111 research outputs found

    Answer-Type Modification without Tears: Prompt-Passing Style Translation for Typed Delimited-Control Operators

    Full text link
    The salient feature of delimited-control operators is their ability to modify answer types during computation. The feature, answer-type modification (ATM for short), allows one to express various interesting programs such as typed printf compactly and nicely, while it makes it difficult to embed these operators in standard functional languages. In this paper, we present a typed translation of delimited-control operators shift and reset with ATM into a familiar language with multi-prompt shift and reset without ATM, which lets us use ATM in standard languages without modifying the type system. Our translation generalizes Kiselyov's direct-style implementation of typed printf, which uses two prompts to emulate the modification of answer types, and passes them during computation. We prove that our translation preserves typing. As the naive prompt-passing style translation generates and passes many prompts even for pure terms, we show an optimized translation that generate prompts only when needed, which is also type-preserving. Finally, we give an implementation in the tagless-final style which respects typing by construction.Comment: In Proceedings WoC 2015, arXiv:1606.0583

    Finally, a Polymorphic Linear Algebra Language (Pearl)

    Get PDF
    Many different data analytics tasks boil down to linear algebra primitives. In practice, for each different type of workload, data scientists use a particular specialised library. In this paper, we present Pilatus, a polymorphic iterative linear algebra language, applicable to various types of data analytics workloads. The design of this domain-specific language (DSL) is inspired by both mathematics and programming languages: its basic constructs are borrowed from abstract algebra, whereas the key technology behind its polymorphic design uses the tagless final approach (a.k.a. polymorphic embedding/object algebras). This design enables us to change the behaviour of arithmetic operations to express matrix algebra, graph algorithms, logical probabilistic programs, and differentiable programs. Crucially, the polymorphic design of Pilatus allows us to use multi-stage programming and rewrite-based optimisation to recover the performance of specialised code, supporting fixed sized matrices, algebraic optimisations, and fusion

    Typeful Normalization by Evaluation

    Get PDF
    We present the first typeful implementation of Normalization by Evaluation for the simply typed lambda-calculus with sums and control operators: we guarantee type preservation and eta-long (modulo commuting conversions), beta-normal forms using only Generalized Algebraic Data Types in a general-purpose programming language, here OCaml; and we account for sums and control operators with Continuation-Passing Style. First, we implement the standard NbE algorithm for the implicational fragment in a typeful way that is correct by construction. We then derive its call-by-value continuation-passing counterpart, that maps a lambda-term with sums and call/cc into a CPS term in normal form, which we express in a typed dedicated syntax. Beyond showcasing the expressive power of GADTs, we emphasize that type inference gives a smooth way to re-derive the encodings of the syntax and typing of normal forms in Continuation-Passing Style
    • …
    corecore