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ABSTRACT 

 

This paper presents an extensive review of most of the existing TVD schemes found 

in literature that are based on the One-step Time-space-coupled Unsteady TVD 

criterion (OTU-TVD), the Multi-step Time-space-separated Unsteady TVD criterion 

(MTU-TVD) and the Semi-discrete Steady-state TVD criterion (SS-TVD). The 

design principles of these schemes are examined in detail. It is found that the 

selection of appropriate flux-limiters is a key design element in developing these 

schemes. Different flux-limiter forms (CFL-dependent or CFL-independent, and 

various limiting criteria) are shown to lead to different performances in accuracy and 

convergence. Furthermore, a refined SS-TVD flux-limiter, referred to henceforth as 

TCDF (Third-order Continuously Differentiable Function), is proposed for steady- 

state calculations based on the review. To evaluate the performance of the newly 

proposed scheme, many existing classical SS-TVD limiters are compared with the 

TCDF in eight two-dimensional test cases. The numerical results clearly show that 

the TCDF results in an improved overall performance. 
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1. Introduction 

 

Numerical simulation of convection-dominated flow phenomena remains one of the 

most challenging problems in computational fluid dynamics (CFD) [1-3]. On one 

hand, it is well known that conventional low-order (LO) schemes, such as the 

first-order upwind (FOU), HYBRID, and POWER-LAW schemes, although being 

highly stable and unconditionally bounded, suffer from excessive numerical diffusion 

[4–6]. On the other hand, while traditional high-order (HO) schemes, such as the 

central differencing (CDS), second-order upwind (SOU), cubic-upwind interpolation 

(CUI) and quadratic-upwind interpolation (QUICK) schemes, improve the accuracy 

and introduce less numerical diffusion relative to the LO schemes, they generally 

generate unphysical oscillations when the solution contains shocks or steep gradients 

of the transported variable because of their unbounded nature [7-9].  

Equipping the HO schemes with the boundedness property results in the so-called 

high-resolution schemes (HRS), which are able to provide good resolution in the 

vicinity of the steep gradient region without introducing spurious oscillations, while 

at the same time give at least second-order accuracy in smooth regions [10-12]. In the 

past decades, several different series of HRS have been developed [13-15], such as 

the flux-corrected transport (FCT) schemes, the total variation diminishing (TVD) 

schemes, the normalized variable diagram (NVD) schemes, and the essentially 

non-oscillatory (ENO) schemes.  

The FCT schemes, firstly introduced by Boris and Book and later enhanced by 

Zalesak and many other researchers [16-18], belong to the two-step-method group. In 

two-step methods, a provisional update from a low-order scheme is computed in the 

first step, and then, a limited amount of higher-order anti-diffusive flux is added in 

the second step to produce accurate and monotonic results. The NVD schemes, based 

on non-linear characteristics in the normalized variable diagram, employ the 

convection boundedness criterion (CBC) so as to provide accuracy, stability, 

monotonicity and algorithmic simplicity [2, 6, 19-24]. The explicit CBC proposed by 

Leonard [25] and the implicit CBC by Gaskell and Lau [26] are widely considered as 

the sufficient and necessary condition of explicit and implicit convection schemes, 

respectively, in order to achieve the local boundedness. It should be noted that all the 

NVD schemes considered in this paper have been converted into the flux-limiter form 

to allow direct comparison, owing to the unique relationship between the NVD and 

TVD spaces [27-28]. 
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The TVD schemes, originally developed by Harten [29], are a group of the most 

popular HRS schemes for solving hyperbolic conservation laws. Generally speaking, 

depending on some critical conditions (e.g. whether a steep gradient or a discontinuity 

exists), a TVD flux-limiter often switches from a high-order scheme to a low-order 

diffusive/compressive scheme (or vice versa) in order to circumvent the aforemen- 

tioned numerical dilemma. It is generally recognized that the TVD schemes possess 

several attractive features, such as strictly preserving the monotonicity property 

(delivering well-resolved non-oscillatory discontinuities), computational simplicity 

and efficiency (using a fixed compact 5-point stencil in each spatial direction), and at 

least second-order accuracy in smooth regions [30-38].  

Unfortunately, classical TVD schemes suffer from a well-known inherent 

drawback, namely the clipping of extrema, and therefore cannot recover the full order 

of accuracy [39-40]. To remedy this problem, more elaborate ENO schemes [41-43] 

have been proposed, which are not required to decrease the local extrema at every 

single time step. Numerical comparisons show that high-order ENO schemes preserve 

better high-frequency information and perform better than the traditional TVD 

schemes. However, as pointed out by Arora and Roe [44], the TVD schemes, when 

delicately conceived, are not in fact inferior to the simple kinds of ENO schemes and 

can be substantially more efficient in terms of computational costs. Further, taking 

into account the fact that ENO schemes use a larger finite-difference stencil than the 

traditional TVD schemes (viz. at least 7-point vs. compact 5-point for each spatial 

direction), it becomes extremely challenging and sometimes even impossible to apply 

the former on arbitrary unstructured meshes [4, 6, 45-47]. Due to the aforementioned 

attributes of the TVD schemes and the drawbacks of the ENO schemes, the TVD 

schemes are actually among the most widely used high-resolution discretization 

methods in practical applications [48-50]. 

In this article, a large number of TVD schemes in the literature are reviewed and 

their design principles are analyzed. These schemes are grouped into three broad 

categories: the OTU-TVD, the MTU-TVD and the SS-TVD. In addition, a new CFL- 

independent flux-limiter (TCDF) is proposed for steady-state calculations within the 

SS-TVD framework, whose accuracy and convergence are compared with many 

existing flux-limiters of the same kind. The results obtained in all the test cases 

clearly demonstrate the attractiveness of the newly-developed TCDF. 

 

2. One-Step Time-Space-Coupled Unsteady TVD Schemes 
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This section deals with the development of accurate OTU-TVD schemes for the 

numerical simulation of unsteady linear advection equations. Similar discussions can 

be found in Refs. [10, 12, 30, 32-34, 44, 51-53]. To present OTU-TVD schemes, we 

consider the numerical solution of the hyperbolic conservation law: 

( ) 0t xq aq                                  (1) 

where  ,q q x t  denotes the dependent variable and a  is the advection velocity. 

Without loss of generality, we assume that the velocity is a positive constant ( 0a  ). 

The opposite case ( 0a  ) can be treated by symmetry at each cell interface. When 

considering the numerical discretization of Eq. (1), we define t  as the time step 

and x  as the control cell size. In addition, owing to the stability requirement, the 

CFL number, v a t x   , is limited to the range of [0, 1].  

 

2.1. One-Step Time-Space-Coupled Unsteady Linear Schemes 

 

We will follow the Lax-Wendroff approach to introduce the high-order one-step time- 

space-coupled linear schemes by correcting the successive modified equations. 

Contrary to conventional finite difference approximations based on the Taylor series 

expansion in space, the Lax-Wendroff type methods originate from the Taylor series 

expansion in time [10, 13, 52]. 
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If retaining only the first three terms on the right-hand side of Eq. (2), substituting the 

time derivatives with space derivatives derived from the original advection equation, 

and using second-order centered difference approximations for the corresponding 

space derivatives, we can get the explicit second-order Lax-Wendroff scheme: 
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where the subscript i indicates the ith grid point and the superscript n denotes the nth 

time step. For convenience, we convert the second-order Lax-Wendroff scheme (Eq. 

(3)) into the general explicit flux-conservative form: 



 5 

              n

i

n

i

n

i

n

i

n

i

n

i

n

i qqvqqq
x

ta
qq 2/12/12/12/1

1



 



           (4) 

where v is the CFL number v=aΔt/Δx, and the variable value at the cell face for the 

second-order Lax-Wendroff scheme (
1/2

LW

iq 
) can be written as: 
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Furthermore, substituting Eq. (3) into Eq. (2) and after some algebraic manipulation, 

we obtain the modified equation for this scheme: 

 
   

2

3 32( ) ( 1) ( , )
6

t x xxx

x
q aq a v q O x t


                        (6) 

By spatially discretizing the right-hand side of Eq. (6) and subtracting it from the 

second-order Lax-Wendroff scheme, one obtains the well-known explicit third-order 

upwind-biased scheme with a numerical flux [10, 32-34, 44, 51]: 

 
 

 1/2 1/2 1

1-

2

n n n n

i i i i i

v
q q r q q                           (7)  

   3

1/2 1/2

1+
1- 1

3
i i

v
r r                                 (8) 

where 1/2ir  denotes the ratio of the upwind to central gradients in the data, which is 

essentially a local measure of smoothness. For linear problems on uniform grids, the 

gradient ratio 1/2ir  is defined as 1/2 1 1( ) ( )i i i i ir q q q q     .  

Similar to the deduction of the third-order scheme, by correcting the successive 

error terms of the modified equations, even higher-order (than third) one-step Lax- 

Wendroff type schemes can be expressed in the usual explicit flux-limited form (Eq. 

(7)), in which the flux-limiter function (  1/2ir ) determines the order of the scheme. 

However, such one-step schemes, if higher than 3-order, use a larger stencil than the 

usual 5-point stencil, as pointed out by Daru and Tenaud [10]. Since we would like to 

limit our discussions to the compact 5-point stencil schemes, these higher order 

schemes are not presented in this study. Interested readers are referred to [10], where 

numerical schemes of this kind up to seventh order have been derived.    

It is obvious that, for the first three terms on the right-hand side of Eq. (3), if the 

second-order centered difference approximations are replaced by second-order one- 

sided approximations of the derivatives, one gets the second-order Beam-Warming 

scheme [13]. Further, by taking the arithmetic mean of the Beam-Warming scheme 

and the Lax-Wendroff scheme, one obtains the Fromm scheme [33]. 
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    2/12/1   ii

BW rr                                     (9) 

 1/2 1/2(1 ) 2Fromm

i ir r                                (10) 

It is worthwhile to emphasize that the explicit one-step high-order schemes 

obtained in this way always have the same order of accuracy in both time and space. 

However, in view of their unbounded nature, these schemes, when directly 

implemented for unsteady computations, will inevitably produce spurious oscillations 

in the vicinity of discontinuities. Therefore, in order to avoid the generation of such 

unphysical oscillations, a monotonicity criterion will be introduced in the context of 

one-step unsteady calculations in the next sub-section.    

 

2.2. One-Step Unsteady TVD Criterion 

 

The total variation diminishing (TVD) concept, originally developed by Harten [29], 

is based on a rigorous mathematical foundation and provides a unifying framework 

for the construction of non-linear monotonicity-preserving high-resolution schemes 

for the one-dimension (1D) linear advection equation.   

In one space dimension, the total variation of the discrete solution at time step n, 

denoted by ( )nTV q , can be written as: 

 1( )=n n n

i i

i

TV q q q                             (11) 

In essence, the total variation is a measure of the oscillatory character of the solution. 

According to Harten [29, 30], the general explicit flux-conservative form (Eq. (4)) is 

said to be TVD if the total variation does not grow with time. 

1( ) ( )n nTV q TV q                                (12) 

For the one-dimensional (1D) hyperbolic conservation equation (Eq. (1)), we consider 

a general numerical scheme of the following form: 

   1

1/2 1 1/2 1

n n n n n n

i i i i i i i iq q C q q D q q

                         (13) 

where 1/2iC   and 1/2iD   are data dependent coefficients. Harten [29, 33] has proved 

that the sufficient conditions for this scheme to be TVD are the following 

inequalities: 

1/2 0iC   ,  1/2 0iD   , +1/2 1/20 1i iC D                     (14) 

Substituting the usual explicit flux-limited form (Eq. (7)) into the general explicit flux- 

conservative form (Eq. (4)), the following equation is derived: 
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Obviously, Eq. (15) has the same form as the Eq. (13) with 
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Substituting Eq. (16) into Eq. (14) results in the following limiting condition:  
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which is equivalent to  

 
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v r v




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In addition, for negative 1/2ir values,  1/2ir  is usually set to zero.  

 1/2 1/2=0     when  0i ir r                             (19) 

Although most flux-limiters proposed so far satisfy the above condition (Eq. (19)), 

the violation of this condition does not cause problems in practice. This has been 

illustrated in schemes such as the OSPRE limiter, the Albada family limiters, the 

variant Arora-Roe limiter, the local double-logarithmic reconstruction (LDLR) limiter 

and the Čada-Torrilhon limiter [10, 11, 33, 39]. In fact, the TCDF limiter, newly- 

proposed in this paper, also does not satisfy this condition, which will be described in 

details later on. In the present stage, however, we restrict ourselves to the construction 

of the general limiting criterion for OTU-TVD schemes. Hence, as usual, by 

combining Eq. (18) with Eq. (19), the One-step Unsteady TVD criterion is defined as: 

  1/2
1/2 1/2

1/2

22
0 min ,    when 0

1

0                                                      when 0

i
i i

i

r
r r

v v

r


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

  
     

 
 

            (20) 

The above criterion is illustrated by the shaded region in Figure 1. It is apparent that 

this CFL-dependent TVD region, firstly conceived by Roe [44, 51], is not bounded by 

[2, 1 22 ir ] and is thus different from the well-known Sweby’s TVD region [30], 
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which is also referred to as the Semi-discrete Steady-state TVD criterion in this paper 

and will be discussed in the next section. 

