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Abstract
We present the first typeful implementation of Normalization by Evaluation for the simply typed
λ-calculus with sums and control operators:

we guarantee type preservation and η-long (modulo commuting conversions), β-normal forms
using only Generalized Algebraic Data Types in a general-purpose programming language,
here OCaml; and
we account for finite sums and control operators with Continuation-Passing Style.

Our presentation takes the form of a typed functional pearl. First, we implement the standard
NbE algorithm for the implicational fragment in a typeful way that is correct by construction.
We then derive its continuation-passing counterpart, in call-by-value and call-by-name, that maps
a λ-term with sums and call/cc into a CPS term in normal form, which we express in a typed,
dedicated syntax. Beyond showcasing the expressive power of GADTs, we emphasize that type
inference gives a smooth way to re-derive the encodings of the syntax and typing of normal forms
in Continuation-Passing Style.
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1 Introduction

A normalization function need not be reduction-based and rely on reiterated one-step reduction,
according to some strategy, until a normal form is obtained, if any. It can be reduction-
free, and, as pioneered by Berger and Schwichtenberg [15], one can obtain it by composing
an evaluation function (towards a non-standard domain of values) together with a left-
inverse reification function (towards normal forms). The concept of this ‘normalization by
evaluation’ (the term is due to Schwichtenberg [14]) arose in a variety of contexts: intuitionistic
logic [1, 21, 48], proof theory [15], program extraction [12], category theory [22, 53], models
of computation [40], program transformation [28], partial evaluation [24, 33], etc. [27]. It has
been vigorously studied since [8, 11, 43, 56].

A recent example of the power of normalization by evaluation (NbE for short) lies in the
new reduction engine developed by Boespflug et al. [16, 17] for the Coq proof assistant.1 It

1 The command Compute in Coq triggers a call to Coq’s reduction engine.
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improves the efficiency of proofs by reflection by an order of magnitude [4], and in Gonthier’s
words [38], proofs by reflection are what made it possible to prove the four-color theorem.

In this article, we propose a formalization of NbE for the simply-typed λ-calculus with
sums and control operators in the general-purpose language OCaml, in such a way that the
type system guarantees two key properties:

NbE produces normal forms: the resulting term is in η-long, β-normal form;
NbE is type-preserving: the type of the resulting term is the same as the type of the
source term.

These are guaranteed by OCaml’s subject reduction, provided that we stay in its purely
functional, terminating fragment (which is a meta-argument).

To address sums and control operators, we use Continuation-Passing Style (CPS for short)
in a novel way: we show that CPS-transforming the standard, typed NbE algorithm not only
leaves room for these constructs, but also lets us derive a syntax of CPS normal forms and its
typing rules. The resulting NbE program maps typed λ-terms to typed CPS normal forms.

Throughout, we use Generalized Algebraic Data Types (GADTs for short), a general-
ization of ML algebraic data types that allows a fine control on the return type of their
constructors [19, 54]. We use them not only to represent the types and the well-typed
terms of the simply-typed λ-calculus, but more interestingly to relate them to the types of
values and of normal forms. The use of GADTs inherently limits us to simply typed objects
languages, but our main motivation is to give a clean presentation of NbE for non-trivial
aspects of such languages.

Faithful formalizations of NbE in direct style already exist in languages with depen-
dent types like Coq or Agda [6, 13, 36, 42]. These complex languages already rely on an
implementation of normalization for type-checking, which is precisely what we embark on
implementing. Instead, we chose a general-purpose programming language featuring only
weak-head evaluation and type inference. Our programming language of discourse is OCaml,
which now provides support for GADTs [37], but we could have adopted any other functional
programming language with this feature, e.g., Haskell, as partly done by Danvy, Rhiger, and
Rose with type classes [32]. (We write “partly” because the “long” aspect of the resulting
η-long, β-normal forms needed a meta-argument.) Alternatively, we could have used any
other functional language by encoding GADTs [55] or by using some indirect representation
of terms as functions (“finally tagless”, phantom types, etc.) [18, 47]. Using GADTs, we can
keep representing syntax as algebraic data types, as customary. This conservative design
enables a methodology where the code is left essentially unchanged and only the types are
refined.

