cause failures, i.e., the 

interruption of the system's ability to perform the required goal. 

 

Fig. 5.52 - FDD signals for fault F3 without reconfiguration. 

 

In Fig. 5.52, the input-output and FDD signals for the fault scenario F3 can be observed, i.e., a 

leak in tank T1 simulated by valve V1L open. The reconfiguration is not performed here. This 

fault is the one that requires more reconfiguration actions, as described in Tab. 5.4. 

A white noise with variance 1×10-8 has been added to the model output, simulating the sensor 

noise. The dynamics of the actuators (water pumps) and sensors have not been considered. 

The reference signal for level in tank T1 is r(k) = 0.83, corresponds to a real value of 0.5 m, 

and a white noise (dither with variance 1×10-4) was added to it. The signal y(k) = h1(k) 
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represents the level on tank T1, and u(k) is the water flow from pump P1, q1(k) = u(k), i.e., the 

input control signal. During the start-up and for up to 120 s, the PI controller is the active 

controller. Afterwards, the supervisor switches to the adaptive LQG controller. When the fault 

occurs the actuator saturates. In the figure, two false alarms can also be observed in the graph 

of am(k), due to a violation of the thresholds for nominal operation. The fault occurs at time 

instant tk = 360 s, as indicated by the trigger signal depicted in dotted line in the graph (label 

“am”). The last graphs show the fault detection signal fd(k), the fault isolation signal fi(k) and 

the fault analysis signal fa(k) (not considered here). The fault detection delay is 6.7 s, and the 

isolation delay is 36 s.  

 

Fig. 5.53 - Flows and valves positions for fault F3 without reconfiguration. 
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Fig. 5.53 shows the main flows and valves positions. In the first graph the water level in each 

tank is depicted. Since, after the fault occurrence, the level h1(k) (red line) tends to a value of 

around 0.5, the level h3(k) (blue line) tends to a small value of around zero because the 

connecting pipes are placed at the bottom and at a height of 30 cm (at the middle of the tank). 

The next signal is the discrete level h3d(k) at the central tank T3. The water flows from each 

pump are depicted in the next graph, q1(k) in solid line and q2(k) in dotted line. The ARX 

model parameters {a1(k), a2(k), b1(k)} (lines: blue, green and red), used by the adaptive LQG 

controller, are shown in the next graph (“th-yu”). The next three graphs show the positions of 

valves V1, V13 and V32. The last graph shows the water leakage flow qk1(k) through valve V1L; 

this value has been scaled dividing it by the maximum flow Qmax  for each pump. 

 

Fig. 5.54 - Residuals of NROP for fault F3 without reconfiguration. 
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Fig. 5.54 shows in the first graph the reference signal (red line) and the input-output signals 

(green line and blue line, respectively). Next the residuals ri(k) for each neural NROP 

predictor appear. In nominal operation, the residual r0(k) is approximately zero and the 

smallest. When fault F3 occurs, the residual r3(k) becomes the smallest, and consequently its 

square of prediction error (SPE) also becomes the smallest. 

A fault is detected if the SPE of the residual r0(k), i.e. the signal q0(k) (equal to s0(k)) violates 

the thresholds (red lines). The fault isolation is performed according to the smallest SPE. The 

oscillations of the residual r3(k) of the NROP predictor tuned to fault F3 occur because the 

NROP gain Kn = 1.2 is high, a value greater than the value (Kn = 0.1) of the others. 

 

The next experiments show results for the reconfiguration problem for all the fault scenarios.  

In all cases, after fault detection and isolation the supervisor deactivates the FDD tasks until 

the end of the experiment. It is assumed that no more faults occur. 

 

5.11.3.2 Experiment for fault F1 with reconfiguration 

First, the results obtained for the fault scenario F1, valve V1 closed and blocked, are shown in 

Fig. 5.55. 

From top to bottom, the reference signal r(k), the output signal y(k) = h1(k), and the input 

signal u(k) = q1(k), all for tank T1, in scaled values between [0; 1], can be observed. Next the 

fault alarm signal am(k) and the fault detection signal fd(k) appear. The other graphs show the 

fault isolation signal fi(k), and the fault analysis signal fa(k) not evaluated here. 

The fault occurs at time instant tk = 360 s, the detection delay is 2.5 s, and the isolation delay 

is 20.1 s. 

Some false alarms that provoke some false detections can be seen, but the isolated fault 

remains the fault F0 (nominal behaviour) since the NROP associated has the smallest output 

residual. 

Here, the true isolation only is performed if the isolation signal, fi(k), is inside a band of 5% of 

the isolated fault value during 5 s; this strategy avoids wrong isolations that occur at the 

beginning of some faults. This means that the true fault isolation occurs at time instant 

tk = 380.1 s. 

 



 

Fig. 5.55 - FDD signals for fault scenario F1 with reconfiguration. 

 

The system reconfiguration takes place immediately after fault isolation, i.e., around 380.1 s. 

The reconfiguration tasks are the setting of a new set-point (0.2 m) given by 0.33 in scaled 

value, and to open the valve V13, as depicted in Fig. 5.56.  