To avoid confusion, we emphasize that the retaining of the CFL-number as a 

parameter in the criterion is simply because the One-step Unsteady TVD criterion is 

designed for unsteady analysis of the 1D advection equation. This is not necessary 

when a steady-state solution is sought after, as pointed out by Arora and Roe [44]. 

Instead the Semi-discrete Steady-state TVD criterion (viz. Sweby’s TVD criterion) 

should be employed under such a circumstance. 

 

2.3. OTU-TVD Flux-limiters 

 

As mentioned earlier, OTU-TVD schemes can be expressed by the usual explicit 

flux-limited form (Eq. (7)), in which the limiter function (  1/2ir ) determines the 

accuracy of the scheme. In order to suppress spurious oscillations in the vicinity of 

steep gradients,  1/2ir  is required to satisfy the One-step Unsteady TVD criterion 

(Eq. (20)), and consequently be confined to the shaded region shown in Figure 1. 

Although abundant CFL-independent flux-limiters have been developed in the 

past decades for solving steady-state problems, only a small number of publications 

have been dedicated to the construction of OTU-TVD flux-limiters in the context of 

one-step unsteady computations, which retain the dependence on the CFL-number 

and are required to satisfy the One-step Unsteady TVD criterion. Some of the 

flux-limiters that have been used are listed below: 

Arora-Roe limiter [10, 33, 34, 44, 51], also known as the Direct Scheme in [32] and 

referred to as CFL-Koren limiter in this paper:   

       1 / 2
1 / 2 1 / 2
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Adaptive-QUICK limiter [53], also called as CFL-WACEB limiter in this paper:  
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CFL-Superbee limiter [33]:  
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CFL-MUSCL limiter [31, 33]:  
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Modified CFL-Superbee limiter [33]: 
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       ( where   is a parameter 0 2 3   )                             (25) 

Hyperbee limiter [33, 51]:  
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Superpower limiter [33]:  
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    Variant Arora-Roe limiter [33]:      
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min max (1 ) ,1 (1 ) ,max (1 ) , ,

3 1 1
i i i i

v
r r r r

v v v v
      

     
            

     

       (where   is a parameter 1/ 2 1   )                             (28) 

The above-listed flux-limiters, from Eq. (21) to Eq. (28), can be basically divided into 

two types: piecewise-linear and smooth limiters. The piecewise-linear flux-limiters, 

such as Eqs. (21-25) and Eq. (28), simply switch between different linear schemes, 

depending on the local gradient ratio 1/2ir . But, the smooth flux-limiters, such as Eq. 

(26) and Eq. (27), are constructed with non-linear gradually-switching smooth 

functions (at least on the positive r-axis). Amongst these limiters, Arora-Roe limiter 

(Eq. (21)) maintains the same third-order accuracy both temporally and spatially, and 

is one of the most widely used OTU-TVD schemes [10, 32-34, 44, 51], due to its 

excellent overall performance in terms of accuracy and efficiency. 
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In summary, this section focuses on a review of the development of OTU-TVD 

schemes for solving the 1D unsteady linear advection equation. As previously 

demonstrated, OTU-TVD schemes adopt the general explicit flux-conservative form 

(Eq. (4)) to discretize the unsteady advection equation, and further employ the usual 

explicit flux-limited form (Eq. (7)) to express the conservative flux. It is worthwhile to 

re-emphasize that different OTU-TVD schemes are distinguished by the form of the 

limiter function  1/2ir  in Eq. (7), which also determines the accuracy of the 

scheme. The flux-limiter function  1/2ir  is required to satisfy the One-step 

Unsteady TVD criterion which is illustrated by the shaded region in Figure 1. 

 

3. Semi-Discrete Steady-State TVD Schemes 

 

This section provides a brief review of various SS-TVD schemes designed for the 

steady-state solution of the 1D advection equation:  

    
xt aqq                             (29) 

where q  denotes the dependent variable and a  is the advection velocity. Without 

losing generality, the advection velocity is assumed to be positive ( 0a  ) because the 

opposite case ( 0a  ) can be treated by symmetry. Note that the flux term is 

deliberately moved to the right-hand side of Eq. (29) to emphasize the semi-discrete 

nature.  

It is trivial to show that obtaining the steady-state solution of Eq. (29) is 

essentially equivalent to solving the steady equation   0
x

aq  . Since a pseudo-time- 

stepping approach is employed for various schemes reviewed in this section, we elect 

to use Eq. (29) as the model equation for steady advection problems. It should be 

pointed out that all SS-TVD schemes, originally developed for Eq. (29), are equally 

applicable to solving the boundary value problem   0
x

aq  , as described in [11, 

13-14, 27-28, 36-39, 45-50, 53]. 

 

3.1. Semi-Discrete Steady-State Linear Schemes 

 

Discretizing Eq. (29) over a control volume 2 2,i i x i xC x x 
    , one can obtain the 

general semi-discrete flux-conservative form: 

 1/2 1/2i ii
a q qdq

dt x

  



                        (30) 

In order to predict the variable value at the cell-face, 1 2iq   or 1 2iq  , the well- 
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known k-schemes, firstly introduced by Van Leer [11, 54, 55], are employed in 

consideration of their compact 5-point stencil in each spatial direction. The numerical 

flux of the k-schemes on uniform 1D grids reads: 

   1/2 1 1

1 1
+

4 4
i i i i i i

k k
q q q q q q  

  
    

 
              (31) 

which can be extended to non-uniform 1D grids: 

1/2

1/2 1/2

1 1
+

2 2 2

i
i i

i i

x k q k q
q q

x x


 

        
     

     
                

where 1

1/2 1

i i

i i i

q qq

x x x



 

 
 

  
, 1

-1/2 1

i i

i i i

q qq

x x x





 
 

  
, 

1/2 1/2i i ix x x       (32) 

where k is a variable representing different schemes. Actually, the k-schemes can be 

deemed as a combination of a dissipative FOU scheme (the first term on the 

right-hand side) and a high-order correction term (the rest of the right-hand side). The 

high-order correction term employs a linear weighted average of two local gradients: 

one across the cell face in question  
1/2

/
i

q x


  and the other across the immediate 

upwind cell face  
-1/2

/
i

q x  . 

As described in [11], it is quite natural to rewrite the above k-schemes in the usual 

semi-discrete flux-limited form on a uniform grid, 

  1/2 1/2 1

1
+

2
i i i i iq q r q q                              

where  1/2 1/2

1 1

2 2
i i

k k
r r  

 
  , 

 

 
1

1/2

1

i i

i

i i

q q
r

q q











           (33) 

Similarly, Eq. (33) takes the following form on a non-uniform mesh, 

 1/2 1/2

1/2

+
2

i
i i i

i

x q
q q r

x
 



  
  

 
                         

where  1/2 1/2

1 1

2 2
i i

k k
r r  

 
  , 1/2

1/2 1/2

i

i i

q q
r

x x


 

    
    

    
   (34) 

Analogous to the usual explicit flux-limited form (Eq. (7)), the flux-limiter  1/2ir   

in the usual semi-discrete flux-limited form (Eq. (33) or Eq. (34)) determines the 

accuracy of the scheme. Since the interest is on the steady-state solution in this case, 

we focus on the spatial accuracy only and ignore any time-step restrictions.  

  Although the semi-discrete flux-limited form can also be formulated in slightly 

different forms from the one given by Eq. (33) or Eq. (34), as those outlined in [28, 
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36, 38, 45, 53], it is possible to convert those different forms and their corresponding 

flux-limiters into the usual semi-discrete flux-limited form through simple algebraic 

manipulations. Therefore, the usual semi-discrete flux-limited form (Eq. (33) or Eq. 

(34)) is the only form considered in this paper for the purpose of consistency. 

It is well known that some of the classical linear high-order advection schemes 

can be derived by taking different values of k, e.g.  

SOU (k = -1):       1~
2/1 ir                             

Fromm (k = 0):        21~~
2/12/1   ii rr                        

CUI (k = 1/3):         31~2~
2/12/1   ii rr                       

QUICK (k = 1/2):      41~3~
2/12/1   ii rr    

CDS (k = 1):        2/12/1
~~
  ii rr                      (35) 

It is equally well known that linear high-order advection schemes, such as members 

of the k-schemes (Eq. (35)), are vulnerable to unphysical spatial oscillations when 

they are applied to capture shocks or steep variations of the dependent variable, 

primarily due to their unbounded nature [7-9].   

 

3.2. Semi-Discrete Steady-State TVD Criterion 

 

In order to achieve the desired boundedness property for the usual semi-discrete 

flux-limited form (Eq. (33) or Eq. (34)), several boundedness criteria have been 

proposed in the literature, such as Sweby’s TVD criterion [11, 30], Gaskell’s CBC 

criterion [25, 26] and Spekreijse’s Positivity criterion [14, 56].  

Sweby’s TVD criterion was originally deduced in the context of an explicit time 

discretization, but has been broadly applied to the construction of semi-discrete 

steady-state CFL-independent flux-limiters [11, 13-14, 27-28, 30, 36-39, 45-50, 

55-56]. In this section, Sweby’s TVD criterion is adopted to construct non-linear 

monotonicity-preserving SS-TVD schemes in order to avoid spurious oscillations in 

the vicinity of discontinuities or steep gradients. 

Following the same approach outlined in Subsection 2.2, it is easy to derive the 

Semi-discrete Steady-state TVD criterion (viz. Sweby’s TVD criterion), which is also 

illustrated in Figure 2: 

 
   

 
1/2 1/2 1/2

1/2 1/2

0 min 2 ,  2      when 0

0                                 when 0

i i i

i i

r r r

r r





  

 

  


 
             (36) 
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As previously stated, contrary to the One-step Unsteady TVD criterion (Eq. (20)), 

the Semi-discrete Steady-state TVD criterion (Eq. (36)) gets rid of the dependence on 

the CFL number, which is believed to be advisable for solving the steady-state 

solution of the semi-discrete advection equation (Eq. (29)) by using a pseudo- 

time-stepping approach. 

 

3.3. SS-TVD Flux-Limiters 

 

In the past decades, a large number of SS-TVD flux-limiters that satisfy the 

Semi-discrete Steady-state TVD criterion (Eq. (36)) have been proposed and analyzed. 

Some of those limiters are listed below for the convenience of discussion. 

1). Piecewise-linear SS-TVD Flux-limiters: 

Chakravarthy and Osher limiter [11, 30]:   

         ,~m i n,0m a x~
2/12/1   ii rr , where 21                 (37) 

BSOU limiter [4, 6, 11, 30]:   

          1,~2m i n,0m a x~
2/12/1   ii rr                              (38) 

Minmod limiter [4, 6, 11-13, 15, 30, 42, 47]:   

          1,~m i n,0m a x~
2/12/1   ii rr                               (39) 

Superbee limiter [2, 4, 6, 11-13, 15, 30, 33, 42, 47]:   

            2,~m i n,1,~2m i n,0m a x~
2/12/12/1   iii rrr                    (40) 

MUSCL limiter [2, 4, 6, 11-14, 30, 31, 33, 42]:   

        














 
 

 2,
2

1~
,~2m i n,0m a x~ 2/1

2/12/1

i

ii

r
rr                     (41) 

Koren limiter [4, 6, 11, 32, 33, 39, 49, 50, 55]:   

        














 
 

 2,
3

1~2
,~2m i n,0m a x~ 2/1

2/12/1

i

ii

r
rr                    (42) 

WACEB limiter [4, 6, 11, 23], also known as the Bounded QUICK [48, 53]:   

        














 
 

 2,
4

1~3
,~2m i n,0m a x~ 2/1

2/12/1

i

ii

r
rr                    (43) 

UMIST limiter [4, 48], also known as the SPL-1/2 limiter [11]:   

        














 
 

 2,
4

3~
,

4

1~3
,~2m i n,0m a x~ 2/12/1

2/12/1

ii

ii

rr
rr            (44) 
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SPL-max-1/2 limiter [11]:   

        






















 
 

 2,
4

3~
,

4

1~3
m a x,~2m i n,0m a x~ 2/12/1

2/12/1
ii

ii

rr
rr       (45) 

SPL-1/3 limiter [11]:   

        














 
 

 2,
3

2~
,

3

1~2
,~2m i n,0m a x~ 2/12/1

2/12/1

ii

ii

rr
rr            (46) 

SPL-max-1/3 limiter [11]:   

        






















 
 

 2,
3

2~
,

3

1~2
m a x,~2m i n,0m a x~ 2/12/1

2/12/1
ii

ii

rr
rr       (47) 

 

2). Smooth SS-TVD Flux-limiters: 

Harmonic limiter [4, 11, 12, 30, 31, 33, 42, 47, 50]:   

       
1~

~~
~

2/1

2/12/1

2/1











i

ii

i
r

rr
r                                     (48) 

OSPRE limiter [4, 11, 33, 47]:   

       
 

  1~~2

1~~3~

2/1

2

2/1

2/12/1

2/1











ii

ii

i
rr

rr
r                               (49) 

Albada limiter [4, 11, 14, 33, 57], also known as the GVA-0 limiter [11]:   

       
 

