63 research outputs found

    Dynamic grid adaptation applied to large eddy simulation turbulence modelling

    Get PDF
    At present a large number of fluid dynamics applications are found in aerospace, civil and automotive engineering, as well as medical related fields. In many applications the flow field is turbulent and the computational modelling of such flows remains a difficult task. To resolve all turbulent flow phenomena for flow problems where turbulence is of key interest is a priori not feasible in a Computational Fluid Dynamics (CFD) investigation with a conventional mesh. The use of a Dynamic Grid Adaptation (DGA) algorithm in a turbulent unsteady flow field is an appealing technique which can reduce the computational costs of a CFD investigation. A refinement of the numerical domain with a DGA algorithm requires reliable criteria for mesh refinement which reflect the complex flow processes. At present not much work has been done to obtain reliable refinement criteria for turbulent unsteady flow. The purpose of the work presented in this thesis is to use both a DGA algorithm and Large Eddy Simulation (LES) turbulence model for predicting turbulent unsteady flow. The criteria for mesh refinement used in this work are derived from the equation for turbulent viscosity in the LES turbulence model. By using a modification to the turbulent viscosity as a refinement variable there is a link between both DGA algorithm and turbulence model. The smaller scale turbulence is modelled via the LES turbulence model, while the larger scales are resolved. In comparison with the simulations using a conventional mesh, substantial reduction in mesh size has been obtained with the use of a DGA algorithm. The reduction in mesh size is obtained without a decay in the quality of the prediction. It is shown that the use of a DGA algorithm in the context of turbulence modelling is a suitable tool which can be used as a next step in an attempt to resolve turbulence more realistically

    User`s guide for UTCHEM implicit (1.0) a three dimensional chemical flood simulator. Final report, September 30, 1992--December 31, 1995

    Full text link

    Development of a Three-Dimensional Air Blast Propagation Model Based Upon the Weighted Average Flux Method

    Get PDF
    Accurate numerical modeling of complex, multi-dimensional shock propagation is needed for many Department of Defense applications. A three-dimensional code, based upon E.F. Toro\u27s weighted average flux (WAF) method has been developed, tested, and validated. Code development begins with the introduction and application of all techniques in a single dimension. First-order accuracy is achieved via Godunov\u27s scheme using an exact Riemann solver. Adaptive techniques, which employ approximate solutions, are implemented to improve computational efficiency. The WAF method produces second-order accurate solutions, but introduces spurious oscillations near shocks and contact discontinuities. Total variation diminishing (TVD) flux and weight limiting schemes are added to reduce fluctuation severity. Finally, the fully developed one dimensional code is validated against experimental data, and extended into two and three dimensions via dimension-splitting technique

    On the effect of different flux limiters on the performance of an engine gas exchange gas-dynamic model

    Full text link
    [EN] A suitable tool for the design of intake and exhaust systems of internal combustion engines is provided by time domain non-linear finite volume models. These models, however, are affected by overshoots at discontinuities and numerical dispersion unless some flux limiter is used. In this paper, the effect of the most relevant of such flux limiters on a non-linear staggered-mesh finite-volume model is evaluated. Flux-Corrected-Transport (FCT) and Total Variation Diminishing (TVD) schemes, together with a Momentum Diffusion Term (MDT) are presented for such a model, and the performance of the resulting methods is checked in different problems representative of the influence of engine gas exchange flows on engine performance and intake and exhaust noise. First, two one-dimensional cases are considered: the shock-tube problem, and the propagation of a finite amplitude pressure pulse. Secondly, a simple but representative three-dimensional geometry is studied. From the results obtained, it can be concluded that, even if none of the methods is able to handle properly the three problems considered, the FCT method provides the best overall performance. (C) 2017 Elsevier Ltd. All rights reserved.M. Hernandez is partially supported through contract FPI-S2-2015-1064 of Programa de Apoyo para la Investigacion y Desarrollo (PAID) of Universitat Politecnica de Valencia.Torregrosa, AJ.; Broatch, A.; Arnau Martínez, FJ.; Hernández-Marco, M. (2017). On the effect of different flux limiters on the performance of an engine gas exchange gas-dynamic model. International Journal of Mechanical Sciences. 133:740-751. https://doi.org/10.1016/j.ijmecsci.2017.09.029S74075113

