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Abstract 

A novel numerical formulation of the two-phase macroscopic balance equations 

governing the flow field in incompressible porous media is presented.  The numerical 

model makes use of the Weighted Average Flux (WAF) method and Total Variation 

Diminishing (TVD) flux limiting techniques, and results in a second-order accurate 

scheme.  A shock tube study was carried out to examine the interaction of a normal shock 

wave with a thin layer of porous, incompressible cellular ceramic foam.  Particular 

attention was paid to the transmitted and reflected flow fields.  The numerical model was 

used to simulate the experimental test cases, and their results compared with a view to 

validating the numerical model.  A phenomenological model is proposed to explain the 

behaviour of the transmitted flow field. 
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Introduction 

Many researchers have contributed to the body of literature relating to wave propagation 

in porous media.  Some of the earliest work by Biot (1956) present a mixture theory 

approach to the modelling of weak acoustic wave propagation in porous media, which 

has been used by various researchers to model both linear and non-linear problems.  Baer 

(1988) and Powers et al (1989) present multiphase mixture theory models aimed at 

simulating the propagation of a compaction wave in a column of air-saturated granular 

porous media.  In both cases, good agreement was obtained between the results of the 

numerical tests and experimental data for steady wave characteristics.  Corapicoglu 

(1991) presents an extensive literature survey on work done in the field of mixture theory 

wave propagation modelling.  This approach yields excellent results when modelling the 

propagation of linear waves in porous media.  However, as the work of Rogg et al (1981) 

and Powers et al (1989) have shown, applying this technique to the propagation of non-

linear wave phenomena (i.e. shock waves) produces poor results.   

Levy et al (1996) state that the processes involved in shock wave propagation in a porous 

medium should be modelled using the multiphase approach.  This involves the definition 

of a system of governing equations describing the mass, momentum and energy processes 

in each phase, and the interactions between individual phases.  Various researchers have 

adopted the macroscopic continuum approach to modelling flow in porous media, as 

opposed to the theory of mixtures.  This involves the introduction of a macroscopic 

Representative Elementary Volume (REV) over which the extensive variables are 

averaged.  The advantage of this method is that it yields information about the geometry 

of the porous medium that is not available using the mixture method. 
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Hassanizadeh and Gray (1979a, 1979b, 1980) present a continuum approach technique to 

macroscopically average the mass, momentum and energy equations for an n-phase 

porous medium.  The macroscopic balance equations for an abrupt pressure wave 

propagating through a porous domain were developed by Bear and Sorek (1990).  The 

resulting two-phase system of macroscopic balance equations was evolved in time to 

reveal four distinct periods of behaviour.  Firstly, a period of uniform pressure, 

temperature and stress distribution.  This occurs at the instant the porous medium is 

subjected to the abrupt change in pressure.  Secondly, a period of non-linear wave 

propagation that is dominated by convection.  This is characterised by a sharp, well- 

defined compaction wave propagating in the porous medium.  Thirdly, a period in which 

dissipative effects start to become apparent.  The compaction wave in the porous layer 

starts to be more affected by the interaction with the internal surfaces of the porous 

medium.  Finally, a period dominated by dissipative terms.  The viscous dissipation 

caused by friction on the internal surfaces characterises the flow.  This work was 

extended by Levy et al (1995) to provide a more accurate representation of the 

momentum and energy processes resulting from the action of the fluid on the internal 

surfaces of the porous medium.  This was achieved by including the Forchheimer term in 

the macroscopic balance equations, which had been neglected in the model presented by 

Bear and Bachmat (1990). 

Several numerical and experimental studies have been performed to examine the effects 

of shock wave reflection from a sample of porous medium mounted at the end of the 

driven section of a shock tube.  Levy et al (1993) present a shock tube study to examine a 

shock wave impinging on a sample of rigid ceramic foam.  From the experimental 
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observations, Levy et al (1993) deduced a phenomenological model to account for the 

behaviour of the shock wave reflected from the front edge of the porous medium sample.  