  1~

1~~
~

2

2/1

2/12/1

2/1











i

ii

i
r

rr
r                                    (50) 

GVA-1/3 limiter [11]:   

       
 

  2~

2~~
~

2

2/1

2/12/1

2/1











i

ii

i
r

rr
r                                    (51) 

GVA-1/2 limiter [11]:   

       
 

  3~

3~~
~

2

2/1

2/12/1

2/1











i

ii

i
r

rr
r                                    (52) 

GPR-0 limiter [11]:   

       
 

  1~~2

1~3~
~

2/1

2

2/1

2/12/1

2/1











ii

ii

i
rr

rr
r                                (53) 

GPR-1/3 limiter [11]:   

       
 

  1~~

1~2~
~

2/1

2

2/1

2/12/1

2/1











ii

ii

i
rr

rr
r                                 (54) 

GPR-1/2 limiter [11]:   
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       
 

  2~~

1~~2~

2/1

2

2/1

2/12/1

2/1











ii

ii

i
rr

rr
r                                 (55) 

As a matter of fact, many flux-limiters of this kind, which are not listed in this 

study, can be found in the literature. Interested readers are referred to [10-11, 28, 

38-39, 42]. Here, we only present several representatives of the piecewise-linear 

flux-limiters and gradually-switching smooth flux-limiters for the convenience of 

discussions. Generally speaking, the piecewise-linear flux-limiters (e.g. Eqs. (37-47)) 

act simply as switches between different linear schemes and offer the advantage of 

great flexibility. The overall accuracy of the piecewise-linear flux-limiters can be 

improved by enlarging the region of a specified higher-order scheme (e.g. QUICK or 

CUI). However, the flux-limiters of this kind suffer from an adverse effect on 

convergence behavior under some circumstances because of their discontinuous 

nature. In contrast, the gradually-switching smooth flux-limiters (e.g. Eqs. (48-55)) 

exhibit better convergence behavior than the piecewise-linear flux-limiters at a price 

of accuracy [11]. This motivates the present study to develop a refined CFL- 

independent gradually-switching smooth flux-limiter (TCDF) that simultaneously 

maintains the advantage of the piecewise-linear flux-limiters for steady-state 

calculations within the SS-TVD framework. 

In summary, this section provides a brief review of various SS-TVD schemes 

designed for the steady-state solution of the 1D advection equation. The key elements 

of the SS-TVD schemes include the general semi-discrete flux-conservative form (Eq. 

(30)) to discretize the advection term and the usual semi-discrete flux-limited form, 

Eq. (33) or Eq. (34), to approximate the conservative flux. It is the CFL-independent 

limiter  1/2ir   that distinguishes different SS-TVD schemes from each other and 

determines the accuracy of the scheme.  

 

4. Multi-Step Time-Space-Separated Unsteady TVD Schemes 

 

As discussed by Daru and Tenaud [10], the MTU-TVD schemes follow the method- 

of-lines approach [32, 55] by implementing the spatial and temporal discretizations 

separately. Furthermore, these schemes employ Runge-Kutta type time-stepping 

methods rather than the Taylor series expansion approach for the temporal 

discretization. A widely-used third-order TVD RK3 scheme [10, 32, 55, 58-60] is 

outlined to explain the fundamental philosophy of the MTU-TVD schemes: 
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 

 

 

1

2 1 1

1 2 2

                

3 1
   

4 4 4

1 2 2

3 3 3

n n

i i x i

n

i i i x i

n n

i i i x i

q q t L q

t
q q q L q

t
q q q L q










   




   



   

                  (56) 

where  x iL q  is the spatial discretization operator, defined as:  

  1/2 1/2- ( )i i
x i

a q q
L q

x

 






                         (57) 

It is seen from Eq. (56) that a multi-stage Runge-Kutta method is made up of repeated 

applications of a single-stage scheme. Therefore, once  x iL q  is determined, the 

description of a Runge-Kutta method is completed.  

To ensure the TVD property of a multistage scheme in a strict sense, not all 

Runge-Kutta schemes can be directly used to deal with the time discretization 

because both the Runge-Kutta solver and each space-discretization step of the solver 

are required to be TVD. For this reason, this section is limited to the construction of 

high-resolution TVD schemes for each space-discretization step (  x iL q ) only, and 

ignores the problem of choosing different Runge-Kutta schemes.  

 

4.1. Multi-Step Time-Space-Separated Spatial Linear Schemes 

 

As aforementioned, in order to assure the TVD property of a multistage scheme, we 

must make each space-discretization step (  x iL q ) of the Runge-Kutta solver to be 

TVD. It is apparent that  x iL q  is equal to the right-hand side of the general 

semi-discrete flux-conservative form (Eq. (30)).  

As discussed in Subsection 3.1, the well-known k-schemes are adopted to predict 

the convected variable value at the cell-face, 1 2iq   or 1 2iq  , in consideration of their 

compact 5-point stencil in each spatial direction. Similarly, the usual semi-discrete 

flux-limited form (Eq. (33) or Eq. (34)) are employed, and the flux-limiter  1/2ir   

determines the accuracy of the scheme. Members of the k-schemes can be expressed 

with different linear flux-limiters, as demonstrated in Eq. (35).  

 

4.2. Multi-Step Unsteady TVD Criterion 

 

In Subsection 3.2, the Semi-discrete Steady-state TVD criterion, viz. Sweby’s TVD 

criterion given by Eq. (36), is used to achieve the desired TVD property for the usual 
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semi-discrete flux-limited form (Eq. (33) or Eq. (34)). Although Sweby’s TVD 

criterion works well for obtaining the steady-state solution of the semi-discrete 

advection equation (Eq. (29)), it is not suitable for the multi-step unsteady 

computations. A specific TVD criterion is needed under this circumstance. 

Through simple algebraic manipulations, Eq. (33) can be converted into the 

following form:  

  1/2 1/2 1

1
+

2
i i i i iq q r q q                             (58) 

where the gradient ratio 1/2ir  is defined as    1/2 1/2 1 11/i i i i i ir r q q q q       , the 

same as that defined in Eq. (8).  1/2ir  is a new flux-limiter function slightly 

different from  1/2ir   in Eq. (33). The two functions are related in the following 

manner [45]: 

   1/2 1/2

1/2

1
=i i

i

r r
r

 



                                   (59) 

For a multi-stage Runge-Kutta method, each sub-step of the time integration is 

essentially equivalent to explicitly solving the unsteady advection equation (Eq. (1)). 

So it is reasonable for us to transform the MTU-TVD flux-limited form (Eq. (58)) into 

the usual explicit flux-limited form (Eq. (7)), aiming at deriving the conditions to 

ensure the TVD property in each sub-step of the time integration. Hence, we further 

rewrite Eq. (58) as: 

 
 1/2
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q q q q
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

 

 
 


                    (60) 

Obviously, differences do exist between OTU-TVD schemes and MTU-TVD 

schemes. In the former, the spatial discretization is completely coupled with the 

temporal discretization, so the usual explicit flux-limited form (Eq. (7)) for the space 

reconstruction is CFL-dependent. In the latter, the spatial discretization is absolutely 

independent of the time integration, thus the MTU-TVD flux-limited form (Eq. (58) or 

Eq. (60)) is essentially CFL-independent. 

Replacing Eq. (7) by Eq. (60) and following the same derivation process outlined 

in Subsection 2.2, we can obtain the following Multi-step Unsteady TVD criterion 

[10], which is also illustrated graphically in Figure 3: 

 1/2 1/2
1/2

1/2

22
0 min ,     when 0

   1 1

0                                                         when 0

i i
i

i

r r
r

v v v

r

 




   
        

 

          



 18 
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      (61) 

In order to keep at least second-order accuracy in smooth regions, it is necessary that 

 1 1  , which implies the following CFL condition: 

    
 

v

v 21
1


      

3

2
v                     (62) 

From Eq. (36) and Eq. (61), it can be concluded that the MTU-TVD criterion is 

more restrictive than the SS-TVD criterion when the CFL number lies in the range of 

(0.5, 1.0]. However, the former is less restrictive than the latter for the CFL values 

lower than 0.5. Specifically, when the CFL number is equal to 0.5, the former (Eq. 

(61)) is essentially equal to the latter (viz. the Sweby’s TVD criterion, Eq. (36)). In 

other words, for CFL-numbers lower than or equal to 0.5, the SS-TVD criterion is the 

most demanding situation of the MTU-TVD criterion [10]. 

We would like to re-emphasize that, for the MTU-TVD schemes, the spatial 

discretization is absolutely independent of the time integration. Therefore, we adopt 

the CFL-independent flux-limited form (Eq. (58) or Eq. (60)) for the space 

reconstruction. In order to ensure the TVD property in each sub-step of the time 

integration of the Runge-Kutta solver, time-step restrictions need to be reintroduced. 

This consequently results in the Multi-step Unsteady TVD criterion being 

CFL-dependent (Eq. (61)).   

 

4.3. MTU-TVD Flux-Limiters 

 

Theoretically speaking, various piecewise-linear MTU-TVD flux-limiters can be 

obtained by simply replacing the Semi-discrete Steady-state TVD criterion (Eq. (36)) 

with the Multi-step Unsteady TVD criterion (Eq. (61)) in Eqs. (40-47). Furthermore, 

different smooth MTU-TVD flux-limiters can also be formulated by adopting the 

upper bound value of Eq. (61), viz.    1/2max 0,min 2,  2 1ir v v   , rather than 

  1/2max 0,min 2,  2 ir  specified by Eq. (36).  

In practice, either the OTU-TVD flux-limiters (Eqs. (21-28)) or the SS-TVD flux- 

limiters (Eqs. (37-55)) have been used in each sub-step of the time integration of the 

Runge-Kutta solver [10, 32, 55, 60]. It should be pointed out that the MTU-TVD 

criterion (Eq. (61)) is more restrictive than the OTU-TVD criterion (Eq. (20)). 

Besides, the use of the OTU-TVD flux-limiters in this situation is not time-efficient, 
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because the temporal accuracy has already been guaranteed by the Runge-Kutta 

solver. In addition, it is also not all that sensible to adopt the SS-TVD flux-limiters at 

this moment because the Semi-discrete Steady-state TVD criterion (Eq. (36)) is 

excessively restrictive (relative to Eq. (61)) for the CFL values lower than 0.5. 

Although the MTU-TVD flux-limiters can be classified as one of the basic 

flux-limiter types, it is not our intention to propose new schemes of this kind. 

Therefore they are not compared with other kinds of flux-limiters quantitatively here. 

We would like to maintain our focus on presenting a detailed classification of TVD 

schemes and developing a refined SS-TVD flux-limiter for steady-state calculations.  

 

4.4. Relationships between Different TVD limiters 

 

All the three kinds of TVD limiters, including the OTU-TVD limiters (Eqs. (21-28)), 

the SS-TVD limiters (Eqs. (37-55)) and the potential MTU-TVD limiters (designed 

according to Eq. (61)), are closely related to each other, but distinct differences do 

exist between them, as discussed in the following paragraphs. 

Firstly, it deserves our attention that both the OTU-TVD and the MTU-TVD 

limiters are developed in the context of unsteady calculations with the purpose of 

obtaining both the temporal and spatial accuracy. Although the OTU-TVD schemes 

achieve the temporal and spatial accuracy automatically, the MTU-TVD limiters 

ensure the temporal accuracy with the aid of the multi-stage Runge-Kutta solver. 

Furthermore, it should be noted that, for both the OTU-TVD criterion and the 

MTU-TVD criterion, the CFL number is required to be in the range of [0, 1], as 

indicated by Eq. (20) and Eq. (61). 

Secondly, since the SS-TVD flux-limiters are originally proposed for the 

steady-state solution of the advection equation, the focus of these flux-limiters is 

mainly on the accuracy of the spatial discretization. It is obvious that these limiters 

are CFL-independent, as demonstrated by Eqs. (37-55), and therefore larger CFL 

numbers (than 1.0) can be adopted for the SS-TVD limiters, which are particularly 

useful when searching for the steady-state solutions.  

Thirdly, in theory, when the CFL values lie in the range of [0, 1], both the 

OTU-TVD and SS-TVD limiters can be employed to solve the unsteady advection 

equation, but we have reasons to believe that the former is likely to result in better 

numerical accuracy than the latter in this circumstance, because the former maintains 

both the temporal and spatial accuracy. This will be demonstrated by the numerical 
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results presented in the seventh test case of this paper later on. For CFL values larger 

than 1.0, the OTU-TVD limiters are physically meaningless, but the SS-TVD limiters 

are still applicable. In other words, the former provide better accuracy for CFL 

numbers lower than 1.0, whereas, the latter have a greater scope of application in 

terms of the CFL values. 

Additionally, as aforementioned, the MTU-TVD criterion (Eq. (61)) is more 

restrictive than the OTU-TVD criterion (Eq. (20)), and the SS-TVD criterion (Eq. 

(36)) is more restrictive than the MTU-TVD criterion when the CFL value is lower 

than 0.5. But, for CFL numbers in the range of (0.5, 1.0), the SS-TVD criterion is 

actually less restrictive than the MTU-TVD criterion. More importantly, when the 

CFL number is equal to 0.5, the former (viz. the Sweby’s TVD criterion) is 

equivalent to the latter. In other words, for CFL-numbers lower than or equal to 0.5, 

the SS-TVD criterion is the most restrictive criterion. 

