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Abstract	9	

The	increasing	use	of	monitoring	systems	such	as	Building	Management	System	(BMS)	or	connected	devices	bring	the	10	

opportunity	 to	 better	 evaluate,	 model	 or	 control	 both	 occupants’	 comfort	 and	 energy	 consumed	 by	 an	 operated	11	

building	 thanks	 to	 the	 consequent	 amount	 of	 data	 provided	 (e.g.,	 air	 temperature,	 CO2	 concentration,	 electricity	12	

consumption).	 Occupants’	 behavior	 and	more	 specifically	window-openings	 affect	 both	 occupants’	 thermal	 comfort	13	

and	building	energy	consumption	and	are	therefore	key	components	to	consider.	This	paper	presents	a	comparison	of	14	

machine	 learning	 models	 applied	 on	 window-openings	 detection	 during	 the	 heating	 season	 such	 as:	 Linear	15	

Discriminant	 Analysis	 (LDA),	 Support	 Vector	 Machine	 (SVM),	 Random	 Forest	 Classifier	 (RFC)	 and	 two	 Recurrent	16	

Neural	 Network	 (RNN),	 namely,	 Long	 Short	 Term	 Memory	 (LSTM)	 and	 Gated	 Recurrent	 Unit	 (GRU).	 While	 some	17	

applications	of	Artificial	Intelligence	(AI)	methods	applied	on	window-openings	detection	exist	 in	the	literature,	this	18	
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study	proposes	a	detailed	comparison	of	the	main	methods	and	focuses	on	the	impact	of	feature	engineering	process	19	

considering	 four	different	data	 transformations	based	on	 field	 expertise	 and	more	 than	800	different	 combinations	20	

built	 on	 six	 indoor	 and	 outdoor	 measurements.	 Results	 show	 that	 some	 of	 the	 proposed	 transformations	 and	21	

combinations	positively	 impact	all	models	performances.	The	best	performances	on	window-openings	detection	are	22	

attained	by	using	indoor	temperature	and	CO2	concentration	on	RNN	models	with	an	average	F1-score	of	0.78	while	23	

LDA,	SVM	and	RFC	models	tend	to	provide	satisfying	but	lower	performance	around	0.70-72.	In	addition,	by	using	the	24	

right	transformation,	significant	results	can	be	achieved	by	detecting	up	to	84-88	%	of	window-opening	times	with	the	25	

sole	use	of	indoor	air	temperature	measurements.	26	

Keywords:	deep	learning,	window-opening,	reccurent	neural	network,	support	vector	machine,	Random	forest27	

1. Introduction	28	

The	building	sector	accounts	for	approximately	40%	of	the	final	energy	use	in	Europe	[1].	In	addition,	29	

life	 cycle	 analysis	 of	 buildings	 tends	 to	 show	 that	 most	 of	 the	 building	 life	 cycle	 energy	 consumption	30	

depends	on	its	operation	(80	to	90%)	[2].	Thus,	evaluating	and	defining	operational	loads	of	building	are	31	

keys	elements	in	order	to	reduce	or	comprehend	buildings	energy	consumptions.	The	most	common	use	32	

of	 Building	 Management	 System	 (BMS)	 and	 connected	 devices	 in	 the	 building	 sector	 has	 led	 to	 a	33	

democratization	 of	 edifices	 called	 smart	 buildings.	 A	 smart	 building	 can	 be	 seen	 as	 an	 association	 of	34	

multiple	 systems,	 software	 and	 sensors	 [3]	 that	 aims	 to	 meet	 two	 main	 objectives:	 to	 reduce	 both	35	

operational	and	environmental	costs	by	managing	and	optimizing	the	energy	use	[4,	5,	6]	and	to	improve	36	

the	comfort	of	 the	occupants	 [7,	8].	Hence,	smart	buildings	generate	a	consequent	amount	of	data	 from	37	

measurements	(air	temperature,	CO2	concentration,	energy	consumption,	etc.)	that	can	be	studied	in	order	38	

to	evaluate,	model,	correct	or	optimize	specific	operational	loads	during	the	building	life	cycle	[9,	10,	11].	39	

Among	 these	 loads,	 occupants’	 behavior	 can	 have	 a	 strong	 influence	 on	 the	 operational	 energy	40	

consumption	of	buildings	 as	well	 as	 the	 thermal	 comfort	 [12,	13].	A	 common	action	 is	 often	 identified:	41	
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window-openings	 [14,	 15,	 16].	 However,	 although	 window	 states	 are	 required	 to	 understand	 the	42	

functioning	 and	 performances	 of	 a	 building,	 they	 are	 rarely	 measured	 on	 sites	 or	 exploitable.	 Unlike	43	

ambient	sensors	which	are	commonly	used	(e.g.,	air	temperature),	window	opening	sensors	are	generally	44	

numerous	 to	 install	 and	 considered	more	 intrusive.	 In	 addition,	 data	 collected	 from	 sensors	 are	 rarely	45	

clean	and	straight	usable	due	to	common	errors	that	may	occur	during	the	measurement	phase	(e.g.,	data	46	

transmission	failure,	accident)	and	thus,	often	require	some	preprocessing	[17,	18].	There	is	currently	no	47	

consensus	on	how	occupants	interact	with	their	building	as	well	as	all	factors	that	may	have	an	influence	48	

on	their	behaviors	[19]	and	modeling	occupants	actions	without	dedicated	measurement	or	by	using	poor	49	

quality	 data	 (anomalies,	 etc.)	 can	 rather	 be	 difficult.	 Thus,	 openings	 are	 often	 approximated	 by	 expert	50	

rules	(e.g.,	ratios)	or	by	stochastic	approaches	[20]	that	can	induce	significant	gaps	compared	to	real	in-51	

situ	observations	[13].		52	

Nevertheless,	 window-openings	 impacts	 on	 other	 measurements	 (such	 as	 air	 temperature,	 CO2	53	

concentration,	 etc.)	 can	 be	 observed	 through	 specific	 patterns	 that	 tend	 to	 deviate	 from	 other	54	

observations.	 These	patterns	 can	be	 recognized	 and	 classified	by	using	machine	 learning	 techniques	 in	55	

order	to	determine	the	corresponding	window-status	(open	or	close).		56	

Nowadays,	 pattern	 recognition	 and	 classification	 through	machine	 learning	 techniques	 is	 commonly	57	

used	in	various	domains	for	multiple	purposes	such	as	financial	with	the	fraud	detection	or	in	the	security	58	

field	to	detect	intrusion	and	even	in	the	medical	field	to	detect	breast	cancer	[21].	In	the	building	sector,	59	

studies	 covering	 machines	 learning	 techniques	 applied	 to	 window-status	 detection	 seem	 to	 rarely	60	

compare	multiple	models	performances	and	tend	to	mainly	be	based	on	logistic	regression	models	[15].	61	

Furthermore,	 these	 studies	 rarely	 discuss	 the	 selection	 of	 feature	 as	 well	 as	 the	 associated	 feature	62	

engineering	process	[15],	yet	considered	as	core	keys	to	 influence	positively	models	performances	[22].	63	

Since	machine	learning	models	show	poor	generalization	capabilities	and	usually	require	a	specific	tuning	64	

for	 each	 household	 and	 building	 [20]	 the	 present	 work	 aims	 to	 contribute	 on	 window-opening	 status	65	

detection	by	comparing	five	different	models	to	provide	tendency	observations	on	models,	measurements	66	

combinations	and	transformations.		67	

	68	

The	main	contributions	of	this	article	are	therefore:	69	

• The	comparison	on	window-status	detections	for	several	machine	learning	models	classifier	such	as	70	

Linear	Discriminant	Analysis	(LDA),	Support	Vector	Machine	(SVM),	Random	Forest	Classifier	(RFC)	71	
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and	Recurrent	Neural	Network	(RNN)	such	as	Long	Short	Term	Memory	(LSTM)	and	Gated	Recurrent	72	

Unit	(GRU).	73	

• A	detailed	approach	on	indoor	and	outdoor	measurements	combinations	impact	on	models	outputs.	74	

This	study	might	provide	a	guide	on	the	type	of	sensor	to	be	preferred	for	in-situ	sites	installation	in	75	

order	to	detect	window	openings.	76	

• A	detailed	explanation	on	 feature	 engineering	 followed	process	 in	order	 to	quantify	measurements	77	

transformations	and	association	performances	on	models	outputs.		78	

2. Related	work	79	

2.1. Occupants’	behavior	detection	or	prediction	80	

Occupants’	 behavior	 impact	 both	 occupants’	 thermal	 comfort	 and	building	 energy	 consumption	 [23]	81	

with	around	25%	of	the	total	energy	consumption	in	Europe		between	1990	to	2014	being	dedicated	to	82	

domestic	uses	[24].	To	understand,	control	or	minimize	these	impacts,		machine	learning	techniques	used	83	

to	model	these	behaviors	(e.g.,	occupancy,	window-openings)	can	be	applied	to	serve	multiple	purposes	in	84	

the	building	sector	including,	among	others,	prediction,	fault	detection,	diagnosis	or	control	optimization	85	

[9,	 15].	 Following	 this	 perspective,	 three	 different	 applications	 of	 occupants’	 behavior	 models	 are	86	

presented	in	Figure	1Erreur	!	Source	du	renvoi	introuvable.:	past,	present	(or	real-time)	and	future	(or	87	

predictive)	 detection	models.	 Past	 detection	models	 (1.a)	 can	 take	 advantage	 of	 all	 monitored	 data	 in	88	

order	 to	 detect	 or	 classify,	 a	 posteriori,	 occupants’	 behavior.	 This	 approach	 can	be	used,	 among	others	89	

things,	to	perform	fault	detection	or	to	detect	and	correct	anomalies	by	comparing	modeled	to	measured	90	

behaviors,	 to	 reduce	 the	 gap	 between	 simulated	 and	 real	 energy	 consumption	 for	 energy	 performance	91	

verification	 [25,	 26]	 or	 to	 evaluate	 retrofit	 actions	 [27,	 28].	 Present	 detection	 models	 (1.b)	 focus	 on	92	

detecting	 real	 time	behavior	while	 future	detection	models	 (1.c)	 focuses	on	predicting	behavior	one	or	93	

multiple	time	step	ahead.	Both	approaches	are	the	most	commonly	performed	in	studies	[15]	and	can	be	94	

applied	 for	 real	 time	 implementation	 in	 order	 to	 perform	 fault	 detection	 [29],	 control	 optimization	 for	95	

comfort	improvements	or	energy	savings	[30,	31,	32].	Specificities	of	models	and	training	process	apart,	96	

these	three	applications	can	be	performed	by	using	the	same	data	and	are	mainly	related	to	intended	uses	97	