Outline. The remainder of this article is an incremental, literate programming exposition
of our implementation in the form of a typed functional pearl.2 We first recall and motivate
our starting points: the representation of types, terms, and values in OCaml, the standard
NbE algorithm for the implicational fragment in direct style, and GADTs (Section 2). We
annotate the standard NbE program to obtain a typeful implementation in direct style, that
we put to use for the partial evaluation of printf directives (Section 3). We CPS-transform
this typeful implementation, obtaining another typeful implementation that yields typed
normal forms in CPS (Section 4). This continuation-passing typeful implementation is ready
to be extended with sums and control operators.

2 We will however allow ourselves to pedagogically reorder some code snippets. The full code is currently
available at cs.mcgill.ca/~puech/typeful.ml.
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74 Typeful Normalization by Evaluation

2 Background

2.1 Deep and shallow embeddings
Since NbE manipulates types, terms and values of the λ-calculus, we need to represent all of
them in our programming language of discourse, OCaml. When embedding a language into
another, one has essentially two options: a deep embedding or a shallow embedding.

In a deep embedding, to each construct of the language corresponds a constructor of a
data type; we have access to the structure of terms, and we can define functions over
them by structural recursion. The types and terms of the λ-calculus can be encoded this
way in OCaml: one data type representing simple types (featuring an uninstantiated base
type)

type tp =
| Base (* Uninstantiated base type *)
| Arr of tp * tp

and another one for terms. For concision, we use a weak (or parametric) Higher-Order
Abstract Syntax representation of binders [20] (HOAS for short), where variables belong
to an abstract type, and are introduced by OCaml functions:3

type tm =
| Var of x
| Lam of (x → tm)
| App of tm * tm

and x (* The variable namespace, uninstantiated for now *)

In a shallow embedding, we directly use OCaml constructs to represent constructs in
the object language: we lose structural recursion, but we enjoy the property that two
βη-equivalent values in OCaml are observationally equal. The values of the λ-calculus
can be encoded this way: functions are represented as a universal function space, and we
reuse OCaml variables and applications syntax nodes.

type base (* Base type, uninstantiated for now *)
type vl =
| VFun of (vl → vl)
| VBase of base

I Example 1. The term λfx. f x is represented as Lam (fun f → Lam (fun x → App (Var
f, Var x))) in the deep encoding of terms, and as VFun (fun (VFun f) → VFun (fun x →
f x)) in the shallow encoding of values.

2.2 Normalization by Evaluation
NbE normalizes deeply embedded terms by going through a shallow embedding: an evaluation
function maps a deep term to its shallow counterpart, which is then reified back into a deep
term. Since βη-equivalent terms are indistinguishable at the shallow level, reification has to

3 First-order presentations like de Bruijn indices are also common, and have been showed to be isomorphic
to weak HOAS [7]. This way, we avoid Kripke-like parametrization of the target language, and we
separate concerns better.
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pick the same representative for two βη-equivalent terms (in practice, the η-long β-normal
form, which implies that the result is in normal form).

First, the evaluation function maps application nodes App in the deep encoding into
shallow, OCaml applications:

let rec eval : tm → vl = function
| Var x → x
| Lam f → VFun (fun x → eval (f x))
| App (m, n) → match eval m with

| VFun f → f (eval n)
| VBase b → failwith "Unidentified␣Functional␣Object"

In the second case, variables are substituted with their value; to this end, we must instantiate
their namespace with the type of values, allowing the constructor Var to quote values into
terms:4

and x = vl

The expressible values vl are shallow values, i.e., weak-head normal forms. The second
step consists in reifying them back into an algebraic language of deep terms, or normal forms
nf, that can be inspected by pattern matching:

and nf =
| NLam of (y → nf)
| NAt of at

and at =
| AApp of at * nf
| AVar of y

and y

To proscribe the representation of β-redexes, we follow the tradition and stratify the syn-
tax into normal forms nf (λ-abstractions) and atoms at (applications). Type y is the
uninstantiated domain of target variables.