 

4.5. Other Miscellaneous TVD Schemes 

 

Most TVD flux-limiters proposed so far can be grouped into the aforementioned three 

broad categories. Nevertheless, a number of miscellaneous flux-limiters, which do not 

fit into the above classifications for various reasons, do exist in the literature, such as 

those in [34, 39, 40, 42, 47, 61-62]. To keep the presentation concise, those limiters 

will not be reviewed here. Interested readers are advised to refer to the relevant 

references.  

 

5. A Refined Semi-Discrete Steady-State Flux-Limiter 

 

In this section, a refined SS-TVD flux-limiter (TCDF) for the steady-state solution of 

the 1D advection equation (Eq. (29)) is proposed based on a pseudo-time stepping 

approach. The newly-proposed TCDF, through maximizing the region of a well- 

behaved linear scheme (viz. third-order QUICK) and simultaneously employing a 

continuously-switching smooth function on the positive r-axis, has a better overall 

performance than the existing SS-TVD flux-limiters in terms of accuracy and 

convergence.  

The general semi-discrete flux-conservative form (Eq. (30)) is employed for the 

construction of the TCDF, where the flux is estimated by the usual semi-discrete 

flux-limited form (Eq. (33) for uniform meshes or Eq. (34) for non-uniform meshes). 
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Additionally, in order to achieve the desired monotonicity property, the Semi-discrete 

Steady-state TVD criterion (viz. Sweby’s TVD criterion, (Eq. (36)) is adopted for the 

TCDF, which is described in detail below.  

 

5.1. On the Positive r-axis 

 

For steady flow computations, Leonard’s QUICK scheme [63] is almost the most 

popular high-order convection scheme. QUICK is an upwind-biased scheme and of 

third-order accuracy on uniform grids. As demonstrated by Table-B1 in Ref. [11], 

among all linear k-schemes, QUICK shows the highest level of accuracy in the two 

steady 2D advection test cases. Although handling well the convective transport in 

problems with smoothly-varying dependent variables, it inevitably generates spurious 

oscillations in the vicinity of steep-gradients or discontinuities [7, 9, 35, 48, 53, 64]. 

On the basis of QUICK, a number of high-resolution schemes, such as SHARP 

[35], SMART [26], AVL-SMART [37], CUBISTA [19], STOTIC [24] and VONOS 

[65], have been proposed in the normalized variable (NV) diagram to overcome the 

above defect by employing Gaskell’s CBC criterion [25, 26]. In view of the fact that 

CBC is weaker than TVD [11], these NVD schemes, though performing well in linear 

advection problems, are not completely bounded in non-linear situations such as 

shock-tube flows. In addition, originating from QUICK, several piecewise-linear 

SS-TVD schemes, which strictly satisfy Sweby’s TVD criterion, are also developed 

in the literature, such as WACEB [4, 6, 11, 23] (also known as the Bounded QUICK 

[48, 53, 64]), UMIST [4, 48] (also known as the SPL-1/2 [11]) and SPL-max-1/2 [11]. 

It should be noted that, despite offering the advantage of great flexibility and 

increasing the overall accuracy to some degree by enlarging the region of a specified 

higher-order scheme (e.g. QUICK), the piecewise-linear TVD schemes suffer from an 

adverse effect on convergence behavior because of their discontinuous nature. For 

instance, numerical comparisons in Ref. [11] do reveal that the piecewise-linear 

SMART scheme, by maximizing the region of QUICK comparatively, indeed leads to 

the most accurate predictions, but possesses a poor convergence behavior because of 

its discontinuous nature. On the contrary, continuously-switching smooth limiters, 

such as OSPRE and Albada, perform very well in terms of convergence behavior. 

To ensure both accuracy and convergence, a CFL-independent flux-limiter (TCDF) 

is delicately designed here within the SS-TVD framework. On the one hand, TCDF 

coincides with the QUICK scheme to a great degree in smooth regions to achieve 
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higher order accuracy. On the other hand, TCDF makes use of a gradually-switching 

smooth function (at least on the positive r-axis), which behaves much better than 

most of piecewise-linear flux-limiters in terms of convergence.  

Firstly, in TCDF, we stick to the third-order QUICK scheme over the interval 

1/20.5 2.0ir  , which corresponds to the relatively smooth regions. Thus, 

 1/2 1/2 1/20.75 0.25      when 0.5 2.0i i ir r r                  (63) 

Secondly, in order to obtain a smooth function, a cubic profile is selected to 

represent this flux-limiter in the region of 1/20 0.5ir  : 

      
3 2

1/2 1/2 1/2 1/2i i i ir a r b r cr d                          (64) 

which passes through two points: (0, 0) and (0.5, 0.625), and is subjected to the 

gradient conditions:  0.5 0.75    and  0 =2.0  . This result in 

     
3 2

1/2 1/2 1/2 1/2 1/22 2     when 0 0.5i i i i ir r r r r               (65) 

Additionally, in order to construct gradually-switching smooth limiter function, 

for the region of 1/22.0 ir   , the general polynomial-ratio (PR) expression of 

power n=2 is utilized: 
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where M indicates the limit value of this function when 1/2ir  . Waterson et al. 

[11] argued that a larger value of M results in better resolution of steep gradients. So, 

the maximum value of Sweby’s TVD criterion, viz. M=2, is selected here. The other 

two constraints are that Eq. (66) goes through the point (2.0, 1.75) with a gradient of 

0.75, which guarantees a smooth switching from QUICK to the quadratic PR function 

at this point. Supposing that the two parameters in the denominator are equal to -1.0 

(viz. 0 0 1b c   ) for simplicity and implementing the previous two constraints, one 

can obtain:  
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      (67) 

To sum this up, the TCDF scheme is a gradually-switching smooth multi- 

component function on the positive r-axis and can be written in a compact form as: 
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      (68) 

 

5.2. On the Negative r-axis 

 

As is well known, conventional SS-TVD flux-limiters, based on Sweby’s TVD 

criterion (Eq. (36)), often degenerate to the excessively diffusive FOU scheme 

(  1/2 =0ir  ) for 1/2 0ir  . However, as discussed in Subsection 2.2, the violation of 

this condition does not cause problems in practice. In the light of the striking 

convergence behavior of the Albada scheme (Eq. (50)) [11], its quadratic PR smooth 

function is used for negative 1/2ir  values in the development of the TCDF. 

Therefore, the ultimate TCDF limiter can be written as: 
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    (69) 

As demonstrated in Figure 4, the TCDF limiter coincides with the third-order 

QUICK scheme for a wide range of 1/2ir  values in smooth regions. Furthermore, 

with the aid of a cubic function and a quadratic PR function, the TCDF limiter 

becomes a gradually-switching smooth multi-component function on the positive 

r-axis, which contributes to achieving better convergence performance. Therefore, it 

is reasonable for us to believe that the newly-proposed TCDF limiter can ensure a 

better overall performance than the existing SS-TVD schemes in terms of accuracy 

and convergence. 

 

6. Numerical Test Cases 

 

This section presents several two-dimensional (2D) steady or unsteady advection test 
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cases to evaluate the relative performance of nine existing classical SS-TVD 

flux-limiters, including Albada, Harmonic, Koren, Minmod, MUSCL, OSPRE, 

Superbee, UMIST and WACEB, and the newly-proposed TCDF. In these tests, the 

accuracy is quantitatively measured by the average L2 norm of the difference between 

the exact and numerical solutions: 

2

1

1
( ( ) )

N
n a

i i

i

E Sqrt q q
N 

                             (70) 

where n

iq  is the calculated solution after n time steps, a

iq  the exact analytical 

solution and N the number of grid points.  

 

6.1. Test 1: Pure convection of a step profile   

   

In this problem we consider the advective transport of a passive scalar by a given 

uniform velocity field, oblique to the horizontal direction at an angle 45 degree, in a 

2D situation. The governing conservation equation of this problem is: 

   
0

uq vqq

t x y

 
  

  
                            (71) 

where q is the advected variable, and u=1 and v=1 are the Cartesian components of 

the given velocity vector. As shown in Figure 5, the inlet boundary conditions are 

defined as: 

 0, 1q y              for  0 1y   

  ,0 0q x              for  0 1x                 (72) 

Initially, the variable values in all the computational cells are set to 0. The step profile 

provides the most stringent gradient variation, with the purpose of evaluating the 

method’s ability to resolve a sharp front, with minimum numerical diffusion and 

without oscillations [4, 6]. 

A uniformly spaced mesh of 60×60 cells is employed in this test. To reach steady 

state, a pseudo-time stepping approach is adopted and computations are performed at 

six different time steps, yielding maximum Courant numbers (Cu) of 0.4, 0.8, 1.2, 2.0, 

2.5 and 3.0, respectively. Moreover, the first-order implicit Euler method is used for 

the time discretization because it allows large time steps to be taken, which is 

especially useful for solving steady flow problems. Specifically, the FOU value ( iq ) 

in Eq. (33) or Eq. (34) is implicitly discretized and the high-order correction term is 

explicitly treated as the source term. 
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The first column in Table 1 summarizes the average errors of various SS-TVD 

flux-limiters along the line x=0.7 when the steady-state solution is achieved, and 

Figure 6 compares the resulting profiles of q along this line for different schemes. In 

addition, the number of iterations needed to achieve convergence (when the residual 

is smaller than 610 ) at different Courant numbers, viz. using different relaxation 

factors, is listed in Table 1 for the aforementioned ten flux-limiters. The 

corresponding decay processes of the residuals at a Courant number of 3.0 are 

demonstrated in Figure 7. Note that, as shown in Figure 6, the FOU scheme does 

introduce unacceptable level of numerical diffusion. 

Obviously, when compared with the Minmod, UMIST, Albada, Harmonic and 

OSPRE, the newly-proposed TCDF scheme significantly improves the accuracy of 

the solution. Although the former methods give better convergence properties, the 

latter (TCDF) is still preferred in consideration of its much better resolution and only 

slightly worse convergence rate, as displayed in Table 1 and Figures 6-7. 

When compared to the well-known MUSCL and Koren schemes, the computa- 

tional results presented in Table 1 and Figures 6-7 show that the TCDF provides a 

slightly more accurate solution but with a much better convergence behavior 

(especially at high Courant numbers), which is in accordance with the results given 

by the Table-B1 in Ref. [11] and demonstrates the advantage of the newly-proposed 

limiter once again.  

As expected, in comparison with the WACEB scheme, the TCDF predicts almost 

the same scalar profile (actually slightly worse). However, significant improvement in 

convergence can be realized by using the newly-proposed limiter, which is therefore 

still recommended, as illustrated in Figures 6-7. Special attention needs to be paid to 

the well-known Superbee scheme, which is known as one of the most compressive 

differencing schemes, and does produce the most accurate result in this case but with 

the worst convergence behavior [11]. The excellent accuracy displayed by the 

Superbee scheme appears to be related to a property of the scheme that it tends to 

compress any gradient into a step profile. This is also demonstrated in Test 3 where 

the Superbee scheme yields severe numerical distortions for the advection of a 

smooth profile, which is thought to be due to its inherent squaring effect.   

All in all, the numerical results clearly show that the newly-proposed TCDF 

scheme results in a better overall performance on accuracy and convergence in this 

test, compared to the remaining nine existing classical SS-TVD flux-limiters. 
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6.2. Test 2: Pure convection of a sine-square profile 

 

As illustrated in Figure 8, the same physical domain, governing equation, initial 

condition, time discretization scheme and velocity field as the step profile case are 

adopted in conducting the well-known advection test of a sine-square profile. The 

inlet boundary conditions are described as: 

  2 10
0, sin

3
q y y

 
  

 
      for  

3
0

10
y   

 0, 0q y                 for  3/10 1y   

 ,0 0q x                 for  0 1x                (73) 

The sine-square is a relatively steep profile that enables an assessment of the 

influence of implementing various flux-limiters in steep gradient regions. In this test, 

a slightly non-uniform structured mesh of 65×65 cells is employed. Computations are 

performed at six different time steps as well, yielding maximum Courant numbers of 

0.4, 0.8, 1.2, 2.0, 2.5 and 3.0, respectively.  

The average errors of various SS-TVD flux-limiters along the line x=0.6 when the 

steady-state is reached are listed in the first column of Table 2, and the resulting 

profiles of q along this line for the above ten flux-limiters are presented in Figure 9. 

Furthermore, Table 2 gives the number of iterations needed to achieve convergence at 

different Courant numbers for various schemes, and the decay processes of the 

residuals at a Courant number of 3.0 are displayed in Figure 10.  

In contrast to the Minmod, UMIST, Albada, Harmonic and OSPRE limiters, the 

superiority of TCDF is more clearly demonstrated than that in the first test case in 

view of the significant improvement in accuracy, as shown in Table 2 and Figure 9. 

Relative to the MUSCL scheme, TCDF has a slightly smaller average error here, 

which is in accordance with the result of the first test. However, in this case, TCDF 

leads to a slightly larger average error in comparison with the Koren limiter, which is 

contrary to the conclusion obtained in the previous test. Nevertheless, TCDF does 

show a more rapid convergence rate than both the MUSCL and Koren schemes, as 

evidenced in Table 2 and Figure 10. In addition, as expected, when compared to the 

WACEB limiter, TCDF results in a slightly larger average error but a significantly 

improved convergence property, as displayed in Figures 9-10.  

