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Abstract
Many different data analytics tasks boil down to linear algebra primitives. In practice, for each
different type of workload, data scientists use a particular specialised library. In this paper, we
present Pilatus, a polymorphic iterative linear algebra language, applicable to various types of
data analytics workloads. The design of this domain-specific language (DSL) is inspired by both
mathematics and programming languages: its basic constructs are borrowed from abstract algebra,
whereas the key technology behind its polymorphic design uses the tagless final approach (a.k.a.
polymorphic embedding/object algebras). This design enables us to change the behaviour of
arithmetic operations to express matrix algebra, graph algorithms, logical probabilistic programs,
and differentiable programs. Crucially, the polymorphic design of Pilatus allows us to use multi-
stage programming and rewrite-based optimisation to recover the performance of specialised code,
supporting fixed sized matrices, algebraic optimisations, and fusion.
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1 Introduction

It is well-known that many problems can be formulated using linear algebra primitives. These
problems come from various data analytics domains including machine learning, statistical
data analytics, signal processing, graph processing, computer vision, and robotics.

Despite the fact that all these workloads could use a standard unified linear algebra
library, in practice many different specialised libraries are developed and used for each of
these workload types [9]. This is mainly due to the performance-critical nature of such data
analytics workloads: in order to satisfy their performance requirement, such workloads use
hand-tuned specialised libraries implemented using either general-purpose or specialised
domain-specific programming languages.

In this paper, we demonstrate the Pilatus language (Polymorphic Iterative Linear
Algebra, Typed, Universal, and Staged). Pilatus is a polymorphic domain-specific language
(DSL), in the sense that it can support various workloads, such as standard iterative linear
algebra tasks, graph processing algorithms, logical probabilistic programs, and linear algebra
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programs relying on automatic differentiation. By default, this polymorphic nature causes a
significant performance overhead. We demonstrate how to remove this overhead by using safe
high-level meta-programming and compilation techniques, and more specifically multi-stage
programming (MSP, or staging) [66, 65].

This paper uses the tagless final approach [36, 10] (also known as polymorphic embed-
ding [30] and object algebras [48]) in order to embed [32] the Pilatus DSL in the Scala
programming language. This technique allows embedding an object language in a host
language in a type-safe manner. In addition, this approach allows multiple semantics for the
embedded DSL (EDSL). Based on this feature and by carefully choosing the abstractions
involved in defining Pilatus (such as semi-ring/ring, module, and linear map structures),
we provide several evaluation semantics. More specifically, we allow several variants of a
linear algebra language, such as: a standard matrix algebra language, a graph language
for expressing all-pairs reachability and shortest path problems, a logical probabilistic pro-
gramming language, and a differentiable programming language. The polymorphic aspect
of Pilatus is also essential for the seamless application of staging, and to express different
optimised staged variants: fixed size matrices, deforestation [67, 25, 63, 13], and algebraic
optimisations.1

Next, we motivate the need for Pilatus (Section 2), and we make the following contributions:
We present Pilatus, a polymorphic EDSL in Section 3. This DSL uses the notion
of semi-rings and rings (Section 3.2) in order to define operations on each individual
element of a vector and a matrix. Furthermore, Pilatus uses the notion of pull arrays
(Section 3.5) for defining a collection (or array) of elements.
We present four different languages that are implemented by providing a concrete inter-
preter for Pilatus in Section 5: (1) a standard matrix algebra language (Section 5.1); (2) a
graph DSL (Section 5.2); (3) a logical probabilistic linear algebra language (Section 5.3);
and (4) a differentiable linear algebra language (Section 5.4).
We present our use of multi-stage programming to improve the performance of Pilatus
programs by creating a staged language (Section 6.2) for fixed size matrices (Section 6.5),
performing algebraic optimisations (Section 6.4), and performing fusion (Section 6.6).
We show the impact of using multi-stage programming on the performance of applications
written using Pilatus in Section 7. Overall, the implementation of Pilatus consists
of around 400 LoC supporting all the features presented in this paper. Pilatus uses
the Squid [51] type-safe meta-programming framework for its multi-stage programming
facilities, which is the only external library dependency.

Finally, we present the related work in Section 8 and conclude the paper in Section 9.

2 Motivation

Apart from standard matrix algebra tasks, many numerical workloads in various domains can
be expressed using linear algebra primitives [17]. Among such examples are various graph

1 We used Scala as the implementation language for Pilatus, but other programming languages with
support for lambda expressions and multi-stage programming could be used as well; most of the
techniques presented in this paper can also be implemented in Haskell, OCaml, and Java for example.
For expressing rewrite-based optimisations, either the multi-stage programming framework should
support code inspection (as is the case with Squid [51], which we use), or the developer is responsible
for implementing/extending the intermediate representations (as with frameworks like LMS [57]).
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problems such as reachability and shortest path. Figure 1 shows as example the reachability
problem on both deterministic and probabilistic graphs.

Despite the expressiveness of linear algebra, there are many different libraries specialized
for each particular data analytics task. This is because of two main reasons. First, most
existing linear algebra libraries do not define the interfaces for extending their usage for the
problems in other domains. Second, despite some efforts on providing abstract and extensible
linear algebra libraries [17], such analytical tasks are performance critical. As a result, there
should be hand-tuned and specialized libraries for each particular task. As an example, for
graph problems, rather than having the linear-algebra-based solutions presented in Figure 1,
the library developers prefer to provide specialized graph libraries for performance reasons.

This paper aims to solve both these issues by combining ideas from mathematics and
programming languages. The first issue is tackled by defining a polymorphic linear algebra
language by using abstractions from abstract algebra, including the ring, module, and linear
map structures for expressing scalar values, a vector of values, and a matrix of values,
respectively. Furthermore, for implementing these abstract interfaces, we use the tagless-final
approach [10, 36], a well-known technique from the programming language community.

The examples of Figure 1 show matrices of elements of various types, for which the
addition and multiplication operations can be assigned various meanings. Figure 1a shows
the usage of linear algebra primitives for expressing graph reachability problems. To do so, the
addition and multiplication operators are instantiated to boolean disjunction and conjunction,
respectively. For expressing the reachability problems on probabilistic graphs, these two
operators are instantiated with the disjunction and conjunction on boolean distributions,
as shown in Figure 1b. Finally, Figure 1c shows the process of computing the derivative
of an example matrix expression with respect to a given variable. To do so, each element
of the matrix should be represented as a pair of numbers, known as dual numbers, where
the first component is the actual value of that expression and the second component is the
value of its derivative with respect to the given variable. As an example, the dual number
representation for the element of the 2nd row and 3rd column is represented as 3B2, meaning
that the actual value of this element at x = 2 is 2x− 1 = 3, whereas its derivative value is
(2x− 1)′ = 2. Similarly, the addition and multiplication operators are instantiated with the
corresponding ones operating on dual numbers, which implement the derivative rules.

All of these use cases can be easily represented as Pilatus programs, parameterized over
the meaning one wants to use for a particular domain.

The second issue is the performance overhead caused by the polymorphic nature of
the language, due to the abstractions introduced in order to solve the first issue. We use
multi-stage programming (also known as staging) to compile away the overhead corresponding
to these abstractions. Moreover, by using a staging framework with support for rewriting,
we can also implement algebraic optimization rules for further improving performances.

Next, we give more details on the design of Pilatus.

3 Pilatus Design

In this section, we first give an overview of the tagless final approach. Then, we define the
polymorphic interface for the semi-ring and ring structures. Afterwards, we show an abstract
interface for vectors and matrices using the mathematical notions of modules and linear
maps. Finally, we define the interface for a functional encoding of an array of elements and
control-flow constructs.