We then define the reification function reify, taking a value and its type to a normal
form, together with its symmetric counterpart, reflect. They can be seen as performing a
two-level η-expansion at the given type [30]. This η-expansion stops when encountering a
value of the uninstantiated base type, which means that values of base type actually stand
for atoms:

and base = Atom of at

In other words, atoms are the intersection of the set of shallow values and deep terms,
reflecting the fact that values contain both functions and atoms.

All of this leads us to the usual definition of reification and reflection:

let rec reify : tp → vl → nf = fun a v → match a, v with
| Arr (a, b), VFun f → NLam (fun x → reify b (f (reflect a (AVar x))))
| Base, VBase v → let (Atom r) = v in NAt r
| a, v → failwith "type␣mismatch"

4 One could object that this instantiation of the domain of variables takes us away from weak HOAS.
However, it is only necessary for the source language of eval, and a commodity to avoid more verbose
solutions like de Bruijn indices or explicit parametricity in type x [51].
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76 Typeful Normalization by Evaluation

and reflect : tp → at → vl = fun a r → match a with
| Arr (a, b) → VFun (fun x → reflect b (AApp (r, reify a x)))
| Base → VBase (Atom r)

Finally, NbE maps a term together with its type to a normal form, by composing evaluation
and reification:

let nbe : tp → tm → nf = fun a m → reify a (eval m)

Notice that exceptions might be triggered at runtime if the given term and type do not
match. In Section 3, we solve this problem by statically enforcing this match, thanks to
GADTs.

2.3 GADTs in OCaml
The recent introduction of Generalized Algebraic Data Types [19, 54] in OCaml [37] makes it
syntactically possible to constrain type parameters for the return type of the constructors of
a data type, which enables, e.g., to write tagless interpreters. Let us illustrate GADTs with
the problem of formatting strings à la printf in a type-safe way, following Kiselyov [46] and
OCaml’s recent Printf module; it will serve as a running example in this article.

What is the type of the printf function in the C programming language? A priori it
is dependent: the number of arguments depends on the structure of the first argument,
the formatting directive. The first author proposed a solution based on polymorphism [25],
encoding the formatting directive algebraically as a sequence of literal strings and typed
placeholders (written "%d", "%s", etc. in C) and encoding it with CPS. GADTs provide
language support for this encoding. Let us introduce the type of formatting directives,
respectively indexed by α, the final type returned by printf, and β, the expected type of
printf when applied only to the directive

type (α, β) directive =

These two types coincide when the directive consists only of a literal: no extra argument
is then required. We thus explicitly mention the annotation after the argument in the
constructor type:

| Lit : string → (α, α) directive

When the directive is a placeholder, we add an argument to the expected type of printf
(these constructors take no arguments):

| String : (α, string → α) directive
| Int : (α, int → α) directive

Finally, the sequence of two directives threads the initial and final types, much like function
composition (and indeed the first author’s encoding for sequence was function composition
in CPS):

| Seq : (β, γ) directive * (α, β) directive → (α, γ) directive

After spreading some syntactic sugar, let us try out this definition with an example
directive ("%d␣*␣%s␣=␣%d␣in␣%s" in C):

let (^^) a b = Seq (a, b) and (!) x = Lit x and d = Int and s = String
let ex_directive : (α, int → string → int → string → α) directive =

d ^^ !"␣*␣" ^^ s ^^ !"␣=␣" ^^ d ^^ !"␣in␣" ^^ s
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The type reflects the structure of the formatting directive: an integer is expected, and then a
string, and then an integer, and then a string, and then the result is whatever it needs to be.