This model suggested that, as the shock wave impinges on the front edge of the porous 

medium, a proportion of the wave would be reflected while the rest would propagate 

inside.  The compaction wave penetrating the porous medium could be viewed as a sharp 

front that sweeps through it.  As this compaction wave propagates, parts of it would be 

reflected from the internal surfaces of the porous medium.  Some of these reflected 

wavelets would exit from the front edge of the porous medium and serve to strengthen 

the initially reflected wave.  Levy et al (1996) presented a theoretical model of the shock 

tube problem studied in Levy et al (1993).  A numerical formulation of this model was 

derived by the application of the high-order finite difference method of Harten (1983).  

Numerical solutions were obtained based on the experimental test cases given in Levy et 

al (1993).  

Torrens and Wrobel (2002) presented a numerical model, based on the application of the 

Weighted Average Flux (WAF) method of Toro (1992), to the theoretical model of shock 

wave flow in porous medium discussed in Levy et al (1996).  The numerical model was 

used to generate solutions for a shock tube problem where the domain was occupied 

entirely by a porous medium.  In order to increase the accuracy of the solutions while 

preserving stability, various TVD flux limiting functions were applied to the WAF based 

formulation.  It was found that the Superbee limiter of Roe (1983) was the most suited to 

the application. 

Two new studies are presented in this paper.  The first is an experimental study of a layer 

of porous media mounted in the middle of the driven section of a shock tube.  The second 
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is a numerical study using the model presented by Torrens and Wrobel (2002) to simulate 

the experimental test cases.  A comparison between the numerical and experimental 

results is presented, and a phenomenological model is proposed to account for the 

transmitted wave behaviour as the shock wave leaves the porous medium. 

 

Governing Equations 

In this section, the one-dimensional system of multiphase equations governing the mass, 

momentum and energy processes in the porous medium are presented.  The complexity of 

the porous medium geometry renders standard microscopic level continuum analysis 

impractical.  Applying volume and areal averaging techniques to the equations governing 

the microscopic transport of extensive quantities (mass, momentum and energy) over a 

macroscopic REV results in six macroscopic balance equations describing the fluid and 

solid mass, momentum and energy processes.  

The full system of macroscopic balance equations, obtained under a set of simplifying 

assumptions discussed by Levy et al (1996) and Torrens and Wrobel (2002), along with 

the constitutive relationships for stress and strain in the solid matrix and the equation of 

state for the gas, are given in the form: 
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where uα and ρα are the velocity and density of the α  phase (α may be f for the fluid 

phase or s for the solid phase), and φ denotes the macroscopic porosity of the porous 

medium, given by: 

S

bulk1
ρ
ρ

φ −=  (3) 

 where ρbulk is the bulk density of the porous medium. 
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where P is the pressure, CT is the tortuosity constant describing the directional cosines of 

the fluid path through the porous medium, and CF is the Forchheimer constant. 
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where Tα and cα are the temperature and specific heat capacity at constant volume in the 

α  phase. 
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The effective stress in the solid matrix may be expressed in the following form: 

                                             )( 0sss21s TTcLL −−=′ εσ  (8) 

where L1 and L2 are the Lamé constants for the solid matrix, Ts0 is its initial temperature 

and ε, the macroscopic strain as a function of porosity, is defined by: 

                                                     
0s
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where rs and rs0 are the mass fraction of the solid and its initial value, respectively. 

Finally, the second constitutive law – the equation of state for the fluid – is written in the 

form 

                                                    ff RTP ρ=  (9) 

where R is the gas constant for air. 

The previous system of governing equations may be represented in vector form as 

follows: 

[ ] QUFU =+ xt )(  (10) 

where the conserved variable vector, U, is given by: 

[ ]sfsfsf EEmmrr=U  (11)

in which rα is the mass fraction in the α phase, mα is the momentum in the α phase and 

Eα is the energy in the α phase.  These conserved variables are defined for the fluid phase 

by: 
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and for the solid phase by: 
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The flux vector F(U) is given by: 
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where the effective stress in the solid is given by: 
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and the fluid pressure is given by: 
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where γ is the ratio of specific heats for air, and the subscript s0 denotes an initial value.  