Overall, almost the same conclusions as drawn from the first test can be reached 

in this test case. Again the TCDF scheme displays the excellent overall performance 

in terms of accuracy and convergence.  
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6.3. Test 3: Pure convection of a semi-ellipse profile 

 

The semi-ellipse profile, due to the combination of opposite gradient discontinuities 

at the base with a region of slowly varying curvature without a sharp maximum, 

serves as a good benchmark problem for the assessment of the steepening/clipping 

characteristics of various SS-TVD flux-limiters [4, 6, 19].  

As described in Figure 11, the same physical domain, governing equation, initial 

condition, velocity vector and time discretization scheme as the sine-square profile 

case are employed in this test. Further, a slightly non-uniform structured mesh of 

63×63 cells is utilized and computations have been carried out at six different time 

steps, yielding maximum Courant numbers of 0.4, 0.8, 1.2, 2.0, 2.5 and 3.0, 

respectively. The inlet boundary conditions are: 

  20, 1 [ / (1/ 6)]q y y      for  1/ 6y   

 0, 0q y                  elsewhere                (74) 

and 

  2,0 1 [ / (1/ 6)]q x x       for  1/ 6x   

 ,0 0q x                   elsewhere                (75) 

When the steady-state solution is obtained, the average errors along the line x=0.7 

for different flux-limiters are summarized in the first column of Table 3, and a 

graphical representation of the resulting profiles of q along this line is given by Figure 

12. Table 3 shows the number of iterations needed to achieve convergence at different 

Courant numbers for various schemes, and the decay processes of the residuals at a 

Courant number of 3.0 are presented in Figure 13.  

The advantages of TCDF over the MUSCL, Harmonic and Koren schemes are 

demonstrated more clearly in this test case than that in the previous test cases, 

because the TCDF gives a much better performance in terms of both accuracy and 

convergence. Particularly, as displayed in Table 3, when the Courant number is larger 

than 1.2, the number of iterations needed to achieve convergence actually increases 

with the increase of the adopted pseudo-time step for the Harmonic limiter, which can 

be attributed to the necessity of a stronger relaxation (i.e. a smaller pseudo time-step) 

for this limiter in order to rapidly reach the steady-state in this test. 

Furthermore, it is interesting to observe that the Superbee scheme does tend to 
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compress the relatively smooth semi-ellipse profile into a step-like profile due to its 

inherent squaring effect, as evidenced in Figure 12. In line with what was observed in 

the previous tests, the Superbee limiter yields a much worse convergence rate than the 

newly-proposed TCDF. 

Except for the above differences, similar conclusions to those drawn in Test 1 and 

Test 2 can be derived in this test. The TCDF scheme again demonstrates excellent 

overall performance in terms of accuracy and convergence.  

 

6.4. Test 4: Pure convection of a one-double-step profile (Rotational) 

 

The previous three tests show an excellent overall performance of the TCDF in the 

uniform flow field. In order to evaluate the ability of the TCDF to handle 

non-uniform flows, the advection of a one-double-step profile in a rotational velocity 

field is simulated in Test 4. The test conditions are illustrated in Figure 14 and the 

double-step profile is specified as: 

                  
  10, xq        for  0.8 0.6x     

        
  00, xq        for 0.6 0x    and 1 0.8x       (76) 

The double-step profile is transported clockwise from the inlet boundary (x<0, y=0) to 

the outlet boundary (x>0, y=0) by a rotational velocity field defined as:  

           
,U y           V x                            (77) 

This problem is solved on a uniformly spaced mesh of 120×60 cells at six 

different time steps, yielding maximum Courant numbers of 0.4, 0.8, 1.2, 2.0, 3.0 and 

4.0, respectively. The same governing equation, time discretization scheme and initial 

condition as that in Test 1 are selected to conduct this test. The first column in Table 

4 summarizes the accuracy of different SS-TVD flux-limiters, and the accuracy is 

quantitatively measured by the average L2 norm of the difference between the exact 

and numerical solutions at the outlet plane (0≤x≤1.0, y=0). Further, a graphical 

representation of the resulting profiles of q along this plane is given by Figure 15. The 

number of iterations needed to achieve convergence at different Courant numbers for 

various schemes is detailed in Table 4. The decay processes of the residuals at a 

Courant number of 4.0 are presented in Figure 16.  

Table 4 and Figures 15-16 reveal that, in contrast to the well-known Minmod 

MUSCL and Koren schemes, the newly-developed TCDF limiter produces a more 

accurate prediction, and at the same time enjoys a much better convergence property 
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in this test. This clearly demonstrates its advantages once again. Moreover, as 

evidenced in Table 4, in comparison with the UMIST, Albada, Harmonic and OSPRE, 

the TCDF limiter provides a much better accuracy and leads to only a slightly worse 

convergence. The superiority of the TCDF over other schemes is more distinctly 

shown in this test than that in the previous three uniform velocity-field tests. 

As with the first three tests, WACEB produces a slightly more accurate numerical 

prediction than TCDF in this test. However, the latter (TCDF) does result in a much 

better convergence rate here, compared to the former. Although the Superbee limiter 

shows excellent ability to simulate discontinuities, it is not able to converge to the 

prescribed residual tolerance of 610  in this circumstance, as evidenced in Table 4. 

Besides, it should be noted that, when the Courant number is larger than 3.0, the 

number of iterations needed to achieve convergence actually increases with the 

increase of the pseudo-time step for the MUSCL and WACEB limiters, which means 

that a stronger relaxation (i.e. a smaller pseudo time-step) is required for the two 

limiters in order to quickly achieve convergence here. 

In conclusion, the numerical results in this more challenging situation again 

demonstrate the apparent superiority of TCDF over the remaining nine classical 

SS-TVD flux-limiters in terms of accuracy and convergence. This is consistent with 

the conclusions drawn from the previous three test cases. 

 

6.5. Test 5: Pure convection of a two-double-step profile (Rotational) 

 

In order to investigate the performance of different SS-TVD flux-limiters in more 

demanding situations and further analyze their grid convergence properties involving 

a sequence of grids with different fineness, we shall present two other test examples, 

Test 5 and Test 6, which correspond to the pure convection of different profile shapes 

in a prescribed rotational velocity field. 

In the fifth test, illustrated in Figure 17, a two-double-step profile is advected 

from the inlet plane (x<0, y=0) to the outlet plane (x>0, y=0) by a rotational velocity 

field (U=y, V=-x). The inlet boundary conditions are defined as: 

             
  10, xq    for 0.8 0.6x     and 0.4 0.2x        

    
  00, xq    for 1 0.8x    , 0.6 0.4x    and 0.2 0x     (78) 

The same governing equation, initial condition and time discretization scheme as 

those in Test 4 are adopted as well. Computations are performed on uniformly-spaced 
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grids of four different resolutions, consisting of 20×40, 40×80, 80×160 and 160×320 

cells, respectively. Two different pseudo-time steps, yielding maximum Courant 

numbers of 2.0 and 3.0 respectively, are employed with the purpose of analyzing the 

accuracy and convergence of various schemes with relatively large CFL values.  

In fact, with regard to each of the ten SS-TVD flux-limiters in question, almost 

the same average errors can be obtained for the aforementioned two time steps, as 

displayed in Table 5. When reaching the steady state, the corresponding profiles of q 

at the outlet plane on the mesh composed of 40×80 cells are demonstrated in Figure 

18. In addition, Table 6 shows the number of iterations needed to achieve 

convergence at different Courant numbers on various mesh resolutions for all the ten 

SS-TVD limiters. Specifically, for the mesh comprised of 80×160 elements, the decay 

processes of the residuals at a Courant number of 3.0 are presented in Figure 19. 

As expected, except for the Superbee scheme, TCDF and WACEB, which nearly 

produce the same numerical accuracy, are the most accurate flux-limiters under this 

circumstance. However, as mentioned earlier, the Superbee limiter can’t be applied to 

solve the smooth-solution transport problems, and, moreover, TCDF is able to 

provide a much better convergence rate than the Superbee and WACEB schemes, as 

proved by Table 6 and Figure 19. Actually, in this more challenging case, TCDF even 

possesses better convergence property than the Albada and Minmod limiters, which is 

contrary to the conclusions deduced from the previous four tests. In other words, the 

superiority of TCDF over the other schemes is even more apparent here.  

The advantage of the newly proposed TCDF in terms of accuracy and 

convergence over the remaining flux-limiters is demonstrated once again in this test 

case. For brevity, besides Tables 5-6 and Figures 18-19, only the resulting profiles of 

q at the outlet plane achieved on different levels of uniform structured meshes for the 

TCDF limiter are displayed in Figure 20. 

 

6.6. Test 6: Pure convection of a relatively smooth profile (Grid Convergence) 

 

In view of the fact that the formal order of accuracy can be misleading in the presence 

of step functions [1, 2, 6], the advection of a relatively smooth profile should be taken 

into account in order to attain the true grid-convergence orders of different TVD 

flux-limiters. That is also the reason for omitting the calculation of the convergence 

orders in the previous tests. 

As demonstrated in Figure 21, the sixth test case involves the pure advection of a 
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relatively smooth multi-component profile from the inlet plane (x<0, y=0) to the 

outlet plane (x>0, y=0) by the same velocity field (U=y, V=-x). The inlet boundary 

conditions are described as: 

          
   2,0 0.6 sin 0.25 2q x x                for 0.25 0x       

   2,0 0.6 sin 0.25 2q x x                for 0.5 0.25x       

 ,0 0.6q x                            for 0.6 0.5x         

   2,0 1.2 sin 1.0 1.25 0.6q x x            for 1 0.6x       (79)  

The same governing equation, initial condition, time discretization scheme and 

computational meshes as those in Test 5 are utilized as well. Only one pseudo-time 

step, yielding a maximum Courant number of 1.0, is chosen to conduct the 

calculations for simplicity.  

Table 7 presents the average numerical errors of all the ten SS-TVD flux-limiters 

for various grid resolutions, and Figure 22 gives a graphic presentation of the 

resulting profiles of q at the outlet plane for the mesh consisting of 80×160 cells. In 

addition, the corresponding profiles of q at the outlet plane achieved on different 

levels of uniform structured meshes for the TCDF limiter are displayed in Figure 23. 

We would like to emphasize that, although the well-known Superbee limiter 

results in much smaller numerical errors than the newly-proposed TCDF in the 

previous discontinuities or steep-gradients problems, the latter is actually much more 

accurate and leads to much better grid convergence than the former on fine grids for a 

relatively smooth profile, as in this test. This can be attributed to the inherent squaring 

effect of the Superbee scheme, which has a tendency to compress any gradient into a 

step-like profile and becomes even more severe with the increase of the mesh 

resolution, as shown by Fig. 22 and Table 7.   

In addition, it is important to note that, in contrary to the conclusions derived from 

the first five test cases, TCDF even results in slightly smaller numerical errors than 

the WACEB limiter, in spite of the fact that the latter sticks to the third-order QUICK 

scheme in a larger range than the former. Furthermore, it can be seen from Table 7 

that the TCDF, WACEB, Koren and MUSCL schemes nearly enjoy the same 

convergence order, which is approximately between 2.55 and 2.62 depending on the 

mesh resolution and is much larger than those of the remaining six flux-limiters. It is 

not difficult to explain the results in view of that all the aforementioned four schemes 

adhere to a very accurate linear scheme, such as QUICK, CUI and Fromm, in a large 
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range, as displayed in Eqs. (41-43) and Eq. (69).  

It can be concluded that the superiority of the TCDF limiter is even more 

pronounced for the advection of a relatively smooth profile. 

 

6.7. Test 7: Unsteady advection in a rotating flow field 

 

Obviously, the previous six tests focus on the comparison between different SS-TVD 

flux-limiters in the context of the steady-state solution of the advection equation. 

Although, in Section 2 and Section 3, we declare that the OTU-TVD and SS-TVD 

limiters are originally developed based on the unsteady and steady-state advection 

problems respectively, it has also been pointed out in Section 4.4 that, theoretical 

speaking, when the CFL values lie in the range of [0, 1], both kinds of limiters are 

applicable to unsteady advection problems. Therefore, in Test 7, an unsteady 

advection test is carried out, which is about the movement of a square patch of solute 

in a rotational velocity field, with the purpose of evaluating the performance of 

different OTU-TVD and SS-TVD limiters within the unsteady-calculation context. 

Similar to the test parameters set by Liang et al. [66], the computational domain is 

contained inside a square, with a side of length 80 m. The prescribed velocity field 

can be written as follows: 

 
2

40
360

U y


     ，  
2

40
360

V x


                  (80) 

Initially, unit concentration is specified within a square, which has a side length of 8m 

and is centered at x=20m and y=40m, and the concentration elsewhere is set to zero, 

as illustrated in Figure 24. Eq. (80) indicates that the concentration field rotates 

counter-clockwise around the center of the domain as a rigid body, and one rotation 

takes 360s. In this pure advection scenario, the square column should theoretically 

return to its original position after one rotation, with its original shape. 