Now, all printf needs to do is to map a directive into a usual OCaml primitive function.
We first define it in CPS, and then we apply it to the initial continuation print_string,
which will emit the formatted string eventually:

let rec kprintf : type a b. (a, b) directive → (string → a) → b =
function
| Lit s → fun k → k s
| Int → fun k x → k (string_of_int x)
| String → fun k x → k (string_of_string x)
| Seq (f,g) → fun k → kprintf f (fun v → kprintf g (fun w → k (v^w)))

let printf dir = kprintf dir print_string

Function string_of_string here is the identity. Compared to the previous solutions [5, 25],
which used one polymorphic function per abstract-syntax constructor of the formatting
directive, the dispatch among the constructors is grouped, thanks to the GADTs.

Our test directive yields a type-safe printing command:

(* prints "6 * 9 = 42 in base 13" *)
let () = printf ex_directive 6 "9" 42 "base␣13"

3 Typeful Normalization by Evaluation in Direct Style

Thanks to GADTs, we can decorate the algebraic data types of terms and normal forms
with their types, such that only well-typed ones can be represented. This way, the NbE
algorithm of Section 2.2 can ensure statically that: i) no exception is triggered at runtime;
ii) well-typed terms are mapped to well-typed normal forms; and iii) η-long normal forms
are produced (in addition to being β-normal, which is new [32]). We then illustrate this
normalizer with a partial evaluator that is guaranteed to preserve the type of the programs
it specializes.

3.1 Evaluation
It is a standard use of GADTs to index terms – deep or shallow – by the OCaml type of their
interpretation. First, values can be indexed as follows (we will come back to the definition of
type base later on):

type α vl =
| VFun : (α vl → β vl) → (α → β) vl
| VBase : base → base vl

Note that this type definition does not respect the positivity condition, in the sense of, e.g.,
Coq, because there is a negative occurrence of vl. It is, however, stratified in the sense of
Abella [35], i.e., its type parameter gets syntactically smaller. Thus, it forms a valid inductive
definition. Ditto for terms (the same remark as in Section 2.2 applies to type α x):

and α x = α vl
type α tm =

| Lam : (α x → β tm) → (α → β) tm
| App : (α → β) tm * α tm → β tm
| Var : α x → α tm

TYPES’14
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The evaluation function now has type α tm → α vl, ensuring type preservation:

let rec eval : type a. a tm → a vl = function
| Var x → x
| Lam f → VFun (fun x → eval (f x))
| App (m, n) → let VFun f = eval m in f (eval n)

Because the match between types and terms is ensured statically, there is no need for any
exception as in Section 2.2. Otherwise, the code remains the same.

I Remark. Evaluation could also have been tagless, and thus more efficient [17], i.e., we
could have defined directly type α vl = α. We did not do so to be consistent with Section 4.
Also, the finally tagless approach [18] can alternatively implement typeful NbE without
GADTs [47], but it requires significant changes compared to the previous, untyped version:
there, evaluation and reification are not recursive functions but define the syntax of terms
and types.

3.2 Reification
In the same way, we can index atoms and normal forms with the type of their interpretations:

and α nf =
| NLam : (α y → β nf) → (α → β) nf
| NAt : base at → base nf

and α at =
| AApp : (α → β) at * α nf → β at
| AVar : α y → α at

and α y

The variable domain α y is left uninstantiated. In addition to being β-normal, the restriction
of the NAt coercion to a base type guarantees that terms of this data type are also η-long [3].

We then need to statically relate our deep types tp with these annotations. To this end,
we can index them by the OCaml type of their denotation:

type α tp =
| Base : base tp
| Arr : α tp * β tp → (α → β) tp

The reification function now has type α tp → α vl → α nf: given a deep type tp whose
corresponding shallow type is α, and a value of type α vl, reify yields a normal form of
type α nf:

let rec reify : type a. a tp → a vl → a nf = fun a v → match a, v with
| Arr (a, b), VFun f → NLam (fun x → reify b (f (reflect a (AVar x))))
| Base, VBase v → let (Atom r) = v in NAt r

and reflect : type a. a tp → a at → a vl = fun a r → match a with
| Arr (a, b) → VFun (fun x → reflect b (AApp (r, reify a x)))
| Base → VBase (Atom r)

As in Section 3.1, because the match between types and terms is ensured statically, there is
no need for any exception as in Section 2.2. Otherwise, the code is the same.