Note that equations (15) and (16) are the constitutive laws governing the stress-strain 

relationships in the solid and fluid phases, respectively. 
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The source vector, Q, is given by: 
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Levy et al (1996) state that the porosity gradient term in the source vector is assumed to 

be small.  If it were to be large, the nature of the system of equations represented by 

equation (10) would not be hyperbolic.  This would preclude the formation of non-

linearities in the solution domain. 

Solution Strategy 

The complexity of the macroscopic balance equations described in the previous section 

renders a solution by analytical means impossible.  This means that a solution may only 

be achieved by the application of a numerical method.  This section presents the 

numerical techniques that were applied to solve equation (10). 

The one-dimensional domain was divided into n computational cells and the shock tube 

problem initial data, denoted by Un (where n=0 as the shock tube diaphragm is removed), 

was applied piecewise constant to each cell.  In order to solve equation (10), the 
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following explicit conservative finite difference formula was used to update the initial 

data at time level n to the new values at time level n+1: 
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where 1+n
iU  and n

iU  denote the conserved variable vectors at time n and time n+1 in the 

ith computational cell, n
i 2

1±F  denote the intercell flux components upstream and 

downstream of the ith computational node, and n
iQ  denotes the source vector on the ith 

computational node, at time n.   

The intercell flux and source vector terms must be calculated before the solution may be 

updated.  In respect of the latter, it is simply a matter of inserting the values from the 

conserved variable vector, n
iU , into the source vector (17).  However, in order to evaluate 

the flux terms, the Riemann problem must be solved at each intercell boundary.  This was 

achieved by the application of the WAF method of Toro (1992), coupled with the 

Superbee flux limiter method of Roe (1983), to impose a TVD condition on the solution. 



 11

A 

0
2
xΔ

−

7 

0 

2
tΔ

Δt 

2
xΔ

H B 

λ2 λ4 λ6 

5 4 1 

C D E F G

λ1 λ3 λ5 

2 3 6 

 

Figure 1: Characteristic field for (1) on x-t diagram 

Consider the x-t plot shown in figure 1, which illustrates the characteristic field for the 

Riemann problem between cells i and i+1.  There are six characteristics corresponding to 

the shock, contact and rarefaction waves propagating in the fluid and solid phases.  

Regions 1 and 7 represent the known states in the i and i+1 computational cells.  Regions 

2 to 6 are the star states where the conserved variables are unknown.  In order to 

implement the WAF and Superbee methods, an explicit knowledge of the conserved 

variables and fluxes in the star regions is required.  In order to achieve this, the method of 

Roe (1981) was adopted.  This involves linearising equation (10) by the introduction of a 

parameter vector averaged across the known states U1 and U7.  This results in a constant 

Jacobian matrix, A~ .  The eigenvalues, eigenvectors and wave strengths of A~  were found 

symbolically using Mathematica, and are presented in full by Torrens and Wrobel (2002).  

Each of the six characteristics in the solution domain illustrated by figure 1 has an 
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eigenvalue, an eigenvector and a wave strength associated with it.  The star state 

conserved variables were calculated using the following expression: 
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where U1 denotes the known conserved variable vector in region 1, jα~  denotes the Roe 

averaged wave strength for the jth characteristic and )(~ jK  denotes the Roe averaged 

eigenvector associated with the jth characteristic.  The star state fluxes were given by the 

following expression: 
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where F1 denotes the known flux vectors in region 1 and jλ
~  denotes the Roe averaged 

eigenvalue of the jth characteristic wave.  The weighted average intercell flux is given by 

the sum of the flux vector in regions 1 to 7 multiplied by their respective weight.  Figure 

1 shows a line, AH, subdivided into seven sections.  The length of each of these sections 

corresponds to the weight of the section it is in.  The following expression gives the WAF 

intercell flux: 
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where Fk denotes the flux in the kth region and βk is the weight, which may be given by: 
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where ck is the Courant number of the kth wave given by: 
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The second-order WAF intercell flux is given by: 
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Note that the flux jump term denoted by )(kFΔ  may be replaced by the Roe averaged 

flux. 

