30,246 research outputs found

    Music Generation by Deep Learning - Challenges and Directions

    Full text link
    In addition to traditional tasks such as prediction, classification and translation, deep learning is receiving growing attention as an approach for music generation, as witnessed by recent research groups such as Magenta at Google and CTRL (Creator Technology Research Lab) at Spotify. The motivation is in using the capacity of deep learning architectures and training techniques to automatically learn musical styles from arbitrary musical corpora and then to generate samples from the estimated distribution. However, a direct application of deep learning to generate content rapidly reaches limits as the generated content tends to mimic the training set without exhibiting true creativity. Moreover, deep learning architectures do not offer direct ways for controlling generation (e.g., imposing some tonality or other arbitrary constraints). Furthermore, deep learning architectures alone are autistic automata which generate music autonomously without human user interaction, far from the objective of interactively assisting musicians to compose and refine music. Issues such as: control, structure, creativity and interactivity are the focus of our analysis. In this paper, we select some limitations of a direct application of deep learning to music generation, analyze why the issues are not fulfilled and how to address them by possible approaches. Various examples of recent systems are cited as examples of promising directions.Comment: 17 pages. arXiv admin note: substantial text overlap with arXiv:1709.01620. Accepted for publication in Special Issue on Deep learning for music and audio, Neural Computing & Applications, Springer Nature, 201

    Learning by Seeing by Doing: Arithmetic Word Problems

    Get PDF
    Learning by doing in pursuit of real-world goals has received much attention from education researchers but has been unevenly supported by mathematics education software at the elementary level, particularly as it involves arithmetic word problems. In this article, we give examples of doing-oriented tools that might promote children\u27s ability to see significant abstract structures in mathematical situations. The reflection necessary for such seeing is motivated by activities and contexts that emphasize affective and social aspects. Natural language, as a representation already familiar to children, is key in these activities, both as a means of mathematical expression and as a link between situations and various abstract representations. These tools support children\u27s ownership of a mathematical problem and its expression; remote sharing of problems and data; software interpretation of children\u27s own word problems; play with dynamically linked representations with attention to children\u27s prior connections; and systematic problem variation based on empirically determined level of difficulty

    A Case Study of the Impact of Musical Pattern Rehearsal on the Acquisition of Oral and Written Language Skills in a Young Child with Learning Differences

    Get PDF
    The study explores the relationship between learning musical patterns and learning language patterns. A case study of a male diagnosed with learning differences in generative writing and graphic processing indicates a positive relationship between the neurological patterning of rehearsed musical patterns and the acquisition of oral and written language skills. The anecdotal study tracks the development of literacy from the initial identification of dysfunctional patterns of performance at age three through the acquisition of oral language and the mastery of basic reading skills in the primary years. Analysis of the case study supports the need for musical training in the preschool setting as a foundational component of early literacy programs

    Multiscale Markov Decision Problems: Compression, Solution, and Transfer Learning

    Full text link
    Many problems in sequential decision making and stochastic control often have natural multiscale structure: sub-tasks are assembled together to accomplish complex goals. Systematically inferring and leveraging hierarchical structure, particularly beyond a single level of abstraction, has remained a longstanding challenge. We describe a fast multiscale procedure for repeatedly compressing, or homogenizing, Markov decision processes (MDPs), wherein a hierarchy of sub-problems at different scales is automatically determined. Coarsened MDPs are themselves independent, deterministic MDPs, and may be solved using existing algorithms. The multiscale representation delivered by this procedure decouples sub-tasks from each other and can lead to substantial improvements in convergence rates both locally within sub-problems and globally across sub-problems, yielding significant computational savings. A second fundamental aspect of this work is that these multiscale decompositions yield new transfer opportunities across different problems, where solutions of sub-tasks at different levels of the hierarchy may be amenable to transfer to new problems. Localized transfer of policies and potential operators at arbitrary scales is emphasized. Finally, we demonstrate compression and transfer in a collection of illustrative domains, including examples involving discrete and continuous statespaces.Comment: 86 pages, 15 figure

    Exploration of Reaction Pathways and Chemical Transformation Networks

    Full text link
    For the investigation of chemical reaction networks, the identification of all relevant intermediates and elementary reactions is mandatory. Many algorithmic approaches exist that perform explorations efficiently and automatedly. These approaches differ in their application range, the level of completeness of the exploration, as well as the amount of heuristics and human intervention required. Here, we describe and compare the different approaches based on these criteria. Future directions leveraging the strengths of chemical heuristics, human interaction, and physical rigor are discussed.Comment: 48 pages, 4 figure

    Representation of Samba dance gestures, using a multi-modal analysis approach

    Get PDF
    In this paper we propose an approach for the representation of dance gestures in Samba dance. This representation is based on a video analysis of body movements, carried out from the viewpoint of the musical meter. Our method provides the periods, a measure of energy and a visual representation of periodic movement in dance. The method is applied to a limited universe of Samba dances and music, which is used to illustrate the usefulness of the approach
    corecore