(regardless	of	the	results).	Therefore	and	to	avoid	any	overload,	this	study	focuses	solely	on	past	detection	98	

but	 all	measurements	 transformations	 can	also	be	applied	 to	 real-time	detection	and	 future	prediction.	99	
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Regarding	these	aspects,	the	approach	extended	to	real-time	applications	is	also	succinctly	addressed	and	100	

discussed	in	section	5.5.	101	

	102	

Figure	1	Occupants	behavior	detection	based	on	monitored	data:	(a)	past	detection,	(b)	present	detection	and	(c)	future	prediction	103	

2.2. Window-opening	behavior	models		104	

As	presented	in	Xilei	Dai	review	[15],	studies	on	window-openings	through	machine	 learning	models	105	

can	be	divided	into	two	groups.	The	first	focuses	mainly	on	occupants’	actions	toward	the	window,	given	a	106	

specific	environment	(e.g.,	indoor	and	outdoor	air	temperature,	wind	speed),	in	order	to	model	openings	107	

and	 closings	 actions	 [33,	 34].	 The	 second,	 on	 which	 this	 study	 is	 based,	 mainly	 focuses	 on	 modeling	108	

window-status	as	open	or	close	depending	on	the	environment	[20,	35,	36].	Three	main	elements	can	be	109	

highlighted	from	previous	studies	[15]:	110	

• Most	 of	 studies	 mainly	 focus	 on	 one	 sole	 machine	 learning	 model	 at	 a	 time	 and	 rarely	 compare	111	

different	models	on	the	same	study.		112	

• Logistic	 Regressions	 (LR)	 models	 are	 the	 most	 used	 to	 determine	 window-status	 [36,	 37,	 38,	 39]	113	

followed	by	Artificial	Neural	Networks	(ANN)	in	more	recent	studies	[20,	40,	41].	The	vast	majority	of	114	

presented	models	is	based	on	a	supervised	approach	and	thus,	uses	labeled	data.	115	

• Generic	models	apart,	machine	learning	models	for	window-status	are	specific	to	buildings,	occupants	116	

or	 seasons	 [20,	 38]	 and	 their	 performances	 can	 be	 assessed	 regarding	multiple	 evaluation	metrics	117	

(such	 as	 accuracy,	 F1-score,	 true	 positive	 rate,	 area	 under	 the	 curve,	 etc.).	 Thus,	 evaluating	 and	118	

comparing	different	models	through	multiple	studies	is	rather	difficult.	119	

	120	
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Hence,	 the	 decision	 was	 made	 to	 focus	 this	 study	 on	 various	 models	 to	 compare	 their	 results	 and	121	

tendencies.	 Considering	 the	 amount	 of	 significant	 contribution	 realized	with	 logistic	 regression	models	122	

and	 Artificial	 Neural	 Networks,	 others	 models	 underrepresented	 for	 window	 openings	 detection	 and	123	

based	 on	 their	 popularity	 on	 other	 fields	 of	 research,	 towards	 pattern	 recognition,	 classification,	124	

prediction	or	anomaly	detection,	were	selected.	It	includes,	Recurrent	Neural	Network	(RNN)	[42,	43,	44],	125	

Linear	Discriminant	Analysis	(LDA)	[45,	46],	Support	Vector	Machine	(SVM)	[44,	45]	and	Random	Forest	126	

Classifier	(RFC)	[43,	45,	46].	It	is	important	to	note	that	SVM	and	RFC	models	have	been	applied	on	a	few	127	

studies	regarding	window-status	modeling,	showing	great	results	[35].	On	the	other	hand	RNN	and	LDA	128	

models	 appear	 to	 be	 unrepresented	 despite	 potentially	 being	 highly	 effective	 regarding	 their	 actual	129	

performances	on	similar	tasks	such	as	detecting	occupancy	[43,	46]	or	on	other	fields	of	studies	[47]	such	130	

as	medical	by	detecting	anomalies	[48]	or	energetic	by	optimizing	performances	[49].	Machine	 learning	131	

models	used	in	the	present	study	are	further	detailed	in	section	3.2.		132	

2.3. Feature	selection	and	transformation	for	window	opening	models	133	

Features	used	for	window	opening	models	can	rather	be	divided	into	two	groups	[15]	environmental	134	

and	 non-environmental.	 Environmental	 features	 are	 based	 on	 indoor	 or	 outdoor	 environment	135	

measurements	such	as	air	 temperature,	CO2	concentration,	wind	speed,	solar	radiation,	noise,	etc.	while	136	

non-environmental	features	are	based	on	buildings,	occupants	or	time	characteristics	such	as	room	type,	137	

gender,	age	or	time	of	the	day.	As	analyzed	in	Xilei	Dai	review	[15]	and	regardless	of	the	models,	the	most	138	

used	 features	 come	 from	 environment	 measurements	 such	 as:	 outdoor	 and	 indoor	 air	 temperature,	139	

humidity,	 indoor	 CO2	 concentration	 and	wind	 speed.	 Regarding	 logistic	 regression	models,	most	 of	 the	140	

studies	tend	to	show	that	indoor	and	outdoor	air	temperature	have	the	most	impact	[39,	50,	51].	However,	141	

concerning	artificial	neural	network	models,	a	detailed	study	highlighting,	among	others,	measurements	142	

impact	 for	 window	 openings	 application,	 such	 as	 Romana	 Markovic	 [40],	 shows	 different	 results.	 Her	143	

study	provides	a	relevant	example	based	on	an	ANN	model	by	analyzing	neurons	 learned	weights	 from	144	

more	 than	 twenty	 input	 features	 that	highlight	 the	 importance	of	 indoor	environmental	data	and	more	145	

specifically,	 CO2	 concentration.	 Regarding	 these	 results,	 a	 broad	 approach	 including	 different	 ambient	146	

indoor	and	outdoor	measurements	is	privileged	for	this	study.	In	addition,	another	main	point	should	be	147	

specified	regarding	feature	selection.	Most	of	the	features	used	in	previous	studies	are	measurements	that	148	

are	 neither	 transformed	 (e.g.,	 derivation,	 smoothing)	 nor	 combined	 (e.g.,	 differences)	 despite	 positive	149	
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impacts	that	might	be	obtained	on	models	performances	[22].	Hence,	this	study	offers	to	test	and	compare	150	

various	measurements	 transformations	 that	are	 further	presented	 in	section	4.2.1	on	several	models	 in	151	

order	to	evaluate	their	contribution	and	relevance.	152	

3. Experiment	methodology	153	

In	this	section	a	presentation	of	metrics	used	and	models	selected	for	this	study	is	provided.	Evaluation	154	

metrics	 chosen	 and	 built	 to	 compare	 the	 results	 are	 discussed	 and	 a	 short	 explanation	 of	 every	model	155	

specificities,	architecture	selection	and	corresponding	training	process	is	given.	156	

3.1. Evaluation	process	157	

3.1.1. F1-score	158	

Window	 opening	 is	 a	 common	 binary	 classification	 task	 in	machine	 learning.	 The	 window-status	 is	159	

reflected	 by	 two	 classes,	 open	 and	 close,	 which	 are	 underrepresented	 and	 overrepresented	 groups,	160	

respectively.	As	 shown	by	 [15],	 several	metrics	can	be	used	 to	assess	 the	classification	performance	on	161	

window-status.	In	this	study	the	F1-score	metric	is	firstly	used	to	provide	an	overall	evaluation	of	models	162	

results	and	secondly	to	allow	a	comparison	with	other	studies.	F1-score	 is	calculated	from	Equation	(1)	163	

where	True	Positive	(TP)	and	True	Negative	(TN)	represent	 the	total	amount	of	right	classifications	 for	164	

window	 open	 and	 close	 status	 while	 False	 Positive	 (FP)	 and	 False	 Negative	 (FN)	 represent	 the	 total	165	

amount	 of	 wrong	 classifications	 for	 window	 open	 and	 close	 status	 respectively.	 F1-score	 values	 are	166	

ranged	between	0	and	1,	with	1	corresponding	to	a	perfect	window	opening	classification.	An	average	F1-167	

score	of	0.5	means	that	for	one	TP	there	are	two	false	classifications:	two	FP,	two	FN	or	one	of	both.	168	

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 	
𝑇𝑃

𝑇𝑃 +	12	(𝐹𝑃 + 𝐹𝑁)	
																																			𝐸𝑞. (1)	169	

However,	although	this	evaluation	metric	may	provide	a	global	overview	on	every	models’	performances,	170	

it	alone	might	not	be	sufficient	to	choose	which	model	 is	better	especially	 in	case	of	similar	or	 identical	171	

results.	As	 illustrated	 in	Figure	2,	a	window	opening	state	 is	defined,	 in	 this	work,	as	one	or	successive	172	

open	states	(full-cells)	bounded	by	one	or	successive	close	states	(empty-cells).	Both	models	evaluations	173	

(2.i)	and	(2.ii)	provides	the	same	F1-score	values	whereas	both	provide	different	results	with	only	half	of	174	

the	 openings	 perfectly	 detected	 for	 (2.i)	 and	 all	 openings	 detected	 but	 underestimated	 for	 (2.ii).	 Other	175	
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metrics	might	be	useful	 in	order	to	compare	the	results	to	other	studies,	 to	deepen	models	outputs	and	176	

guide	or	adapt	the	choice	of	models	or	measurements	according	to	specific	needs,	with	a	focus	on	number	177	

of	 openings	 detected	 or	 on	 the	 total	 opening	 time	 for	 instance.	 Thus,	 more	 domain	 oriented	 metrics	178	

focusing	on	window	opening	classification	and	evaluation	based	on	true	and	false	opening	detection	are	179	

introduced	and	discussed	in	this	paper.	180	

	181	

	 Opening	 	 	 Opening	 	 	
	 	 	 	 	 	 	 	 	 	 	 Labels	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 Model	(i)	
		 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 Model	(ii)	