In order to prevent the appearance of oscillations in the solution, the Superbee flux 

limiter of Roe (1983) was introduced.  This resulted in the following modification to the 

WAF flux: 
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where sgn(ck) is the sign of the Courant number of the kth characteristic, and ϕk is the 

Superbee flux limiter function.  The flux limiter is a function of two data-dependent 

parameters.  These are the Courant number and the ratio of upwind to local change of the 

conserved variables across each wave.  The latter is given by: 

2
1

2
1

1

1

+

+

−

+

−

−
=

i

k
f

k
f

i

k
f

k
f

kr ρρ

ρρ
 (26) 

The Superbee flux limiter function may be described as follows: 
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Validation of the WAF-based numerical model was carried out by performing numerical 

simulations of three test case scenarios, as illustrated in figure 2(a)-(c).  Figure 2(a) 

shows a plain shock tube, Figure 2(b) shows a shock tube entirely occupied by porous 

media while Figure 2(c) shows a shock tube with a sample of porous medium mounted at 

the end of the shock tube driven section.  The validation of the first two configurations 

was presented by Torrens and Wrobel (2002).  The validation of the third configuration 

was carried out by comparing experimental results presented by Levy et al (1993) with 

solutions generated by the numerical model presented herein.  The initial value problem 

for this configuration is shown below: 
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In defining the initial value problem, it was assumed that the air in the shock tube is 

initially quiescent, the temperature in the solid and fluid phases is 293 K at all points in 

the domain, and the specific heat capacities of the solid and fluid are 718 kJ/kg/K and 

870 kJ/kg/K, respectively.  The initial pressures and porous medium geometry 

coefficients are given in table 1.  This information was used to calculate the conserved 

variable vectors UL, UR1 and UR2, which may be defined by: 
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The grid sensitivity of the present numerical scheme was examined in Torrens and 

Wrobel (2002).  To effectively model a 1.6 metre long domain, occupied entirely by 

porous medium, at least 400 computational nodes were required.  The total number of 

computational cells used in the solution to the system (10) with initial conditions (28) 

was 400, with 50 of the cells being placed on the porous medium.  

 

 

(a) 

(b) 

(c) 

air porous medium 

Driver Section Driven Section 

Diaphragm 

 

Figure 2: Validation configurations 
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Initial pressure in driver section 351325 Pa 

Initial pressure in driven section 101325 Pa 

Initial porosity 0.73 

Forchheimer constant 300 m-1 

Tortuosity constant 0.7 

Table 1: Initial parameters for validation of configuration (c) 

 

Figures 3 and 4 show pressure-time curves of the numerical solution to the problem 

defined by (29).  These correspond to the two observation points at which the pressure 

was measured at each time step.  These were positioned 10 cm behind and 10 cm ahead 

of the air/porous medium interface.  The pressure history in figure 3 is initially at 

atmospheric pressure, as the observation point is positioned in the driven section.  When 

the shock wave reaches it, the pressure jumps to approximately 180kPa (the magnitude of 

the initial shock wave).  The same pressure is observed until the reflected shock wave 

from the air/porous medium interface reaches it.  The pressure then jumps to 

approximately 250kPa.  These pressure values are consistent with the values predicted by 

Levy et al (1996).  The shape and magnitude of the pressure-time curve in figure 4 also 

correspond well with those of Levy et al (1996).   
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Figure 3: Pressure history for configuration (c) taken at an observation point just 

behind the air/porous medium interface 
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Figure 4: Pressure history for configuration (c) taken at an observation point just 

ahead of the air/porous medium interface 
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Experimental Study 

This section details the methods used to obtain experimental pressure histories of the 

shock wave reflected from the front edge of the porous medium layer and the wave 

transmitted from the back edge. The experimental study of shock propagation through a 

layer of porous medium was carried out in a shock tube with internal diameter of 55 mm.  

Figure 5 shows a schematic of the shock tube, illustrating the position of the porous layer 

and the position of the pressure transducers used to obtain the pressure histories ahead of, 

and behind, the porous layer.   

