381 research outputs found

    Time-based Location Techniques Using Inexpensive, Unsynchronized Clocks in Wireless Networks

    Get PDF
    The ability to measure location using time of flight in IEEE 802.11 networks is impeded by the standard clock resolution, imprecise synchronization of the 802.11 protocol, and the inaccuracy of available clocks. To achieve real-time location with accuracy goals of a few meters, we derive new consensus synchronization techniques for free-running clocks. Using consensus synchronization, we improve existing time of arrival (TOA) techniques and introduce new time difference of arrival (TDOA) techniques. With this common basis, we show how TOA is theoretically superior to TDOA. Using TOA measurements, we can locate wireless nodes that participate in the location system, and using TDOA measurements, we can locate nodes that do not participate. We demonstrate applications using off-the-shelf 802.11 hardware that can determine location to within 3m using simple, existing optimization methods. The synchronization techniques extend existing ones providing distributed synchronization for free-running clocks to cases where send times cannot be controlled and adjusted precisely, as in 802.11 networks. These location and synchronization techniques may be applied to transmitting wireless nodes using any communication protocol where cooperating nodes can produce send and receive timestamps

    Collaborative Sensor Network Localization: Algorithms and Practical Issues

    Get PDF
    Emerging communication network applications including fifth-generation (5G) cellular and the Internet-of-Things (IoT) will almost certainly require location information at as many network nodes as possible. Given the energy requirements and lack of indoor coverage of Global Positioning System (GPS), collaborative localization appears to be a powerful tool for such networks. In this paper, we survey the state of the art in collaborative localization with an eye toward 5G cellular and IoT applications. In particular, we discuss theoretical limits, algorithms, and practical challenges associated with collaborative localization based on range-based as well as range-angle-based techniques

    Dual-Satellite Source Geolocation with Time and Frequency Offsets and Satellite Location Errors

    Get PDF
    This paper considers locating a static source on Earth using the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements obtained by a dual-satellite geolocation system. The TDOA and FDOA from the source are subject to unknown time and frequency offsets because the two satellites are imperfectly time-synchronized or frequency-locked. The satellite locations are not known accurately as well. To make the source position identifiable and mitigate the effect of satellite location errors, calibration stations at known positions are used. Achieving the maximum likelihood (ML) geolocation performance usually requires jointly estimating the source position and extra variables (i.e., time and frequency offsets as well as satellite locations), which is computationally intensive. In this paper, a novel closed-form geolocation algorithm is proposed. It first fuses the TDOA and FDOA measurements from the source and calibration stations to produce a single pair of TDOA and FDOA for source geolocation. This measurement fusion step eliminates the time and frequency offsets while taking into account the presence of satellite location errors. The source position is then found via standard TDOA-FDOA geolocation. The developed algorithm has low complexity and performance analysis shows that it attains the Cramér-Rao lower bound (CRLB) under Gaussian noises and mild conditions. Simulations using a challenging scenario with a short-baseline dual-satellite system verify the theoretical developments and demonstrate the good performance of the proposed algorithm

    Cooperative Position and Orientation Estimation with Multi-Mode Antennas

    Get PDF
    Robotic multi-agent systems are envisioned for planetary exploration and terrestrial applications. Autonomous operation of robots requires estimations of their positions and orientations, which are obtained from the direction-of-arrival (DoA) and the time-of-arrival (ToA) of radio signals exchanged among the agents. In this thesis, we estimate the signal DoA and ToA using a multi-mode antenna (MMA). An MMA is a single antenna element, where multiple orthogonal current modes are excited by different antenna ports. We provide a first study on the use of MMAs for cooperative position and orientation estimation, specifically exploring their DoA estimation capabilities. Assuming the agents of a cooperative network are equipped with MMAs, lower bounds on the achievable position and orientation accuracy are derived. We realize a gap between the theoretical lower bounds and real-world performance of a cooperative radio localization system, which is caused by imperfect antenna and transceiver calibration. Consequentially, we theoretically analyze in-situ antenna calibration, introduce an algorithm for the calibration of arbitrary multiport antennas and show its effectiveness by simulation. To also improve calibration during operation, we propose cooperative simultaneous localization and calibration (SLAC). We show that cooperative SLAC is able to estimate antenna responses and ranging biases of the agents together with their positions and orientations, leading to considerably better position and orientation accuracy. Finally, we validate the results from theory and simulation by experiments with robotic rovers equipped with software-defined radios (SDRs). In conclusion, we show that DoA estimation with an MMA is feasible, and accuracy can be improved by in-situ calibration and SLAC