ECOOP 2019
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21 3

4

1
Reachability with 2 hops

2 3

4
0 0 1 1
1 0 1 1
0 1 0 0
0 0 1 0

⊗


0 0 1 1
1 0 1 1
0 1 0 0
0 0 1 0

 =


0 1 1 0
0 1 1 1
1 0 1 1
0 1 0 0

 M2,2 = (1∧0)∨(0∧0)∨(1∧1)∨(1∧0) = 1

(a) The reachability problem in a graph can be expressed using matrix-matrix multiplication of the
adjacency matrix of a graph. Instead of using the standard addition operator, here we use the boolean
disjunction, and instead of the multiplication operator, we use the boolean conjunction.
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0 0 0.1 0.5

0.8 0 0.3 0.6
0 0.9 0 0
0 0 0.2 0

⊗


0 0 0.1 0.5
0.8 0 0.3 0.6
0 0.9 0 0
0 0 0.2 0

 =


0 0.09 0.1 0
0 0.27 0.19 0.4

0.72 0 0.27 0.54
0 0.18 0 0


(b) The reachability problem in a probabilistic graph can also be expressed using matrix-matrix multi-
plication of its adjacency matrix. Each element of the adjacency matrix represents the presence of a node
with probability p. The addition and multiplication operators correspond to disjunction and conjunction
of two boolean distributions, respectively.

f(x) =

0 0 1 x + 3
8 0 2x− 1 6
0 3x + 3 0 0
0 0 x 0


2

=

 0 3x + 3 x2 + 3x 0
0 6x2 + 3x− 3 6x + 8 8x + 24

24x + 24 0 6x2 + 3x− 3 18x + 18
0 3x2 + 3x 0 0



f ′(x) =

 0 3 2x + 3 0
0 12x + 3 6 8
24 0 12x + 3 18
0 6x + 3 0 0

 f(2) =

 0 9 10 0
0 27 20 40
72 0 27 54
0 18 0 0

 f ′(2) =

 0 3 7 0
0 27 6 8
24 0 27 18
0 15 0 0


0 B 0 0 B 0 1 B 0 5 B 1

8 B 0 0 B 0 3 B 2 6 B 0
0 B 0 9 B 3 0 B 0 0 B 0
0 B 0 0 B 0 2 B 1 0 B 0

⊗
0 B 0 0 B 0 1 B 0 5 B 1

8 B 0 0 B 0 3 B 2 6 B 0
0 B 0 9 B 3 0 B 0 0 B 0
0 B 0 0 B 0 2 B 1 0 B 0

 =

 0 B 0 9 B 3 10 B 7 0 B 0
0 B 0 27 B 27 20 B 6 40 B 8

72 B 24 0 B 0 27 B 27 54 B 18
0 B 0 18 B 15 0 B 0 0 B 0


(c) The derivative of a matrix with respect to the variable x can also be expressed using linear algebra
operations. The dual number technique represents each element of a matrix as the pair v B d of the
actual value v and the value of its derivative d. Accordingly, the addition and multiplication operators
are the corresponding ones on dual numbers.

Figure 1 Example of problems expressed using different interpretations of linear algebra primitives.
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3.1 Tagless Final
Tagless final [10, 36] (also known as polymorphic embedding [30] and object algebras [48] in the
context of object-oriented programming languages) is a type-safe approach for embedding [32]
domain-specific languages. This approach solves the expression problem [68] by encoding
each DSL construct as a separate function, and leaving their interpretation abstract.

There are different ways of implementing this approach: (1) in languages like Haskell, one
can use type classes [10, 36]; (2) in OCaml, one can use the module system [10, 37]; (3) in
languages like Java, one can use the object-oriented features [48]; and (4) in Scala one can
use either type classes or mixin composition (also known as the cake pattern) [30, 57].

In this paper, we follow the approach based on type classes. Consider a DSL with two
constructs, one for creating an integer literal, and the other for adding two terms. The
tagless final interface for this DSL is as follows:

trait SimpleDSL[Repr] {
def lit(i: Int): Repr
def add(a: Repr, b: Repr): Repr

}

The code above defines a trait (similar to an interface in Java or a module signature in ML).
The SimpleDSL trait is parameterised with a Repr type, which is the type of the objects
manipulated by the DSL. This trait contains one abstract method for each constructs of the
DSL, here lit and add.

For convenience, we also typically define free-standing functions for writing programs in
the DSL while omitting the particular DSL implementation used:

def lit[Repr](i: Int) (implicit dsl: SimpleDSL[Repr]): Repr = dsl.lit(i)
def add[Repr](a: Repr, b: Repr)(implicit dsl: SimpleDSL[Repr]): Repr = dsl.add(a, b)

These functions require an implicit instance of the SimpleDSL trait, and redirect to the
implementations of the corresponding methods in that instance. In Scala, implicit parameters
need not be specified by users at each call site; indeed, they can be filled in automatically by
the compiler, based on their expected type. Implicits are the mechanism used to implement
type classes in Scala [49].

One can then define generic programs in the DSL, as follows:

def myProgram[Repr](implicit dsl: SimpleDSL) = add(lit(2), lit(3))

Which can also be written using the following shorthand syntax:

def myProgram[Repr: SimpleDSL] = add(lit(2), lit(3))

Then, one can specify a particular evaluation semantic for this program. As an example,
the following type class instance defines an evaluator/interpreter for SimpleDSL:

implicit object SimpleDSLInter extends SimpleDSL[Int] {
def lit(i: Int): Int = i
def add(a: Int, b: Int): Int = a + b

}

Evaluating the example program above in the REPL with this evaluation semantics,
which is automatically picked up by the compiler based on the requested type Int, results in:

scala> myProgram[Int]
result: Int = 5

ECOOP 2019
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trait SemiRing[R] {
def add(a: R, b: R): R
def mult(a: R, b: R): R
def one: R
def zero: R

}
trait Ring[R] extends SemiRing[R] {
def neg(a: R): R
def sub(a: R, b: R): R = add(a, neg(b))

}

object Pilatus {
def add[R](a: R, b: R)(implicit sr: SemiRing[R]): R = sr.add(a, b)
// ... other boilerplate methods elided for brevity

}

Figure 2 The tagless final interface for semi-rings and rings.

Rather than directly evaluating DSL programs, one can also represent the programs as
strings. Below is a type class instance that stringifies programs in our DSL:2

implicit object SimpleDSLStringify extends SimpleDSL[String] {
def lit(i: Int): String = i.toString
def add(a: String, b: String): String = s"$a + $b"

}

Evaluating the same program with the stringification evaluation semantic results in:

scala> myProgram[String]
result: String = "2 + 3"

Pilatus defines a separate type class for each category of the language constructs (e.g.,
semi-rings, rings, modules, linear maps, etc.), as we show next. We will introduce different
evaluation semantics for this DSL by providing type class instances. These evaluation
semantics are both interpretation-based (cf. Section 5) and compilation-based (cf. Section 6).

3.2 Semi-Ring and Ring
A semi-ring is defined as a set of numerical values R, with two binary operators + and ×, and
two elements 0 (additive identity) and 1 (multiplicative identity), such that for all elements
a, b, and c in R the following properties hold:

a + 0 = a

a + b = b + a

(a + b) + c = a + (b + c)
a× 1 = 1× a = a

a× 0 = 0× a = 0
(a× b)× c = a× (b× c)
a× (b + c) = (a× b) + (a× c)
(a + b)× c = (a× c) + (b× c)

2 String interpolation syntax s"...$x..." is equivalent to "..."+ x + "...".
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A ring is a semi-ring with an additional additive inverse operator (−) such that for all
elements a in R, a + (−a) = 0. The binary operator for subtraction can be easily defined as
a− b = a + (−b).