In the first graph the water level in each tank is depicted. Each water level h1(k), h2(k) and 

h3(k) is represented, respectively, by the red line, the green line and the blue line. The next 

signal is the discrete level h3d(k) at tank T3. The water flows from each pump are depicted in 

the next graph, q1(k) in solid line and q2(k) in dotted line. The ARX model parameters 

{a1(k), a2(k), b1(k)}, used by the adaptive LQG controller, are shown in the graph with label 

th-yu. The next three graphs show the positions of valves V1, V13 and V32. The last graph 
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shows the water leakage flow qk1(k) through valve V1L; this value has been scaled dividing it 

by the maximum flow Qmax  of each pump. 

 

 

Fig. 5.56 - Flows and valves positions for fault F1 with reconfiguration. 

 

For the fault scenario F1 the results obtained are good, since the fault tolerant control system 

tolerates the severe fault and guarantees that this fault does not cause a failure, i.e., the 

interruption of the system's ability to perform the required goal. In fact, the water level in the 

central tank T3 never reaches the zero value and this guarantees the water supply for the 

consumers. 
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5.11.3.3 Experiment for fault F2 with reconfiguration 

The results obtained for the fault scenario F2 are presented later. 

For the fault scenario F2, valve V1 open and blocked, the input-output and FDD signals are 

depicted in Fig. 5.57. From top to bottom can be seen the reference signal r(k), the output 

signal y(k) = h1(k), and the input signal u(k) = q1(k), all for tank T1, in scaled values between 

[0; 1]. Next the fault alarm signal am(k) and the fault detection signal fd(k) appear. The other 

graphs show the fault isolation signal fi(k), and the fault analysis signal fa(k) not evaluated 

here.  

 

Fig. 5.57 - FDD signals for fault scenario F2 with reconfiguration. 

 

The fault occurs at time instant tk = 360 s, the detection delay is 7.1 s, and the isolation delay 

is 18.1 s. Here, the true isolation only is performed if the isolation signal, fi(k), is inside a band 
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of 5% of the isolated fault value during 5 s; this strategy avoids wrong isolations that occur at 

the beginning of some faults. This means that the true fault isolation occurs at time instant 

tk = 381.1 s. After fault detection and isolation the supervisor deactivates these tasks until the 

end of the experiment. 

 

Fig. 5.58 - Flows and valves positions for fault F2 with reconfiguration. 

 

The system reconfiguration takes place immediately after fault isolation, i.e., around 381.1 s. 

The reconfiguration tasks are the setting of a new set-point (0.4 m) given by 0.67 in scaled 

value, as depicted in Fig. 5.58. In the first graph the water level in each tank is depicted. Each 

water level h1(k), h2(k) and h3(k) is represented, respectively, by the red line, the green line 

and the blue line. The next signal is the discrete level h3d(k) at tank T3. The water flows from 
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each pump are depicted in the next graph, q1(k) in solid line and q2(k) in dotted line. The ARX 

model parameters {a1(k), a2(k), b1(k)}, used by the adaptive LQG controller, are shown in the 

graph with label “th-yu”. The next three graphs show the positions of valves V1, V13 and V32. 

The last graph shows the water leakage flow qk1(k) through valve V1L; this value has been 

scaled dividing it by the maximum flow Qmax  of each pump. 

 

Fig. 5.59 - SPE signals for fault F2 with reconfiguration. 

 

The FDD approach used in this experiment is based on a bank of neural recurrent output 

predictors (NROP), and the detection occurs when the SPE signal, computed from the NROP 

residual, exceeds the thresholds. The isolation criterion is given by the smallest SPE signal. 

The SPE signals for all NROP residuals are shown in Fig. 5.59. It can be seen that, a certain 

time after fault occurrence, the SPE signal (red line) associated with the NROP predictor 

tuned to fault F0 changes from a small value, around zero, to a value greater than one, and 

consequently the fault is detected since the thresholds are exceeded. The SPE signal (blue 

line) for the NROP tuned to fault F2 tends to zero, becomes the smallest and consequently 

fault F2 is the isolated fault. As expected, the SPE signal (magenta line) for fault F3 exhibits 

the highest variance since the associated NROP gain is given by Kn = 1.2, a value much 

greater than the other gains (Kn  = 0.1). 
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5.11.3.4 Experiment for fault F3 with reconfiguration 

The results obtained for the fault scenario F3 are shown later. For the fault scenario F3, valve 

V1L is open (simulating a leak in tank T1). In Fig. 5.60 the input-output and the fault detection 

and isolation signals are depicted. For this fault it is necessary to use the redundant hardware 

(tank T2 and pump P2). The first graph shows the reference signal r(k). Next the output (level) 

signal y(k) = h1(k) and the input (control) signal u(k) = q1(k) for tank T1 appear. Then the fault 

alarm signal am(k), the fault detection signal fd(k), and the fault isolation signal fi(k) are 

shown. The last signal fa(k) is zero because the fault analysis is not performed here. The fault 

occurs at time instant tk = 360 s, and the detection delay is 6.5 s. The isolation delay is 42.5 s, 

i.e., fault is well isolated at time tk = 402.5 s.  