Computations have been conducted on two mesh resolutions (viz. 80×80 and 

160×160 uniformly spaced cells) with five different time steps (i.e. 0.05s, 0.1s, 0.2s, 

0.4s and 0.6s). Table 8 and Table 9 give the average numerical errors of different 

schemes, including the aforementioned ten SS-TVD limiters and other four OTU- 

TVD limiters, namely the CFL-MUSCL (Eq. (24)), CFL-WACEB (Eq. (22)), CFL- 

Superbee (Eq. (23)) and CFL-Koren (Eq. (21), also referred to as the Arora-Roe 

limiter). The predicted concentration distributions after one rotation for all the TVD 

limiters in question are demonstrated by Figures 25-38.  
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In terms of overall numerical accuracy, the newly-developed TCDF is slightly 

inferior to the WACEB and Koren limiters, but is more accurate than the OSPRE, 

Albada, Harmonic, Minmod and UMIST limiters. Although TCDF leads to slightly 

larger numerical errors than the well-known MUSCL limiter at relatively large time 

steps, the former is actually more accurate than the later when adopting small time 

steps, such as t=0.05s and t=0.1s.  

The only difference between MUSCL and CFL-MUSCL (or between Superbee 

and CFL-Superbee, between WACEB and CFL-WACEB, between Koren and 

CFL-Koren) lies in the adoption of different TVD limiting criteria, because both 

limiters share the same basic linear schemes, as shown in Eq. (24) and Eq. (41). Table 

9 indicates that the latter results in more accurate numerical predictions than the 

former for this problem, which is mainly due to the fact that the temporal accuracy 

can be guaranteed by the OTU-TVD schemes, but not by the SS-TVD limiters. 

Moreover, Figure 39 and Figure 40 present the concentration variations along the 

lines x=20m and y=40m, respectively, after one rotation for the ten considered 

SS-TVD limiters. Due to the variation of numerical diffusion and dispersion in 

different directions, the shape of the square column becomes asymmetrical as it 

rotates. In particular, less dissipation is experienced at the inner face of the square 

column than in the other directions, as reflected by the more rapid decrease to zero at 

this location, which can be seen from Figures 39-44. 

It is important to note that, although the four OTU-TVD limiters (viz. CFL- 

MUSCL, CFL-Superbee, CFL-WACEB and CFL-Koren) possess better overall 

accuracy than their SS-TVD counterparts (viz. MUSCL, Superbee, WACEB and 

Koren) for the unsteady advection calculation, it does not mean that better resulting 

profiles can be achieved in all the directions with the former. In fact, it can be 

concluded from Figures 41-44 that, although the accuracy in the direction where the 

square column travels can be significantly improved, more numerical dissipation is 

actually introduced at the outer face of the square column by the OTU-TVD schemes 

relative to their SS-TVD counterparts (seeing Figures 41(b)-44(b)). 

The main purpose of this test case is to verify several viewpoints discussed in 

Subsection 4.4. Firstly, for the CFL values in the range of (0, 1), both the OTU-TVD 

and SS-TVD limiters can be used to solve unsteady advection problems. Secondly, 

the former do provide more accurate numerical solutions than the latter in this 

circumstance, because the former guarantee both temporal and spatial accuracy, while 
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only the spatial accuracy is ensured by the latter. Thirdly, for CFL values larger than 

1.0, the OTU-TVD limiters are unusable, but the SS-TVD limiters are still applicable, 

as evidenced by Table 9. All in all, for unsteady advection problems, the former 

provide better accuracy for CFL numbers smaller than 1.0, whereas the latter have a 

greater scope of application in terms of the CFL values. 

 

6.8. Test 8: Lid-driven flow in a square cavity 

 

The previous seven tests show the superiority of TCDF for linear advection problems 

concerning discontinuities, steep-gradients and relatively smooth profiles. In order to 

investigate the performance of different SS-TVD limiters in nonlinear flow problems, 

the eighth test solves the lid-driven flow problem in a square cavity, which has been 

widely studied numerically and has become a typical benchmark problem in Compu- 

tational Fluid Dynamics (CFD) and Numerical Heat Transfer (NHT) [67-68]. 

The computational domain and the boundary conditions are demonstrated by 

Figure 45, and calculations are carried out at a prescribed Reynolds number (viz. 

Re=5000), which defined as 0 /eR U L  , with the side length of the cavity L =1, 

the velocity at the top face 0U =1, the fluid density 1   and the dynamic viscosity 

μ=0.0002. The motion of the fluid is governed by the Navier-Stokes equations: 
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where the subscripts i and j indicate the ith and jth components of the Cartesian 

coordinates respectively, u is velocity, g is the gravitational acceleration, t represents 

the time and T is the stress tensor which contains pressure P. 

The Pressure Implicit with Splitting of Operators (PISO) algorithm [1, 2] is 

employed to deal with the pressure-velocity coupling problem on a collocated grid 

system in the context of finite volume method (FVM). The same technique is adopted 

to deal with the diffusion and source terms, but ten different SS-TVD flux-limiters are 

employed to discretize the advection term. Calculations are carried out on a uniformly 

spaced mesh of 160×160 cells, and the pseudo-time step is set to 0.1s for this steady 

flow problem. In addition, the benchmark solution of Erturk and Corke [68] based on 

a fine uniform grid mesh of 601× 601 cells serves as the exact solution.  
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Figures 46 presents the steady-state velocity vector of the flow field when using 

the newly-developed TCDF limiter, and Tables 10-11 give the U-velocity profiles 

along the vertical centerline of the cavity and the V-velocity profiles along the 

horizontal centerline of the cavity, respectively. The difference between the results of 

various TVD limiters is relatively small because of the existing of the diffusion and 

source terms. For brevity and clarity, we only give a graphic representation of the 

velocity profiles for three representative SS-TVD limiters, namely the TCDF, 

Superbee and Minmod, in Figures 47-48. 

It is obvious that the well-known Superbee limiter, representing the upper bound 

of the second-order SS-TVD region [30], does lead to the severe squaring effect when 

used to capture a relative smooth solution. Actually, as aforementioned, with the 

increase of the mesh resolution, this scheme will produce even more distorted profiles 

in this relatively smooth problem. Besides, the Minmod limiter does result in the 

excessive numerical dissipation, as this scheme follows the lower bound of the 

second-order SS-TVD region. Nevertheless, the newly developed TCDF limiter is 

able to provide a well-resolved solution, which exhibits its advantage once again over 

the classical Superbee and Minmod limiters.  

Tables 10-11 indicate that the TCDF, WACEB, Koren and Harmonic schemes 

actually enjoy almost the same accuracy here. When compared with the well-known 

MUSCL scheme, they produce more accurate predictions near the center of the cavity, 

but the MUSCL scheme results in slightly better numerical results near the walls. The 

above five limiters generate more accurate solutions than the other five schemes, 

namely OSPRE, Albada, Minmod, UMIST and Superbee. 

 

6.9. Summary of the test results 

 

Overall, in this section, eight test cases are carried out in order to evaluate the 

numerical performance of the TCDF in terms of accuracy and convergence. 

Numerical results demonstrate that, when it comes to the advection of discontinuities 

or steep-gradients, the well-known Superbee scheme does produce the most accurate 

solutions, as displayed in Tests 1-2, Tests 4-5 and Test 7. However, two inherent 

drawbacks exist in this flux-limiter, namely the bad convergence properties in the 

process of obtaining the steady-state solution and the poor accuracy when used to 

predict a relatively smooth solution. For instance, in Tests 1-5, the Superbee scheme 

needs much more iteration steps to meet the convergence condition, and, in some 
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situations, it cannot converge to the prescribed residual tolerance. Moreover, if 

utilized to solve a relatively smooth solution, this limiter will unavoidably lead to 

excessive numerical distortion, especially on high-resolution meshes, due to its 

inherent squaring effect, viz. the tendency to compress any gradient into a step-like 

profile, as evidenced in Test 3, Test 6 and Test 8.  

For the reasons given above, it is necessary to develop a universal SS-TVD 

limiter, aiming for general situations (viz. the coexistence of discontinuities, steep- 

gradients and smooth regions in the solution). Apparently, in spite of its remarkable 

superiority in terms of simulating the advection of discontinuities and steep-gradients, 

the classical Superbee limiter is not appropriate for this purpose, because it fails to 

resolve relatively smooth parts of the solution properly. 

On the one hand, except for the Superbee scheme, TCDF is able to provide a 

better overall performance than the other existing SS-TVD limiters under the 

condition of discontinuities and steep-gradients, as evidenced in Tests 1-2, Tests 4-5 

and Test 7. On the other hand, when it comes to the smooth-solution circumstance, 

TCDF can produce much better predictions than the Superbee limiter, and is one of 

the most accurate SS-TVD limiters when compared with the other existing ones, as 

displayed in Test 3, Test 6 and Test 8. Based on the above discussions, we believe 

that TCDF serves as one of the best SS-TVD limiters currently available for general 

situations. Additionally, it can be concluded from Test 7 that, for the CFL values 

lower than 1.0, the OTU-TVD limiters do provide more accurate solutions than their 

SS-TVD counterparts, because the former guarantee both the temporal and spatial 

accuracy, while only the spatial accuracy can be ensured by the latter. The above 

conclusions are in accordance with the theoretical analysis in Sections 2-4. 

 

7. CONCLUSIONS 

 

Firstly, most TVD schemes available in the literature are reviewed and their 

design principles are discussed. These TVD schemes have been grouped into three 

broad categories, viz. OTU-TVD, MTU-TVD and SS-TVD, based on the types of 

flux-limiters they use. It is shown that different flux-limiter forms are necessary for 

various types of discretization methods (steady or unsteady, time-space-coupled or 

time-space-separated) in order to achieve good accuracy, convergence and efficiency. 

Secondly, a refined CFL-independent SS-TVD limiter, referred to as TCDF, is 

proposed for steady-state computations based on the review. Essentially, TCDF 
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coincides with the well-known third-order QUICK scheme in smooth regions to 

guarantee high accuracy, and employs a gradually-switching smooth function on the 

positive r-axis with the aid of a cubic function and a quadratic PR function to achieve 

good convergence. Nine existing classical SS-TVD limiters, including Albada, 

Harmonic, Koren, Minmod, MUSCL, OSPRE, Superbee, UMIST and WACEB, are 

compared with the newly-proposed TCDF by solving eight 2D flow problems. The 

numerical results consistently show that TCDF results in a better overall performance 

in terms of accuracy and convergence in general situations.    
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Table 1. Accuracy and convergence of various SS-TVD flux-limiters at different Courant 

numbers for Test 1 

Scheme 
Accuracy 

(ε) 
 

Convergence (Nits) 

Cu=0.4 Cu=0.8 Cu=1.2 Cu=2.0 Cu=2.5 Cu=3.0 

TCDF 7.436E-03  450 253 187 133 117 106 

Minmod 9.523E-03  427 233 164 109 95 85 

UMIST 8.690E-03  408 220 153 109 94 84 

Albada 8.543E-03  409 219 153 102 87 76 

Harmonic 8.186E-03  400 214 152 104 89 79 

OSPRE 8.313E-03  403 216 150 103 88 77 

MUSCL 7.787E-03  445 301 233 177 160 149 

Koren 7.545E-03  479 290 224 169 152 140 

WACEB 7.387E-03  460 268 204 153 137 126 

Superbee 5.816E-03  554 366 297 235 216 203 

Nits : Number of iterations needed to achieve convergence: the residual is smaller than 
610
. 

 

 

 

 

 

Table 2. Accuracy and convergence of various SS-TVD flux-limiters at different Courant 

numbers for Test 2 

Scheme 
Accuracy 

(ε) 
 

Convergence (Nits) 

Cu=0.4 Cu=0.8 Cu=1.2 Cu=2.0 Cu=2.5 Cu=3.0 

TCDF 2.202E-03  433 245 181 130 115 105 

Minmod 6.650E-03  419 224 158 105 88 77 

UMIST 4.380E-03  408 221 160 109 92 79 

Albada 4.537E-03  418 219 156 105 89 78 

Harmonic 3.309E-03  399 216 155 104 89 79 

OSPRE 3.752E-03  438 230 161 104 89 82 

MUSCL 2.247E-03  461 287 233 183 166 154 

Koren 2.037E-03  483 291 224 171 155 145 

WACEB 2.026E-03  458 267 209 156 139 128 

Superbee 5.599E-04  586 351 255 226 205 195 

Nits : Number of iterations needed to achieve convergence: the residual is smaller than 
610
. 
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Table 3. Accuracy and convergence of various SS-TVD flux-limiters at different Courant 

numbers for Test 3 

Scheme 
Accuracy 

(ε) 
 

Convergence (Nits) 

Cu=0.4 Cu=0.8 Cu=1.2 Cu=2.0 Cu=2.5 Cu=3.0 

TCDF 2.399E-03  591 321 231 158 135 122 

Minmod 4.296E-03  602 315 218 139 116 101 

UMIST 3.381E-03  572 298 207 135 114 100 

Albada 3.139E-03  599 312 216 139 116 101 

Harmonic 2.871E-03  585 304 211 262 290 320 

OSPRE 2.951E-03  605 317 217 143 118 99 

MUSCL 2.701E-03  611 411 299 196 173 159 

Koren 2.503E-03  590 338 254 186 166 152 

WACEB 2.390E-03  589 321 233 170 149 135 

Superbee 2.297E-03  719 400 345 310 302 299 

Nits : Number of iterations needed to achieve convergence: the residual is smaller than 
610
. 