The tagless final encoding of semi-rings and rings is shown in Figure 2. There are six
DSL constructs corresponding to addition, multiplication, negation, subtraction, one, and
zero. These methods are redirected to the implementation of the corresponding operations
of the SemiRing and Ring type classes. The implementation of the methods of these type
classes are left abstract. These definitions will be given by each concrete semantics, which
should make sure that the aforementioned properties hold for the elements of type R.

3.3 Module
A mathematical module is a generalization of the notion of a vector space. A module over a
particular semi-ring is realised using an addition operator for two modules (similar to vector
addition), and a multiplication between a semi-ring element and the module (similar to
scalar-vector multiplication). For all elements a and b in a semi-ring R with the multiplicative
identity 1R, and the elements u and v in a (left-)module M , the following properties hold:

a · (u + v) = a · u + a · v
(a + b) · u = a · u + b · u
(a× b) · u = a · (b · u)
1R · u = u

Additionally, the dimension of a finite module generalises the notion of the number of
basis vectors3 representing a vector.

Figure 3 shows the tagless final interface for modules. The Module type class has three
type parameters: (1) V specifies the type of the underlying vector representation; (2) R

specifies the type of each element of the vector; and (3) D specifies the type of the dimension
of the underlying vector. Note that all the elements of type R and D support semi-ring
operations, thanks to the two type class instances sr and dr. Furthermore, the Module

type class supports the following operations: (1) the dim method returns the dimension of
the given module; (2) the add method computes the result of the addition of two module
elements; and (3) the smult method computes the multiplication of a semi-ring element and
a given module.

3.4 Linear Map
A linear map is a transformation between two modules, which preserves the addition and the
scalar multiplication operations of the given module. Assume the linear map M transforming
module V to module W , and both modules are over the semi-ring R. Then for all elements
f in the linear map M , u and v from module V , and a from the semi-ring R, the following
properties hold:

f(u + v) = f(u) + f(v)
f(a · u) = a · f(u)

Similar to functions, linear maps have two operations. First, a linear map can be applied
to a module returning a transformed module, behaving similar to the function application.

3 The basis vectors are linearly independent vectors (none of them can be expressed as a linear combination
of the other ones) that can be used to express every vector as a unique linear combination of them.

ECOOP 2019
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trait Module[V, R, D] {
implicit val sr: SemiRing[R]
implicit val dr: SemiRing[D]
def dim(a: V): D
def add(a: V, b: V): V
def smult(s: R, a: V): V

}

object Pilatus {
// ...
def dim[V, D](a: V)(implicit m: Module[V, _, D]): D = m.dim(a)
// ... other boilerplate methods elided for brevity

}

Figure 3 The tagless final interface for modules.

trait LinearMap[M, V, R, D] {
implicit val rowModule: Module[V, R, D]
implicit val sr: SemiRing[R]
implicit val dr: SemiRing[D]
def apply(m: M, v: V): V
def compose(m1: M, m2: M): M
def add(m1: M, m2: M): M
def dims(mat: M): (D, D)

}

object Pilatus {
// ...
def apply[M, V](m: M, v: V)(implicit lm: LinearMap[M, V, _, _]): V = lm.apply(m, v)
// ... other boilerplate methods elided for brevity

}

Figure 4 The tagless final interface for linear maps.

Second, a linear map can be composed with another linear map resulting in another linear
map, behaving similarly to function composition.

Figure 4 shows the tagless final encoding of linear maps. Here, we only consider finite
linear maps transforming two finite modules, and we assume that both modules are over
the same semi-ring (represented with type R, and the sr type class instance) with the same
module type representation (represented with the type V). From a vector/matrix point of
view, the compose and apply methods correspond to the matrix-matrix and matrix-vector
multiplication, respectively. The add method corresponds to the matrix addition operator,
and the dims construct returns the dimension of the input and output modules, which is
represented as a tuple.

3.5 Pull Array and Control-Flow Constructs
Using a pull array is a well-known approach in the high-performance functional programming
community for a functional encoding of arrays [64, 2, 12]. In this representation, an array is
defined using two components: (1) the length of the array; and (2) a function mapping an
index to the value of the corresponding element in that array.

Figure 5 demonstrates the tagless final encoding of pull arrays and looping constructs.
The build method is responsible for constructing a pull array of size len, in which the ith
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trait PullArrayOps[A, E, L] {
def build(len: L)(f: L => E): A
def get(arr: A)(i: L): E
def length(arr: A): L

}
trait Looping[L] {
def forloop[S](z: S)(n: L)(f: (S, L) => S): S

}
object Pilatus {
// ...
def build[A, E, L](len: L)(f: L => E)(implicit p: PullArrayOps[A, E, L]): A =
p.build(len)(f)

// ... other boilerplate methods elided for brevity
}

Figure 5 The tagless final interface for pull arrays and control-flow constructs.

element is f(i), indexed from 0 to len - 1. The get method returns the ith element of
the array arr, whereas the length method returns the size of the given array. Finally, the
forloop method is meant for implementing recursion and iteration. More specifically, this
function starts from the state z, iterates n times (from 0 to n - 1), and at the ith step,
updates the state s with f(s, i).

4 Matrix Algebra

In this section, we build the constructs of matrix algebra based on the mathematical notions
explained in the previous section. First, we show the construction of vector constructs using
modules and pull arrays. Then, we demonstrate the matrix constructs by using linear maps
and vectors.

4.1 Vector: Module + Pull Array
A vector (more specifically, a dense vector where most elements are non-zero) can be seen
as a module the elements of which are stored as a pull array. Given that each element of a
vector form a semi-ring, we can define the addition, element-wise multiplication, and dot
product of two vectors.

The implementation for the tagless final encoding of a vector, as well as the mentioned
methods are given in Figure 6. The V type parameter specifies the underlying vector type
representation, the R type parameter specifies the type of each element of the vector, and the
D type parameter is the type of the dimension of the underlying vector.

The zipMap method, receives two vectors v1 and v2 as input and creates a vector of
the same size,4 for which each element is constructed by applying the binary operator op
on the corresponding elements from v1 and v2. The add and elemMult are constructed by
passing the addition and multiplication functions of the underlying semi-ring of elements to
the zipMap method. The map method applies a given function to each element of the input
vector and produces a vector of the same size with the transformed elements as output. The
smult method is implemented using this method. Finally, the dot method computes the dot

4 We assume that the input vectors have the same size for the sake of simplicity. In practice, this property
can be enforced statically using Scala’s powerful implicit programming capabilities, and singleton types.

ECOOP 2019
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trait Vector[V, R, D] extends Module[V, R, D] {
implicit val pa: PullArrayOps[V, R, D]
implicit val looping: Looping[D]
def dim(a: V): D = pa.length(a)
def add(v1: V, v2: V): V = zipMap(v1, v2, sr.add)
def smult(s: R, a: V): V = map(a, e => sr.mult(s, e))
def map(v: V, op: R => R): V = pa.build(pa.length(v))(i => op(pa.get(v)(i)))
def zipMap(v1: V, v2: V, op: (R, R) => R): V =
pa.build(pa.length(v1))(i => op(pa.get(v1)(i), pa.get(v2)(i)))

def elemMult(v1: V, v2: V): V = zipMap(v1, v2, sr.mult)
def dot(v1: V, v2: V): R =
looping.forloop(sr.zero)(pa.length(v1))((acc, i) =>
sr.add(acc, sr.mult(pa.get(v1)(i), pa.get(v2)(i))))

/* sum and norm are omitted for brevity */
}

Figure 6 The tagless final implementation for (dense) vectors.

product of two vectors v1 and v2 by first computing the element-wise multiplication of these
vectors, and then adding the elements of this intermediate vector.