 

Fig. 5.60 - FDD signals for fault scenario F3 with reconfiguration. 
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Fig. 5.61 - Flows and valves positions for fault F3 with reconfiguration. 

 

In Fig. 5.61 the flows and the valves positions signals are depicted. Each water level h1(k), 

h2(k) and h3(k) is represented, respectively, by the red line, the green line and the blue line. 

Since there is a leak in tank T1, the supervisor adjusts the level set-point on this tank to zero 

after fault isolation. Since a small white noise dither is added to the set-point signal, this 

means that the new set-point for tank T1 is not absolute zero, but a small value near zero. This 

dither is enough to guarantee the persistent excitation conditions for the LQGC, as seen in the 

graph “th-yu” of the ARX model parameters. This explains the small control action, q1(k) 

(solid line), that appears on the third graph. The supervisor activates the redundant hardware, 

and consequently a PI controller becomes active to control the level h2(k) of tank T2. The third 
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graph also shows the control action, q2(k), in dotted (blue) line. The gains of the PI controller 

are the same used for the PI controller acting on the start-up on tank T1, i.e., Kp = 1 and 

Ti = 0.8 s. The other graphs show the valves positions and, finally, the last graph shows the 

leak flow through the valve V1L that tends to zero. 

 

Remarks. 

The fault tolerance in dynamic systems is a very important subject in critical systems like 

nuclear plants, communications systems, aeronautics, chemical and power plants, supplying 

systems, etc. In fact, the three-tank benchmark system emulates a critical system, i.e., a 

supplying system. 

The control reconfiguration problem under severe structural faults, considered in this section, 

belongs to the set of complex problems in the FTC research area, since severe faults are easy 

to identify but difficult to correct. 

The experiments carried out with the three-tank benchmark show a good FDD/FTC 

performance. For each fault, the detection delay and the isolation delay are reasonable due to 

the slow dynamics of the three-tank system. The values are summarized in Tab. 5.5. 

 

Tab. 5.5 - Detection delays and isolation delays for all faults. 

 

 Detection delay [s] Isolation delay [s] 

Fault scenario F1 2.5 20.1 

Fault scenario F2 7.1 18.1 

Fault scenario F3 6.5 42.5 

 

The fault detection and diagnosis approach based on a bank of neural recurrent output 

predictors (NROP), proposed in this work, reveals a good performance to deal with these 

severe structural faults, and shows to be efficient to deal with MISO systems. 

The fault tolerant control strategy proposed in this work for the three-tank benchmark 

problem has shown to be effective. The adaptive optimal LQG controller performs well for 

the different fault scenarios, using a fixed design parameter, r0 = 0.03. A better control 

performance is expected if the design parameter, r0, is adjusted on-line to each faulty scenario.  

The dither on the reference signal has been used to guarantee persistent excitation conditions, 

needed for the on-line estimation of the ARX model used by the LQG controller. 
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5.12 Conclusions 

The experiments are a great help in understanding and validating the theory. The practice 

helps to understand the advantages and drawbacks of the theory better. In research, both 

theory and practice must interact for mutual development.  

In this chapter, experimental results applying the fault detection and diagnosis approaches 

proposed in this dissertation have been presented. The experiments have been performed 

using process models and a real nonlinear DC motor setup. In this work, many examples were 

given based on simulation models. Mainly, three reasons support this option: a) the simulation 

models allow the validation of the approaches and algorithms; b) the simulation models offer 

more flexibility for faults testing; c) the simulation saves considerable time. 

 

The various experiments performed throughout the work have shown that black-box models 

have a great potential for fault detection and diagnosis. Most industrial plants are complex 

systems, and consequently white box models are not available, or are hard to obtain. In the 

majority of plants, the FDD approaches based on black-box models are the only solution for 

FDD purposes. In this work the new FDD approaches proposed are based on linear ARX 

models and nonlinear NARX neural models. 

The FDD approaches have been explained assuming the existence of a single fault, but they 

can also be applied to the case of simultaneous faults. 

The assumption of normality for the data is particular important to compute thresholds used 

for fault detection and fault diagnosis. In this work, the assumption of normality for the FDD 

features signals, under nominal operating conditions, is a reasonable assumption. In this work, 

the fault detection and isolation signals are low pass filtered to reduce the false alarm rates. If 

necessary, the thresholds obtained assuming the data is normally distributed can be 

experimentally adjusted to guarantee a reasonable FDD performance in terms of ratio of false 

alarms. 

