242 research outputs found

    Joint QoS multicast routing and channel assignment in multiradio multichannel wireless mesh networks using intelligent computational methods

    Get PDF
    Copyright @ 2010 Elsevier B.V. All rights reserved.In this paper, the quality of service multicast routing and channel assignment (QoS-MRCA) problem is investigated. It is proved to be a NP-hard problem. Previous work separates the multicast tree construction from the channel assignment. Therefore they bear severe drawback, that is, channel assignment cannot work well with the determined multicast tree. In this paper, we integrate them together and solve it by intelligent computational methods. First, we develop a unified framework which consists of the problem formulation, the solution representation, the fitness function, and the channel assignment algorithm. Then, we propose three separate algorithms based on three representative intelligent computational methods (i.e., genetic algorithm, simulated annealing, and tabu search). These three algorithms aim to search minimum-interference multicast trees which also satisfy the end-to-end delay constraint and optimize the usage of the scarce radio network resource in wireless mesh networks. To achieve this goal, the optimization techniques based on state of the art genetic algorithm and the techniques to control the annealing process and the tabu search procedure are well developed separately. Simulation results show that the proposed three intelligent computational methods based multicast algorithms all achieve better performance in terms of both the total channel conflict and the tree cost than those comparative references.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Particle swarm optimization for the Steiner tree in graph and delay-constrained multicast routing problems

    Get PDF
    This paper presents the first investigation on applying a particle swarm optimization (PSO) algorithm to both the Steiner tree problem and the delay constrained multicast routing problem. Steiner tree problems, being the underlining models of many applications, have received significant research attention within the meta-heuristics community. The literature on the application of meta-heuristics to multicast routing problems is less extensive but includes several promising approaches. Many interesting research issues still remain to be investigated, for example, the inclusion of different constraints, such as delay bounds, when finding multicast trees with minimum cost. In this paper, we develop a novel PSO algorithm based on the jumping PSO (JPSO) algorithm recently developed by Moreno-Perez et al. (Proc. of the 7th Metaheuristics International Conference, 2007), and also propose two novel local search heuristics within our JPSO framework. A path replacement operator has been used in particle moves to improve the positions of the particle with regard to the structure of the tree. We test the performance of our JPSO algorithm, and the effect of the integrated local search heuristics by an extensive set of experiments on multicast routing benchmark problems and Steiner tree problems from the OR library. The experimental results show the superior performance of the proposed JPSO algorithm over a number of other state-of-the-art approaches

    A hybrid ACO/PSO based algorithm for QoS multicast routing problem

    Get PDF
    AbstractMany Internet multicast applications such as videoconferencing, distance education, and online simulation require to send information from a source to some selected destinations. These applications have stringent Quality-of-Service (QoS) requirements that include delay, loss rate, bandwidth, and delay jitter. This leads to the problem of routing multicast traffic satisfying QoS requirements. The above mentioned problem is known as the QoS constrained multicast routing problem and is NP Complete. In this paper, we present a swarming agent based intelligent algorithm using a hybrid Ant Colony Optimization (ACO)/Particle Swarm Optimization (PSO) technique to optimize the multicast tree. The algorithm starts with generating a large amount of mobile agents in the search space. The ACO algorithm guides the agents’ movement by pheromones in the shared environment locally, and the global maximum of the attribute values are obtained through the random interaction between the agents using PSO algorithm. The performance of the proposed algorithm is evaluated through simulation. The simulation results reveal that our algorithm performs better than the existing algorithms

    Genetic local search for multicast routing with pre-processing by logarithmic simulated annealing

    Get PDF
    Over the past few years, several local search algorithms have been proposed for various problems related to multicast routing in the off-line mode. We describe a population-based search algorithm for cost minimisation of multicast routing. The algorithm utilises the partially mixed crossover operation (PMX) under the elitist model: for each element of the current population, the local search is based upon the results of a landscape analysis that is executed only once in a pre-processing step; the best solution found so far is always part of the population. The aim of the landscape analysis is to estimate the depth of the deepest local minima in the landscape generated by the routing tasks and the objective function. The analysis employs simulated annealing with a logarithmic cooling schedule (logarithmic simulated annealing—LSA). The local search then performs alternating sequences of descending and ascending steps for each individual of the population, where the length of a sequence with uniform direction is controlled by the estimated value of the maximum depth of local minima. We present results from computational experiments on three different routing tasks, and we provide experimental evidence that our genetic local search procedure that combines LSA and PMX performs better than algorithms using either LSA or PMX only