Next, we use the mentioned vector data structure together with linear maps in order to
define a matrix data-structure.

4.2 Matrix: Linear Map + Vector

Figure 7 shows the implementation of matrices (more specifically, dense matrices) using
linear maps and vectors. The M type parameter specifies the type of the underlying matrix
representation, V represents the type of each row-vector and column-vector of the matrix, R
denotes the type of each element of the matrix, and D specifies the type of the dimension of
each row and each column of the matrix.

In order to facilitate usages of the generic library, we have implemented several helper
methods. The get method returns the corresponding element in the rth row and cth column
of the matrix.5 The numRows and numCols methods return the number of rows and columns
of a matrix, respectively. The getRow method returns the vector representing the rth row of
the given matrix, whereas getCol returns a vector containing the elements in the cth column
of the given matrix. Finally, the zipMap and map methods have similar behaviour to the
methods with the same name from the vector data type.

The add method returns the result of the addition of two matrices, which is implemented
using the zipMap method. The mult method returns the matrix-matrix multiplication of two
matrices. This method is implemented by performing a vector dot-product of each row of the
first matrix with each column of the second matrix. Finally, the transpose method returns
the transpose of the given matrix.

4.3 Putting It All Together

Before showing different evaluation semantics in the upcoming sections, we need a way to
print the result values. To do so, we define the Printable type class which converts the value
of a particular type into a string. Figure 8 shows the corresponding tagless final definition.

5 As we will see in Section 6, r and c can have types other than Int.
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trait Matrix[M, V, R, D] extends LinearMap[M, V, R, D] {
implicit val paMat: PullArrayOps[M, V, D]
implicit val vector: Vector[V, R, D]
/* Other implicit values: paRow, rowModule, looping, dr, sr */
/* apply and compose methods use the mult method, elided for brevity. */
def get(mat: M, r: D, c: D): R =
paRow.get(paMat.get(mat)(r))(c)

def numRows(mat: M) = dims(mat)._1
def numCols(mat: M) = dims(mat)._2
def getRow(mat: M, i: D): V = paMat.get(mat)(i)
def getCol(mat: M, j: D): V = getRow(transpose(mat), j)
def zipMap(m1: M, m2: M, bop: (R, R) => R): M =
paMat.build(numRows(m1))(i =>
paRow.build(numCols(m1))(j =>
bop(get(m1, i, j), get(m2, i, j))))

def add(m1: M, m2: M): M = zipMap(m1, m2, sr.add)
def mult(m1: M, m2: M): M =
paMat.build(numRows(m1))(i =>
paRow.build(numCols(m2))(j =>
vector.dot(getRow(m1, i), getCol(m2, j))))

def transpose(mat: M): M =
paMat.build(numCols(mat))(i =>
paRow.build(numRows(mat))(j => get(mat, j, i)))

/* map, eye, fill, and zeros are omitted for brevity */
}

Figure 7 The tagless final implementation for (dense) matrices.

trait Printable[T] {
def string(e: T): String

}
object Pilatus {
// ...
def getString[T](e: T)(implicit p: Printable[T]) = p.string(e)

}

Figure 8 The tagless interface for the stringification of the values of different evaluation semantics.

I Example 1. Throughout this paper, we use the following example matrix program, where
we change the values for matrix m based on the evaluation semantic that we are interested in:

def example[M, D](m: M)(implicit mev: Matrix[M,_,_,D], pev: Printable[M]): Unit = {
import mev._
val I = eye(numRows(m))
val m2 = mult(m, m)
val res = add(I, add(m, m2))
println(getString(res))

}

This program accepts the matrix m, the value of which differs based on the evaluation
semantic that we would like to use. The result of this program is the addition of the
identity matrix (represented using the eye method), the given input matrix, and the second
power of it.

In the next sections, we give several concrete interpretations for Pilatus, and we show
the output of the example program above for each of the interpretations.
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implicit object RingInt extends Ring[Int] {
def add(a: Int, b: Int) = a + b
def mult(a: Int, b: Int) = a * b
def one: Int = 1
def zero: Int = 0
def neg(a: Int): Int = -a

}
implicit object RingDouble extends Ring[Double] {
/* Similar to RingInt */

}

Figure 9 The tagless final interpreter (a.k.a. type class instances) for a ring of integer and double
values.

class PullArrayArrayOps[E: ClassTag] extends PullArrayOps[Array[E], E, Int] {
def build(len: Int)(f: Int => E): Array[E] =
Array.tabulate(len)(f)

def get(arr: Array[E])(i: Int): E =
arr(i)

def length(arr: Array[E]): Int =
arr.length

}
class LoopingInt extends Looping[Int] {
def forloop[S](f: (S, Int) => S)(z: S)(n: Int): S =
(0 until n).foldLeft(z)(f)

}
object Semantics {
implicit def pullArrayArrayOps[E: ClassTag] = new PullArrayArrayOps[E]
implicit val loopingInt = new Looping[Int]

}

Figure 10 The tagless final interpreter for a pull array, represented as a list of elements, and the
control-flow constructs.

5 Interpreted Languages

In this section, we first show an evaluation strategy which results in a standard matrix
algebra library. Then, we show how we can define an alternative interpretation which leads
to treating Pilatus as a graph library. Afterwards, we show a linear algebra library for
logical probabilistic programming. Finally, we demonstrate how Pilatus can behave as a
library for differentiable programming.

5.1 Standard Matrix Algebra
In order to define a standard matrix algebra library for Pilatus, we start by defining a
normal interpreter for rings. Figure 9 shows the interpretation for a ring of integer and
double values. In both cases, the addition and multiplication operations are defined using
the primitive operations provided by the Scala language.

Figure 10 shows an interpreter for pull arrays, where every constructed pull array is
materialised into an array of elements. Hence, retrieving an element and returning the size of
the pull array is achieved by returning the corresponding element in the materialised array
and the length of the array, respectively. Finally, the implementation of forloop is achieved
by performing a foldLeft on the range of elements from 0 to n-1, and passing the initial
state and the accumulator function.
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case class PullArrayInter[E](len: Int, f: Int => E)

class PullArrayInterOps[E] extends PullArrayOps[PullArrayInter[E], E, Int] {
def build(len: Int)(f: Int => E): PullArrayInter[E] =
PullArrayInter(len, f)

def get(arr: PullArrayInter[E])(i: Int): E =
arr.f(i)

def length(arr: PullArrayInter[E]): Int =
arr.len

}
object Semantics {
// ...
implicit def pullArrayInterOps[E] = new PullArrayInterOps[E]

}

Figure 11 The tagless final interpreter for a pull array, represented as a pair of length and the
element constructor function.

An alternative way of interpretation for pull arrays, which avoids the materialisation of
the intermediate arrays into a sequence, keeps a data structure which holds the length and
the constructor function of each element. This representation is given in Figure 11.

I Example 2. The standard matrix algebra interpreter evaluates the example program as
follows:

import Semantics.{ pullArrayInterOps, loopingInt, ringInt }
val adj = Array(Array(0, 0, 1, 5),

Array(8, 0, 3, 6),
Array(0, 9, 0, 0),
Array(0, 0, 2, 0))

val m = build(4)(i => build(4)(j => adj(i)(j)))
example(m)
// output:
[ [ 1, 9, 11, 5 ]
, [ 8, 28, 23, 46 ]
, [ 72, 9, 28, 54 ]
, [ 0, 18, 2, 1 ] ]

Note that the build method is redirected to the build method of the PullArrayOps type
class (cf. Figure 5).