The performance of the FDD approaches proposed depends strongly on the quality of the 

black-box models. So, efficient system identification methods are necessary. The proposed 

sliding window SW-PCR parameter estimation algorithm proved to be efficient, and better for 

FDD than the recursive RLS algorithm. The on-line identification of ARX process models 

requires good persistent excitation conditions (PEC). To guarantee the PEC a dither signal has 

been added to the reference signal, provoking an increase on the control error; typical values 

obtained for the maximum control error are around 4 % of the set-point signal, for a set-point 

in the range [0; 1]. 
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The approaches based on on-line system identification use the sliding window SW-PCR 

parameter estimation algorithm. Since for a sliding data-window with length τ, one knows 

that the transient following a parameter jump lasts exactly τ - 1 samples, then the isolation 

delay cannot be smaller than the window length of the algorithm SW-PCR. In the experiments 

a window length of 10 s was used, except for the case of the three-tank benchmark where the 

value is 20 s. 

The FDD approaches based on nonlinear NARX neural models presents a good performance. 

Nonlinear FDD is usually more difficult than linear FDD, since nonlinear models are hard to 

obtain. The neural networks have shown a great potential to perform the different tasks of 

output prediction, nonlinear principal components analysis and nonlinear discriminant 

analysis. In fact, they are a key element in this work, since they are used in most of the new 

FDD approaches proposed. 

In the literature, some authors argue that typically the fault detection task is simpler than the 

fault diagnosis task. In this work, the experiments confirm this statement. 

 

The results obtained with the proposed fault detection and diagnosis approach, for SISO 

systems, based on dynamic features (static gain and bandwidth) of ARX models have shown a 

good performance, for the class of faults tested on a model of a DC motor. The greater 

number of faults tested have been multiplicative (parametric) faults, but this approach can 

also detect and diagnose additive faults. Both input-output ARX models Myu(θ) and reference-

output ARX models Myr(θ) can be used for FDD. There are two main advantages of models 

Myr(θ): a) enables faults on the process and also on the controller to be detected; b) usually 

exhibits smaller variances on the estimated parameters.  

The sliding window PCR algorithm presents a good performance, since the estimates are 

consistent. The performance of this type of approach based on system identification depends 

strongly on the the variance of the estimated parameters of the ARX model. This variance is a 

function of the sensor noise variance and also of the persistent excitation conditions. The 

variance of the parameters increases if there is an increase on the sensor noise variance and/or 

a degradation of the persistent excitation conditions. 

In the experiments performed the bandwidth signal shows a greater variance than the static 

gain signal. The estimated static gain has shown to be a better feature for fault isolation. 

In this approach, the features space for FDD is a two dimensional features space given by the 

static gain and the bandwidth. The neural nonlinear discriminant analysis (NNLDA) gives 

good results for pattern classification used for fault detection and isolation.  
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The fault detection and diagnosis approach based on the combined approach PCA & IMX has 

been tested on a DC motor model. Both input-output ARX models Myu(θ) and reference-

output ARX models Myr(θ) can be used for FDD.  

PCA is a good technique for fault detection, but for diagnosis statistical techniques (Fisher 

Discriminant Analysis, NNLDA) are more appropriate since they take into account the 

information between the classes. The results obtained with the fault detection approach based 

on PCA applied to ARX model parameters are reasonably good, taking into consideration that 

the data does not obey a perfectly normal distribution. The deviations from normality require 

an adjustment of the threshold computed for the T2 statistics based on the rate of false alarms 

obtained from experiments. The SPE computed from the PCA residual was monitored using a 

three sigma limit approach based on a Shewhart chart. For most applications two or three 

principal components are sufficient to retain in a PCA model to perform the tasks of fault 

detection. In the experiments carried out in this work, only two principal components, a = 2, 

are retained by the PCA model. In the fault detection approach, fault alarms are generated if 

there is a violation of the thresholds for the T2 statistics or the Q statistics, since some faults 

are better detected using the T2 statistics and others by the Q statistics. 

With respect to fault diagnosis using the influence matrix method, the performance of this 

method depends strongly on the multi-linearity relations between model parameters and 

physical parameters. Even for linear systems, the relations between model parameters and 

physical parameters are only approximately linear for small deviations from the nominal 

values, as shown by the experimental results. Assuming consistent parameter estimates, if 

there is a strong nonlinear relation between model parameters and physical parameters then a 

degradation of the performance of the fault diagnosis IMX method occurs. This is due to the 

fact that the influence matrix assumes that the relations are linear. 

 

Good results have been obtained with the FDD approach based on a bank of neural recurrent 

output predictors (NROPs). This nonlinear FDD approach has been tested on a DC motor 

model, on a real DC motor and on the three tank benchmark. This FDD approach, based on 

input-output data, is more appropriate for additive faults, for some multiplicative faults, and 

for some faulty cases where other approaches normally fail, like situations of saturations, 

structural faults and output oscillations. 

The great potential of this FDD approach comes from the fact that each neural NROP 

predictor contains an embedded neural model that is able to capture nonlinear dynamic 

behaviours. The performance of this FDD approach depends strongly on the quality of the 
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embedded neural output predictor models. The gain Kn of the NROP predictor is a key 

element since allows to guarantee the stability and to adjust the convergence properties. The 

design parameter, Kn, allows to settle the magnitude of the output prediction error, and 

consequently the fault detection and isolation performance. 