Let us now address the definition of base. As before, its values should contain atoms: at
base type, terms are interpreted by atoms [36]. But one question remains: what is the type
of atoms in the interpretation of the base type? Let us call this type X and let us rely on
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the implementation as a guideline. In the base case of reflect, the type of r is refined to
base at, and the expected type is base. Since Atom makes a base from an X at, we must
have X = base. Similarly in the base case of reify, the type of v is base, so r has type
X at, NAt r has type X nf. Since the awaited type is base nf, we must have X = base. The
definition of type base is thus:

and base = Atom of base at

This type has no (normalizing) closed inhabitants: they are only constructed and decon-
structed during reification and reflection. Its definition is faithful to previous formalizations,
where the interpretation of the base type is the set of atomic terms at base type.

Finally, composing evaluation and reification, we obtain a typeful NbE function that is
guaranteed to map well-typed terms to well-typed normal forms of the same type:

let nbe : type a. a tp → a tm → a nf = fun a m → reify a (eval m)

This function can be read as a cut elimination for intuitionistic logic, apart from termination
which is not ensured by OCaml, but is a meta-argument: all three functions eval, reify and
reflect are defined by structural induction over their first argument.

3.3 Application: printf, revisited
This section presents an application combining ideas from above: the offline specialization
of printf with respect to a formatting directive, using NbE as a partial-evaluation engine.
Given the same formatting directive as in Section 2.3, the program

fun x y z t → printf ex_directive x y z t

is specialized into the normal form

fun x y z t → string_of_int x ^ "␣*␣" ^ y ^ "␣=␣" ^ string_of_int z ^ "␣in␣" ^ t

in which ex_directive has been inlined and part of its processing has been carried out. This
specialization is guaranteed to preserve types.

In Section 2.3, kprintf was mapping directives to the standard domain of OCaml primitive
types. The idea here is to replace the primitive functions (concatenation (^), string_of_int,
string_of_string) by a non-standard, syntactic model. By reifying the evaluated program,
we obtain a residual term in normal form.

First, we enlarge our representation of atoms (the type α at) with these primitive functions
and uninterpreted objects of the types involved (to allow values of different types, we index
the type base with a type variable, without consequence on its definition):

and α at = (* ... *)
| APrim : α → α base at
| AConcat : string base at * string base at → string base at
| AStringOfInt : int base at → string base at

Since we strictly extended the definition of atoms and reify and reflect do not match on
them, we can reuse these two functions from Section 3.2 as they are.

The primitive functions can now be interpreted as their residual expressions, atoms,
instead of as their standard meanings:

type int_ = int base at
type string_ = string base at
let string_of_string i = APrim i

TYPES’14
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let string_of_int x = AStringOfInt x
let (^) s t = AConcat (s, t)

The non-standard printf is the result of pasting the code from Section 2.3 at this point,
replacing types int and string by int_ and string_, respectively.

I Example 2. Let us take this non-standard printf function, apply it to our example
formatting directive and reify the result at the type of the function:

let residual =
let box f = VFun (fun (VBase (Atom r)) → f r) in
reify (Arr (Base, Arr (Base, Arr (Base, (Arr (Base, Base))))))

(box (fun x → box (fun y → box (fun z → box (fun t →
reflect Base (printf ex_directive x y z t))))))

We obtain the specialized program building the final string: residual is the normal form
mentioned above (this can ben witnessed by pretty-printing it, or converting it to a de Bruijn
representation [7]).

I Remark. NbE is type-directed, which leads to a completely offline partial evaluator: there
is no need to explicitly check at each step of the program whether its result is statically
known or not. It differs in that sense from the online partial evaluator proposed by Carette
et al. [18]. Note that we could nonetheless perform online simplifications in our non-standard
primitive functions [26].