5.2 Graph DSL for Reachability and Shortest Path

A directed graph can be represented using its adjacency matrix. More specifically, a graph
with n vertices can be represented using a matrix of size n × n, in which all elements are
Boolean. If the element in the ith row and jth column is true, this means that there is an
edge between the ith and jth vertices in the graph.

In order to support such adjacency matrices, we need to use the Boolean semi-ring for
the matrix elements. Figure 12 shows the implementation of the Boolean semi-ring, in which
addition performs disjunction, and multiplication performs conjunction.

Using the Boolean semi-ring for the elements of a matrix leads to a graph library. This
instantiation of Pilatus is appropriate for expressing reachability computations among
all vertices of a graph: given an adjacency matrix M , each element of M ×M shows the
existence of a path of length 2 between the two vertices in the corresponding graph.
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class SemiRingBoolean extends SemiRing[Boolean] {
def add(a: Boolean, b: Boolean) = a || b
def mult(a: Boolean, b: Boolean) = a && b
def one: Boolean = true
def zero: Boolean = false

}
object Semantics {
// ...
implicit val semiRingBoolean = new SemiRingBoolean

}

Figure 12 The tagless final interpreter for a semi-ring of Boolean values, used for expressing
graph reachability problems.

The graph algorithms that can be implemented on top of Pilatus are not limited
to reachability ones. By adding other types of semi-rings, one can express other graph
computation problems. As an example, Tropical semi-rings can express shortest-path graph
problems [45, 17]. Figure 13 shows the tagless final encoding of Tropical semi-rings. The
ShortestPath data type represents the path between two nodes of a graph, where Unreachable
specifies a path of length +∞, and Distance(v) specifies a path of length v. The Tropical
semi-ring computes the minimum length of two paths as the addition operator of the semi-
ring, and adds the length of two paths as the multiplication operator. We omit the definition
for other semi-rings for graph and other similar problems (e.g., linear equations, data-flow
analysis, petri nets, etc., which are already explored in the literature [17]).

I Example 3. When one uses the Boolean semi-ring, the example program is actually
computing the existence of paths with maximum length two among all the nodes. When we
provide the adjacency matrix of the graph of Figure 1a, the example program evaluates to:

import Semantics.{ pullArrayInterOps, loopingInt, ringInt, semiRingBoolean }
val adj = Array(Array(false, false, true, true),

Array(true, false, true, true),
Array(false, true, false, false),
Array(false, false, true, false))

val m = build(4)(i => build(4)(j => adj(i)(j)))
example(m)
// output:
[ [ T, T, T, T ]
, [ T, T, T, T ]
, [ T, T, T, T ]
, [ F, T, T, T ] ]

5.3 Probabilistic Linear Algebra Language
Probabilistic models are used in many applications including artificial intelligence, machine
learning, cryptography, and economics. Probabilistic programming languages have proven to
be successful for expressing such stochastic models in a declarative style without worrying
about computational aspects [11, 28, 27, 39]. As an example, an important computer vision
application was recently expressed in only 50 lines of code in the Picture probabilistic
programming language [40].

In this paper, our aim is not to make Pilatus a full-fledged probabilistic programming
language. Instead, we show how we can encode Boolean probability distributions in Pilatus
in the form of a semi-ring. This means that we support the conjunction and disjunction
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sealed trait ShortestPath {
def add(o: ShortestPath): ShortestPath = (this, o) match {
case (Unreachable, x) => Unreachable
case (x, Unreachable) => Unreachable
case (Distance(v1), Distance(v2)) => Distance(v1 + v2)

}
def min(o: ShortestPath): ShortestPath = (this, o) match {
case (Unreachable, x) => x
case (x, Unreachable) => x
case (Distance(v1), Distance(v2)) => Distance(math.min(v1, v2))

}
}
case class Distance(v: Int) extends ShortestPath
case object Unreachable extends ShortestPath

class SemiRingTropical extends SemiRing[ShortestPath] {
def add(a: ShortestPath, b: ShortestPath) = a.min(b)
def mult(a: ShortestPath, b: ShortestPath) = a.add(b)
def one: ShortestPath = Distance(0)
def zero: ShortestPath = Unreachable

}

object Semantics {
// ...
implicit val semiRingTropical = new SemiRingTropical

}

Figure 13 The tagless final interpreter for a semi-ring of Boolean values, used for expressing
graph shortest-path problems.

between two Boolean distributions. Also, the zero and one elements of the semi-ring
correspond to the distribution with the probability of one for false and true, respectively. As
a side effect of the compositional design of Pilatus, we can support vectors and matrices of
such distributions as well, virtually for free. Thus, Pilatus supports probabilistic graphs
and the associated path queries, similar to systems such as ProbLog [15].

Figure 14 shows the tagless final implementation for Boolean distributions. The BoolProb
data type has a list of probabilities assigned to each Boolean value. This data type is actually
a probability monad [26, 19]. As is customary with monad implementation in Scala, the
flatMap method represents the bind operator of the monad, and the apply method of the
companion object represents the unit operator. The normalise method makes sure that the
list of probabilities associated to each Boolean value has distinct Boolean values, and that
the probabilities sum up to one.

There are many alternative implementations for the probability monad such as lazy
trees [39] with the possibility to support distributions for values other than Booleans.
Furthermore, in this context one can use various optimisations such as variable elimination [16].
Finally, it is possible to explore other inference mechanisms [42]. All these aspects are
orthogonal to the purposes of this work, and Pilatus can be extended to support all these
features, which we leave as exercises to the reader.
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case class BoolProb(l: List[(Boolean, Double)]) {
def flatMap(f: Boolean => BoolProb): BoolProb = {
val ll = for(x <- l; y <- f(x._1).l) yield { y._1 -> (y._2 * x._2) }
BoolProb(ll).normalise()

}
def normalise(): BoolProb = {
val sum = l.map(_._2).sum
val nl = l.groupBy(_._1).mapValues(_.map(_._2).sum / sum)
BoolProb(nl.toList)

}
}
object BoolProb {
def apply(v: Boolean): BoolProb = BoolProb(List(v -> 1.0))

}

class SemiRingBoolProb extends SemiRing[BoolProb] {
def add(a: BoolProb, b: BoolProb) = a.flatMap(x => if(x) one else b)
def mult(a: BoolProb, b: BoolProb) = a.flatMap(x => if(x) b else zero)
def one: BoolProb = BoolProb(true)
def zero: BoolProb = BoolProb(false)

}

object Semantics {
// ...
implicit val semiRingBoolProb = new SemiRingBoolProb

}

Figure 14 The tagless final implementation using the Boolean probability monad for semi-ring
operations.

I Example 4. When we give the adjacency matrix of the probabilistic graph of Figure 1b as
the input to the example program, the evaluation is as follows:

import Semantics.{ pullArrayInterOps, loopingInt, ringInt, semiRingBoolProb }
def flip(p: Double): BoolProb = BoolProb(List(true -> p, false -> (1 - p)))
val adj = Array(Array(flip(0), flip(0), flip(0.1), flip(0.5)),

Array(flip(0.8), flip(0), flip(0.3), flip(0.6)),
Array(flip(0), flip(0.9), flip(0), flip(0)),
Array(flip(0), flip(0), flip(0.2), flip(0)))

val m = build(4)(i => build(4)(j => adj(i)(j)))
example(m)
// output:
[ [ 1, 0.1, 0.2, 0.5 ]
, [ 0.8, 1, 0.4, 0.8 ]
, [ 0.7, 0.9, 1, 0.5 ]
, [ 0, 0.2, 0.2, 1 ] ]

As in the previous section, the example program computes the all-pairs path with
maximum length of two. Hence, the result matrix is the probability of the existence of a
path by traversing at most one intermediate node.
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class DualSemiRing[R](implicit val sr: SemiRing[R])
extends SemiRing[(R, R)] {
type Dual = (R, R)
def add(a: Dual, b: Dual) = (sr.add(a._1, b._1), sr.add(a._2, b._2))
def mult(a: Dual, b: Dual) =
(sr.mult(a._1, b._1), sr.add(sr.mult(a._1, b._2), sr.mult(a._2, b._1)))

def one: Dual = (sr.one, sr.zero)
def zero: Dual = (sr.zero, sr.zero)

}
class DualRing[R](implicit val ring: Ring[R])
extends DualSemiRing[R] with Ring[(R, R)] {
def neg(a: Dual) = (ring.neg(a._1), ring.neg(a._2))

}
object Semantics {
// ...
implicit def dualSemiRing[R: SemiRing] = new DualSemiRing[R]
implicit def dualRing[R: Ring] = new DualRing[R]

}

Figure 15 The tagless final implementation using dual numbers for ring operations.