Figure	2	Window-openings	detection	for	two	different	models	182	

3.1.2. True	and	false	openings	183	

A	true	opening	is	a	modeled	window	opening	that	corresponds	to	a	measured	window	opening	within	a	184	

given	time	step	limit.	Therefore,	a	true	opening	is	a	true	positive	or	a	successive	set	of	true	positives	which	185	

may	 include	one	or	more	 false	positives.	On	 the	 other	hand,	 a	modeled	window	opening	 that	 does	not	186	

satisfy	this	requirement	is	considered	as	a	false	opening.	Thus,	as	shown	in	Figure	3,	for	a	time	limit	of	two	187	

time	steps	used	 in	 this	 study,	 the	model	 results	 (3.i)	and	 (3.ii)	are	made	of	 two	and	one	 true	openings,	188	

respectively.	Six	evaluation	metrics	result	from	these	definitions,	the	total	true	and	false	openings	number,	189	

the	total	true	and	false	openings	time	and	the	average	true	opening	accuracy	score.	190	

	 Opening	 	 Opening	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 Labels	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 Model	(i)	 	 	 	 	

1	 0.66	 0.66	 0.66	 	 :	Open	accuracy	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 :	Close	accuracy	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 Model	(ii)	 	 	 	 True	opening	
0.66	 0.66	 	 	 	 	 	 	 	 :	Open	accuracy	 	 	 	 	
	 	 	 	 	 	 	 	 	 :	Close	accuracy	 	 	 	 False	opening	

Figure	3	True	and	false	opening	examples	191	

3.1.2.1. Total	true	and	false	openings	number	192	

These	metrics	are	used	to	evaluate	a	model	capability	to	detect	windows	openings	regardless	of	their	193	

duration	and	correspond	to	the	total	number	of	true	and	false	openings	provided	by	a	model.	194	

0.66	
0.66	0.66	

	

1	

0.66	
0.66	
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3.1.2.2. Total	true	and	false	openings	time	195	

These	metrics	 are	 used	 to	 evaluate	 a	 model	 capability	 to	 quantify	 windows	 openings	 duration	 and	196	

correspond	to	the	total	amount	of	time	for	all	true	and	false	openings	provided	by	a	model.	In	Figure	3,	the	197	

model	 results	 (3.i)	has	a	 six	 time	step	 true	opening	 time	and	no	 false	opening	 time	whereas	 the	model	198	

results	(3.ii)	has	a	three	time	step	true	opening	times	for	a	five	time	step	false	opening	times.	199	

3.1.2.3. Average	true	opening	accuracy	score	200	

A	score	 is	associated	to	every	detected	opening	action	(represented	by	the	first	open	status	of	a	true	201	

opening)	and	to	every	detected	closing	action	(represented	by	the	last	open	status	of	a	true	opening)	in	202	

order	 to	 evaluate	 a	model	 precision	 on	window-openings	 detection.	 The	 score	 is	 set	 to	 1	 for	 a	 perfect	203	

match	between	the	 true	opening	and	the	measured	opening	and	 is	 linearly	decreased	by	0.33	 for	every	204	

time	step	difference.	The	penalty	of	0.33	is	chosen	regarding	the	two	time	step	limit	set	to	define	true	and	205	

false	openings.	 Lastly,	 the	 accuracy	 score,	 specific	 to	 each	opening,	 is	 averaged	 for	 all	 the	 true	opening	206	

provided	 by	 the	model.	 In	 Figure	 3,	 the	model	 results	 (3.i)	 has	 an	 average	 opening	 score	 of	 0.83	 and	207	

closing	score	of	0.66	whereas	the	model	results	(3.ii)	has	both	average	opening	and	closing	score	at	0.66.	208	

3.2. Models	209	

3.2.1. SVMs	210	

Support	 Vector	 Machines	 (SVMs)	 are	 supervised	 machine	 learning	 methods	 commonly	 used	 for	211	

classification,	 regression	 and	 novelty	 detection.	 In	 a	 two-class	 classification	 problem	 and	 if	 the	 data	 is	212	

assumed	to	be	separable	in	feature	space,	many	boundaries	that	separate	the	classes	may	exists.		An	SVM	213	

model	 is	 therefore	 trained	 to	 determine	 the	 best	 boundary	 between	 classes	 (also	 called	 decision	214	

boundary)	by	maximizing	the	distance	between	every	class	sample	[52,	53].	In	this	paper,	a	Radial	Basis	215	

Function	(RBF)	kernel	SVM	classifier	is	trained	following	a	5-fold	cross-validation	for	time	series	with	an	216	

adaptive	 search	 algorithm	 to	 optimize	 the	 regularization	 and	 inverse	 of	 radius	 parameters.	 For	 every	217	

parameters	combination	in	the	range	listed	in	Table	1,	F1-scores	extracted	from	the	5-fold	cross	validation	218	

are	averaged	and	the	SVM	model	with	the	best	performances	is	selected	for	the	evaluation.	219	
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3.2.2. LDA	220	

Linear	Discriminant	Analysis	(LDA)	is	a	supervised	dimensionality	reduction	technique	commonly	used	221	

for	classification.	In	a	two-class	classification	problem	with	the	same	assumption	as	presented	in	section	222	

3.2.1,	 an	 LDA	model	 is	 trained	 in	 order	 to	 construct	 a	 linear	 projection	 that	 maximizes	 the	 projected	223	

interclass	variance	and	minimize	the	projected	intraclass	variance	[52,	53].	The	classification	is	based	on	224	

Bayes’	theorem	to	estimate	a	sample	probability	to	belong	to	a	class.	Although	LDA	is	only	optimal	for	data	225	

with	normal	distribution	and	equal	covariance	matrices,	its	simplicity	and	robustness	balance	the	loss	in	226	

performances	if	above	conditions	are	not	fulfilled	[54].	In	this	paper,	an	LDA	classifier	is	trained	following	227	

a	5-fold	cross-validation	for	time	series	with	an	adaptive	search	algorithm	to	optimize	the	choice	of	solver	228	

and	 solver-dependent	 parameters	 such	 as	 shrinkage	 or	 threshold.	 For	 every	 solver	 and	 parameters	229	

combination	 in	 the	 range	 listed	 in	 Table	 1,	 F1-scores	 extracted	 from	 the	 5-fold	 cross	 validation	 are	230	

averaged	and	the	LDA	model	with	the	best	performances	is	selected	for	the	evaluation.	231	

3.2.3. Random	Forest	Classifier	232	

Random	Forest	(RF)	is	a	supervised	machine	learning	method	commonly	used	for	classification	(RFC)	233	

and	regression	that	combines	decision	tree	and	ensemble	methods.	A	decision	tree	is	a	tree-based	method	234	

that	divides	the	feature	space	into	a	set	of	rectangles	that	optimally	split	the	data	into	classes.	However	235	

trees	 tend	 to	overfit	during	 training	and	 thus,	have	a	 low	bias	and	a	high	variance.	To	be	 less	prone	 to	236	

overfitting,	a	RF	model	is	trained	by	randomly	splitting	the	data	into	subsets	and	building	a	decision	tree	237	

on	each	before	aggregating	their	results	(ensemble	method)	[52,	55,	56].	In	this	study,	a	Gini	RF	classifier	238	

is	trained	following	a	5-fold	cross-validation	for	time	series	with	an	adaptive	search	algorithm	to	optimize	239	

the	choice	of	the	number	of	trees,	the	minimum	number	of	samples	placed	in	a	node	before	a	node	is	split,	240	

the	minimum	number	 of	 samples	 required	 in	 a	 leaf	 node.	 For	 every	 combination	 of	 parameters	 in	 the	241	

range	 listed	 in	 Table	 1,	 F1-scores	 extracted	 from	 the	 5-fold	 cross	 validation	 are	 averaged	 and	 the	 RF	242	

model	with	the	best	performances	is	selected	for	the	evaluation.	243	

3.2.4. RNNs	244	

Recurrent	Neural	Networks	(RNNs)	are	a	subclass	of	Artificial	Neural	Networks	(ANNs).	Unlike	ANNs,	245	

RNNs	 possess	 an	 internal	 state	memory	 that	 captures	 temporal	 order	 and	 dependencies	 of	 sequences,	246	

making	them	regularly	used	for	task	involving	sequential	data	such	as	automatic	translation,	time	series	247	

forecasting	or	classification.	However,	 in	practice,	RNNs	are	not	able	 to	handle	 long-term	dependencies	248	
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[57].	Long	Short-Term	Memory	(LSTM)	is	a	specific	RNN	that	is	designed	to	avoid	this	issue	by	selectively	249	

forgetting	 long-term	 information	 [47].	On	 the	other	hand,	Gated	Recurrent	Unit	 (GRU)	 is	 a	 variation	of	250	

LSTM	 that	 uses	 less	 training	 parameters	 and	 therefore	 consumes	 less	 memory,	 is	 faster	 and	 can	251	

outperform	 LSTM	 on	 some	 tasks	 [58,	 59,	 60].	 Unlike	 previous	 presented	 models,	 LSTMs	 and	 GRUs	252	

hyperparameters	 listed	 in	 Table	 1,	 were	 tuned	 beforehand	 in	 order	 to	 make	 a	 balance	 between	253	

performance,	training	difficulties	and	computing	time.	Hence,	both	LSTM	and	GRU	models	for	this	study	254	

are	composed	of	a	first	layer	of	16,	32	or	64	units	(depending	on	the	number	of	features	used	for	training)	255	

followed	with	a	dense	output	 layer	of	size	2	with	softmax	activation.	An	Adam	optimizer	 is	used	with	a	256	

learning	 rate	of	0.001	along	with	a	binary	 cross-entropy	 loss	 function.	To	avoid	overfitting,	25%	of	 the	257	

training	set	is	selected	as	a	validation	set,	the	remaining	training	set	is	shuffled	and	a	function	to	stop	the	258	

training	if	the	model	stop	improving	is	used	(also	called	early	stopping).	259	

Table	1	List	and	range	of	Models’	tuning	parameters	260	

Models	 Tuning	parameters	and	hyperparameters	

SVM	 Regularization:	range	0.1	to	100	;	Inverse	radius:	range	0.01	to	10	

LDA	 Solver:	Singular	value	decomposition,	Least	squares	solution	or	Eigenvalue	decomposition	;		