4 Typeful Normalization by Evaluation in CPS

In Section 3.1, we defined an evaluation function for our object language. It is concise, but
leaves no choice of evaluation order or definable control structures: they are inherited from
the programming language of discourse, OCaml. In particular, it does not scale seamlessly
for disjoint sums and not at all for call/cc:

sums: There is no simple notion of unique normal form for the λ-calculus with sums because
of commuting conversions [43]. NbE with sums was nevertheless developed with delimited
control operators [24, 34, 43] and constrained representations of unique normal forms
were developed as well [2, 9]. Here, we bypass delimited control operators by writing
the evaluation function in CPS, and we accept that normal forms are defined modulo
commuting conversions (our notion of η-expansion is thus limited by them).

call/cc: Now that the evaluation function is written in CPS, it is simple to handle call/cc,
and the resulting normalization function can immediately be used for programs extracted
from classical proofs [29, 50].5

In this section, we show how to define typeful CPS evaluation and reification for the simply-
typed λ-calculus with Boolean conditionals and call/cc. Our continuation-passing evaluation
function maps source terms to continuation-passing values that await a continuation, and
allows us to choose the evaluation order and to extend our source language. As in Section 3.2,
we can then reify these continuation-passing values to a dedicated syntax of normal forms in
CPS.

We present the formalization in call by value first (Sections 4.1 to 4.3), and then just
sketch the call-by-name variant (Section 4.4).

5 Another choice could have been shift and reset, as Ilik did in Coq [44].
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4.1 Typing CPS values
When evaluating in CPS a term of type A, it is well-known [49] that its denotation is typed
by the CPS-transformed type dAe, defined by:

dAe = (bAc → o) → o bpc = p

bA → Bc = bAc → dBe bboolc = bool

where p is an (uninstantiated) base type, o is the type of answers, and bool is the type of
Booleans. The call-by-value transformation can be reflected in the GADT that encodes
CPS-values:

type α vl =
| VFun : (α vl → β md) → (α → β) vl
| VBase : base → base vl
| VBool : bool → bool vl

and α md = (α vl → o) → o

The type o of answers is left unspecified for the moment. Note that the codomain of a
function of type (α → β) vl expects a continuation (i.e., has type β md). For instance, the
CPS-transformed applicator is written as follows:

let app : type a b. ((a → b) → a → b) vl =
VFun (fun (VFun f) k → k (VFun (fun x k → f x (fun v → k v))))

4.2 Evaluation
Let us now extend the syntax of terms with an if statement and with call/cc:

type α tm = (* ... *)
| If : bool tm * α tm * α tm → α tm
| CC : ((α → β) → α) tm → α tm

Their typing is standard; call/cc has the type of Peirce’s law [39]. Values of type bool are
encoded as, e.g., Var (VBool true) (remember that α x = α vl).

Now, function eval directly maps an α tm to an α md. Its code can be obtained by
CPS-transforming eval in Section 3.1 with the extra cases:

let rec eval : type a. a tm → a md = function
| Var x → fun c → c x
| Lam f → fun c → c (VFun (fun x k → eval (f x) k))
| App (m, n) → fun c → eval m (fun (VFun f) → eval n (fun n → f n c))
| If (b, m, n) → fun c → eval b (fun (VBool b) →

if b then eval m c else eval n c)
| CC m → fun c → eval m (fun (VFun f) → f (VFun (fun x k → c x)) c)

The if case is of no surprise, and could as well have been defined in direct style. The call/cc
case captures the continuation c into a function, as customary in Scheme.

4.3 Reification
Now that the domain of reify, i.e., the values α vl, is in the image of the CPS transformation,
we can CPS-transform the reification function of Section 3.2 as well. The types of reify
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82 Typeful Normalization by Evaluation

and reflect will thus be respectively α tp → α vl → (α nf → o) → o and α tp → α

at → (α vl → o) → o. Consequently, the constructor NLam now takes a CPS-transformed
function of type α y → β k → o, where α k = α v → o and α v = α nf.