5.4 Differentiable Linear Algebra DSL
Many applications in machine learning such as training artificial neural networks require
computing the derivate of an objective function. In many cases, the manual derivation of
analytical derivatives is not a practical solution, as it is error prone and time consuming.
Hence, several techniques were developed for automating the derivation process.

Automatic differentiation (or algorithmic differentiation) is one of the most well-known
techniques to systematically compute the derivative of a program. This technique system-
atically applies the chain rule, and evaluates the derivatives for the primitive arithmetic
operations (such as addition, multiplication, etc.) [4].

Among different implementations of automatic differentiation, here we show the forward
mode technique using dual numbers. In this implementation, every number is augmented with
an additional component, which maintains the computed derivative value. Correspondingly,
all primitive operations should be augmented with the appropriate derivation computation.

Figure 15 demonstrates the generic tagless final interface for the dual number repres-
entation of a ring. This interface uses the pair representation for dual numbers, in which
the first component is the normal value, whereas the second component is the derivative
value. The second component in the implementation of the addition operator reflects the
addition rule of derivation (d(a + b) = da + db), whereas the one in multiplication reflects
the multiplication rule (d(a× b) = da× b + a× db).

I Example 5. Let us consider again the example matrix given in Figure 1c. By representing
this input matrix using dual numbers, our running example is evaluated as follows:

import Semantics.{ pullArrayInterOps, loopingInt, ringInt, dualRing }
val adj = Array(Array(0 -> 0, 0 -> 0, 1 -> 0, 5 -> 1),

Array(8 -> 0, 0 -> 0, 3 -> 2, 6 -> 0),
Array(0 -> 0, 9 -> 3, 0 -> 0, 0 -> 0),
Array(0 -> 0, 0 -> 0, 2 -> 1, 0 -> 0))

val m = build(4)(i => build(4)(j => adj(i)(j)))
example(m)
// output:
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[ [ 1 -> 0, 9 -> 3, 11 -> 7, 5 -> 1 ]
, [ 8 -> 0, 28 -> 27, 23 -> 8, 46 -> 8 ]
, [ 72 -> 24, 9 -> 3, 28 -> 27, 54 -> 18 ]
, [ 0 -> 0, 18 -> 15, 2 -> 1, 1 -> 0 ] ]

More specifically, computing the square of this matrix results in:

val m2 = compose(m, m)
println(getString(m2))
// output:
[ [ 0 -> 0, 9 -> 3, 10 -> 7, 0 -> 0 ]
, [ 0 -> 0, 27 -> 27, 20 -> 6, 40 -> 8 ]
, [ 72 -> 24, 0 -> 0, 27 -> 27, 54 -> 18 ]
, [ 0 -> 0, 18 -> 15, 0 -> 0, 0 -> 0 ] ]

This output is the same as what we have observed in Figure 1c.

6 Staging and Optimisation

In this section, we show how to use multi-stage programming (MSP, or just staging) to
improve the performance of Pilatus programs, by removing the abstraction overhead
incurred by the high-level programming features we use to make our DSL polymorphic. We
use Squid [51, 52], a type-safe meta-programming framework that supports MSP. Squid is
implemented in Scala as a macro library, making its usage straightforward and user-friendly.

6.1 Preliminaries on Squid and Multi-Stage Programming
Squid makes use of quasi-quotes to manipulate program fragments; this way, one can both
compose programs together (multi-stage programming) and pattern-match on them to
perform rewritings, thereby achieving quoted staged rewriting [50].

Quasi-quotes. Given a Scala expression e of type T, the quasi-quote expression code''e'' has
type Code[T] and represents a program fragment whose representation can be manipulated
programmatically. Crucially, quasi-quotes may contain holes, delineated by the ${...}

escape syntax.6 When constructing a program fragment, code inside of a hole is evaluated
and inserted in place of the hole. For example, val part = code''List(1,2,3)''; code''2 *

$part.length'', which has type Code[Int], evaluates to code''2 * List(1,2,3).length''.

Runtime Compilation. After composing a program at run time using quasi-quotes, one can
then either dump a stringified version of the code inside a file to be compiled and run later,
or runtime-compile it on the fly, using the .compile method, which will produce bytecode
that can then be run efficiently. After the one-off cost of runtime compilation, a definition
such as val f = code''(x: Int)\[ => x + 1''.compile will be as efficient as val f = (x: Int)\]

=> x + 1.

Multi-Stage Programming (MSP). The goal of MSP is to turn a program which contains
abstractions and indirections into a code generator : instead of producing the program’s
result directly, this staged program will produce code that is straightforward and free of

6 When the escaped expression is a simple identifier, one can leave out the curly braces.
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abstractions, to compute the program’s result more efficiently. To achieve this, one annotates
the non-static parts of the program (those that should be executed later) using quasi-quotes
and Code types. Thanks to runtime compilation, the staged program effectively partially
evaluates the fixed parts of a program even if they depend on values obtained at runtime.

Code Pattern Matching and Rewriting. Squid extends the classical MSP ability with
code pattern matching and rewriting (quasi-quotes are allowed in patterns), which lets
programmers inspect already-composed code fragments in a type-safe way. As we will see
in Section 6.4, in practice this saves programmers the trouble of having to define their own
inspectable program representations before turning them into code.

6.2 Staging Pilatus
Thanks to the polymorphic nature of Pilatus, it is quite straightforward to turn a given
semantics into a multi-stage program. All we need to do is to provide an evaluation semantics
which manipulates program fragments instead of normal values, and which composes these
fragments together instead of directly evaluating the results of each operation.

Figure 16 shows the staged versions of some of the Pilatus interfaces. A RingCode[T]

is a ring implementation7 that manipulates Code[T] ring elements (the RingCode[T] class
extends Ring[Code[T]]). The CodeType[T] type class is used to automatically infer runtime
type representations, which is necessary for Squid program manipulation. Notice that the
implicit ringCode definition takes an implicit argument of type Code[Ring[T]]. This works out
of the box, because Squid can turn an implicit Ring[T] into a Code[Ring[T]] automatically,
lifting the code used for generating the implicit.

As an example, consider the following polymorphic Pilatus program:

def polymorphicProgram[R: Ring](a: R, b: R): R = mult(add(a, one), b)

And the following two usages, one with a direct R = Int interpretation, and one with a staged
R = Code[Int] one:

import Semantics.{ ringInt }, StagedSemantics.{ ringCode }
Console.print("Enter an integer number: ")
val k = Console.readInt
val f_slow = (x: Int) => polymorphicProgram(x, k)
val f_code = (x: Code[Int]) => polymorphicProgram(x, Const(k))
val f_fast = code''(x: Int) => ${f_code}(x)''.compile

The Const constructor turns a primitive value (here an Int) into a code value (here a Code[Int]).
Notice that we insert f_code into a quasi-quote even though it is not a code value, but a
function from code to code; in fact, it is implicitly lifted by Squid [51].