Shrinkage:	Ledoit-Wolf	lemma	or	None	;	Absolute	threshold:	range	0.001	to	0.00001	

RFC	 Number	of	trees:	range	10	to	150,		Minimum	number	of	samples	required	to	split	an	internal	node:		

range	2	to	10	;	Minimum	number	of	samples	required	to	be	at	a	leaf	node:	range	1	to	4	

LSTM	&	GRU	 Number	of	hidden	layers:	range	0	to	2	;	Number	of	units	(size):	range	4	to	128	;	Dropout:	range	0	to	0.5	

4. Data	description	and	data	preprocessing	261	

In	 this	 section	 a	 review	 of	 the	 data	 collected	 and	 features	 used	 for	 this	 study	 is	 presented.	 A	 short	262	

explanation	of	 the	specificities	of	 the	train	and	test	data	 is	given	followed	by	a	detailed	approach	of	 the	263	

feature	engineering	process	conducted.	264	

4.1. Data	description	265	

4.1.1. Data	collection	and	preparation	266	

The	raw	data	used	for	this	study	is	made	of	1	minute	time	step	measurements	collected	over	two	years	267	

(from	 July	2019	 to	 February	2021)	 in	 a	northwest	 bedroom	of	 an	 apartment	 located	 in	Bordeaux	 city-268	

center	 (France).	 The	 raw	 data	 include	 indoor	 climate	 measurements	 (such	 as	 temperature,	 relative	269	

humidity	 and	 CO2	 concentration),	 outdoor	 climate	 measurements	 (such	 as	 temperature	 and	 relative	270	
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humidity)	 and	 window-status	 measurements.	 Sensors	 positions	 for	 all	 studied	 measurements	 are	271	

illustrated	in	Figure	4.		272	

	273	

Figure	4	Studied	sensors	position	274	

Additional	 data	 are	 also	 created	 from	 timestamp	 (such	 as	 hours,	minutes	 and	weekday)	 or	 original	275	

values	 (such	 as	 absolute	 humidity)	 and	 added	 to	 the	 raw	 dataset.	 Over	 the	 two	 years	 of	 available	276	

measurements	 a	 few	 months	 with	 a	 low	 anomalies	 rate	 were	 retained,	 cleaned,	 aggregated	 into	 a	277	

15	minutes	time	step	and	separated	into	a	train	and	test	sets.	The	training	set	is	composed	of	four	months	278	

of	 data,	 from	 the	 end	 of	 October	 2019	 to	 the	 beginning	 of	 March	 2020.	 The	 training	 set	 consists	 in	279	

12	095	data	points	collected	during	the	heating	season	and	its	measurements	characteristics	are	listed	in	280	

Table	2.	Thus,	one	of	the	main	limitations	of	this	paper	lies	in	the	studied	period	which	is	characteristic	of			281	

a	heating	season	with	an	average	indoor	air	temperature	usually	superior	to	the	outdoor.	The	test	set	is	282	

made	of	one	month	of	data	from	mid-December	2020	to	mid-January	2021	for	a	total	of	3	115	data	points	283	

that	is	also	representative	of	heating	seasons.	This	set	is	introduced	in	the	following	section.		284	

Table	2	Training	dataset	measurements	characteristics	285	

Measurement	name	 Maximum	value	 Minimum	value	 Mean	 Standard	deviation	
Indoor	temperature	(°C)	 23.0	 19.6	 21.7	 0.5	
Indoor	relative	humidity	(%)	 69.8	 29.6	 49.7	 6.1	
Indoor	CO2	concentration	(ppm)	 2000.0	 436.2	 727.3	 237.4	
Outdoor	temperature	(°C)	 23.5	 4.8	 12.3	 2.9	
Outdoor	relative	humidity	(%)	 93.6	 36	 71.2	 10.2	
Window-status	(0-1)	 1	 0	 -	 -	

4.1.2. Data	analysis	286	

Figure	5	provides	an	overview	of	the	test	data	used	to	evaluate	every	model	and	highlights	two	periods	287	

with	(5.i)	and	without	occupants	(5.ii).		288	
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	289	
Figure	5	Test	dataset	of	indoor	temperature,	indoor	CO2	and	window-status	290	

	291	

The	unoccupied	period	is	characterized	by	a	slow	drift	of	approximately	2°C	of	indoor	air	temperature	292	

and	a	low	stagnating	CO2	concentration.	These	differences	are	shown	in	Table	3.	The	occupied	period	is	293	

characterized	 by	 higher	 average	 indoor	 temperature	 and	 indoor	 CO2	 concentration.	 While	 period	(5.i)	294	

presents	 data	 characteristics	 relatively	 close	 to	 the	 training	 set	 characteristics,	 those	 shown	 in	295	

period	(5.ii)	tend	to	differ.	Such	differences	might	impact	the	evaluation	phase	but	may	also	provide	useful	296	

information	on	models	behavior	and	sensibility	to	uncommon	data	characteristics.		297	

For	all	 the	test	data,	 the	measured	open	window-status	time	represents	25.75	hours	 for	a	 total	of	18	298	

openings	 and	 can	 be	 separated	 into	 two	 types	 of	 openings	 based	 on	 their	 impact	 on	 the	 indoor	 data.	299	

(1)	Low	 impact	 openings	 that	 are	 characterized	 by	 a	 slow	 or	 inexistent	 fluctuation	 on	 indoor	 climate	300	

measurements	 that	 can	 be	 due	 to	 a	 window	 that	 is	 briefly	 or	 only	 slightly	 open,	 and	 (2)	 high	 impact	301	

openings	which	include	all	other	and	more	impactful	openings.	Low	impact	openings	represent	5	hours	of	302	

open	window-status	time	out	of	the	25.75	measured	and	are	considered	hard	to	classify	for	the	models.	303	

On	the	other	hand	high	impact	openings	tend	to	be	easier	to	detect	and	classify.	304	

Table	3	Test	dataset	measurements	characteristics	by	occupancy	period	305	

Measurement	name	 Maximum	value	 Minimum	value	 Mean	 Standard	deviation	
(1)	Indoor	temperature	(°C)	 22.4	 17.3	 21.6	 0.6	
(2)	Indoor	temperature	(°C)	 22.0	 19.8	 20.7	 0.7	
(1)	Indoor	relative	humidity	(%)	 58.1	 26.5	 43.4	 6.3	
(2)	Indoor	relative	humidity	(%)	 54.0	 34.0	 42.8	 5.8	
(1)	Indoor	CO2	concentration	(ppm)	 1700.7	 440.7	 932.9	 236.9	
(2)	Indoor	CO2	concentration	(ppm)	 526.2	 411.5	 449.2	 17.8	

(i)																																																									(ii)																																																																				(i)	
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4.2. Data	preprocessing	306	

4.2.1. Feature	engineering	307	

Feature	selection	and	representation	tend	to	have	a	direct	 impact	on	most	models	performances	[22,	308	

61].	Feature	engineering	is	the	process	of	combining	or	transforming	existing	features	to	create	additional	309	

features	that	are	not	 in	the	original	dataset.	The	main	 idea	behind	feature	engineering	 is	 to	use	domain	310	

knowledge,	visualization	and	statistical	methods	to	provide	discriminative	information	from	the	data	that,	311	

the	 model	 alone,	 may	 not	 or	 cannot	 extract	 [22].	 For	 this	 study,	 two	 types	 of	 additional	 features	 are	312	

created	 based	 on	 the	 heating	 season	 specificities	 presented	 in	 section	 4.1.1:	 STL-Residue	 and	313	

EMA-Difference.	These	features	are	built	to	reflect	the	impact	created	by	a	window	opening	between	two	314	

different	 environments,	 indoors	 and	 outdoors.	 Thus,	 window	 openings	 influence	 ambient	 indoor	315	

measurements	by	creating	a	data	point	or	successive	data	points	with	specific	values	that	locally	seem	to	316	

be	 inconsistent	with	 the	 rest	of	 the	data.	 In	other	words,	window	openings	are	 represented	by	 specific	317	

patterns	that	tend	to	differ	from	the	tendency.	Therefore,	as	shown	in	Table	4	and	represented	in	 ,	 four	318	

features	 transformations	 and	 combinations	 are	 applied	 in	 this	 study	 with	 the	 aim	 of	 extracting	319	

information	that	differentiate	open	and	close	window-status	in	measurements:	320	

• Exponential	Moving	Average	 (EMA):	 is	 a	 feature	 transformation	based	on	a	 smoothing	 technique	321	

used	to	reduce	measurements	noises	and	only	capture	important	patterns	such	as	windows	opening.		322	

The	 EMA	 for	 a	 measurement	 is	 calculated	 following	 Equation	 (2)	 where	 Mt	 is	 the	 value	 of	 the	323	

measurement	 at	 time	 t,	EMAMt	 is	 the	 value	 of	 the	 EMA	 for	 this	measurement	 at	 time	 t	 and	α	 is	 a	324	

constant	smoothing	(or	weight)	coefficient	ranged	between	0	and	1.	For	this	study,	an	EMA	is	applied	325	

on	the	data	with	a	light	tuned	smoothing	coefficient	(α)	of	0.10,	previously	chosen	in	range	between	326	

0.10	and	0.25.	A	smoothed	measurement	is	referred	as	EMAMeasurement.	327	

• Derivation:	is	a	feature	transformation	used	in	order	to	capture	sudden	variations	on	measurements	328	

by	differencing	seasonal	and	cyclic	drifts	(low	successive	derivate	values)	and	sudden	drops	such	as	329	

windows	 opening	 (higher	 successive	 derivate	 values).	 The	 derivation	 transformation	 of	 a	330	

measurement	is	presented	with	Equation	(3)	where	Mt	is	the	value	of	the	measurement	at	time	t,	dMt	331	

is	 the	 value	 of	 the	 derivate	 of	 this	 measurement	 at	 time	 t	 and	Δt	 is	 a	 time	 step	 value.	 A	 derivate	332	

measurement	is	further	referred	as	dMeasurement.	333	
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• STL-Residue:	 is	 a	 feature	 transformation	based	on	 the	Seasonal-Trend	decomposition	using	LOESS	334	