    Exploiting Structural Signal Information in Passive Emitter Localization

    Get PDF
    The operational use of systems for passive geolocation of radio frequency emitters poses various challenges to single sensor systems or sensor networks depending on the measurement methods. Position estimation by means of direction finding systems often requires complex receiver and antenna technique. Time (Difference) of Arrival methods (TDOA, TOA) are based on measurements regarding the signal propagation duration and generally require broadband communication links to transmit raw signal data between spatially separated receivers of a sensor network. Such bandwidth requirements are particularly challenging for applications with moving sensor nodes. This issue is addressed in this thesis and techniques that use signal structure information of the considered signals are presented which allow a drastic reduction of the communication requirements. The advantages of using knowledge of the signal structure for TDOA based emitter localization are shown using two exemplary applications. The first case example deals with the passive surveillance of the civil airspace (Air Traffic Management, ATM) using a stationary sensor network. State of the art airspace surveillance is mainly based on active radar systems (Primary Surveillance Radar, PSR), cooperative secondary radar systems (Secondary Surveillance Radar, SSR) and automatic position reports from the aircraft itself (Automatic Dependent Surveillance-Broadcast, ADS-B). SSR as well as ADS-B relies on aircrafts sending transponder signals at a center frequency of 1090 MHz. The reliability and accuracy of the position reports sent by aircrafts using ADS-B are limited and not sufficient to ensure safe airspace separation for example of two aircrafts landing on parallel runways. In the worst case, the data may even be altered with malicious intent. Using passive emitter localization and tracking based on multilateration (TDOA/hyperbolic localization), a precise situational awareness can be given which is independent of the content of the emitted transponder signals. The high concentration of sending targets and the high number of signals require special signal processing and information fusion techniques to overcome the huge amount of data. It will be shown that a multilateration network that employs those techniques can be used to improve airspace security at reasonable costs. For the second case, a concept is introduced which allows TDOA based emitter localization with only one moving observer platform. Conventional TDOA measurements are obtained using spatially distributed sensor nodes which capture an emitted signal at the same time. From those signals, the time difference of arrival is estimated. Under certain conditions, the exploitation of signal structure information allows to transfer the otherwise only spatial into a spatial and temporal measurement problem. This way, it is possible to obtain TDOA estimates over multiple measurement time steps using a single moving observer and to thus localize the emitter of the signals. The concept of direct position determination is applied to the single sensor signal structure TDOA scheme and techniques for direct single sensor TDOA are introduced. The validity and performance of the presented methods is shown in theoretical analysis in terms of Cramér-Rao Lower Bounds, Monte-Carlo simulations and by evaluation of real data gained during field experiments

    New Approach of Indoor and Outdoor Localization Systems

    Get PDF
    Accurate determination of the mobile position constitutes the basis of many new applications. This book provides a detailed account of wireless systems for positioning, signal processing, radio localization techniques (Time Difference Of Arrival), performances evaluation, and localization applications. The first section is dedicated to Satellite systems for positioning like GPS, GNSS. The second section addresses the localization applications using the wireless sensor networks. Some techniques are introduced for localization systems, especially for indoor positioning, such as Ultra Wide Band (UWB), WIFI. The last section is dedicated to Coupled GPS and other sensors. Some results of simulations, implementation and tests are given to help readers grasp the presented techniques. This is an ideal book for students, PhD students, academics and engineers in the field of Communication, localization & Signal Processing, especially in indoor and outdoor localization domains
    • 

    corecore