Because of the latter function space, this data type is not a proper weak HOAS. But
we can leave types α k and α v abstract – call these respectively continuation and value
variables (α y is the domain of source variables):

type α k and α v and α y

We treat the answer type o algebraically, i.e., we instantiate it by all the operations involving
continuation and value variables. There are two of them: applying an α k to a normal
form in reify – call it SRet, and binding a value to an application in reflect – call it SBind
(previous applications just become value nodes AVal). We are left with the type declarations:

and o =
| SRet : α k * α nf → o
| SBind : (α → β) at * α nf * (β v → o) → o

and α nf =
| NLam : (α y → β k → o) → (α → β) nf
| NAt : base at → base nf

and α at =
| AVar of α y
| AVal of α v

This typed syntax is in weak HOAS since the domains of variables are abstract. It has in fact
been used since the late 1990’s [10] to characterize normal forms in CPS: terms of type o are
traditionally called serious terms after Reynolds [52], and represent computations. Note that
they do not carry a type like α nf and α at since they form the type of answers; instead,
its constructors act as existentials, linking together types of normal forms, variables and
atoms, and hiding them away. Normal forms are traditionally called trivial terms, again after
Reynolds [52].

Before displaying the code, let us extend the development to Booleans. First, we add the
extra case to the type α tp:

type α tp = (* ... *)
| Bool : bool tp

Then, we add Booleans and conditional expressions to normal forms and serious terms,
respectively:

and o = (* ... *)
| SIf : bool at * o * o → o

and α nf = (* ... *)
| NBool : bool → bool nf

At last, the full definition of reify and reflect with Booleans reads:

let rec reify : type a. a tp → a vl → (a nf → o) → o =
fun a v → match a, v with

| Arr (a, b), VFun f → fun c → c (NLam (fun x k →
reflect a (AVar x) (fun x → f x (fun v →

reify b v (fun v → SRet (k, v))))))
| Base, VBase (Atom r) → fun c → c (NAt r)
| Bool, VBool b → fun c → c (NBool b)
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and reflect : type a. a tp → a at → (a vl → o) → o =
fun a x → match a, x with

| Arr (a, b), f → fun c → c (VFun (fun x k →
reify a x (fun x → SBind (f, x, fun v →

reflect b (AVal v) (fun v → k v)))))
| Base, r → fun c → c (VBase (Atom r))
| Bool, b → fun c → SIf (b, c (VBool true), c (VBool false))

Similarly to the direct-style version, these two functions can be seen as performing a two-level
η-expansion, this time with the expansion rules of CPS with sums [31]. This fact dictates the
treatment of conditionals in the last line: they are serious terms, and duplicate the context c
in their two branches.

We can now compose evaluation and reification to obtain normalization. A CPS value is
reified as a program in normal form: a serious term abstracted by its initial continuation.
NbE in CPS thus returns such an abstraction:

type α c = Init of (α k → o)
let nbe : type a. a tp → a tm → a c = fun a m →

Init (fun k → eval m (fun m → reify a m (fun v → SRet (k, v))))

As an epilogue, we strip out the resulting syntax of its type annotations to obtain the
familiar syntax of call-by-value CPS normal forms:

P ::= λk. S Programs
S ::= k T | RS (λv. S) | if(R,S, S) Serious terms
T ::= λyk. S | true | false | R Trivial terms
R ::= y | v Atoms

As in the direct-style case, it is syntactically impossible to form a redex in this syntax, thanks
to the stratification of trivial terms and atoms.

4.4 In call by name
In call by name, the domains of functions are also computations (i.e., expecting a continuation),
as presented in Section 4.1. This transformation is reflected:

in the type of values in that functions now expect a continuation:

type α vl = (* ... *)
| VFun : (α md → β md) → (α → β) vl

in the variables of the source language that now range over thunks instead of values:

and α x = α md

and in the variables of the target language: they are now serious terms, and are associated
with a continuation binding their values; for the same reason, the argument to a “bind”
is now a thunk:

and o =
| SRet : α k * α nf → o
| SBind : (α → β) at * (α k → o) * (β v → o) → o
| SIf : bool at * o * o → o
| SVar : α y * (α v → o) → o