 

The nonlinear approach to fault detection and diagnosis based on neural nonlinear principal 

components (neural NLPCA) combined with the pattern recognition method based on neural 

nonlinear discriminant analysis (neural NNLDA) reveals a good performance for the majority 

of faults considered. If the input-output signals are the data then the FDD approach is more 

appropriate to detect and diagnose additive faults. For the case of data containing ARX model 

parameters, the FDD approach is more suitable to deal with multiplicative (parametric) faults. 

In order to obtain a reasonable performance, the parameter estimation algorithm must give 

parameter estimates with small variances, and the patterns for each fault must be well 

separated in the features space. Sometimes model parameters with small variances cannot be 

obtained due to weak persistent excitation conditions and also to non modeled dynamics. 

 

In all the FDD methods proposed, the fault detection and isolation signals have been low pass 

filtered. The low pass filters are a key element, since they allow the avoidance of false 

detections and wrong isolations that sometimes occur on the transients. In order to improve 

the reliability of FDD systems, information obtained from different methods must be 

combined in order to increase the overall robustness (Isermann, 1997; Palma, et al., 2002a).  

 

The control reconfiguration problem under severe structural faults belongs to the set of 

complex problems in the FTC research area, since severe faults are easy to identify but 

difficult to correct. The experiments carried out with the three-tank benchmark showed good 

results. For each fault, the detection delay and the isolation delay are reasonable due to the 

slow dynamics of the three-tank system.  

The proposed FDD methodology based on a bank of neural recurrent output predictors 

(NROPs) reveals a good performance to deal with severe structural faults. The fault tolerant 

control strategy proposed in this work for the three-tank benchmark problem showed to be 

effective. The adaptive optimal LQG controller performs well for the different fault scenarios, 

using a fixed design parameter, r0 = 0.03. A better control performance is expected if the 

design parameter, r0, is adjusted on-line to each faulty scenario.  The dither on the reference 

signal has been used to guarantee persistent excitation conditions, needed for the on-line 

estimation of the ARX model used by the LQG controller. 
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6 Conclusions and Future Work 
 

Fault tolerant systems must guarantee that faults do not cause drastic failures (L. B. Palma). 

 

6.1 Conclusions 

From a theoretical point of view, a white-box model is more desirable to perform the fault 

detection and diagnosis (FDD) tasks, but in most cases it is very hard, or even impossible, to 

obtain. When the systems are complex, or hard to model, modelling based on black-box 

models is usually a good, and the only, alternative. 

In this dissertation, new on-line model-based fault detection and diagnosis (FDD) approaches 

have been proposed for linear and nonlinear dynamic systems. The FDD approaches are based 

on linear ARX models and nonlinear neural NARX models, using system identification 

techniques. In general, low order models are appropriate for fault detection and diagnosis, 

while high order models are more suitable for control. 

One of the main ideas underlying the research carried out is the detection and diagnosis of 

faults in continuous time systems via the analysis of the effect on the parameters of the 

discrete time black-box models or related features. 

The experience acquired throughout this work has shown that, in most of the situations, a 

combination of different FDD methodologies is necessary to implement practical and robust 

approaches. The model-based FDD methodologies proposed integrate different methods: 

analytical, data-based and knowledge-based. 

Many authors argue that the parity equations and observers are most suitable for detection of 

abrupt additive faults, and the parameter identification is more appropriate to detect 

parametric faults. In fact, this statement has been confirmed by experiments in this work. 

Abrupt faults have been considered in this work, but if the aim is to detect small persistent 

process shifts, then the cumulative sum (CUSUM) and the exponentially-weighted moving 

average (EWMA) charts are more appropriate than the Shewhart charts. 

The neural networks of type multi-layer perceptron feed-forward (MLP-FF) have shown a 

great potential to perform the different tasks of output prediction, nonlinear principal 

components analysis and nonlinear discriminant analysis. In fact, they are a key element in 

this work, since they are used extensively for fault detection and isolation. 
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The effectiveness of the new FDD approaches has been verified by some experiments, and 

work well in real-time operation. 

 

Most of the FDD approaches need an on-line estimation of ARX parameters, so they need 

good persistent excitation conditions and acceptable levels of noise. In this work a sliding 

window (SW-PCR) algorithm for parameter estimation based on principal component 

regression was proposed that reveals a good performance. The sliding window algorithms are 

more appropriate for FDD than the recursive algorithms, and this was proved based on 

various experiments. 

The FDD approaches have been explained assuming the existence of a single fault, but they 

can also apply to the case of simultaneous faults. Most of the approaches described for SISO 

systems can be extended to MIMO systems. It is straightforward to include more faults on the 

FDD approaches proposed. 

Many authors argue that to solve FDD problems in real applications, it is necessary to 

combine different FDD methodologies. The new FDD approaches proposed have been 

inspired by this idea and confirm this need. 

 

The assumption of normality for the data is particularly important to compute thresholds used 

for fault detection and fault diagnosis. In this work, the assumption of normality for the FDD 

features signals, under nominal operating conditions, is a reasonable assumption. To reduce 

the false alarm rates in this work the fault detection and isolation signals are low pass filtered. 