 

 

 

 

 

Table 4. Accuracy and convergence of various SS-TVD flux-limiters at different Courant 

numbers for Test 4 

Scheme 
Accuracy 

(ε) 
 

Convergence (Nits) 

Cu=0.4 Cu=0.8 Cu=1.2 Cu=2.0 Cu=3.0 Cu=4.0 

TCDF 8.610E-03  1194 612 419 269 196 160 

Minmod 1.104E-02  1578 748 492 304 215 173 

UMIST 9.961E-03  1164 598 410 260 185 148 

Albada 9.662E-03  1200 617 421 265 187 149 

Harmonic 9.305E-03  1141 591 407 259 185 148 

OSPRE 9.422E-03  1184 611 419 265 189 150 

MUSCL 8.893E-03  1395 885 579 383 281 354 

Koren 8.662E-03  1155 601 414 305 271 203 

WACEB 8.587E-03  1192 613 422 276 225 240 

Superbee 6.530E-03  / / / / / / 

Nits : Number of iterations needed to achieve convergence: the residual is smaller than 
610
. 
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Table 5. Accuracy of various SS-TVD flux-limiters on uniformly-spaced grids of four 

different resolutions in Test 5 

Mesh TCDF MUSCL WACEB Koren OSPRE 

20×40 5.116E-02 4.773E-02 4.907E-02 4.789E-02 6.073E-02 

40×80 2.229E-02 2.341E-02 2.214E-02 2.248E-02 2.652E-02 

80×160 1.316E-02 1.391E-02 1.307E-02 1.327E-02 1.558E-02 

160×320 7.600E-03 8.143E-03 7.553E-03 7.692E-03 9.061E-03 

 

Table 5. (Continued) 

Mesh Albada Harmonic Minmod UMIST Superbee 

20×40 6.577E-02 5.719E-02 7.325E-02 5.980E-02 2.835E-02 

40×80 2.861E-02 2.553E-02 3.537E-02 2.840E-02 1.320E-02 

80×160 1.629E-02 1.518E-02 1.965E-02 1.700E-02 7.132E-03 

160×320 9.470E-03 8.840E-03 1.165E-02 1.007E-02 3.782E-03 

 

 

Table 6. Convergence of various SS-TVD flux-limiters on uniformly-spaced grids of four 

different resolutions at different Courant numbers in Test 5 

CFL 

Number 
Mesh TCDF MUSCL WACEB Koren OSPRE 

3.0 

20×40 112  117  167  118  130  

40×80 173  795  176  287  172  

80×160 268  (3.89E-06) (4.98E-06) 296  256  

160×320 453  895  (3.51E-06) (1.27E-06) 435  

      

Mesh Albada Harmonic Minmod UMIST Superbee 

20×40 128  520  125  105  175  

40×80 190  175  194  162  (5.70E-06) 

80×160 282  248  346  252  (4.49E-04) 

160×320 443  432  552  435  (6.38E-04) 

 

Table 6. (Continued) 

CFL 

Number 
Mesh TCDF MUSCL WACEB Koren OSPRE 

2.0 

20×40 158  167  194  221  184  

40×80 249  923 258  268  248  

80×160 388  (2.74E-06) (3.91E-06) 478  375  

160×320 664  1390  (2.25E-06) 813  634  
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Mesh Albada Harmonic Minmod UMIST Superbee 

20×40 182  688  179  143  208  

40×80 274  236  281  233  (3.89E-04) 

80×160 418  360  527  366  (3.61E-04) 

160×320 657  631  849  636  (5.33E-04) 

Blue Bracket: It can’t converge to the prescribed residual tolerance (smaller than 
610
). 

 

 

Table 7. Accuracy and convergence orders of various SS-TVD flux-limiters on grids of four 

different resolutions in Test 6 

Mesh TCDF Order MUSCL Order WACEB Order Koren Order OSPRE Order 

20×40 8.779E-3 - 9.812E-3 - 8.930E-3 - 9.203E-3 - 1.077E-2 - 

40×80 1.433E-3 2.62  1.668E-3 2.56 1.449E-3 2.62  1.514E-3 2.60  1.942E-3 2.47  

80×160 2.381E-4 2.59 2.741E-4 2.60  2.390E-4 2.60  2.491E-4 2.60  3.464E-4 2.49  

160×320 4.067E-5 2.55 4.640E-5 2.56  4.072E-5 2.55  4.235E-5 2.56  6.340E-5 2.45  

 

Table 7. (Continued) 

Mesh Albada Order Harmonic Order Minmod Order UMIST Order Superbee Order 

20×40 1.202E-2 - 1.075E-2 - 1.653E-2 - 1.245E-2 - 8.252E-3 - 

40×80 2.252E-3 2.42  1.879E-3 2.52  3.758E-3 2.14  2.598E-3 2.26  2.045E-3 2.01  

80×160 4.148E-4 2.44  3.243E-4 2.53  9.344E-4 2.01  5.729E-4 2.18  7.322E-4 1.48  

160×320 7.715E-5 2.43  5.676E-5 2.51  2.102E-4 2.15  1.218E-4 2.23  1.842E-4 1.99  
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Table 8. Accuracy of various SS-TVD flux-limiters after one rotation on two mesh 

resolutions with five different time steps in Test 7 

 

Table 8. (Continued) 

 

Table 9. Accuracy of various OTU-TVD flux-limiters and their SS-TVD counterparts after 

one rotation on two mesh resolutions with five different time steps in Test 7 

‘\’ indicates the condition with a CFL number larger than 1.0 (viz. the OTU-TVD limiters are unusable) 

 

 

Time 

Step 
Mesh TCDF MUSCL WACEB Koren OSPRE 

0.6s 
80*80 2.607E-02 2.548E-02 2.598E-02 2.563E-02 2.735E-02 

160*160 2.337E-02 2.313E-02 2.335E-02 2.321E-02 2.394E-02 

0.4s 
80*80 2.302E-02 2.250E-02 2.290E-02 2.251E-02 2.463E-02 

160*160 1.993E-02 1.969E-02 1.989E-02 1.974E-02 2.066E-02 

0.2s 
80*80 1.933E-02 1.909E-02 1.918E-02 1.874E-02 2.157E-02 

160*160 1.554E-02 1.536E-02 1.549E-02 1.530E-02 1.658E-02 

0.1s 
80*80 1.713E-02 1.724E-02 1.696E-02 1.651E-02 1.994E-02 

160*160 1.267E-02 1.264E-02 1.261E-02 1.236E-02 1.407E-02 

0.05s 
80*80 1.590E-02 1.629E-02 1.573E-02 1.529E-02 1.913E-02 

160*160 1.090E-02 1.109E-02 1.082E-02 1.053E-02 1.268E-02 

Time 

Step 
Mesh Albada Harmonic Minmod UMIST Superbee 

0.6s 
80*80 2.817E-02 2.684E-02 3.194E-02 2.870E-02 2.068E-02 

160*160 2.432E-02 2.372E-02 2.643E-02 2.483E-02 2.073E-02 

0.4s 
80*80 2.559E-02 2.405E-02 2.984E-02 2.616E-02 1.730E-02 

160*160 2.110E-02 2.040E-02 2.356E-02 2.169E-02 1.686E-02 

0.2s 
80*80 2.272E-02 2.088E-02 2.755E-02 2.331E-02 1.335E-02 

160*160 1.714E-02 1.626E-02 2.019E-02 1.786E-02 1.202E-02 

0.1s 
80*80 2.121E-02 1.919E-02 2.633E-02 2.178E-02 1.089E-02 

160*160 1.474E-02 1.368E-02 1.829E-02 1.557E-02 8.935E-03 

0.05s 
80*80 2.046E-02 1.835E-02 2.572E-02 2.100E-02 9.418E-03 

160*160 1.344E-02 1.224E-02 1.729E-02 1.431E-02 6.920E-03 

Time 

Step 
Mesh MUSCL 

CFL- 

MUSCL 
WACEB 

CEL- 

WACEB 
Koren 

CFL- 

Koren 
Superbee 

CFL- 

Superbee 

0.6s 
80*80 2.548E-02 2.410E-02 2.598E-02 2.437E-02 2.563E-02 2.389E-02 2.073E-02 1.988E-02 

160*160 2.313E-02 \ 2.335E-02 \ 2.321E-02 \ 2.068E-02 \ 

0.4s 
80*80 2.250E-02 2.156E-02 2.290E-02 2.157E-02 2.251E-02 2.111E-02 1.730E-02 1.616E-02 

160*160 1.969E-02 \ 1.989E-02 \ 1.974E-02 \ 1.686E-02 \ 

0.2s 
80*80 1.909E-02 1.859E-02 1.918E-02 1.810E-02 1.874E-02 1.772E-02 1.335E-02 1.144E-02 

160*160 1.536E-02 1.479E-02 1.549E-02 1.486E-02 1.530E-02 1.448E-02 1.202E-02 1.171E-02 

0.1s 
80*80 1.724E-02 1.689E-02 1.696E-02 1.598E-02 1.651E-02 1.567E-02 1.089E-02 8.471E-03 

160*160 1.264E-02 1.235E-02 1.261E-02 1.206E-02 1.236E-02 1.171E-02 8.935E-03 8.052E-03 

0.05s 
80*80 1.629E-02 1.597E-02 1.573E-02 1.479E-02 1.529E-02 1.452E-02 9.418E-03 6.825E-03 

160*160 1.109E-02 1.094E-02 1.082E-02 1.034E-02 1.053E-02 1.002E-02 6.920E-03 5.576E-03 
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Table 10. The U-velocity profiles along the vertical centerline for various SS-TVD limiters on a mesh 

composed 160×160 cells at a time step of 0.1s in Test 8 

Y Exact TCDF WACEB Koren Harmonic MUSCL Superbee OSPRE Albada Minmod UMIST 

1.000  1.000  1.000  1.000  1.000 1.000  1.000 1.000 1.000 1.000 1.000 1.000 

0.990  6.87E-1 6.77E-1 6.77E-1 6.78E-1 6.77E-1 6.79E-1 6.83E-1 6.77E-1 6.76E-1 6.72E-1 6.75E-1 

0.980  5.16E-1 5.12E-1 5.13E-1 5.14E-1 5.14E-1 5.16E-1 5.27E-1 5.13E-1 5.12E-1 5.04E-1 5.10E-1 

0.970  4.75E-1 4.68E-1 4.69E-1 4.70E-1 4.70E-1 4.73E-1 4.91E-1 4.68E-1 4.66E-1 4.53E-1 4.63E-1 

0.960  4.74E-1 4.64E-1 4.65E-1 4.66E-1 4.65E-1 4.69E-1 4.91E-1 4.63E-1 4.61E-1 4.46E-1 4.57E-1 

0.950  4.74E-1 4.64E-1 4.65E-1 4.66E-1 4.64E-1 4.69E-1 4.90E-1 4.62E-1 4.60E-1 4.45E-1 4.57E-1 

0.940  4.68E-1 4.59E-1 4.60E-1 4.61E-1 4.60E-1 4.64E-1 4.83E-1 4.57E-1 4.56E-1 4.42E-1 4.53E-1 

0.930  4.58E-1 4.49E-1 4.50E-1 4.51E-1 4.51E-1 4.54E-1 4.71E-1 4.48E-1 4.47E-1 4.34E-1 4.44E-1 

0.920  4.45E-1 4.37E-1 4.38E-1 4.39E-1 4.38E-1 4.41E-1 4.56E-1 4.36E-1 4.35E-1 4.24E-1 4.33E-1 

0.910  4.31E-1 4.23E-1 4.24E-1 4.25E-1 4.24E-1 4.27E-1 4.41E-1 4.22E-1 4.21E-1 4.12E-1 4.19E-1 

0.900  4.16E-1 4.08E-1 4.09E-1 4.10E-1 4.09E-1 4.12E-1 4.25E-1 4.07E-1 4.06E-1 3.98E-1 4.05E-1 

0.500  -3.19E-2 -3.22E-2 -3.23E-02 -3.22E-02 -3.22E-2 -3.26E-2 -3.46E-2 -3.20E-2 -3.19E-2 -3.07E-2 -3.16E-2 

0.200  -3.10E-1 -3.05E-1 -3.06E-1 -3.06E-1 -3.06E-1 -3.08E-1 -3.19E-1 -3.04E-1 -3.04E-1 -2.96E-1 -3.02E-1 

0.180  -3.29E-1 -3.23E-1 -3.24E-1 -3.24E-1 -3.24E-1 -3.27E-1 -3.38E-1 -3.22E-1 -3.21E-1 -3.14E-1 -3.20E-1 

0.160  -3.47E-1 -3.41E-1 -3.42E-1 -3.42E-1 -3.42E-1 -3.44E-1 -3.56E-1 -3.40E-1 -3.39E-1 -3.31E-1 -3.38E-1 

0.140  -3.65E-1 -3.59E-1 -3.60E-1 -3.60E-1 -3.60E-1 -3.63E-1 -3.74E-1 -3.59E-1 -3.58E-1 -3.51E-1 -3.56E-1 

0.120  -3.88E-1 -3.82E-1 -3.83E-1 -3.84E-1 -3.83E-1 -3.86E-1 -3.98E-1 -3.82E-1 -3.81E-1 -3.74E-1 -3.80E-1 

0.100  -4.17E-1 -4.11E-1 -4.12E-1 -4.13E-1 -4.12E-1 -4.15E-1 -4.29E-1 -4.10E-1 -4.09E-1 -4.00E-1 -4.07E-1 

0.080  -4.42E-1 -4.30E-1 -4.31E-1 -4.32E-1 -4.30E-1 -4.35E-1 -4.54E-1 -4.27E-1 -4.25E-1 -4.12E-1 -4.23E-1 

0.060  -4.27E-1 -4.12E-1 -4.12E-1 -4.13E-1 -4.11E-1 -4.14E-1 -4.27E-1 -4.09E-1 -4.07E-1 -3.95E-1 -4.05E-1 

0.040  -3.48E-1 -3.31E-1 -3.31E-1 -3.32E-1 -3.33E-1 -3.31E-1 -3.23E-1 -3.34E-1 -3.34E-1 -3.34E-1 -3.34E-1 

0.020  -2.22E-1 -2.10E-1 -2.10E-1 -2.09E-1 -2.11E-1 -2.07E-1 -1.93E-1 -2.12E-1 -2.14E-1 -2.22E-1 -2.16E-1 

0.000  0.000  0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 11. The V-velocity profiles along the horizontal centerline for various SS-TVD limiters on a 