(STL).	 STL	 is	 a	 statistical	 method	 which	 decomposes	 the	 input	 data	 into	 three	 components:	 a	335	

recurrent	pattern	over	 time	(seasonality),	a	 tendency	(trend)	and	a	residue	(or	noise)	composed	of	336	

random	or	unpredictable	fluctuation	[62].	Hence,	STL-Residue	is	used	to	extract	unusual	pattern	from	337	

measurements	 such	 as	 opening	window	 impacts.	 The	 STL-Residue	 is	 calculated	with	 Equation	 (4)	338	

where	Mt	is	the	value	of	the	measurement	at	time	t	and	SeasonalityMt,	TrendMt	and	ResidueMt	are	the	339	

value	of	the	seasonality,	trend	and	residue	for	a	measurement	at	time	t,	respectively.	The	STL-Residue	340	

transformation	of	a	measurement	is	further	referred	as	residueMeasurement.		341	

• EMA-Difference:	is	a	feature	combination	pursuing	the	same	goal	as	the	STL-Residue	transformation.	342	

The	EMA-Difference	 for	a	measurement	is	calculated	using	Equation	(5)	where	Mt	 is	the	value	of	the	343	

measurement	at	time	t,	EMAMt	is	the	value	of	the	EMA	for	this	measurement	at	time	t	and	DiffMt	is	the	344	

value	 of	 the	 EMA-Difference	 for	 this	 measurement	 at	 time	 t.	 This	 feature	 consists	 of	 a	 difference	345	

between	the	data	and	the	same	data	smoothed	by	an	EMA.	The	EMA	applied	is	composed	of	a	strong	346	

tuned	 smoothing	 coefficient	 (α),	 in	 range	 between	 0.01	and	0.10	 to	 extract	 the	 measurement	347	

tendencies	only.	Therefore,	a	high	 (resp.	 low)	value	characterizes	a	measured	point	 that	 is	 far	 from	348	

(resp.	 close	 to)	 the	 tendency	and	 that	 is	more	 likely	 to	be	unusual	 (resp.	usual).	 Several	 smoothing	349	

coefficients	were	tested	on	the	training	set	with	similar	observed	results	but	the	one	selected	for	this	350	

study	corresponds	to	a	value	of	0.04.	The	EMA-Difference	transformation	of	a	measurement	is	further	351	

referred	as	differenceMeasurement.	352	

	353	

	354	

These	transformations	are	applied	on	indoor	measurements	such	as	temperature,	relative	and	absolute	355	

humidity	and	CO2	 concentration.	They	can	be	associated	 in	order	 to	provide	different	 information	 from	356	

the	data	to	the	model.	Hence,	for	every	indoor	measurement,	20	different	associations	are	performed	by	357	

combining	the	measurement	without	modifications	and	the	transformations	presented	above.	As	shown	358	

in	Table	4	by	comparing	both	periods	presented	previously	on	the	test	set	to	the	training	set,	derivation,	359	

STL-Residue	 and	EMA-Difference	 transformations	 appear	 to	provide	 information	without	 large	 variation	360	

such	as	global	or	local	seasonality	by	centering	the	data.	The	same	effect	can	be	observed	on	three	weeks	361	
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extracted	 from	 the	 training	 set	 with	 Figure	 6	 where	 dtemperature,	 residuetemperature	 and	 differencetemperature	362	

transformations	remain	centered	contrary	 to	 the	 temperature	measurement.	These	 transformations	are	363	

intended	 to	push	models	 to	be	 less	 sensitive	 to	measurements	values	or	global	variations	and	more	on	364	

local	dynamics.	However	some	drawbacks	might	be	observed:	a	 lag	effect	can	be	noticed	on	EMA	based	365	

transformations	such	as	EMA-Difference	whereas	derivation	transformations	can	provide	data	with	a	low	366	

variance	that	might	be,	depending	on	the	model,	delicate	to	exploit.	367	

Table	4	Applied	data	transformation	on	train	and	test	set	temperature	measurements	368	

Transformation	 Period	 Maximum	 Minimum	 Mean	
Temperature	 Train	 23.0	 19.6	 21.7	

Test	(1)	 22.4	 17.3	 21.6	
Test	(2)	 22.0	 19.8	 20.7	

EMA	smoothing	 Train	 23.0	 20.2	 21.7	
Test	(1)	 22.2	 18.7	 21.5	
Test	(2)	 22.0	 19.8	 20.9	

Derivation	
(103)	

Train	 0.5	 -0.9	 0.0	
Test	(1)	 0.5	 -	1.0	 0.0	
Test	(2)	 0.2	 -	0.2	 0.0	

STL-Residue	 Train	 0.6	 -1.2	 0.0	
Test(1)	 0.6	 -1.5	 0.0	
Test	(2)	 0.4	 -0.1	 0.0	

EMA-Data	
difference	

Train	 0.9	 -1.7	 0.0	
Test	(1)	 0.6	 -	2.0	 0.0	
Test	(2)	 0.2	 -	0.3	 0.0	

	369	

Figure	6	Applied	data	transformation	and	combinations	representation	on	3	training	weeks	370	

4.2.2. Data	preparation	and	association	371	

For	 this	 study,	 more	 than	 800	 different	 combinations	 of	 measurements	 and	 measurements	372	

transformations	and	associations	were	performed	for	every	model.	More	specifically	a	base	of	20	different	373	
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associations,	 as	presented	 in	 section	4.2.1,	was	processed	 for	every	 indoor	measurement	 (temperature,	374	

humidity	 and	 CO2	 concentration).	 Based	 on	 the	 previous	 combination	 results,	 175	 additional	375	

combinations	were	performed	for	dual	indoor	measurement	combinations	(temperature	+	humidity	and	376	

temperature	+	CO2).	By	following	a	similar	process,	around	100	different	combinations	for	triple	 indoor	377	

measurements	 combination	 were	 created	 with	 around	 300	 more	 by	 adding	 outdoor	 measurements	378	

(temperature	and	humidity)	to	all	previous	combinations.	Except	for	RFC	models,	features	are	normalized	379	

between	0	and	1	based	on	the	training	set	characteristics.	380	

Unlike	other	models,	LSTM	and	GRU	models	are	trained	in	a	“many	to	one”	way	with	an	overlapping	381	

sliding	window	that	moves	one	step	ahead.	The	size	of	 the	observation	window	is	set	 to	 three	hours	of	382	

data	 in	 order	 to	 find	 a	 good	 balance	 between	 time	 training	 and	 performances.	 As	 shown	 in	 Figure	383	

7Erreur	!	 Source	 du	 renvoi	 introuvable.	 (7.a)	 on	 a	 three	 time	 step	 sample,	 the	 overlapping	 sliding	384	

windows	was	 centered	 in	 a	way	 that	 the	 target	 corresponds	 to	 the	window-status	 at	 the	 center	 of	 the	385	

observation	window.	For	reference	and	as	presented	in	(7.b),	the	sliding	window	for	real-time	application	386	

targets	the	last	window-status	while	it	targets	one	time	step-ahead	for	prediction	purposes	(7.c).	387	

(a)	 	 (b)	 	 (c)	 	 	 	
a	 	 0	 	 a	 	 0	 	 a	 	 0	 	 	 	
b	 	 1	 						 b	 	 1	 	 b	 	 1	 	 	 	
c	 	 2	 	 c	 	 2	 	 c	 	 2	 Step	i	
d	 	 3	 	 d	 	 3	 	 d	 	 3	 	 	 	
e	 	 4	 	 e	 	 4	 	 e	 	 4	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
a	 	 0	 	 a	 	 0	 	 a	 	 0	 	 	 	
b	 	 1	 						 b	 	 1	 	 b	 	 1	 	 	 	
c	 	 2	 	 c	 	 2	 	 c	 	 2	 Step	i	+	1	
d	 	 3	 	 d	 	 3	 	 d	 	 3	 	 	 	
e	 	 4	 	 e	 	 4	 	 e	 	 4	 	 	 	

Figure	7	Training	window	for	LSTM	and	GRU	models	for:	(a)	past	window-openings,	(b)	real-time	window-openings	and	(c)	388	
window-openings	prediction	389	

5. Results	and	discussion	390	

Due	to	the	specificities	of	LSTM,	GRU	and	RFC	models	training,	each	of	the	800	combinations	has	been	391	

performed	ten	times.	Thus,	only	the	model	output	with	the	best	F1-score	and	accuracy	results	out	of	the	392	

ten	was	retained	for	evaluation.	Since	LDA	and	SVM	models	provide	more	stable	outputs,	each	of	the	800	393	

combinations	 was	 only	 performed	 once.	 To	 not	 overload	 this	 study	 and	 since	 relative	 humidity	394	

systematically	provides	poorer	results	than	absolute	humidity,	only	absolute	humidity	based	associations	395	
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are	presented.	Hence,	absolute	humidity	is	further	referred	simply	as	humidity.	All	the	following	results	396	

are	evaluated	regarding	their	F1-score	and	alternative	metrics	presented	in	section	3.1	in	order	to	discuss	397	

about	measurements	 transformations,	 associations	 and	 combinations	 that	might	 appear	 to	be	 the	most	398	

adequate	to	detect	window	openings.	Models	raw	performances	to	recognize	past	window	openings	will	399	

be	taken	into	consideration	but	are	not	the	sole	focus	of	this	study.	Thus,	a	comparison	of	the	observed	400	

results	between	models	and	combination	is	preferred.		401	

5.1. Transformations	and	associations	impact	on	one	indoor	measurement	based	on	F1-score	402	

An	 overview	 of	 the	 performances	 of	 each	 model	 trained	 on	 the	 twenty	 bases	 transformations	 and	403	

associations	(4.2.1)	for	every	indoor	measurement	is	presented	in	Table	5	Average	F1-score	and	standard	404	

deviation	 of	 the	 20	 best	 results	 for	 each	 measurements	 combination	 and	 models.	 	 It	 appears	 that,	405	

regardless	of	the	transformation	or	association	used,	indoor	air	humidity	or	CO2	concentration	sole	base	406	

combination	 (referred	 as	 Hin	 and	 Cin,	 respectively)	 does	 not	 provide	 good	 results	 on	 window-status	407	

detection	with	an	average	F1-score	that,	at	best,	usually	does	not	exceed	0.39.	On	the	other	hand,	indoor	408	

air	temperature	sole	base	combinations	(Tin)	seem	to	provide	better	and	exploitable	results	with	a	higher	409	