If necessary the thresholds obtained assuming the data is normally distributed can be 

experimentally adjusted to guarantee a reasonable FDD performance in terms of rate of false 

alarms. 

 

In all the FDD methods proposed the fault detection and isolation signals, residuals, fault 

alarms, etc, have been low pass filtered. The low pass filters are a key element in the FDD 

methods, since they allow the adjustment of the rate of false alarms, avoid false detections and 

wrong isolations that sometimes occur on the transients. Assuming a first order digital filter, 

the pole location λ must be chosen in order to obtain a desired trade-off between the rate of 

false alarms Ψfa, the rate of missed fault detections Ψfm, the detection delay dd and the 

isolation delay di. 

 

For industrial plants where the control input signals u are not available, and assuming that 

only the output signals y and the reference signals are available, then reference-output ARX 
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models Myr(θ) must be used, instead of input-output ARX models Myu(θ). In some industrial 

processes the controllers are local, and the input signal u is not available for the supervisor 

system. Since the FDD approaches proposed can use both ARX models, Myu(θ) and Myr(θ), 

they can also be applied in these situations. The ARX models Myr(θ) can be used not only for 

fault detection and diagnosis, but also for analysis of the closed-loop dynamic performance. 

 

The new fault detection and diagnosis methodology proposed based on dynamic features 

(static gain and bandwidth) of ARX models has been applied to SISO systems, and have 

shown good efficiency for the detection and diagnosis of multiplicative (parametric) faults. 

Both input-output ARX models Myu(θ) and reference-output ARX models Myr(θ) can be used 

for FDD. This approach can also detect and diagnose additive faults, and be extended to deal 

with nonlinear SISO systems. The neural nonlinear discriminant analysis NNLDA approach 

proved to be efficient for the task of pattern classification, except for the situations of fault 

patterns superimposed. The discriminant analysis NNLDA allows the definition of decision 

boundaries, in a features space of any order, and proved to be more efficient for FDI than the 

geometrical techniques.  

 

The combined FDD approach, for linear systems, using principal components analysis (PCA) 

for fault detection and the influence matrix (IMX) method for fault diagnosis showed a 

reasonable performance in terms of detection and diagnosis of multiplicative (parametric) 

faults. It can be used also to detect additive faults. It has been formulated for SISO systems, 

but is straightforward to extend it to deal with MIMO systems. Both input-output ARX 

models Myu(θ) and reference-output ARX models Myr(θ) can be used for FDD. This combined 

FDD approach needs good persistent excitation conditions in order to obtain consistent 

parameter estimates. 

PCA is a good technique for fault detection, but for fault diagnosis geometrical approaches or 

statistical approaches like discriminant analysis (Fisher FDA, NNLDA) are more appropriate. 

The results obtained with the PCA applied to ARX model parameters are reasonably good, 

taking into consideration the fact that the data does not obey a perfectly normal distribution. 

For most applications, two or three principal components are sufficient to retain in a PCA 

model to perform the tasks of fault detection. Here a three dimensional features space 

composed by two principal components and the SPE have been used for fault detection. Many 

authors argue that for most type of applications only two or three dimensional scores and the 
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SPE signal (based on the PCA residual) are sufficient for monitoring or FDD. The 

experiments carried out in this work confirm this statement.  

The calculation of statistical thresholds for fault detection and isolation using PCA, based on 

the T2 statistics and the three sigma limit, was made assuming that data obeys approximately 

a normal distribution; when necessary, a correction term was used to minimize the effects of 

non-perfect normality. 

With respect to fault diagnosis using the influence matrix method, the performance of this 

method depends strongly on the multi-linearity relations between model parameters and 

physical parameters. Even for linear systems, the relations between model parameters and 

physical parameters are only approximately linear for small deviations from the nominal 

values, as shown by the experimental results. Assuming consistent parameter estimates, if 

there is a strong nonlinear relation between model parameters and physical parameters then a 

degradation of the performance of the fault diagnosis IMX method will occur. This is due to 

the fact that the influence matrix method assumes that the relations are linear. 

 

The neural recurrent output predictor (NROP) proposed presents a good performance if the 

embedded neural predictor model is good enough. A good predictor model needs informative 

data and a good training algorithm. The Levenberg-Marquardt optimization algorithm has 

been used for neural network training and has shown a good performance. 

Good results have been obtained with the FDD approach based on a bank of neural recurrent 

output predictors (NROPs). This nonlinear FDD approach, based on input-output data, is 

more appropriate for additive faults, for some multiplicative faults, and for some faulty cases 

where other approaches normally fail, like situations of saturations, structural faults and 

output oscillations. The square of prediction error, computed based on the NROP residual, 

was used for fault detection and isolation and has been shown to be a good feature. The gain 

Kn of the NROP predictor is a key element since it allows to guarantee the stability and to 

adjust the convergence properties. The design parameter, Kn, allows to settle the magnitude of 

the output prediction error, and consequently the fault detection and isolation performance. 