Assuming the user enters the number 27 on the console, the code generated at runtime for
f_fast will be equivalent to (x: Int)\[ => Semantics.ringInt.mult(Semantics.ringInt.add(x,

1), 27) which, after inlining of the statically-dispatched ringInt methods, corresponds to
(x: Int)\] => (x + 1)* 27. To understand why this is much more efficient than the f_slow

version, consider that the evaluation of f_slow has to go through virtual dispatch of all
the ring operations; moreover, it also has to use boxed representations of the manipulated

7 Strictly speaking, this implementation does not form a ring, because for example code''2+1'' is not the
same as code''1+2'' – though they are “morally” equivalent as they represent equivalent programs.
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integer values due to the generic context in which ring operations are defined, which requires
repeated allocations and unwrapping of boxed integers. As a result, in a realistic workload,
even the just-in-time compiler will typically not manage to make that code as fast as the
straightforward primitive operations performed by f_fast.8

This kind of overhead easily compounds as we introduce more abstractions, to the point
where non-staged abstract programs end up being orders of magnitude slower than the staged
versions [72], as we will see in Section 7.

6.3 Staged Representation Optimisations
An interesting aspect of MSP is that it lets us define data structures made of partially-
staged data. For example, if we want to partially evaluate the allocation of pairs and the
selection of their components, we can use representations of type (Code[A],Code[B]) instead
of Code[(A,B)].

This comes in useful when representing dual numbers in our staged interpreter. We can
implement an alternative to DualRing that is specialised for handling code values, and define
its operations accordingly, for example:

def mult(a: (Code[R], Code[R]), b: (Code[R], Code[R])) =
(code''$sr.mult(${a._1}, ${b._1})'',
code''$sr.add($sr.mult(${a._1}, ${b._2}), $sr.mult(${a._2}, ${b._1}))'')

Note that in the code above, we use program fragments a._1 and b._1 several times. This
is fine, because the default intermediate representation that Squid uses to encode program
fragment is based on the A-normal form [20], which let-binds every subexpression to a local
variable, and thus avoids code duplication [51, 50]; in other words, by inserting a given code
value in several places, we only duplicate variable references.

6.4 Algebraic Optimisations
Thanks to the staged interpretations of Pilatus, which allows us to manipulate program
fragments as first-class values, we can leverage the algebraic properties of ring structures
to perform optimisations. To do so, we can extend the staged ring implementation, so that
we use the normal staged method implementations by default, and override those methods
where there is a potential for algebraic optimisations. The goal of the overridden methods is
to return simplified program fragments based on the shape of their inputs.

This technique is similar to the original tagless final [10] and polymorphic embedding [30]
approaches to algebraic optimisation. The main difference is that thanks to Squid’s analytic
capabilities, we do not need to create our own intermediate symbolic representation of
programs, and instead we can pattern-match on code values directly.

An implementation of this optimised staged semantics for rings is given in Figure 17.
When used in pattern position, traditional quasi-quote escapes ${...}, which insert code
values into bigger expressions, are written $${...} instead.

8 Runtime systems like the CLR for C# avoid boxing by performing runtime specialisation of generic
code, but that only achieves a small part of all the optimisation and partial evaluation we are interested
in here. C++ templates can perform advanced compile-time specialisation, which could get us closer to
our goal (though this means specialisation could not rely on runtime values), but they are difficult and
heavyweight, yet much less flexible because they do not allow for first-class manipulation of code values.
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import squid.IR.Predef._ // import the ‘Code’, ‘CodeType’ and ‘code’ functionalities

class SemiRingCode[T: CodeType](val sr: Code[SemiRing[T]]) extends SemiRing[Code[T]] {
def add(a: Code[T], b: Code[T]) = code''$sr.add($a, $b)''
def mult(a: Code[T], b: Code[T]) = code''$sr.mult($a, $b)''
def one: Code[T] = code''$sr.one''
def zero: Code[T] = code''$sr.zero''

}
class RingCode[T: CodeType](val ring: Code[Ring[T]])
extends SemiRingCode[T](ring) with Ring[Code[T]] {
def neg(a: Code[T]) = code''$ring.neg($a)''

}
class PullArrayCodeOps[E: CodeType]
extends PullArrayOps[Code[PullArrayInter[E]], Code[E], Code[Int]] {
def build(len: Code[Int])(f: Code[Int] => Code[E]): Code[PullArrayInter[E]] =
code''PullArrayInter($len, $f)''

def get(arr: Code[PullArrayInter[E]])(i: Code[Int]): Code[E] = code''$arr.f($i)''
def length(arr: Code[PullArrayInter[E]]): Code[Int] = code''$arr.len''

}

object StagedSemantics {
implicit def semiRingCode[T: CodeType]
(implicit cde: Code[SemiRing[T]]): SemiRing[Code[T]] = new SemiRingCode(cde)

implicit def ringCode[T: CodeType]
(implicit cde: Code[Ring[T]]): Ring[Code[T]] = new RingCode(cde)

// other similar definitions elided...
}

Figure 16 The tagless final encoding of compiled rings, pull arrays, and control-flow constructs.

Many more algebraic rewritings can be added to perform partial evaluation and normal-
ization of program fragments. We have omitted them for the sake of brevity. Furthermore,
one can encode the algebraic properties of modules (cf. Section 3.3) and linear maps (cf.
Section 3.4) as rewrite rules, which we leave for the future.

6.5 Fixed-Size Matrix DSL

In some applications, such as computer vision, the matrices or vectors have a small size
and sometimes their size are statically known (e.g. a vector of size 3 to show a point in
the 3D space). In these cases the necessary memory for the corresponding arrays can be
allocated at compile time (or even stack allocated), leading to better performance and
memory consumption at run time.

Pilatus can be instantiated with an evaluator that makes sure that the length of arrays
is known during the compilation time. In this case, the representation of a pull array is a
sequence of the symbolic representation for each element. Furthermore, the representation for
its length is an integer, instead of a symbolic representation. Interestingly, this representation
is the same as the one shown in Figure 10, but with the E type instantiated to multi-stage
code types.
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class SemiRingOptCode[T: CodeType](sr: Code[SemiRing[T]]) extends SemiRingCode[T](sr) {
override def add(a: Code[T], b: Code[T]) = (a, b) match {
case (_, code''$$sr.zero'') => a
case (code''$$sr.zero'', _) => b
case _ => super.add(a, b)

}
override def mult(a: Code[T], b: Code[T]) = (a, b) match {
case (_, code''$$sr.zero'') => code''$sr.zero''
case (code''$$sr.zero'', _) => code''$sr.zero''
case (_, code''$$sr.one'') => a
case (code''$$sr.one'', _) => b
case _ => super.mult(a, b)

}
}

class RingOptCode[T: CodeType](ring: Code[Ring[T]]) extends RingCode[T](ring) {
override def neg(a: Code[T]) = a match {
case code''$$ring.zero'' => code''$ring.zero''
case _ => super.neg(a)

}
}

Figure 17 The tagless final encoding of the compiled library of Pilatus, which applies algebraic
optimisations for the elements of matrices.

6.6 Fused DSL
Deforestation [67, 25, 63, 13] is a well-known technique used in functional languages in order
to remove the unnecessary intermediate data structures. This removal has a positive effect on
both memory consumption and run-time performance, thanks to the removal of unnecessary
memory allocations and avoidance of unnecessary computations.