F1-score	average	for	all	models	and	especially	for	RNN	based	models	with	an	average	value	close	to	0.70.		410	

Table	5	Average	F1-score	and	standard	deviation	of	the	20	best	results	for	each	measurements	combination	and	models	411	

F1-score:	
mean	±	standard	deviation	 GRU	 LSTM	 LDA	 SVM	 RFC	

Indoor	absolute	humidity	(Hin)	 0.35	±	0.23	 0.39	±	0.20	 0.11	±	0.11	 0.18	±	0.16	 0.21	±	0.13	

Indoor	CO2	(Cin)	 0.28	±	0.15	 0.19	±	0.14	 0.01	±	0.01	 0.04	±	0.04	 0.18	±	0.08	

Indoor	temperature	(Tin)	 0.73	±	0.07	 0.68	±	0.18	 0.54	±	0.24	 0.38	±	0.28	 0.46	±	0.21	

However	 these	 results	 present	 a	 high	 dispersion	 that	 can	 be	 explained	 by	 looking	 at	 the	 F1-score	412	

results	 for	 the	 five	 base	 transformations	 without	 associations	 shown	 in	 Table	 6.	 For	 air	 humidity	413	

measurements,	 it	 appears	 that	EMA-Difference	 and	 STL-Residue	based	 transformations	 increase	models	414	

performances	compared	to	other	 transformations	or	base	measurement.	Best	results	are	observed	with	415	

differencehumidity	for	both	LSTM	and	GRU	models	with	an	F1-score	around	0.70.	Regarding	air	temperature,	416	

the	 dispersion	 might	 be	 caused	 by	 the	 difficulty	 of	 all	 models	 to	 provide	 results	 when	 trained	 on	417	

untransformed	temperature,	EMAtemperature	or	some	other	measurements	transformations	including	them.	418	

These	 results	 might	 be	 explained	 by	 the	 differences	 between	 the	 training	 and	 testing	 set.	 Testing	 set	419	

measurements	 reach	 values	 and	 dynamics	 unseen	 during	 the	 training	 phase,	 allowing	 less	 contextual	420	
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transformations	 such	 as	 the	 derivate,	 the	 STL-Residue	 or	 the	 EMA-Difference	 to	 perform	 better	 and	421	

increase	the	F1-score	from	0.60	to	0.77	for	LSTM	and	GRU	models	(representing	an	improvement	of	25	%)	422	

and	 from	around	0.00	 to	0.6	 for	LDA,	 SVM	and	RFC	models	 .	Results	 including	different	measurements	423	

combination	based	on	the	same	transformations	and	associations	are	presented	in	the	following	section.		424	

425	

Table	6	F1-score	for	indoor	humidity	and	temperature	base	transformations	426	

Transformation	F1-
score	 GRU	 LSTM	 LDA	 SVM	 RFC	

Tin	 0.60	 0.57	 0.00	 0.04	 0.04	

EMA.Tin	 0.54	 0.00	 0.00	 0.00	 0.03	

Derivate.Tin	 0.77	 0.75	 0.25	 0.25	 0.50	

EMA-Difference	.Tin	 0.75	 0.72	 0.65	 0.62	 0.60	

STL-Residue.Tin	 0.77	 0.70	 0.55	 0.54	 0.49	

Hin	 0.00	 0.26	 0.00	 0.00	 0.04	

EMA.Hin	 0.00	 0.00	 0.00	 0.00	 0.06	

Derivate.Hin	 0.43	 0.40	 0.16	 0.14	 0.07	

EMA-Difference.Hin	 0.72	 0.71	 0.13	 0.17	 0.41	

STL-Residue.Hin	 0.57	 0.52	 0.41	 0.40	 0.35	

5.2. Measurements	selection	and	combination	impact	based	on	F1-score	427	

In	 order	 to	 have	 an	 overview	 of	 the	 best	 achievable	 performances	 of	 each	model	 depending	 on	 the	428	

measurements	 combination	 used,	 the	 best	 twenty	 models	 are	 selected	 based	 on	 F1-score,	 for	 each	429	

performed	 combination.	 The	 average	 and	 standard	 deviation	 of	 those	 twenty	 best	models	 outputs	 are	430	

presented	in	Table	7	with	a	total	of	280	combinations	out	of	the	800	originals	for	each	model.	Dual	indoor	431	

measurements	 combinations	 (Tin	 +	 Hin	 and	 Tin	 +	 Cin)	 usually	 tend	 to	 provide	 higher	 opening	 window	432	

detection	performances	with	a	systematic	increase	of	the	maximum	and	average	F1-score.	For	all	models,	433	

indoor	 CO2	 concentration	 combined	 with	 indoor	 temperature	 seems	 to	 provide	 significate	 higher	434	

performances	than	humidity	and	temperature	combinations.	This	performance	enhancement	is	reflected	435	

by	a	consistent	improvement	on	F1-scores	averages	for	all	models	compared	to	temperature	and	humidity	436	

combinations.	The	combination	of	the	three	indoor	measurements	(Tin	+	Hin	+	Cin)	seems	to	provide	only	437	

slight	to	no	improvement	for	all	models	on	window	opening	detection	compared	to	temperature	and	CO2	438	

combination.	Based	on	F1-scores	 it	 appears	 that	 enough	 information	are	provided	during	 training	with	439	

this	dual	combination	for	LSTM,	GRU,	LDA	and	RFC	models	contrary	to	the	SVM.	Hence,	LSTM	and	GRU	440	
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models	output	on	opening	window	detection	seem	to	be	capped	around	an	average	F1-score	of	0.76	-	0.78	441	

whereas	LDA,	SVM	and	RFC	models	appear	to	be	lower	limited	around	a	0.72	-	0.73	average	score.	442	

Lastly	 and	 LDA	 model	 apart,	 the	 addition	 of	 outdoor	 humidity	 measurement	 (Hout),	 outdoor	443	

temperature	measurement	 (Tout)	 or	 both	 (Tout	 +	 Hout)	 to	 all	 indoor	measurement	 combination	 tend	 to	444	

usually	deteriorate	all	models	window-opening	detections	with	a	common	decrease	of	the	maximum	and	445	

the	average	F1-score.	However,	even	if	indoor	and	outdoor	temperature	combination	appears	to	slightly	446	

deteriorate	the	best	attainable	performances	with	a	drop	of	average	F1-score	for	RNN	models,	it	appears	447	

to	be	more	relevant	for	LDA,	SVM	and	RFC	models	than	the	sole	use	of	indoor	air	temperature.	448	

Of	all	models,	LSTM	and	GRU	appear	to	be	the	most	efficient	ones	in	order	to	detect	window-status	with	449	

the	best	average	and	maximum	F1-scores	and	thus	even	with	just	one	measurement.	Both	of	these	models,	450	

including	RFC,	tend	also	to	be	sensitive	to	the	addition	of,	what	appears	to	be,	sub-optimal	measurements	451	

and	might	need	proper	data	selection	or	transformation.	 	LDA	and	SVM	seem	to	be	more	reliable	with	a	452	

low	repartition	of	results	and	by	their	tendency	to	improve	or	to	maintain	their	performances	despite	the	453	

addition	of	measurements	that	worsen	other	models	results.	On	the	contrary	the	RFC	model	appears	to	be	454	

the	less	consistent	and	sensitive	one.		455	

Table	7	Average	F1-score	and	standard	deviation	of	the	20	best	results	for	each	measurements	combination	and	models	456	

F1-score:	
average	±	standard	deviation	 GRU	 LSTM	 LDA	 SVM	 RFC	

Indoor	absolute	humidity	(Hin)	 0.35	±	0.23	 0.39	±	0.20	 0.11	±	0.11	 0.18	±	0.16	 0.21	±	0.13	

Indoor	CO2	(Cin)	 0.28	±	0.15	 0.19	±	0.14	 0.01	±	0.01	 0.04	±	0.04	 0.18	±	0.08	

Indoor	temperature	(Tin)	 0.73	±	0.07	 0.68	±	0.18	 0.54	±	0.24	 0.38	±	0.28	 0.46	±	0.21	

Tin	+	Tout	 0.70	±	0.03	 0.70	±	0.03	 0.67	±	0.03	 0.66	±	0.04	 0.62	±	0.08	

Tin	+	Hin	 0.76	±	0.01	 0.75	±	0.02	 0.69	±	0.01	 0.68	±	0.03	 0.65	±	0.04	

Tin	+	Hin	+	Tout	 0.71	±	0.03	 0.69	±	0.05	 0.68	±	0.02	 0.68	±	0.04	 0.63	±	0.11	

Tin	+	Hin	+	Hout	 0.71	±	0.03	 0.71	±	0.02	 0.69	±	0.01	 0.66	±	0.04	 0.53	±	0.05	

Tin	+	Hin	+	Tout	+	Hout	 0.73	±	0.03	 0.72	±	0.02	 0.70	±	0.01	 0.68	±	0.03	 0.53	±	0.07	

Tin	+	Cin	 0.78	±	0.01	 0.76	±	0.01	 0.72	±	0.01	 0.70	±	0.01	 0.73	±	0.02	

Tin	+	Cin	+	Tout	 0.70	±	0.03	 0.65	±	0.05	 0.71	±	0.02	 0.67	±	0.02	 0.71	±	0.04	

