233 research outputs found

    Characterization of speaker recognition in noisy channels

    Get PDF
    Speaker recognition is a frequently overlooked form of biometric security. Text-independent speaker identification is used by financial services, forensic experts, and human computer interaction developers to extract information that is transmitted along with a spoken message such as identity, gender, age, emotional state, etc. of a speaker. Speech features are classified as either low-level or high-level characteristics. Highlevel speech features are associated with syntax, dialect, and the overall meaning of a spoken message. In contrast, low-level features such as pitch, and phonemic spectra are associated much more with the physiology of the human vocal tract. It is these lowlevel features that are also the easiest and least computationally intensive characteristics of speech to extract. Once extracted, modern speaker recognition systems attempt to fit these features best to statistical classification models. One such widely used model is the Gaussian Mixture Model (GMM). The current standard of testing of speaker recognition systems is standardized by NIST in the often updated NIST Speaker Recognition Evaluation (NIST-SRE) standard. The results measured by the tests outlined in the standard are ultimately presented as Detection Error Tradeoff (DET) curves and detection cost function scores. A new method of measuring the effects of channel impediments on the quality of identifications made by Gaussian Mixture Model based speaker recognition systems will be presented in this thesis. With the exception of the NIST-SRE, no standardized or extensive testing of speaker recognition systems in noisy channels has been conducted. Thorough testing of speaker recognition systems will be conducted in channel model simulators. Additionally, the NIST-SRE error metric will be evaluated against a new proposed metric for gauging the performance and improvements of speaker recognition systems

    Deep learning models for building window-openings detection in heating season

    Get PDF
    The increasing use of monitoring systems such as Building Management System (BMS) or connected devices bring the opportunity to better evaluate, model or control both occupants’ comfort and energy consumed by an operated building thanks to the consequent amount of data provided (e.g., air temperature, CO2 concentration, electricity consumption). Occupants’ behavior and more specifically window-openings affect both occupants’ thermal comfort and building energy consumption and are therefore key components to consider. This paper presents a comparison of machine learning models applied on window-openings detection during the heating season such as: Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Random Forest Classifier (RFC) and two Recurrent Neural Network (RNN), namely, Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). While some applications of Artificial Intelligence (AI) methods applied on window-openings detection exist in the literature, this Submitted to Building and Environment January 2023 study proposes a detailed comparison of the main methods and focuses on the impact of feature engineering process considering four different data transformations based on field expertise and more than 800 different combinations built on six indoor and outdoor measurements. Results show that some of the proposed transformations and combinations positively impact all models performances. The best performances on window-openings detection are attained by using indoor temperature and CO2 concentration on RNN models with an average F1-score of 0.78 while LDA, SVM and RFC models tend to provide satisfying but lower performance around 0.70-72. In addition, by using the right transformation, significant results can be achieved by detecting up to 84-88 % of window-opening times with the sole use of indoor air temperature measurements

    iCity. Transformative Research for the Livable, Intelligent, and Sustainable City

    Get PDF
    This open access book presents the exciting research results of the BMBF funded project iCity carried out at University of Applied Science Stuttgart to help cities to become more liveable, intelligent and sustainable, to become a LIScity. The research has been pursued with industry partners and NGOs from 2017 to 2020. A LIScity is increasingly digitally networked, uses resources efficiently, and implements intelligent mobility concepts. It guarantees the supply of its grid-bound infrastructure with a high proportion of renewable energy. Intelligent cities are increasingly human-centered, integrative, and flexible, thus placing the well-being of the citizens at the center of developments to increase the quality of life. The articles in this book cover research aimed to meet these criteria. The book covers research in the fields of energy (i.e. algorithms for heating and energy storage systems, simulation programs for thermal local heating supply, runtime optimization of combined heat and power (CHP), natural ventilation), mobility (i.e. charging distribution and deep learning, innovative emission-friendly mobility, routing apps, zero-emission urban logistics, augmented reality, artificial intelligence for individual route planning, mobility behavior), information platforms (i.e. 3DCity models in city planning: sunny places visualization, augmented reality for windy cities, internet of things (IoT) monitoring to visualize device performance, storing and visualizing dynamic energy data of smart cities), and buildings and city planning (i.e. sound insulation of sustainable facades and balconies, multi-camera mobile systems for inspection of tunnels, building-integrated photovoltaics (BIPV) as active façade elements, common space, the building envelopes potential in smart sustainable cities)

    iCity. Transformative Research for the Livable, Intelligent, and Sustainable City

    Get PDF
    This open access book presents the exciting research results of the BMBF funded project iCity carried out at University of Applied Science Stuttgart to help cities to become more liveable, intelligent and sustainable, to become a LIScity. The research has been pursued with industry partners and NGOs from 2017 to 2020. A LIScity is increasingly digitally networked, uses resources efficiently, and implements intelligent mobility concepts. It guarantees the supply of its grid-bound infrastructure with a high proportion of renewable energy. Intelligent cities are increasingly human-centered, integrative, and flexible, thus placing the well-being of the citizens at the center of developments to increase the quality of life. The articles in this book cover research aimed to meet these criteria. The book covers research in the fields of energy (i.e. algorithms for heating and energy storage systems, simulation programs for thermal local heating supply, runtime optimization of combined heat and power (CHP), natural ventilation), mobility (i.e. charging distribution and deep learning, innovative emission-friendly mobility, routing apps, zero-emission urban logistics, augmented reality, artificial intelligence for individual route planning, mobility behavior), information platforms (i.e. 3DCity models in city planning: sunny places visualization, augmented reality for windy cities, internet of things (IoT) monitoring to visualize device performance, storing and visualizing dynamic energy data of smart cities), and buildings and city planning (i.e. sound insulation of sustainable facades and balconies, multi-camera mobile systems for inspection of tunnels, building-integrated photovoltaics (BIPV) as active façade elements, common space, the building envelopes potential in smart sustainable cities)

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    Get PDF
    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of this thesis can be used for building cluster energy forecasting model development and model based control and operation optimization. The thesis concludes with a summary of the key outcomes of this research, as well as a list of recommendations for future work.Ph.D., Civil Engineering -- Drexel University, 201
    • …
    corecore