585 research outputs found

    Design of multimedia processor based on metric computation

    Get PDF
    Media-processing applications, such as signal processing, 2D and 3D graphics rendering, and image compression, are the dominant workloads in many embedded systems today. The real-time constraints of those media applications have taxing demands on today's processor performances with low cost, low power and reduced design delay. To satisfy those challenges, a fast and efficient strategy consists in upgrading a low cost general purpose processor core. This approach is based on the personalization of a general RISC processor core according the target multimedia application requirements. Thus, if the extra cost is justified, the general purpose processor GPP core can be enforced with instruction level coprocessors, coarse grain dedicated hardware, ad hoc memories or new GPP cores. In this way the final design solution is tailored to the application requirements. The proposed approach is based on three main steps: the first one is the analysis of the targeted application using efficient metrics. The second step is the selection of the appropriate architecture template according to the first step results and recommendations. The third step is the architecture generation. This approach is experimented using various image and video algorithms showing its feasibility

    Towards Implicit Parallel Programming for Systems

    Get PDF
    Multi-core processors require a program to be decomposable into independent parts that can execute in parallel in order to scale performance with the number of cores. But parallel programming is hard especially when the program requires state, which many system programs use for optimization, such as for example a cache to reduce disk I/O. Most prevalent parallel programming models do not support a notion of state and require the programmer to synchronize state access manually, i.e., outside the realms of an associated optimizing compiler. This prevents the compiler to introduce parallelism automatically and requires the programmer to optimize the program manually. In this dissertation, we propose a programming language/compiler co-design to provide a new programming model for implicit parallel programming with state and a compiler that can optimize the program for a parallel execution. We define the notion of a stateful function along with their composition and control structures. An example implementation of a highly scalable server shows that stateful functions smoothly integrate into existing programming language concepts, such as object-oriented programming and programming with structs. Our programming model is also highly practical and allows to gradually adapt existing code bases. As a case study, we implemented a new data processing core for the Hadoop Map/Reduce system to overcome existing performance bottlenecks. Our lambda-calculus-based compiler automatically extracts parallelism without changing the program's semantics. We added further domain-specific semantic-preserving transformations that reduce I/O calls for microservice programs. The runtime format of a program is a dataflow graph that can be executed in parallel, performs concurrent I/O and allows for non-blocking live updates

    Towards Implicit Parallel Programming for Systems

    Get PDF
    Multi-core processors require a program to be decomposable into independent parts that can execute in parallel in order to scale performance with the number of cores. But parallel programming is hard especially when the program requires state, which many system programs use for optimization, such as for example a cache to reduce disk I/O. Most prevalent parallel programming models do not support a notion of state and require the programmer to synchronize state access manually, i.e., outside the realms of an associated optimizing compiler. This prevents the compiler to introduce parallelism automatically and requires the programmer to optimize the program manually. In this dissertation, we propose a programming language/compiler co-design to provide a new programming model for implicit parallel programming with state and a compiler that can optimize the program for a parallel execution. We define the notion of a stateful function along with their composition and control structures. An example implementation of a highly scalable server shows that stateful functions smoothly integrate into existing programming language concepts, such as object-oriented programming and programming with structs. Our programming model is also highly practical and allows to gradually adapt existing code bases. As a case study, we implemented a new data processing core for the Hadoop Map/Reduce system to overcome existing performance bottlenecks. Our lambda-calculus-based compiler automatically extracts parallelism without changing the program's semantics. We added further domain-specific semantic-preserving transformations that reduce I/O calls for microservice programs. The runtime format of a program is a dataflow graph that can be executed in parallel, performs concurrent I/O and allows for non-blocking live updates

    A Survey of Pipelined Workflow Scheduling: Models and Algorithms

    Get PDF
    International audienceA large class of applications need to execute the same workflow on different data sets of identical size. Efficient execution of such applications necessitates intelligent distribution of the application components and tasks on a parallel machine, and the execution can be orchestrated by utilizing task-, data-, pipelined-, and/or replicated-parallelism. The scheduling problem that encompasses all of these techniques is called pipelined workflow scheduling, and it has been widely studied in the last decade. Multiple models and algorithms have flourished to tackle various programming paradigms, constraints, machine behaviors or optimization goals. This paper surveys the field by summing up and structuring known results and approaches

    Low-latency handshake join

    Full text link
    This work revisits the processing of stream joins on modern hardware architectures. Our work is based on the recently proposed handshake join algorithm, which is a mechanism to parallelize the processing of stream joins in a NUMA-aware and hardware-friendly manner. Handshake join achieves high throughput and scalability, but it suffers from a high latency penalty and a non-deterministic ordering of the tuples in the physical result stream. In this paper, we first characterize the latency behavior of the handshake join and then propose a new low-latency handshake join algorithm, which substantially reduces latency without sacrificing throughput or scalability. We also present a technique to generate punctuated result streams with very little overhead; such punctuations allow the generation of correctly ordered physical output streams with negligible effect on overall throughput and latency. </jats:p