This approach can also deal with time-varying systems. 

 

For detection and diagnosis of faults on nonlinear systems, the combined approach using 

neural nonlinear principal components (neural NLPCA) and neural nonlinear discriminant 

analysis (neural NNLDA) performs well for the class of faults tested. The NLPCA is applied 

to the parameters of ARX models estimated on-line, so this FDD method is most suitable to 

deal with multiplicative (parametric) faults, but it can also be used to detect some kinds of 



 233

additive faults. The neural networks in this approach play a crucial role since they are used for 

both the generation of features, and for the tasks of fault detection and diagnosis. The features 

are the nonlinear scores (in two dimensions) and the square of prediction error, and these 

features are used for FDD purposes using a pattern classification approach based on neural 

NNLDA. This approach can also deal with time-varying systems. 

 

For control linear systems, a PI controller has been used, while for nonlinear systems an 

adaptive optimal linear Gaussian controller (LQGC) was used. The interaction between 

controller and fault detection and diagnosis is an important subject. For the FDD approaches 

based on system identification this is particularly important, since the FDD methods require 

persistent excitation conditions and these conditions must be guaranteed by the controller. 

Some faults cause saturations on the sensors and on the actuators and this leads to poor 

persistent excitation conditions. Most of the proposed FDD approaches can be applied in 

systems that tolerate a small control error, around 4 % of the set-point. This control error is 

due to the dither added to the reference signal. For the case of adaptive controllers, also based 

on system identification, some faulty situations cause abrupt changes on the model parameters 

and this can provoke situations of failures. These failures are situations where the adaptive 

controller degrades its performance and can no longer guarantee a small control error. To 

solve some of these faulty cases, it is necessary to implement strategies based on fault tolerant 

control. 

 

The main advantage of Fault Tolerant Control (FTC) over other fault tolerance methods is the 

fact that it makes intelligent use of the redundancies included in the system, and the 

information about the system in order to increase the availability of the system. No method 

can guarantee a complete description of all possible system faults; hence no 100 % fault 

tolerance is possible. For many applications, only the most critical faults must be investigated 

and tolerated. In some cases, FTC methods cannot be sufficiently tested in operation because 

under practical circumstances it is usually impossible to inject some faults in the plant in 

order to test the reaction, so for these cases the simulation of faulty behaviours plays a very 

important role. Small faults are difficult to detect but easy to correct, whereas severe faults are 

easy to identify but difficult to correct. 

In this work, the fault tolerance problem was investigated centred on the point of view of the 

reconfiguration problem. Reconfiguration is usually needed when severe faults occur. The 

control reconfiguration problem under severe structural faults, considered in this work, 

belongs to the set of complex problems in the FTC research area, since severe faults are easy 
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to identify but difficult to correct. Good results were obtained with the three-tank benchmark. 

For each fault, the detection delay and the isolation delay are reasonable due to the slow 

dynamics of the three-tank system. The FDD approach based on a bank of neural recurrent 

output predictors (NROPs) reveals a good performance to deal with severe structural faults. 

The fault tolerant control strategy proposed in this work for the three-tank benchmark 

problem has shown to be effective. The adaptive optimal LQG controller performs well for 

the different fault scenarios, using a fixed design parameter, r0 = 0.03. A better control 

performance is expected if the design parameter, r0, is adjusted on-line to each faulty scenario. 

 

It is expected that the application of the new FDD methodologies proposed in this dissertation 

in real industrial plants will improve the overall reliability, and reduce the down-time. 

Finally, it must be emphasized that in many critical fault tolerant systems the last decision 

belongs to the human (operator or engineer). In many cases, the supervisory systems 

including fault detection and diagnosis systems usually help people to take a decision about 

whether to shutdown a plant or not, or to take another action in a certain faulty situation. 

 

6.2 Future Work 

The combination of different approaches for fault detection and diagnosis (FDD) was 

particularly emphasized in this work, and is certainly one of the most promising ways for 

future research. One possibility is the combination of some FDD methodologies proposed, for 

example, FDD based on a bank of NROPs and FDD based on NLPCA-NNLDA. The 

combination of intelligent techniques (neural networks and fuzzy logic) for fault detection and 

diagnosis, and fault tolerant systems, is also a promising research area. The combination of 

different FDD approaches allows the detection and diagnosis of a greater class of faults. 

A subject that needs more investigations is the definition of adequate thresholds, particularly 

for data that do not obey the normal distribution. 

Abrupt faults have been considered in this work, but if the aim is to detect small persistent 

process shifts, then the cumulative sum and the exponentially-weighted moving average 

charts are more appropriate than the Shewhart charts. The detection of small persistent 

process shifts is also a pointer for further research. 

One pointer for future research is the comparison of the sliding window algorithm SW-PCR 

proposed, with a fixed dimension window, and algorithms using variable forgetting factors.  
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The methods proposed in this dissertation can be used not only for FDD, but also to evaluate 

the controller performance. If reference-output ARX models, Myr(θ), relating the output signal 

and the reference signal are used, then not only the process dynamics can be evaluated but 

also the controller dynamics can be examined. This is another pointer to more research in the 

future. 