The two transducers used to measure the transient pressure were piezoelectric transducers 

manufactured by Kistler Instruments Ltd. Transducer 1 in figure 5, located 90mm behind 

the front edge of the porous layer, was a model 701a sensor while transducer 2, situated 

90mm ahead of the back face of the porous layer, was a model 7001 sensor. The use of 

these sensors was recommended by Kistler Instruments (2000). Both sensors have the 

same pressure range (0 to 250 bar) and sensitivity (80pC/bar).  

The porous medium used in this experimental study was a rigid porous ceramic foam 

called Sivex, supplied by Pyrotek (UK) Limited.  Three grades of the ceramic foam were 

tested: these were 10, 20 and 30 pores per inch.  The samples were cut into disks from 

50mm thick plates, and placed in the driven section of the shock tube as indicated in 

figure 5. 
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Figure 5: Schematic of experimental set-up 

The three grades of porous foam were tested at three different initial shock tube 

diaphragm pressure ratios.  The driven section of the shock tube remained at atmospheric 

pressure, while the driver section pressure was set to 6 bar, 5 bar and 4 bar, resulting in 

diaphragm pressure ratios of 6 to 1, 5 to 1 and 4 to 1.  This resulted in a series of nine sets 

of experimental results.  Each set consisted of two pressure histories, the first from 

transducer 1 showing the behaviour of the shock wave reflected from the front edge of 

the porous medium, and the second from transducer 2 showing the behaviour of waves 

transmitted from the back edge of the porous layer. 

Each experimental set was repeated five times, although the porous sample was not 

changed during the repeatability tests. The reason for this was twofold: first, preliminary 

tests indicated that the porous material was sufficiently strong not to undergo any 

physical damage as a result of the interaction with the shock wave; and second, to ensure 

repeatability was not compromised. 

Because the shock tube was constructed from a plastic material, it was susceptible to 

vibration.  This vibration was transferred through the body of the tube to the pressure 
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instrumentation.  As a result of this, there is inherent noise in every experimental pressure 

history presented herein.  

Comparison between Experimental and Numerical Results 

The experimental test cases described above were simulated using the WAF based 

numerical formulation of the system of equations (10).  In order to achieve this, it was 

necessary to define several key material constants relating to the three grades of porous 

medium.  These were the Lamé constants, the Forchheimer coefficient, the tortuosity 

coefficient and the density of the solid substrate.  The porous medium under 

consideration was the same material used by Levy et al (1993) in their experimental 

investigation of shock wave interaction with a sample of porous medium mounted at the 

end of a shock tube.  They presented material constants for the 10, 20 and 30 ppi porous 

samples, which are detailed in table 2. 

Figure 6(a)-(c) illustrates a comparison between the experimental and numerical pressure 

histories at the first transducer position (i.e. before the porous layer).  Figure 7(a)-(c) 

illustrates a comparison for the second transducer position (i.e. after the porous layer).  A 

phenomenological model of the interaction of a shock wave with the front edge of a rigid 

porous foam is examined in detail by Levy et al (1993).  This model serves to clarify the 

behaviour observed in the shaded regions in figure 6(a)-(c).  The first shaded region 

shows the initial shock wave, resulting from the diaphragm burst, as it passes the first 

transducer.  The second shows the wave reflected from the front edge of the porous layer.  

The third shows an increase in pressure behind the reflected wave due to reflections from 

internal surfaces of the porous medium, emerging from its front edge and travelling back 
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up the shock tube.  Figure 6(a)-(c) highlights the good correlation obtained between the 

experimental and numerical results. 