mesh composed 160×160 cells at a time step of 0.1s in Test 8 

X Exact TCDF WACEB Koren Harmonic MUSCL Superbee OSPRE Albada Minmod UMIST 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.985  -2.44E-01 -2.18E-01 -2.19E-01 -2.17E-01 -2.15E-01 -2.15E-01 -2.07E-01 -2.16E-01 -2.16E-01 -2.22E-01 -2.18E-01 

0.970  -5.02E-01 -4.72E-01 -4.72E-01 -4.71E-01 -4.70E-01 -4.70E-01 -4.71E-01 -4.70E-01 -4.70E-01 -4.68E-01 -4.69E-01 

0.955  -5.70E-01 -5.50E-01 -5.52E-01 -5.53E-01 -5.51E-01 -5.56E-01 -5.69E-01 -5.48E-01 -5.46E-01 -5.38E-01 -5.47E-01 

0.940  -5.14E-01 -5.10E-01 -5.11E-01 -5.12E-01 -5.13E-01 -5.15E-01 -5.27E-01 -5.11E-01 -5.11E-01 -5.02E-01 -5.09E-01 

0.925  -4.60E-01 -4.56E-01 -4.56E-01 -4.57E-01 -4.57E-01 -4.59E-01 -4.73E-01 -4.56E-01 -4.55E-01 -4.46E-01 -4.52E-01 

0.910  -4.32E-01 -4.25E-01 -4.26E-01 -4.27E-01 -4.26E-01 -4.29E-01 -4.42E-01 -4.24E-01 -4.23E-01 -4.14E-01 -4.21E-01 

0.895  -4.15E-01 -4.07E-01 -4.08E-01 -4.09E-01 -4.09E-01 -4.11E-01 -4.25E-01 -4.07E-01 -4.06E-01 -3.96E-01 -4.04E-01 

0.880  -3.98E-01 -3.91E-01 -3.92E-01 -3.93E-01 -3.93E-01 -3.95E-01 -4.08E-01 -3.91E-01 -3.90E-01 -3.81E-01 -3.88E-01 

0.865  -3.81E-01 -3.75E-01 -3.75E-01 -3.76E-01 -3.76E-01 -3.78E-01 -3.90E-01 -3.74E-01 -3.73E-01 -3.65E-01 -3.71E-01 

0.850  -3.62E-01 -3.57E-01 -3.57E-01 -3.58E-01 -3.58E-01 -3.60E-01 -3.71E-01 -3.56E-01 -3.55E-01 -3.48E-01 -3.54E-01 

0.500  1.17E-02 1.06E-02 1.06E-02 1.05E-02 1.05E-02 1.03E-02 9.23E-03 1.06E-02 1.07E-02 1.18E-02 1.10E-02 

0.150  3.70E-01 3.64E-01 3.64E-01 3.65E-01 3.65E-01 3.67E-01 3.76E-01 3.63E-01 3.63E-01 3.57E-01 3.62E-01 

0.135  3.88E-01 3.82E-01 3.82E-01 3.83E-01 3.83E-01 3.85E-01 3.94E-01 3.81E-01 3.81E-01 3.74E-01 3.80E-01 

0.120  4.07E-01 4.01E-01 4.01E-01 4.02E-01 4.02E-01 4.04E-01 4.15E-01 4.00E-01 3.99E-01 3.92E-01 3.98E-01 

0.105  4.26E-01 4.19E-01 4.20E-01 4.21E-01 4.20E-01 4.23E-01 4.36E-01 4.18E-01 4.17E-01 4.07E-01 4.15E-01 

0.090  4.40E-01 4.32E-01 4.33E-01 4.34E-01 4.33E-01 4.36E-01 4.54E-01 4.30E-01 4.29E-01 4.15E-01 4.26E-01 

0.075  4.43E-01 4.33E-01 4.34E-01 4.35E-01 4.33E-01 4.37E-01 4.59E-01 4.30E-01 4.28E-01 4.12E-01 4.25E-01 

0.060  4.26E-01 4.16E-01 4.17E-01 4.18E-01 4.17E-01 4.21E-01 4.41E-01 4.14E-01 4.12E-01 3.96E-01 4.09E-01 

0.045  3.87E-01 3.78E-01 3.78E-01 3.80E-01 3.79E-01 3.82E-01 3.96E-01 3.77E-01 3.75E-01 3.62E-01 3.72E-01 

0.030  3.26E-01 3.18E-01 3.19E-01 3.20E-01 3.20E-01 3.22E-01 3.33E-01 3.18E-01 3.17E-01 3.07E-01 3.15E-01 

0.015  2.16E-01 2.11E-01 2.11E-01 2.12E-01 2.12E-01 2.13E-01 2.20E-01 2.10E-01 2.10E-01 2.03E-01 2.08E-01 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Figure 1. A graphical representation of the One-step Time-space-coupled Unsteady TVD 

criterion (OTU-TVD). 

 

 

 

 
Figure 2. A graphical representation of the Semi-discrete Steady-state TVD criterion (viz. 

Sweby’s TVD criterion) and the k-schemes.  
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Figure 3. A graphical representation of the Multi-step Time-space-separated Unsteady TVD 

criterion (MTU-TVD). 

 

 

 

 
Figure 4. A graphical representation of the newly proposed TCDF limiter and several existing 

classical SS-TVD limiters. 
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Figure 5. Pure convection of a step profile by a uniform velocity field. 

 

 

 

 

Figure 6. Comparison of accuracy of various SS-TVD flux-limiters  

at a Courant number of 3.0 in Test 1. 
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Figure 7. Comparison of convergence of various SS-TVD flux-limiters  

at a Courant number of 3.0 in Test 1. 

 

 

 

 
Figure 8. Pure convection of a sine-square profile by a uniform velocity field. 
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Figure 9. Comparison of accuracy of various SS-TVD flux-limiters  

at a Courant number of 3.0 in Test 2. 

 

 

 

Figure 10. Comparison of convergence of various SS-TVD flux-limiters  

at a Courant number of 3.0 in Test 2. 



 55 

 

 
Figure 11. Pure convection of a semi-ellipse profile by a uniform velocity field. 

 

 

 
Figure 12. Comparison of accuracy of various SS-TVD flux-limiters 

 at a Courant number of 3.0 in Test 3. 
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Figure 13. Comparison of convergence of various SS-TVD flux-limiters  

at a Courant number of 3.0 in Test 3. 

 

 

 

 
Figure 14. Pure convection of a one-double-step profile in a rotational velocity field. 
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Figure 15. Comparison of accuracy of various SS-TVD flux-limiters  

at a Courant number of 4.0 in Test 4. 

 

 

 
Figure 16. Comparison of convergence of various SS-TVD flux-limiters  

at a Courant number of 4.0 in Test 4. 
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Figure 17. Pure convection of a two-double-step profile in a rotational velocity field. 

 

 

 

Figure 18. Comparison of accuracy of various SS-TVD flux-limiters for the mesh composed 

of 40×80 cells at a Courant number of 3.0 in Test 5. 

 

 

 

 



 59 

 

Figure 19. Comparison of convergence of various SS-TVD flux-limiters for the mesh 

composed of 80×160 cells at a Courant number of 3.0 in Test 5. 

 

 
Figure 20. The resulting profiles at the outlet plane for the TCDF limiter on various mesh 

resolutions at a Courant number of 3.0 in Test 5. 
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Figure 21. Pure convection of a relatively smooth profile in a rotational velocity field. 

 

 

 
Figure 22. Comparison of accuracy of various SS-TVD flux-limiters for the mesh composed 

of 80×160 cells at a Courant number of 1.0 in Test 6. 
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Figure 23. The resulting profiles at the outlet plane for the TCDF limiter on various mesh 

resolutions at a Courant number of 1.0 in Test 6. 

 

 
Figure 24. The initial concentration distribution in Test 7. 

 

 

Figure 25. The resulting profile after one rotation for the Harmonic limiter on the mesh 

consisting of 80×80 cells at a time step of 0.1 in Test 7. 
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Figure 26. The resulting profile after one rotation for the TCDF limiter on the mesh 

consisting of 80×80 cells at a time step of 0.1 in Test 7. 

 

 
Figure 27. The resulting profile after one rotation for the MUSCL limiter on the mesh 

consisting of 80×80 cells at a time step of 0.1 in Test 7. 

 

 
Figure 28. The resulting profile after one rotation for the CFL-MUSCL limiter on the mesh 

consisting of 80×80 cells at a time step of 0.1 in Test 7. 
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Figure 29. The resulting profile after one rotation for the WACEB limiter on the mesh 

consisting of 80×80 cells at a time step of 0.1 in Test 7. 

 

 
Figure 30. The resulting profile after one rotation for the CFL-WACEB limiter on the mesh 

consisting of 80×80 cells at a time step of 0.1 in Test 7. 

 

 
Figure 31. The resulting profile after one rotation for the OSPRE limiter on the mesh 

consisting of 80×80 cells at a time step of 0.1 in Test 7. 
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Figure 32. The resulting profile after one rotation for the Koren limiter on the mesh 

consisting of 80×80 cells at a time step of 0.1 in Test 7. 

 

 
Figure 33. The resulting profile after one rotation for the CFL-Koren limiter on the mesh 

consisting of 80×80 cells at a time step of 0.1 in Test 7. 

 

 
Figure 34. The resulting profile after one rotation for the Albada limiter on the mesh 

consisting of 80×80 cells at a time step of 0.1 in Test 7. 
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Figure 35. The resulting profile after one rotation for the Superbee limiter on the mesh 

consisting of 80×80 cells at a time step of 0.1 in Test 7. 

 

 

Figure 36. The resulting profile after one rotation for the CFL-Superbee limiter on the mesh 

consisting of 80×80 cells at a time step of 0.1 in Test 7. 

 

 
Figure 37. The resulting profile after one rotation for the UMIST limiter on the mesh 

consisting of 80×80 cells at a time step of 0.1 in Test 7. 
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Figure 38. The resulting profile after one rotation for the Minmod limiter on the mesh 

consisting of 80×80 cells at a time step of 0.1 in Test 7. 

 

 

 

 
Figure 39. Concentration variations after one rotation along the line x=20m for the ten 

considered SS-TVD limiters in Test 7. 
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Figure 40. Concentration variations after one rotation along the line y=40m for the ten 

considered SS-TVD limiters in Test 7. 

 

 

Figure 41. Concentration variations after one rotation along the lines x=20m and y=40m for 

the Koren and CFL-Koren (viz. Arora-Roe) limiters in Test 7. 
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Figure 42. Concentration variations after one rotation along the lines x=20m and y=40m for 

the MUSCL and CFL-MUSCL limiters in Test 7. 

 

 

 

Figure 43. Concentration variations after one rotation along the lines x=20m and y=40m for 

the WACEB and CFL-WACEB limiters in Test 7. 
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Figure 44. Concentration variations after one rotation along the lines x=20m and y=40m for 

the Superbee and CFL-Superbee limiters in Test 7. 

 

 
Figure 45. The computational domain and boundary conditions of the lid-driven flow. 

 

 
Figure 46. The steady-state velocity vector of the flow field for the TCDF limiter at a 

Reynolds number of 5000 on a mesh composed of 160×160 cells in Test 8. 
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Figure 47. Comparison of the U-velocity profiles along the vertical centerline of the cavity 

for the TCDF, Superbee and Minmod limiter in Test 8. 

 

 

Figure 48. Comparison of the V-velocity profiles along the horizontal centerline of the cavity 

for the TCDF, Superbee and Minmod limiter in Test 8. 


