16,890 research outputs found

    Systemic risk analysis in reconstructed economic and financial networks

    Get PDF
    We address a fundamental problem that is systematically encountered when modeling complex systems: the limitedness of the information available. In the case of economic and financial networks, privacy issues severely limit the information that can be accessed and, as a consequence, the possibility of correctly estimating the resilience of these systems to events such as financial shocks, crises and cascade failures. Here we present an innovative method to reconstruct the structure of such partially-accessible systems, based on the knowledge of intrinsic node-specific properties and of the number of connections of only a limited subset of nodes. This information is used to calibrate an inference procedure based on fundamental concepts derived from statistical physics, which allows to generate ensembles of directed weighted networks intended to represent the real system, so that the real network properties can be estimated with their average values within the ensemble. Here we test the method both on synthetic and empirical networks, focusing on the properties that are commonly used to measure systemic risk. Indeed, the method shows a remarkable robustness with respect to the limitedness of the information available, thus representing a valuable tool for gaining insights on privacy-protected economic and financial systems

    Assessing systemic risk due to fire sales spillover through maximum entropy network reconstruction

    Full text link
    Assessing systemic risk in financial markets is of great importance but it often requires data that are unavailable or available at a very low frequency. For this reason, systemic risk assessment with partial information is potentially very useful for regulators and other stakeholders. In this paper we consider systemic risk due to fire sales spillover and portfolio rebalancing by using the risk metrics defined by Greenwood et al. (2015). By using the Maximum Entropy principle we propose a method to assess aggregated and single bank's systemicness and vulnerability and to statistically test for a change in these variables when only the information on the size of each bank and the capitalization of the investment assets are available. We prove the effectiveness of our method on 2001-2013 quarterly data of US banks for which portfolio composition is available.Comment: 36 pages, 6 figures, Accepted on Journal of Economic Dynamics and Contro

    DebtRank: A microscopic foundation for shock propagation

    Get PDF
    The DebtRank algorithm has been increasingly investigated as a method to estimate the impact of shocks in financial networks, as it overcomes the limitations of the traditional default-cascade approaches. Here we formulate a dynamical "microscopic" theory of instability for financial networks by iterating balance sheet identities of individual banks and by assuming a simple rule for the transfer of shocks from borrowers to lenders. By doing so, we generalise the DebtRank formulation, both providing an interpretation of the effective dynamics in terms of basic accounting principles and preventing the underestimation of losses on certain network topologies. Depending on the structure of the interbank leverage matrix the dynamics is either stable, in which case the asymptotic state can be computed analytically, or unstable, meaning that at least one bank will default. We apply this framework to a dataset of the top listed European banks in the period 2008 - 2013. We find that network effects can generate an amplification of exogenous shocks of a factor ranging between three (in normal periods) and six (during the crisis) when we stress the system with a 0.5% shock on external (i.e. non-interbank) assets for all banks.Comment: 10 pages, 2 figure

    Network Sensitivity of Systemic Risk

    Get PDF
    A growing body of studies on systemic risk in financial markets has emphasized the key importance of taking into consideration the complex interconnections among financial institutions. Much effort has been put in modeling the contagion dynamics of financial shocks, and to assess the resilience of specific financial markets - either using real network data, reconstruction techniques or simple toy networks. Here we address the more general problem of how shock propagation dynamics depends on the topological details of the underlying network. To this end we consider different realistic network topologies, all consistent with balance sheets information obtained from real data on financial institutions. In particular, we consider networks of varying density and with different block structures, and diversify as well in the details of the shock propagation dynamics. We confirm that the systemic risk properties of a financial network are extremely sensitive to its network features. Our results can aid in the design of regulatory policies to improve the robustness of financial markets

    Structural changes in the interbank market across the financial crisis from multiple core-periphery analysis

    Get PDF
    Interbank markets are often characterised in terms of a core-periphery network structure, with a highly interconnected core of banks holding the market together, and a periphery of banks connected mostly to the core but not internally. This paradigm has recently been challenged for short time scales, where interbank markets seem better characterised by a bipartite structure with more core-periphery connections than inside the core. Using a novel core-periphery detection method on the eMID interbank market, we enrich this picture by showing that the network is actually characterised by multiple core-periphery pairs. Moreover, a transition from core-periphery to bipartite structures occurs by shortening the temporal scale of data aggregation. We further show how the global financial crisis transformed the market, in terms of composition, multiplicity and internal organisation of core-periphery pairs. By unveiling such a fine-grained organisation and transformation of the interbank market, our method can find important applications in the understanding of how distress can propagate over financial networks.Comment: 17 pages, 9 figures, 1 tabl