Sivex grade 
Material property 

10 ppi 20 ppi 30 ppi 

Solid substrate density ρs 2000 kg/m3 

Air porosity φ 0.728 0.745 0.814 

Tortuosity CT 0.7 0.7 0.75 

Forchheimer constant CF 300 /m 500 /m 900 /m 

Solid substrate specific heat capacity at constant volume 

cvs 
840 kJ/kg/K 

Mechanical strain Lamé coefficient L1 3800 MPa 

Thermal strain Lamé coefficient L2 26.207 kg/m3 

Table 2: Material properties for rigid porous foam samples 

The shaded regions in figure 7(a)-(c) highlight areas of interest pertaining to the wave 

behaviour at the back edge of the porous sample.  Figure 8(a)-(e) shows five successive 

time snapshots illustrating this behaviour.  Figure 8(a) shows the initial compaction wave, 

resulting from the incidence of the initial shock wave on the porous layer, propagating 

towards the back edge.  The second illustration shows two waves.  The first is the initial 

compaction wave which has emerged from the porous layer and is propagating towards 

the second sensor.  The second, represented in the figure by a broken line, is a dispersed 
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compaction wave propagating towards the back edge of the porous layer.  This second 

wave results from reflections of the primary wave from the internal surfaces of the porous 

medium.  This concept is consistent with the phenomenological model of Levy et al 

(1993b). 

Figure 8(c) shows a dispersed compaction wave that has just emerged from the back edge 

of the porous layer.  Ahead of it, the initial compaction wave has reached the transducer, 

at which point it will perceive a pressure increase.  This corresponds to the pressure jump 

highlighted by the first shaded area in figure 7.  Figure 8(d) shows that the initial 

compaction wave has propagated further down the tube, while the dispersed compaction 

wave behind it has reached the transducer.  At this point, the transducer perceives a 

higher pressure which corresponds to the small pressure jump highlighted in the second 

shaded area in figure 7.  This rise is not evident in the experimental pressure histories, as 

the noise inherent in the signal precluded sufficient resolution of the results.  However, a 

gradual increase in pressure from the first to the third shaded regions in figure 7(a)-(c) 

highlights an increase in strength of the emerging wave. 
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Figure 6: Pressure histories for experimental and numerical results at 

first transducer position: (a) 10 ppi (b) 20 ppi (c) 30 ppi 

(a) 

(b) 

(c) 
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Figure 7: Pressure histories for experimental and numerical results at second 

transducer position : (a) 10 ppi (b) 20 ppi (c) 30 ppi 

(a) 

(b) 

(c) 
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Figure 8: Wave propagation at the back edge of the porous layer 

It is obvious that, when compared with the results in figure 6(a)-(c), the experimental and 

numerical results in figure 7(a)-(c) do not correlate as well.  Although the numerical 

results do predict a jump in pressure, they consistently over predict the experiments by 10 

to 20 kPa.  The third shaded region in figure 7(a)-(c) highlights a fall off in the 

experimentally observed pressure which is not mirrored by the numerical results.   

The primary reason the numerical results over predict the experimental results lies in 

some of the assumptions made to simplify the system of governing equations in order to 

produce the numerical model (Torrens and Wrobel (2002)).  Of the assumptions made, 

the two of most interest are (a) the fluid is ideal and therefore does not experience any 

viscous dissipative forces and (b) the energy processes in the fluid and the solid are 

reversible. 
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Consider firstly assumption (a).  On entering the porous layer, the shock wave is subject 

to many internal surfaces with which it may interact.  Levy et al (1995) present an 

evolution on the governing macroscopic balance equations.  They identified four distinct 

time periods in which the behaviour of the equations changes from convection-dominated 

to diffusion-dominated.  The first is a period of uniform pressure, temperature and stress 

distribution.  This occurs at the instant the porous medium is subjected to the abrupt 

change in pressure.  The second is a period of non-linear wave propagation that is 

dominated by convection.  This is characterised by a sharp, well-defined compaction 

wave propagating in the porous medium.  This is the time period that is most effectively 

modelled by the numerical model presented here.  The third is a period in which 

dissipative effects start to become apparent.  The compaction wave in the porous layer 

starts to be more affected by the interaction with the internal surfaces of the porous 

medium.  The final period is dominated by dissipative terms.  The viscous dissipation 

caused by friction on the internal surfaces characterises the flow.  The behaviour of the 

flow during the third and fourth evolutionary periods contradicts the Eulerian flow 

assumption made by the mathematical model.   