and α nf =
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| NLam : (α y → β k → o) → (α → β) nf
| NBool : bool → bool nf
| NAt : base at → base nf

and α at =
| AVal : α v → α at

Evaluation and reification functions are modified mutatis mutandis:

let rec eval : type a. a tm → a md = function
| Var x → fun c → x c
| Lam f → fun c → c (VFun (fun x k → eval (f x) k))
| App (m, n) → fun c → eval m (fun (VFun f) → f (eval n) c)
| Bool b → fun c → c (VBool b)
| If (b, m, n) → fun c → eval b

(function VBool true → eval m c | VBool false → eval n c)
| CC m → fun c → eval m (fun (VFun f) →

f (fun k → k (VFun (fun x k → x c))) c)

let rec reify : type a. a tp → a vl → (a nf → o) → o =
fun a v → match a, v with
| Arr (a, b), VFun f → fun c → c (NLam (fun y k →

f (fun k → SVar (y, fun v → reflect a (AVal v) k))
(fun v → reify b v (fun v → SRet (k, v)))))

| Bool, VBool b → fun c → c (NBool b)
| Base, VBase (Atom r) → fun c → c (NAt r)

and reflect : type a. a tp → a at → (a vl → o) → o =
fun a x → match a, x with
| Arr (a, b), f → fun c → c (VFun (fun x k →

SBind (f, (fun k → x (fun v → reify a v (fun v → SRet (k, v)))),
(fun v → reflect b (AVal v) k))))

| Bool, b → fun c → SIf (b, c (VBool true), c (VBool false))
| Base, r → fun c → c (VBase (Atom r))

As before, these two functions can be seen as performing a two-level η-expansion, this time
with the expansion rules of call-by-name CPS [41].

We can finally compose evaluation and reification to obtain normalization. As in the
call-by-value case, NbE in call-by-name CPS returns a program, i.e., a serious term abstracted
by the initial continuation:

let nbe : type a. a tp → a tm → (a nf → o) → o =
fun a m k → eval m (fun m → reify a m k)

As an epilogue, we strip out the resulting syntax of its type annotations to obtain the
familiar syntax of call-by-name CPS normal forms:

P ::= λk. S Programs
S ::= k T | R (λk. S) (λv. S) | if(R,S, S) | y (λv.S) Serious terms
T ::= λyk. S | true | false | R Trivial terms
R ::= v Atoms

Again, it is syntactically impossible to form a redex in this syntax.
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5 Summary and Future Work

We have presented the first typeful implementation of NbE for the simply-typed λ-calculus
in the minimalistic setting of a general-purpose programming language with GADTs. To
the best of our knowledge, our implementation is the first one to ensure by typing that
its output is not only in β-normal form, but also in η-long form. We have illustrated how
NbE achieves partial evaluation by specializing a typeful version of printf with respect to
any given formatting directive. By CPS-transforming our typeful implementation, we have
obtained systematically the syntax and typing rules of normal forms in CPS. Finally, we
have presented the first typeful implementation of NbE for the simply-typed λ-calculus with
sums and control operators in the same minimalistic setting. This normalization function
can be used for programs extracted from classical proofs, and the resulting normal form can
then be mapped back to direct style [23, 29].

Future work includes developing a version of NbE that is parameterized by an arbitrary
monad (i.e., not just the identity monad or a continuation monad). In this version, the
non-standard evaluation function is monadic. Monadic reification with effect preservation
seems like a tall order, but given a monad, reification towards a (well-typed but non-monadic)
normal form seems in sight: it could be achieved using the type transformation associated
to this given monad; a monadic version of the direct-style transformation would then be
necessary to map this non-monadic normal form to a monadic normal form. Such a monadic
version of NbE would make it possible to normalize programs whose effects can be described
with monads, e.g., probabilistic or stateful computations.

Acknowledgments. This work was carried out while the two last authors were visiting
the first, in the fall of 2013. We are grateful to our anonymous reviewers for their helpful
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