    Enhanced reconstruction of weighted networks from strengths and degrees

    Get PDF
    Network topology plays a key role in many phenomena, from the spreading of diseases to that of financial crises. Whenever the whole structure of a network is unknown, one must resort to reconstruction methods that identify the least biased ensemble of networks consistent with the partial information available. A challenging case, frequently encountered due to privacy issues in the analysis of interbank flows and Big Data, is when there is only local (node-specific) aggregate information available. For binary networks, the relevant ensemble is one where the degree (number of links) of each node is constrained to its observed value. However, for weighted networks the problem is much more complicated. While the naive approach prescribes to constrain the strengths (total link weights) of all nodes, recent counter-intuitive results suggest that in weighted networks the degrees are often more informative than the strengths. This implies that the reconstruction of weighted networks would be significantly enhanced by the specification of both strengths and degrees, a computationally hard and bias-prone procedure. Here we solve this problem by introducing an analytical and unbiased maximum-entropy method that works in the shortest possible time and does not require the explicit generation of reconstructed samples. We consider several real-world examples and show that, while the strengths alone give poor results, the additional knowledge of the degrees yields accurately reconstructed networks. Information-theoretic criteria rigorously confirm that the degree sequence, as soon as it is non-trivial, is irreducible to the strength sequence. Our results have strong implications for the analysis of motifs and communities and whenever the reconstructed ensemble is required as a null model to detect higher-order patterns

    Network-based indicators of Bitcoin bubbles

    Get PDF
    The functioning of the cryptocurrency Bitcoin relies on the open availability of the entire history of its transactions. This makes it a particularly interesting socio-economic system to analyse from the point of view of network science. Here we analyse the evolution of the network of Bitcoin transactions between users. We achieve this by using the complete transaction history from December 5th 2011 to December 23rd 2013. This period includes three bubbles experienced by the Bitcoin price. In particular, we focus on the global and local structural properties of the user network and their variation in relation to the different period of price surge and decline. By analysing the temporal variation of the heterogeneity of the connectivity patterns we gain insights on the different mechanisms that take place during bubbles, and find that hubs (i.e., the most connected nodes) had a fundamental role in triggering the burst of the second bubble. Finally, we examine the local topological structures of interactions between users, we discover that the relative frequency of triadic interactions experiences a strong change before, during and after a bubble, and suggest that the importance of the hubs grows during the bubble. These results provide further evidence that the behaviour of the hubs during bubbles significantly increases the systemic risk of the Bitcoin network, and discuss the implications on public policy interventions

    Epidemics of Liquidity Shortages in Interbank Markets

    Get PDF
    Financial contagion from liquidity shocks has being recently ascribed as a prominent driver of systemic risk in interbank lending markets. Building on standard compartment models used in epidemics, in this work we develop an EDB (Exposed-Distressed-Bankrupted) model for the dynamics of liquidity shocks reverberation between banks, and validate it on electronic market for interbank deposits data. We show that the interbank network was highly susceptible to liquidity contagion at the beginning of the 2007/2008 global financial crisis, and that the subsequent micro-prudential and liquidity hoarding policies adopted by banks increased the network resilience to systemic risk---yet with the undesired side effect of drying out liquidity from the market. We finally show that the individual riskiness of a bank is better captured by its network centrality than by its participation to the market, along with the currently debated concept of "too interconnected to fail"

    Derivatives and Credit Contagion in Interconnected Networks

    Get PDF
    The importance of adequately modeling credit risk has once again been highlighted in the recent financial crisis. Defaults tend to cluster around times of economic stress due to poor macro-economic conditions, {\em but also} by directly triggering each other through contagion. Although credit default swaps have radically altered the dynamics of contagion for more than a decade, models quantifying their impact on systemic risk are still missing. Here, we examine contagion through credit default swaps in a stylized economic network of corporates and financial institutions. We analyse such a system using a stochastic setting, which allows us to exploit limit theorems to exactly solve the contagion dynamics for the entire system. Our analysis shows that, by creating additional contagion channels, CDS can actually lead to greater instability of the entire network in times of economic stress. This is particularly pronounced when CDS are used by banks to expand their loan books (arguing that CDS would offload the additional risks from their balance sheets). Thus, even with complete hedging through CDS, a significant loan book expansion can lead to considerably enhanced probabilities for the occurrence of very large losses and very high default rates in the system. Our approach adds a new dimension to research on credit contagion, and could feed into a rational underpinning of an improved regulatory framework for credit derivatives.Comment: 26 pages, 7 multi-part figure
    corecore