Tin	+	Hin	+	Cin	 0.78	±	0.01	 0.76	±	0.01	 0.71	±	0.01	 0.72	±	0.01	 0.73	±	0.01	

Tin	+	Hin	+	Cin	+	Tout	 0.70	±	0.05	 0.64	±	0.07	 0.71	±	0.01	 0.69	±	0.04	 0.71	±	0.04	

Tin	+	Hin	+	Cin	+	Hout	 0.73	±	0.02	 0.70	±	0.02	 0.72	±	0.01	 0.70	±	0.02	 0.68	±	0.02	

Tin	+	Hin	+	Cin	+	Tout	+	Hout	 0.72	±	0.01	 0.69	±	0.03	 0.73	±	0.01	 0.69	±	0.02	 0.65	±	0.02	

To	 conclude,	 even	 if	 the	 combination	 of	 the	 three	 indoor	 measurements	 (Tin	 +	 Hin	 +	 Cin)	 seems	 to	457	

provide	the	best	results	on	opening	detection	regardless	of	the	model,	two	indoor	measurements	such	as	458	

Tin	+	Cin	or	even	Tin	+	Hin,	are	likely	to	be	sufficient	to	provide	good	or	great	results	for	all	models.	Although	459	
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very	 fluctuating	 with	 variations	 that	 are	 not	 only	 related	 to	 windows	 openings	 (occupancy,	 occupant	460	

position	 in	 the	 room,	 natural	 air	 movement)	 the	 indoor	 CO2	 concentration	 measurement	 seems	 to	 be	461	

preferable	 to	 indoor	 humidity.	 Furthermore,	 depending	 on	 the	 transformation	 used,	 the	 sole	 indoor	462	

temperature	measurement	proves	to	be	consistent	enough	to	provide	opening	window	detection	results	463	

on	 par	 with	 dual	 or	 triune	 combinations.	 Due	 to	 the	 observed	 tendency	 of	 outdoor	 measurements	 to	464	

decrease	opening	detection	performance	for	the	majority	of	the	models,	this	study	will	further	be	focused	465	

on	indoor	measurements.	466	

5.3. Measurements	selection	and	combination	impact	based	on	additional	metrics	467	

The	additional	evaluations	metrics	introduced	in	section	0	are	used	in	order	to	provide	more	in-depth	468	

explanations	 on	 the	 differences	 observed	 and	 described	 previously.	 The	 number	 of	 true	 and	 false	469	

openings,	the	total	time	(in	hour)	of	true	and	false	opening	and	the	opening	and	closing	score	are	recorded	470	

as	 a	 boxplot	 repartition	 in	 Figure	 8.	 This	 figure	 is	 constructed	 by	 using	 the	 same	 best	 twenty	models	471	

output,	based	on	F1-scores,	 for	each	performed	combination	as	 in	Table	7.	However,	a	specific	 focus	on	472	

one	to	three	indoor	measurements	combinations	is	made	with	Tin,	Tin	+	Cin,	Tin	+	Hin	and	Tin	+	Hin	+	Cin	that	473	

represent	a	total	of	80	combinations	out	of	the	470	originals	for	each	model.	Regarding	the	measurements	474	

combination,	Figure	8	shows	that	for	all	models	and	for	all	additional	metrics,	indoor	temperature	and	CO2	475	

combinations	appear	to	perform	slightly	better	than	indoor	temperature	and	humidity	combinations.	The	476	

difference	seems	to	be	mostly	due	to	the	fact	that	CO2	based	combinations	tend	to	have	a	higher	capacity	477	

to	get	better	maximum	results	for	true	openings	detections	(8.a),	opening	and	closing	score	(8.c	and	8.c’).	478	

This	 observation	might	 be	 explained	by	 the	 propensity	 of	 the	CO2	 concentration	 to	 fluctuate	 on	higher	479	

levels	 than	 the	humidity	and	 thus,	with	an	adequate	 transformation,	 to	detect	or	 to	better	define	a	 few	480	

more	openings.	Furthermore,	for	all	models,	aside	of	GRU	and	LSTM,	the	use	of	a	combination	of	minimum	481	

two	 indoor	measurements	provide	a	 clear	 improvement	on	 the	 results	 compared	 to	 the	 sole	use	of	 the	482	

indoor	temperature	even	if	the	higher	score	tend	to	be	close	to	all	other	combinations.		483	

	 	484	
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Number	of	true	openings	detected	for	all	models	 Number	of	false	openings	detected	for	all	models	

	 	
(a)	 (a’)	

	
Total	time	of	true	openings	detected	for	all	models	 Total	time	of	false	openings	detected	for	all	models	

	 	
(b)	 (b’)	

	
Opening	score	for	all	models	 Closing	score	for	all	models	

	 	
(c)	 (c’)	

Figure	8	Additional	evaluation	metrics	for	every	model	and	measurement	combination	486	

Based	on	F1-scores	presented	in	Table	7,	GRU	and	LSTM	models	seem	to	produce	similar	results	and	487	

follow	 identical	 tendencies.	Figure	8	shows	that	whatever	 the	combination	 is,	LSTM	models	predictions	488	

seem	 to	detect	more	 false	openings	 (8.a’)	 that	are	 rather	 small	with	a	 lower	average	 total	 time	of	 false	489	

opening	(8.b’)	whereas	GRU	models	detections	appear	to	be	more	precise	in	defining	opening	and	closing	490	

window-status	(8.c	and	8.c’).	SVM	and	LDA	models	also	seem	to	provide	rather	close	opening	detection	491	

results	but	SVM	models	predictions	appear	to	provide	the	worst	rate	of	true	opening	detection	(8.a)	while	492	

LDA	models	appears	to	heavily	underperform	in	closing	window	precision	(8.c’).	The	RFC	model	seems	to	493	

be	 the	 most	 sensitive	 model	 with	 the	 highest	 number	 of	 true	 opening	 (8.a)	 and	 false	 opening	 (8.a’)	494	

detected	from	all	models	that,	apart	from	the	sole	indoor	temperature	combination,	appear	to	be	short.		495	
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To	conclude,	although	all	models	in	Figure	8	present	an	average	number	of	true	openings	of	10	to	13	496	

out	of	 the	18	existing	 (represented	as	a	 red	 line	 in	8.a),	 this	 result	 should	be	balanced.	As	explained	 in	497	

4.1.2,	 several	 openings	 have	 no	 or	 little	 impact	 on	 the	 indoor	 environment,	 and	 thus	 are	 harder	 (or	498	

impossible)	to	detect.	However,	all	models	tend	to	detect	an	average	of	18	to	22	hours	of	opening	out	of	499	

the	 25.75	 existing	 (represented	 as	 a	 red	 line	 in	 8.b)	 for	 an	 average	 of	 30	minutes	 to	 2	 hours	 of	 false	500	

opening.	 Additionally,	 LSTM	 and	 GRU	 models	 show	 satisfying	 results	 with	 the	 sole	 use	 of	 indoor	501	

temperature	by	detecting	 on	 average	84	 to	 88	%	of	 opening	 time	 (21	 to	 22	hours	 out	 of	 25.75)	 for	 an	502	

average	of	1.5	to	2	hours	of	false	openings	while	the	use	of	a	second	measurement	tend	to	be	needed	for	503	

other	models	to	present	an	average	of	66	to	77	%	of	opening	time	(17	to	20	hours	out	of	25.75).	These	504	

results	tend	to	show	that	most	of	the	impactful	openings	are	detected	over	this	one	month	test	period.	The	505	

major	negative	point	and	realistic	way	to	improve	seems	to	be	based	on	improving	opening	and	closing	506	

precision	that	always	seem	to	be	more	than	1	time	step	too	early	or	late	with	and	average	score	of	0.50	or	507	

0.60.		508	

5.4. Measurements	transformations	and	association	impact	based	on	F1-score	509	

In	 order	 to	 have	 an	 overview	 of	 the	 best	 performance	 of	 each	 model	 depending	 on	 the	 indoor	510	

measurements	transformations	and	associations	used,	the	best	twenty	models	output,	based	on	F1-score,	511	

for	two	and	three	indoor	combinations	(Tin	+	Cin,	Tin	+	Hin	and	Tin	+	Hin	+	Cin)	are	studied.	A	boxplot	of	these	512	

twenty	 best	 models	 outputs	 is	 presented	 in	 Figure	 9	 with	 a	 total	 of	 60	 combinations	 out	 of	 the	 450	513	

originals	for	each	model.	All	measurements	(referred	as	M)	transformations	and	associations	that	are	not	514	

part	of	 the	top	twenty	are	not	represented	on	this	 figure.	Similarly,	 those	under	or	 low	represented	are	515	

displayed	as	a	box	with	a	small	repartition	or	a	small	horizontal	line.		516	

Regarding	 humidity	 transformations	 and	 associations	 the	 three	 most	 recurrent	 and	 efficient	 for	 all	517	

models	appear	to	be,	by	far,	solely	composed	of	dhumidity	(9.c.13),	differencehumidity	(9.c.15)	or	both	(9.c.14).	518	

Contrary	 to	 differencehumidity	 that	 is	 a	 measurement	 transformation	 which	 is	 sufficient	 to	 detect	519	

window-opening	 as	 detailed	 in	 section	 5.2,	 dhumidity	 seem	 to	 perform	 better	 combined	 with	 other	520	

measurements.	For	temperature	transformations	and	associations	a	distinction	has	to	be	made	between	521	

models.	The	sole	dtemperature	(9.a.13)	seem	to	be	consistent	for	LSTM	and	GRU	models	whereas	it	has	to	be	522	

combined	with	other	transformations	for	LDA,	SVM	and	RFC	models	(9.a.3,	a.7,	a.8,	a.9	and	a.14).	For	these	523	

last	models,	a	large	amount	of	temperature	transformation	association	seems	to	be	preferred	in	order	to	524	
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get	good	results	contrary	to	RNN	models	that	appear	to	perform	well	with	just	one	or	no	transformation	525	

associations	 such	 as	 dtemperature,	differencetemperature	 or	 residuetemperature	 (9.a.13,	 a.15,	 a.18).	 Contrary	 to	 the	526	

previous	 observations,	 a	 consensus	 doesn’t	 seem	 to	 appear	 for	 CO2	 transformations	 associations.	527	