The influence matrix method assumes that linear relations between physical parameters and 

model parameters exist, but in practice this is not perfectly true. Future research can be done 

using a neural network for modeling the nonlinear relations between physical parameters and 

model parameters. 

One formal method to select the gain of the neural recurrent output predictor (NROP) 

proposed must be investigated in more deep, possibly using the small gain theorem. 

The area of fault tolerant control, requiring the FDD task, is a natural pointer to deep 

developments. The switching control is a subject that needs more research, particularly the 

study of the conditions to guarantee the stability of the closed-loop system. The remote 

network control is also an interesting area for theoretical research, and with an increasing 

number of industrial applications. The adaptive robust control techniques are also a promising 

are of research in the FTC context. There is a need for more research studies related to the 

interactions between system identification, control design, the fault detection and diagnosis 

stage and the fault tolerant control design strategies. 

In future research projects, with the collaboration of other researchers and engineers from 

industry, there are great expectations to apply the new proposed fault detection and diagnosis 

approaches to industrial plants (of MIMO type) in real-time operation. 
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Appendix A - Terminology in the Field of 

Supervision, Fault Detection and Diagnosis 
Some terminology given by Isermann & Ballé, based on the work within the IFAC 

SAFEPROCESS Technical Committee, is summarised in this Appendix, (Isermann & Balle, 

1997). 

By going through the literature, one recognizes immediately that the terminology in this field 

is not consistent. 

 

1) STATES and SIGNALS. 

 

Fault. An unpermitted deviation of at least one characteristic property or parameter of the 

system from the acceptable / usual / standard condition. 

 

Failure. A permanent interruption of a system's ability to perform a required function under 

specified operating conditions. 

 

Malfunction. An intermittent irregularity in the fulfilment of a system's desired function. 

 

Error. A deviation between a measured or computed value (of an output variable) and the true, 

specified or theoretically correct value. 

 

Disturbance. An unknown (and uncontrolled) input acting on a system. 

 

Perturbation. An input acting on a system, which results in a temporary departure from the 

current state. 

 

Residual. A fault indicator, based on a deviation between measurements and model-equation-

based computations. 

 

Symptom. A change of an observable quantity from normal behaviour. 
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2) FUNCTIONS. 

 

Fault detection (FDE). Determination of the faults present in a system, and the time of 

detection. 

 

Fault isolation (FIO). Determination of the kind, location and time of detection of a fault. 

Follows fault detection. The term fault classification is also used instead fault isolation. 

 

Fault identification (FID). Determination of the size and time-variant behaviour of a fault. 

Follows fault isolation. The term fault analysis is also used instead of fault identification.  

 

Fault diagnosis (FDG). Determination of the kind, size, location and time of detection of a 

fault. Follows fault detection. Includes fault isolation and identification. 

 

Monitoring. A continuous real-time task of determining the conditions of a physical system, 

by recording information, recognising and indicating anomalies in the behaviour. 

 

Supervision. Monitoring a physical system and taking appropriate actions to maintain the 

operation in the case of faults. 

 

Protection. Means by which a potentially dangerous behaviour of the system is suppressed if 

possible, or means by which the consequences of a dangerous behaviour are avoided. 

 

3) MODELS. 

 

Quantitative model. Use of static and dynamic relations among system variables and 

parameters, in order to describe a system's behaviour in quantitative mathematical terms. 

 

Qualitative model. Use of static and dynamic relations among system variables and 

parameters, in order to describe a system's behaviour in qualitative terms such as causalities 

or if-then rules. 

 

Diagnostic model. A set of static or dynamic relations which link specific input variables - the 

symptoms – to specific output variables - the faults. 
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Analytical redundancy. Use of two or more (but not necessarily identical) ways to determine a 

variable, where one way uses a mathematical process model in analytical form. 

 

4) SYSTEM PROPERTIES. 

 

Reliability. Ability of a system to perform a required function under stated conditions, within 

a given scope, during a given period of time. Measure: MTBF = Mean Time Between 

Failures. MTBF = 1 / λ ; λ  is a rate of failure (e.g. failures per year). 

 

Safety. Ability of a system not to cause danger to persons or equipment or the environment. 

 

Availability. Probability that a system or equipment will operate satisfactorily and effectively 

at any point of time. Measure: A = MTBF / (MTBF + MTTR). MTTR = 1 / µ is the Mean 

Time To Repair; µ is the rate of repair. 

 

Dependability. A form of availability that has the property of always being available when 

required. It is the degree to which a system is operable and capable of performing its required 

function at any randomly chosen time during its specified operating time, provided that the 

item is available at the start of that period. The dependability is expressed by 

D = Time available / (Time available + Time required). 

 

Other terminology in this field can also be found in the papers (Venkatasubramanian, et al., 

2003a & 2003b & 2003c). Terminology more related to Maintenance and Reliability can be 

found in the book (Assis, 2004). 
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