    Towards Implicit Parallel Programming for Systems

    Get PDF
    Multi-core processors require a program to be decomposable into independent parts that can execute in parallel in order to scale performance with the number of cores. But parallel programming is hard especially when the program requires state, which many system programs use for optimization, such as for example a cache to reduce disk I/O. Most prevalent parallel programming models do not support a notion of state and require the programmer to synchronize state access manually, i.e., outside the realms of an associated optimizing compiler. This prevents the compiler to introduce parallelism automatically and requires the programmer to optimize the program manually. In this dissertation, we propose a programming language/compiler co-design to provide a new programming model for implicit parallel programming with state and a compiler that can optimize the program for a parallel execution. We define the notion of a stateful function along with their composition and control structures. An example implementation of a highly scalable server shows that stateful functions smoothly integrate into existing programming language concepts, such as object-oriented programming and programming with structs. Our programming model is also highly practical and allows to gradually adapt existing code bases. As a case study, we implemented a new data processing core for the Hadoop Map/Reduce system to overcome existing performance bottlenecks. Our lambda-calculus-based compiler automatically extracts parallelism without changing the program's semantics. We added further domain-specific semantic-preserving transformations that reduce I/O calls for microservice programs. The runtime format of a program is a dataflow graph that can be executed in parallel, performs concurrent I/O and allows for non-blocking live updates

    Towards Implicit Parallel Programming for Systems

    Get PDF
    Multi-core processors require a program to be decomposable into independent parts that can execute in parallel in order to scale performance with the number of cores. But parallel programming is hard especially when the program requires state, which many system programs use for optimization, such as for example a cache to reduce disk I/O. Most prevalent parallel programming models do not support a notion of state and require the programmer to synchronize state access manually, i.e., outside the realms of an associated optimizing compiler. This prevents the compiler to introduce parallelism automatically and requires the programmer to optimize the program manually. In this dissertation, we propose a programming language/compiler co-design to provide a new programming model for implicit parallel programming with state and a compiler that can optimize the program for a parallel execution. We define the notion of a stateful function along with their composition and control structures. An example implementation of a highly scalable server shows that stateful functions smoothly integrate into existing programming language concepts, such as object-oriented programming and programming with structs. Our programming model is also highly practical and allows to gradually adapt existing code bases. As a case study, we implemented a new data processing core for the Hadoop Map/Reduce system to overcome existing performance bottlenecks. Our lambda-calculus-based compiler automatically extracts parallelism without changing the program's semantics. We added further domain-specific semantic-preserving transformations that reduce I/O calls for microservice programs. The runtime format of a program is a dataflow graph that can be executed in parallel, performs concurrent I/O and allows for non-blocking live updates

    Towards Implicit Parallel Programming for Systems

    Get PDF
    Multi-core processors require a program to be decomposable into independent parts that can execute in parallel in order to scale performance with the number of cores. But parallel programming is hard especially when the program requires state, which many system programs use for optimization, such as for example a cache to reduce disk I/O. Most prevalent parallel programming models do not support a notion of state and require the programmer to synchronize state access manually, i.e., outside the realms of an associated optimizing compiler. This prevents the compiler to introduce parallelism automatically and requires the programmer to optimize the program manually. In this dissertation, we propose a programming language/compiler co-design to provide a new programming model for implicit parallel programming with state and a compiler that can optimize the program for a parallel execution. We define the notion of a stateful function along with their composition and control structures. An example implementation of a highly scalable server shows that stateful functions smoothly integrate into existing programming language concepts, such as object-oriented programming and programming with structs. Our programming model is also highly practical and allows to gradually adapt existing code bases. As a case study, we implemented a new data processing core for the Hadoop Map/Reduce system to overcome existing performance bottlenecks. Our lambda-calculus-based compiler automatically extracts parallelism without changing the program's semantics. We added further domain-specific semantic-preserving transformations that reduce I/O calls for microservice programs. The runtime format of a program is a dataflow graph that can be executed in parallel, performs concurrent I/O and allows for non-blocking live updates

    A power-aware, self-adaptive macro data flow framework

    Get PDF
    The dataflow programming model has been extensively used as an effective solution to implement efficient parallel programming frameworks. However, the amount of resources allocated to the runtime support is usually fixed once by the programmer or the runtime, and kept static during the entire execution. While there are cases where such a static choice may be appropriate, other scenarios may require to dynamically change the parallelism degree during the application execution. In this paper we propose an algorithm for multicore shared memory platforms, that dynamically selects the optimal number of cores to be used as well as their clock frequency according to either the workload pressure or to explicit user requirements. We implement the algorithm for both structured and unstructured parallel applications and we validate our proposal over three real applications, showing that it is able to save a significant amount of power, while not impairing the performance and not requiring additional effort from the application programmer
    • …
    corecore