    Optimized resource distribution for interactive TV applications

    Get PDF
    This paper proposes a novel resource optimization scheme for cloud-based interactive television applications that are increasingly believed to be the future of television broadcasting and media consumption, in general. The varying distribution of groups of users and the need for on-the-fly media processing inherent to this type of application necessitates a mechanism to efficiently allocate the resources at both a content and network level. A heuristic solution is proposed in order to (a) generate end-to-end delay bound multicast trees for individual groups of users and (b) co-locate multiple multicast trees, such that a minimum group quality metric can be satisfied. The performance of the proposed heuristic solution is evaluated in terms of the serving probability (i.e., the resource utilization efficiency) and execution time of the resource allocation decision making process. It is shown that improvements in the serving probability of up to 50%, in comparison with existing resource allocation schemes, and several orders of magnitude reduction of the execution time, in comparison to the linear programming approach to solving the optimization problem, can be achieved

    QoS-VNS-CS: QoS constraints Core Selection Algorithm based on Variable Neighborhood Search Algorithm

    Get PDF
    Within the development of network multimedia technology, more and more real-time multimedia applications arrive with the need to transmit information using multicast communication. Multicast IP routing is an important topic, covering both theoretical and practical interest in different networks layers. In network layer, there are several multicast routing protocols using multicast routing trees different in the literature. However PIM-SM and CBT protocols remains the most used multicast routing protocols; they propose using a shared Core-based Tree CBT. This kind of tree provides efficient management of multicast path in changing group memberships, scalability and performance. The prime problem concerning construction of a shared tree is to determine the best position of the core. QoS-CS’s problem (QoS constraints core Selection) consists in choosing an optimal multicast router in the network as core of the Shared multicast Tree (CBT) within specified QoS constraints associated. The choice of this specific router, called RP in PIM-SM protocol and core in CBT protocol, affects the structure of multicast routing tree, and therefore influences performances of both multicast session and routing scheme. QoS-CS is an NP complete problem need to be solved through a heuristic algorithm, in this paper, we propose a new core Selection algorithm based on Variable Neighborhood Search algorithm and new CMP fitness function. Simulation results show that good performance is achieved in multicast cost, end-to-end delay, tree construction delay and others metrics

    Delay-Constrained Multicast Routing Algorithm Based on Average Distance Heuristic

    Full text link
    Multicast is the ability of a communication network to accept a single message from an application and to deliver copies of the message to multiple recipients at different location. With the development of Internet, Multicast is widely applied in all kinds of multimedia real-time application: distributed multimedia systems, collaborative computing, video-conferencing, distance education, etc. In order to construct a delay-constrained multicast routing tree, average distance heuristic (ADH) algorithm is analyzed firstly. Then a delay-constrained algorithm called DCADH (delay-constrained average distance heuristic) is presented. By using ADH a least cost multicast routing tree can be constructed; if the path delay can't meet the delay upper bound, a shortest delay path which is computed by Dijkstra algorithm will be merged into the existing multicast routing tree to meet the delay upper bound. Simulation experiments show that DCADH has a good performance in achieving a low-cost multicast routing tree.Comment: 8 Pages, IJCNC Journal 201

    A simulated annealing based genetic local search algorithm for multi-objective multicast routing problems

    Get PDF
    This paper presents a new hybrid evolutionary algorithm to solve multi-objective multicast routing problems in telecommunication networks. The algorithm combines simulated annealing based strategies and a genetic local search, aiming at a more flexible and effective exploration and exploitation in the search space of the complex problem to find more non-dominated solutions in the Pareto Front. Due to the complex structure of the multicast tree, crossover and mutation operators have been specifically devised concerning the features and constraints in the problem. A new adaptive mutation probability based on simulated annealing is proposed in the hybrid algorithm to adaptively adjust the mutation rate according to the fitness of the new solution against the average quality of the current population during the evolution procedure. Two simulated annealing based search direction tuning strategies are applied to improve the efficiency and effectiveness of the hybrid evolutionary algorithm. Simulations have been carried out on some benchmark multi-objective multicast routing instances and a large amount of random networks with five real world objectives including cost, delay, link utilisations, average delay and delay variation in telecommunication networks. Experimental results demonstrate that both the simulated annealing based strategies and the genetic local search within the proposed multi-objective algorithm, compared with other multi-objective evolutionary algorithms, can efficiently identify high quality non-dominated solution set for multi-objective multicast routing problems and outperform other conventional multi-objective evolutionary algorithms in the literature
    corecore