24,966 research outputs found

    A Modular Programmable CMOS Analog Fuzzy Controller Chip

    Get PDF
    We present a highly modular fuzzy inference analog CMOS chip architecture with on-chip digital programmability. This chip consists of the interconnection of parameterized instances of two different kind of blocks, namely label blocks and rule blocks. The architecture realizes a lattice partition of the universe of discourse, which at the hardware level means that the fuzzy labels associated to every input (realized by the label blocks) are shared among the rule blocks. This reduces the area and power consumption and is the key point for chip modularity. The proposed architecture is demonstrated through a 16-rule two input CMOS 1-ÎŒm prototype which features an operation speed of 2.5 Mflips (2.5×10^6 fuzzy inferences per second) with 8.6 mW power consumption. Core area occupation of this prototype is of only 1.6 mm 2 including the digital control and memory circuitry used for programmability. Because of the architecture modularity the number of inputs and rules can be increased with any hardly design effort.This work was supported in part by the Spanish C.I.C.Y.T under Contract TIC96-1392-C02- 02 (SIVA)

    From a Competition for Self-Driving Miniature Cars to a Standardized Experimental Platform: Concept, Models, Architecture, and Evaluation

    Full text link
    Context: Competitions for self-driving cars facilitated the development and research in the domain of autonomous vehicles towards potential solutions for the future mobility. Objective: Miniature vehicles can bridge the gap between simulation-based evaluations of algorithms relying on simplified models, and those time-consuming vehicle tests on real-scale proving grounds. Method: This article combines findings from a systematic literature review, an in-depth analysis of results and technical concepts from contestants in a competition for self-driving miniature cars, and experiences of participating in the 2013 competition for self-driving cars. Results: A simulation-based development platform for real-scale vehicles has been adapted to support the development of a self-driving miniature car. Furthermore, a standardized platform was designed and realized to enable research and experiments in the context of future mobility solutions. Conclusion: A clear separation between algorithm conceptualization and validation in a model-based simulation environment enabled efficient and riskless experiments and validation. The design of a reusable, low-cost, and energy-efficient hardware architecture utilizing a standardized software/hardware interface enables experiments, which would otherwise require resources like a large real-scale test track.Comment: 17 pages, 19 figues, 2 table

    Current-mode piecewise-linear function generators

    Get PDF
    We present a systematic design technique for current-mode piecewise-linear (PWL) function generators. It uses two building blocks: a high-resolution current rectifier, and a programmable current amplifier. We show how to arrange these blocks to obtain basic non-linearities from which generic characteristics are built through aggregations. Measurements from a 1.0 /spl mu/m CMOS prototype chip show 10 pA resolution in the rectification operation and 0.6% non-linearity errors in the programmable scaling operation for 2 /spl mu/A input current range

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Digital waveguide modeling for wind instruments: building a state-space representation based on the Webster-Lokshin model

    Get PDF
    This paper deals with digital waveguide modeling of wind instruments. It presents the application of state-space representations for the refined acoustic model of Webster-Lokshin. This acoustic model describes the propagation of longitudinal waves in axisymmetric acoustic pipes with a varying cross-section, visco-thermal losses at the walls, and without assuming planar or spherical waves. Moreover, three types of discontinuities of the shape can be taken into account (radius, slope and curvature). The purpose of this work is to build low-cost digital simulations in the time domain based on the Webster-Lokshin model. First, decomposing a resonator into independent elementary parts and isolating delay operators lead to a Kelly-Lochbaum network of input/output systems and delays. Second, for a systematic assembling of elements, their state-space representations are derived in discrete time. Then, standard tools of automatic control are used to reduce the complexity of digital simulations in the time domain. The method is applied to a real trombone, and results of simulations are presented and compared with measurements. This method seems to be a promising approach in term of modularity, complexity of calculation and accuracy, for any acoustic resonators based on tubes

    Sequential Circuit Design for Embedded Cryptographic Applications Resilient to Adversarial Faults

    Get PDF
    In the relatively young field of fault-tolerant cryptography, the main research effort has focused exclusively on the protection of the data path of cryptographic circuits. To date, however, we have not found any work that aims at protecting the control logic of these circuits against fault attacks, which thus remains the proverbial Achilles’ heel. Motivated by a hypothetical yet realistic fault analysis attack that, in principle, could be mounted against any modular exponentiation engine, even one with appropriate data path protection, we set out to close this remaining gap. In this paper, we present guidelines for the design of multifault-resilient sequential control logic based on standard Error-Detecting Codes (EDCs) with large minimum distance. We introduce a metric that measures the effectiveness of the error detection technique in terms of the effort the attacker has to make in relation to the area overhead spent in implementing the EDC. Our comparison shows that the proposed EDC-based technique provides superior performance when compared against regular N-modular redundancy techniques. Furthermore, our technique scales well and does not affect the critical path delay
    • 

    corecore