One of the key advantages of using pull arrays is providing deforestation. However, to
benefit from this feature, one should provide an appropriate representation for pull arrays
which avoids materialisation. This can be achieved by symbolically maintaining the length
and the constructor function. Whenever the array is indexed or the length of array is needed,
instead of creating a symbolic representation for them, we can use the maintained length
and constructor function.

Figure 18 represents the implementation of fused pull array, and a compiler allowing
deforestation for Pilatus.

7 Evaluation

In this section, we show how multi-stage programming and rewriting can make Pilatus
faster than the high-level implementation, while being competitive with a handwritten
low-level implementation. We use several micro benchmarks consisting of a pipeline of vector
operations such as addition, dot product, and norm. Each benchmark is tested with five
different approaches:

Pilatus by using a native array without optimisation
Pilatus by using a pull array without optimisation
Pilatus by using a pull array with staging
Pilatus by using a pull array with staging and fusion
A handwritten low-level optimised implementation
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case class PullArrayCode[E](len: Code[Int], f: Code[Int] => Code[E])

class PullArrayCodeFusedOps[E]
extends PullArrayOps[PullArrayCode[E], Code[E], Code[Int]] {

def build(len: Code[Int])(f: Code[Int] => Code[E]): PullArrayCode[E] =
PullArrayCode(len, f)

def get(arr: PullArrayCode[E])(i: Code[Int]): Code[E] =
arr.f(i)

def length(arr: PullArrayCode[E]): Code[Int] =
arr.len

}

Figure 18 The tagless final encoding of the compiled library of Pilatus, which removes all
unnecessary intermediate arrays.
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Figure 19 Performance comparison between Pilatus with different configurations and a baseline
low-level implementation.

The experiments are performed on a six-core Intel Xeon E5-2620 v2 processor with 256GB
of DDR3 RAM (1600Mhz), with Scala version 2.12.8 running on the OpenJDK 64-Bit Server
VM (build 24.95-b01) with Java 1.7.0_101.

Figure 19 shows the performance results. For these experiments, the input vectors are
all stored in a native JVM array, consisting of one million integer elements. Based on these
experiments we make the following observations. First, changing the usage of native array
representation to a pull array causes a minor performance overhead. This is because the JIT
of JVM is unable to remove the overhead caused by the lambdas used in a pull array. Second,
the overhead of lambdas as well as several other overheads are removed by using staging.
This performance improvement is between 2.5x to 5x. Finally, the intermediate arrays are
successfully removed by benefiting from the fusion of pull arrays (cf. Section 6.6). The
improvement varies between 4x to 26x depending on the number of removed intermediate
arrays. This makes the staged and fused Pilatus competitive with the baseline low-level
implementation.

8 Related Work

8.1 Linear Algebra Languages and Libraries
The R programming language [56] is widely used by statisticians and data miners. It provides
a standard language for statistical computing that includes arithmetic, array manipulation,
object oriented programming and system calls. It is a Turing-complete language. By contrast,
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with our language we chose to focus solely on linear algebra operations. This minimalistic
approach results in a language that is not Turing Complete, but is nevertheless polymorphic
in various dimensions.

The Spiral [55] project introduces the languages SPL [71], OL [22], and more recently
LL [62] which mainly captures the non-iterative matrix operations of Pilatus. Furthermore,
the intermediate languages Σ-SPL [23] and Σ-LL [62] expose opportunities to perform loop
fusion. One interesting direction is to use the search-based techniques to perform global
optimisations offered by Spiral. Furthermore, Spiral in Scala [47] supports loop unrolling
and fixed size matrices by using the staging facilities offered by LMS [57] and abstracting
over data layout. Kiselyov [37] has used the tagless final approach and staging facilities
of MetaOCaml in order to implement a linear algebra DSL based on rings and pull arrays
(but not modules and linear maps) and has implemented many of the optimisations that
we have presented in this paper. However, to the best of our knowledge, none of these
projects consider graph algorithms, probabilistic programming, and automatic differentiation
of linear algebra.

In the Haskell programming language, Dolan [17] implements a linear algebra library
which uses different semi-ring configurations for expressing graph algorithms, as well as
several other algorithms. We can easily extend Pilatus in order to support the additional
semi-ring configurations used in that work. However, even though Elliot [18] implements
a library for forward automatic differentiation in Haskell, Dolan [17] does not consider
automatic differentiation. In addition, as both these two libraries are implemented without
using any multi-stage programming facilities, none of them can support the staged libraries
provided by Pilatus.

8.2 Deforestation and Array Fusion
Deforestation [67] and the corresponding short cut techniques [25, 63, 13] were introduced for
functional languages for removing the unnecessary intermediate collections. Recently, these
techniques have been implemented as a library using multi-stage programming [33, 38, 59].

On the other hand, in the high-performance functional array programming there are the
two well-known array representations, which also achieve deforestation: pull arrays and push
arrays [2, 12]. Each one of these two array representations comes with its own benefits, for
which [64] combines the benefits of these two complementary representations. Pull arrays
have been used for various DSLs [3, 37, 60] to produce efficient low-level code from the
high-level specification of linear algebra programs. However, none of these systems consider
other domains presented in this paper.

8.3 Automatic Differentiation and Differentiable Programming
Many techniques for finding optima of a given objective function (such as gradient-descent-
based techniques) require the derivative of that function. Automatic differentiation (AD) [35]
is one of the key techniques for automatically computing the derivative of a given program.
Thus, these tools are an essential component of many machine learning frameworks. There
is a large body of work on AD frameworks for imperative programming languages such as
Tapenade [29] for C and Fortran, ADIFOR [7] for Fortran, and Adept [31] and ADIC [46]
for C++, ADiMat [8], ADiGator [70], and Mad [21] performs AD for MATLAB programs,
whereas AutoGrad [41], Theano [6], Tensorflow [1] performs AD for a subset of Python
programs. There are also AD tools developed for functional languages such as DiffSharp [5]
for F#, dF˜ [61] for a subset of F#, Stalingrad [53] for a dialect of Scheme, as well as the
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work by Karczmarczuk [34] and Elliott [18] for Haskell. The most similar work to ours is
Lantern [69], which uses the multi-stage programming features provided by LMS [57] in order
to perform AD for numerical programs written in a subset of Scala. A key feature provided
by Lantern is supporting reverse-mode AD by using delimited continuations [14], which can
also be supported by Pilatus, which we leave it for the future. All the presented frameworks
are only for differentiable programming, whereas Pilatus supports graph computations and
probabilistic programming, while providing algebraic-based and compiler optimisations for
improving performance.

8.4 Probabilistic Programming
Probabilistic programming languages (PPL) can express stochastic models in a productive
manner without worrying about the low-level details [28]. Infer.NET [44], Picture [40], and
probabilistic C are examples of imperative PPLs, whereas, BUGS [24], STAN [11], and
Church [27] are functional PPLs. Figaro [54] is an object-oriented probabilistic programming
language which is defined as an EDSL on top of Scala. PRISM [58], BLOG [43], and
ProbLog [15] are examples of Logical PPLs. Pilatus is inspired by both logical PPLs and
the embedding of functional PPLs [39]. Although Pilatus has a more limited expressivity
power in comparison with other logical probabilistic programs, it supports various other
domains such as differentiable programming for linear algebra workloads.

9 Conclusions

In this paper, we have presented Pilatus, a polymorphic linear algebra language. This
language is embedded in Scala and can have several interpretations supporting various domains
such as standard matrix algebra, all-pairs reachability and shortest-path computations for
graphs, logical probabilistic programming, and differentiable programming. In order to
compensate the performance penalty caused by the abstraction overheads, Pilatus uses
multi-stage programming. Furthermore, thanks to the mathematical nature of Pilatus, we
use algebraic rewrite rules to further improve the performance.
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