    A review on TVD schemes and a refined flux-limiter for steady-state calculations

    Get PDF
    This paper presents an extensive review of most of the existing TVD schemes found in literature that are based on the One-step Time-space-coupled Unsteady TVD criterion (OTU-TVD), the Multi-step Time-space-separated Unsteady TVD criterion (MTU-TVD) and the Semi-discrete Steady-state TVD criterion (SS-TVD). The design principles of these schemes are examined in detail. It is found that the selection of appropriate flux-limiters is a key design element in developing these schemes. Different flux-limiter forms (CFL-dependent or CFL-independent, and various limiting criteria) are shown to lead to different performances in accuracy and convergence. Furthermore, a refined SS-TVD flux-limiter, referred to henceforth as TCDF (Third-order Continuously Differentiable Function), is proposed for steadystate calculations based on the review. To evaluate the performance of the newly proposed scheme, many existing classical SS-TVD limiters are compared with the TCDF in eight two-dimensional test cases. The numerical results clearly show that the TCDF results in an improved overall performance.The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Grant No. 51279082 and 51511130073) and the support from Australian Research Council through a Discovery Grant (Project ID: DP110105171).This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.jcp.2015.08.04

    On the propagation of a normal shock wave through a layer of incompressible porous material

    Get PDF
    A novel numerical formulation of the two-phase macroscopic balance equations governing the flow field in incompressible porous media is presented. The numerical model makes use of the Weighted Average Flux (WAF) method and Total Variation Diminishing (TVD) flux limiting techniques, and results in a second-order accurate scheme. A shock tube study was carried out to examine the interaction of a normal shock wave with a thin layer of porous, incompressible cellular ceramic foam. Particular attention was paid to the transmitted and reflected flow fields. The numerical model was used to simulate the experimental test cases, and their results compared with a view to validating the numerical model. A phenomenological model is proposed to explain the behaviour of the transmitted flow field

    CFD Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    Get PDF
    An axisymmetric full Navier-Stokes computational fluid dynamics study is conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock research airplane, is considered. The computational fluid dynamics code is validated using available wind-tunnel sonic boom experimental data. The effects of grid size, spatial order of accuracy, grid type, and flow viscosity on the accuracy of the predicted sonic boom pressure signature are quantified. Grid lines parallel to the Mach wave direction are found to give the best results. Second-order accurate upwind methods are required as a minimum for accurate sonic boom simulations. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature is observed for the highly underexpanded nozzle flow. Axisymmetric computational fluid dynamics simulations show the flow physics inside the F-15 nozzle to be nonisentropic and complex. Although the one-dimensional isentropic nozzle plume results look reasonable, they fail to capture the sonic boom shock train in the highly underexpanded nozzle flow

    Scalability of Localized Arc Filament Plasma Actuators

    Get PDF
    Temporal flow control of a jet has been widely studied in the past to enhance jet mixing or reduce jet noise. Most of this research, however, has been done using small diameter low Reynolds number jets that often have little resemblance to the much larger jets common in real world applications because the flow actuators available lacked either the power or bandwidth to sufficiently impact these larger higher energy jets. The Localized Arc Filament Plasma Actuators (LAFPA), developed at the Ohio State University (OSU), have demonstrated the ability to impact a small high speed jet in experiments conducted at OSU and the power to perturb a larger high Reynolds number jet in experiments conducted at the NASA Glenn Research Center. However, the response measured in the large-scale experiments was significantly reduced for the same number of actuators compared to the jet response found in the small-scale experiments. A computational study has been initiated to simulate the LAFPA system with additional actuators on a large-scale jet to determine the number of actuators required to achieve the same desired response for a given jet diameter. Central to this computational study is a model for the LAFPA that both accurately represents the physics of the actuator and can be implemented into a computational fluid dynamics solver. One possible model, based on pressure waves created by the rapid localized heating that occurs at the actuator, is investigated using simplified axisymmetric simulations. The results of these simulations will be used to determine the validity of the model before more realistic and time consuming three-dimensional simulations are conducted to ultimately determine the scalability of the LAFPA system

    Effect of Turbulence Modeling on an Excited Jet

    Get PDF
    The flow dynamics in a high-speed jet are dominated by unsteady turbulent flow structures in the plume. Jet excitation seeks to control these flow structures through the natural instabilities present in the initial shear layer of the jet. Understanding and optimizing the excitation input, for jet noise reduction or plume mixing enhancement, requires many trials that may be done experimentally or computationally at a significant cost savings. Numerical simulations, which model various parts of the unsteady dynamics to reduce the computational expense of the simulation, must adequately capture the unsteady flow dynamics in the excited jet for the results are to be used. Four CFD methods are considered for use in an excited jet problem, including two turbulence models with an Unsteady Reynolds Averaged Navier-Stokes (URANS) solver, one Large Eddy Simulation (LES) solver, and one URANS/LES hybrid method. Each method is used to simulate a simplified excited jet and the results are evaluated based on the flow data, computation time, and numerical stability. The knowledge gained about the effect of turbulence modeling and CFD methods from these basic simulations will guide and assist future three-dimensional (3-D) simulations that will be used to understand and optimize a realistic excited jet for a particular application
    • …
    corecore