Adherence to assumption (b) would mean that the flow is assumed to be isentropic (i.e. 

no energy is lost to the environment due to friction).  However, from the discussion 

presented above, it is clear that if the flow is in either the third of forth evolutionary 

period, then viscous dissipation (or drag) on the internal surfaces of the porous medium 

would play a role in characterising the flow.  This viscous drag would render the flow 

anisentropic.  Neglecting the viscous dissipation or the anisentropic nature of the flow 
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could account for a proportion of the over prediction of the numerical results that was 

observed in figure 7(a)-(c). 

The second discrepancy between the numerical and experimental results presented in 

figure 7(a)-(c) relates to the fall in pressure observed in the third shaded region.  This 

phenomenon occurred consistently throughout all of the transducer two pressure histories 

for all test cases.  The cause of this would be closely linked with the explanation for the 

over prediction of numerical results given above. 

Phenomenological Model 

Skews et al (1992) presented a phenomenological model to account for the behaviour of 

compressible porous foams under shock loading conditions.  This model was extended by 

Levy et al (1993) to explain experimental observations made for shock wave interaction 

with rigid porous foams, for the specific case of the porous medium shock tube problem 

configuration illustrated in figure 2(c) where a porous medium sample is mounted in a 

shock tube with its back edge flush with the tube end wall. Figure 9 shows a 

characteristic plot illustrating this configuration.  

Four types of characteristics can be seen in figure 9. These are the initial shock wave 

incident on the front edge of the porous medium (SI), the reflected shock wave (SR), the 

compaction wave transmitted into the porous medium (CT), and the dispersed compaction 

waves resulting from reflections from internal surfaces (CR). The latter type of 

characteristic is shown by broken lines. Part of these waves propagate towards the end 

wall and are reflected, while compaction waves are reflected out of the front edge of the 

porous medium.  It can be seen in the figure that the reflected shock wave is strengthened 
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as a result of the superposition of the compaction waves emerging from the front edge of 

the porous sample. 

 t 

SI 

CT 

SR 

CR

Porous medium Air 

 

Figure 9: Characteristic x-t diagram for phenomenological model of Levy et al. 

(1993) 

Figure 10 shows a characteristic diagram of the proposed extension to the 

phenomenological model of Levy et al (1993).  In this case, five distinct waves groups 

appear in figure 10, the same four as in figure 9 and an extra wave transmitted from the 

back edge of the porous layer (ST).  The dispersed compaction waves are shown as 

broken lines.  

The extension of the model lies in the transmission of the compaction wave (CT) from the 

back edge of the porous sample back into the single-phase shock tube.  The main 

compaction wave transmitted through the porous medium emerges from the back edge 

and forms a shock wave (ST) which continues to propagate down the shock tube.  The 

forward running dispersed compaction waves emerge from the back edge of the porous 

x 
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medium.  As with the reflected shock wave, these dispersed compaction waves serve to 

strengthen the transmitted shock wave.  This extension to the phenomenological model is 

based on observations made of the sensor two pressure histories previously shown. 
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Figure 10: Characteristic x-t diagram for proposed phenomenological model 

 

Conclusions 

A TVD flux limited WAF-based numerical formulation of the two phase macroscopic 

balance equations has been utilised to carry out a study of shock wave propagation 

through a layer of a rigid porous medium.  This differed from previous studies in that the 

compaction wave propagating through the porous layer was transmitted into the single 

phase flow at the back face of the porous layer.  A shock tube based experimental study 

was performed for the purpose of validating the numerical model. 
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Excellent agreement was observed between the experimental and the numerical results 

for the wave reflected from the front edge of the porous layer.  However, the correlation 

between the experimental and numerical results of the wave transmitted from the back 

edge of the porous layer was not as good.  This was thought to be caused by modelling 

assumptions that result in neglecting viscous dissipation and flow irreversibilities that 

occur within the porous medium. 

The increase in strength of the wave transmitted from the back edge of the porous layer 

was caused by the accumulation of dispersed compaction waves resulting from 

reflections from the internal surfaces of the porous layer.  This inference led to the 

phenomenological model that has been proposed to describe the wave behaviour before 

and after the porous sample. 
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