Associations	based	on	dCO2	or	a	smoothed	EMACO2	seems	to	be	a	bit	more	present	and	thus	effectives	(9.b.2,	528	

b.5,	b.13	and	b.16).		529	

Overall	 and	 due	 to	 their	 absence	 or	 under	 representation,	 the	 use	 of	 sole	 measurements	 or	 sole	530	

exponential	moving	average	is	not	recommended	regardless	of	the	model.	On	the	other	hand,	the	sole	use	531	

of	derivation,	STL-Residue	or	EMA-Difference	transformations	appear	to	be	enough	to	provide	good	results	532	

on	 window	 opening	 detections	 for	 RNN	 models	 while	 LDA,	 SVM	 and	 RFC	 models	 favor	 the	 same	533	

transformations	but	associated	together.	534	

F1-score	repartition	for	indoor	air	temperature		
transformations	and	associations	

F1-score	repartition	for	indoor	CO2	
transformations	and	associations	

	 	
(a)	
	

(b)	
F1-score	repartition	for	indoor	air	humidity	

transformations	and	associations	
X-axis	legend:	

	

1. Measurement	(M)	sole	
2. M	+	dM	
3. M	+	dM	+	differenceM	
4. M	+	dM	+	residueM	
5. M	+	differenceM	
6. M	+	EMAM		
7. M	+	EMAM	+	dM	
8. M	+	EMAM	+	dM	+	

differenceM	
9. M	+	EMAM	+	dM	+	residueM	
10. M	+	EMAM	+	differenceM	
11. M	+	EMAM	+	residueM	

	

12. M	+	residueM	
13. dM	
14. dM	+	differenceM	
15. differenceM	
16. EMAM	
17. EMAM	+	differenceM	
18. residueM	
	

(c)	

Figure	9	F1-score	measurement	transformation	and	associations	for	all	tested	combination	best	twenty	F1-score535	

5.5. Discussion	and	future	work	537	

Measurement	combination	and	transformation	were	performed	on	various	machine	learning	models	in	538	

order	 to	 assess	 their	 efficiency	 and	 relevance	 on	 past	 window-status	 detection.	 However,	 although	539	
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performed	 on	 models	 that	 are	 not	 yet	 widely	 used	 on	 this	 domain,	 several	 limitations	 remains.	 Most	540	

transformations	applied	on	measurements	(STL-Residue,	derivate	or	EMA-Difference)	are	built	to	reflect	an	541	

impact	created	by	a	window	opening	between	 two	environments	with	different	characteristics	 (e.g.,	 air	542	

temperature,	CO2	concentration).	Thus,	despite	showing	great	results	by	improving	and	stabilizing	models	543	

performances,	they	might	not	be	suitable	in	other	climates	or	seasons	and	need	to	be	carefully	evaluated	544	

beforehand.	 Therefore,	 a	 similar	 process	 will	 be	 followed	 on	 other	 seasons	 in	 order	 to	 highlight	545	

appropriate	measurements	combinations,	transformations	and	associations.	546	

Regarding	measurements	selection,	LSTM	and	GRU	models	achieve	satisfying	results	with	the	sole	use	547	

of	 indoor	 temperature	 measurements	 although	 the	 addition	 of	 indoor	 CO2	 concentration	 appears	 to	548	

stabilize	 and	 slightly	 improve	 their	 results.	 For	 SVM,	 LDA	 and	 RFC	models,	 the	 use	 of	 minimum	 both	549	

indoor	 temperature	 and	 CO2	 concentration	 tend	 to	 be	 recommended	 even	 if	 a	 small	 improvement	 in	550	

results	can	be	observed	by	adding	indoor	humidity	measurement.		551	

It	appears	that,	for	untransformed	data,	results	observed	in	other	studies	are	consistent	regarding	the	552	

most	 important	 features	 that	 are	 indoor	 and	 outdoor	 air	 temperature	 [15].	 However,	 the	 observed	553	

tendency	 tend	 to	 change	 when	 transformations	 are	 applied	 on	 indoor	 measurements	 and	 results	554	

deterioration	can	be	observed	by	adding	outdoor	measurements.	Furthermore,	it	is	important	to	note	that,	555	

as	experienced	by	[40],	air	humidity	appears	to	have	a	low	impact	on	models.		556	

Additional	metrics	introduced	in	this	study	provided	a	different	perspective	on	models	performances	557	

regarding	window-status	detection.	 These	metrics	 offer	 a	 field	perspective	 approach	on	models	 results	558	

that	might	allow	selecting	the	model	that	best	suits	the	needs	for	a	project	(e.g.,	by	privileging	the	number	559	

of	detected	openings	over	their	accuracy)	or	comparing	results	between	relevant	studies.	However,	unlike	560	

commonly	used	metrics	adapted	 to	unbalanced	classes	 such	as	F1-score,	 their	 implementation	 is	heavy	561	

and	requires	investigating	simultaneously	six	different	metrics.	562	

A	 similar	process	 is	 followed	 for	 real-time	detection	and	 future	window-status	prediction.	The	 same	563	

work,	 conducted	on	real-time	detection,	 shows	 identical	 results	 for	RFC,	LDA	and	SVM	models	as	 those	564	

presented	in	Table	7.	However,	an	average	drop	of	0.01	to	0.10	on	the	average	F1-score	is	observed	for	565	

LSTM	and	GRU	models.	These	differences	are	presented	for	both	models	in	Table	8.	It	appears	that	LSTM	566	

performs	 significantly	worse	 than	 the	 GRU	 for	 real-time	 detection	 despite	 being	 still	 better	 than	 other	567	

models.	 These	 differences	 can	 mainly	 be	 explained	 with	 additional	 metrics	 and	 are	 due	 to	 a	 drop	 in	568	

accuracy	regarding	window	opening	scores.	In	addition	a	predictive	approach	is	currently	in	progress.	569	
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Table	8	Average	F1-score	and	standard	deviation	of	the	20	best	results	for	each	measurements	combination	and	models	for	past	and	570	

real	time	window-status	detection	571	

F1-score:	
average	±	standard	deviation	

GRU	 LSTM	

Tin		

past	 0.73	±	0.07	 0.68	±	0.18	

real	time	 0.63	±	0.17	 0.59	±	0.17	

Tin	+	Tout	 past	 0.70	±	0.03	 0.70	±	0.03	

	
real	time	 0.59	±	0.10	 0.56	±	0.05	

Tin	+	Hin	 past	 0.76	±	0.01	 0.75	±	0.02	

	
real	time	 0.71	±	0.02	 0.67	±	0.03	

Tin	+	Cin	 past	 0.78	±	0.01	 0.76	±	0.01	

	
real	time	 0.76	±	0.01	 0.72	±	0.02	

Tin	+	Hin	+	Cin	 past	 0.78	±	0.01	 0.76	±	0.01	

	 real	time	 0.77	±	0.01	 0.73	±	0.02	

6. Conclusion	572	

This	study	presents	a	comparison	of	the	performance	of	Gated	Recurrent	Unit	(GRU),	Long	Short	Term	573	

Memory	(LSTM),	Linear	Discriminant	Analysis	(LDA),	Support	Vector	Machine	(SVM)	and	Random	Forest	574	

Classifier	 (RFC)	 models	 in	 detecting	 window	 openings	 depending	 on	 several	 indoor	 and	 outdoor	575	

measurements	 combinations,	 transformations	 and	 associations	 in	 the	 field	 of	 building	 energy	 during	576	

heating	season.	The	results	showed	that	not	only	the	choice	of	input	data	measurement	was	essential	to	577	

obtain	 satisfactory	 results	 but	 also	 that	 it	 was	 neither	 always	 optimum	 nor	 required	 to	 add	 more	578	

information	 to	 the	 input	 of	 the	models	 (e.g.,	 outdoor	measurements)	 and	 that	 a	 preliminary	 selection	579	

might	be	necessary.	Hence,	if	required,	the	sole	use	of	a	temperature	sensor	with	adapted	transformation	580	

(e.g.,	temperature	derivate,	temperature	STL-Residue	or	temperature	EMA-Difference)	might	be	sufficient	to	581	

provide	 satisfying	 results	 for	window-openings	 detection.	 Adding	 other	 indoor	measurements	 appears	582	

recommended	to	obtain	slightly	more	precise	results	for	LSTM	and	GRU	models	and	necessary	for	other	583	

models.	In	this	case,	the	combination	of	indoor	temperature	and	CO2	concentration	measurement	seems	to	584	

be	the	one	to	be	privileged	for	all	models.	585	

This	work	 also	 showed	 that	 a	 simple	 transformation	 of	 the	 data	 beforehand	 (e.g.,	derivate)	 or	more	586	

complex	ones	introduced	in	this	paper	(STL-Residue	or	EMA-Difference)	could	have	a	significant	positive	587	

impact	on	the	quality	of	 the	window-openings	detections	by	turning	unusable	results	(e.g.,	 temperature	588	
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sole	or	with	other	combinations)	to	satisfactory	results.	Depending	on	the	model	used,	specific	association	589	

of	measurement	transformation	might	be	appropriate.		590	

Furthermore,	 the	 additional	 metrics	 evaluations	 show	 that	 despite	 satisfying	 F1-scores	 results,	 the	591	

number	of	openings	detected	by	all	models	may	seem	low	(10	to	13	predicted	out	of	18	measured	in	total)	592	

but	several	openings	have	no	or	little	impact	on	the	indoor	environment	(a	temperature	decrease	of	0.2°C	593	

for	 instance)	 and	 thus,	 does	 not	 offer	 enough	 information	 to	 the	models	 to	 detect	 them.	 However,	 all	594	

models	tend	to	detect	an	average	of	18	to	22	hours	of	opening	out	of	the	25.75	existing	for	an	average	of	595	

30	minutes	to	2	hours	of	false	opening.	These	results	tend	to	show	that	the	most	impactful	openings	are	596	

detected	over	this	one	month	test	period.	Thus,	this	may	not	be	an	issue	depending	of	the	application	of	597	

these	models,	 such	as	 the	estimation	of	 the	 thermal	 losses	of	a	building	 linked	 to	window	openings	 for	598	

example.	599	
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