29 research outputs found

    Linear Control Theory with an โ„‹โˆž Optimality Criterion

    Get PDF
    This expository paper sets out the principal results in โ„‹โˆž control theory in the context of continuous-time linear systems. The focus is on the mathematical theory rather than computational methods

    Decentralized Robust Capacity Control of Job Shop Systems with Reconfigurable Machine Tools

    Get PDF
    Manufacturing companies are confronted with various challenges from the perspective of customers individual requirements concerning variations of types of products, quantities and delivery dates. This renders the manufacturing process to be more dynamic and complex, which may result in bottlenecks and unbalanced capacity distributions. To cope with these problems, capacity adjustment is an effective approach to balance capacity and load for short or medium term fluctuations on the operational layer. Particularly, new technologies and algorithms need to be developed for the implementation of capacity adjustment. Reconfigurable machine tools (RMTs) and operator-based robust right coprime factorization (RRCF) provide an opportunity for a new capacity control strategy. Therefore, the main purpose of the research is to develop an effective machinery-oriented capacity control strategy by incorporating RMTs and RRCF for a job shop system to deal with volatile customer demands

    Guaranteed safe switching for switching adaptive control

    Get PDF
    Adaptive control algorithms may not behave well in practice due to discrepancies between the theory and actual practice. The proposed results in this manuscript constitute an effort in providing algorithms which assure more reliable operation in practice. Our emphasis is on algorithms that will be safe in the sense of not permitting destabilizing controllers to be switched in the closed-loop and to prevent wild signal fluctuations to occur. Coping with the connection or possible connection of destabilizing controllers is indeed a daunting task. One of the most intuitive forms of adaptive control, gain scheduling, is an approach to control of non-linear systems which utilizes a family of linear controllers, each of which provides satisfactory control for a different operating point of the system. We provide a mechanism for guaranteeing closed-loop stability over rapid switching between controllers. Our proposed design provides a simplification using only finite number of pre-determined values for the controller gain, where the observer gain is computed via a table look-up method. In comparison to the original gain scheduling design which our procedure builds on, our design achieves similar performance but with much less computational burden. Many multi-controller adaptive switching algorithms do not explicitly rule out the possibility of switching a destabilizing controller into the closed-loop. Even if the new controller is ensured to be stabilizing, performance verification with the new controller is not straightforward. The importance of this arises in iterative identification and control algorithms and multiple model adaptive control (MMAC). We utilize a limited amount of experimental and possibly noisy data obtained from a closed-loop consisting of an existing known stabilizing controller connected to an unknown plant-to infer if the introduction of a prospective controller will stabilize the unknown plant. We propose analysis results in a nonlinear setting and provide data-based tests for verifying the closed-loop stability with the introduction of a new nonlinear controller to replace a linear controller. We also propose verification tools for the closed-loop performance with the introduction of a new stabilizing controller using a limited amount of data obtained from the existing stable closed-loop. The simulation results in different practical scenarios demonstrate efficacy and versatility of our results, and illustrate practicality of our novel data-based tests in addressing an instability problem in adaptive control algorithms

    Algebraic geometric methods for the stabilizability and reliability of multivariable and of multimode systems

    Get PDF
    The extent to which feedback can alter the dynamic characteristics (e.g., instability, oscillations) of a control system, possibly operating in one or more modes (e.g., failure versus nonfailure of one or more components) is examined

    Study on Spectrum Estimation in Biophoton Emission Signal Analysis of Wheat Varieties

    Get PDF
    The photon emission signal in visible range (380โ€‰nmโ€“630โ€‰nm) was measured from various wheat kernels by means of a low noise photomultiplier system. To study the features of the photon emission signal, the spectrum estimation method of the photon emission signal is described for the first time. The biophoton emission signal, belonging to four varieties of wheat, is analyzed in time domain and frequency domain. It shows that the intensity of the biophoton emission signal for four varieties of wheat kernels is relatively weak and has dramatic changes over time. Mean and mean square value are obviously different in four varieties; the range was, respectively, 3.7837 and 74.8819. The difference of variance is not significant. The range is 1.1764. The results of power spectrum estimation deduced that the biophoton emission signal is a low frequency signal, and its power spectrum is mostly distributed in the frequency less than 0.1โ€‰Hz. Then three parameters, which are spectral edge frequency, spectral gravity frequency, and power spectral entropy, are adopted to explain the features of the kernelsโ€™ spontaneous biophoton emission signal. It shows that the parameters of the spontaneous biophoton emission signal for different varieties of wheat are similar

    ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๊ถค์  ์ตœ์ ํ™”๋ฅผ ๊ฒฐํ•ฉํ•œ ๊ณ„์‚ฐ ํšจ์œจ์ ์ธ ๋‹ค์ค‘์„ ํ˜• ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2021. 2. ์ด์ข…๋ฏผ.Model predictive control (MPC) is a widely used advanced control strategy applied in the process industry due to its capability to handle multivariate systems and constraints. When applied to nonlinear processes, linear MPC (LMPC) is limited to a relatively small operating region. On the other hand, nonlinear MPC (NMPC) is challenging due to the need for a nonlinear model with a large domain of validity and the computational load to solve nonlinear optimization problems. Multilinear MPC (MLMPC) or linear time-varying MPC (LTVMPC) complements the limitations, employing multiple linear models to predict dynamic behavior in a wide operating range. However, the main issue is obtaining the linear models, which is difficult to obtain without the nonlinear model and a trajectory from an initial condition to a set-point. Differential dynamic programming (DDP) can help to get the linear models and the suboptimal trajectory simultaneously. DDP iteratively improves the trajectory with the linear models of the previous trajectory, which can be identified by excitation of input around the trajectory. We propose four novel methodologies in the thesis. First, we propose a scheme to design MLMPC based on gap metric, which achieves convergence to LMPC and offset-free tracking. Second, we propose a switching strategy of MLMPC. It consists of a design of the subregions from an initial point to a set-point and LMPC for each subregion. Next, we develop a scheme that combines constrained differential dynamic programming (CDDP) and MLMPC, starting without any models. Finally, we developed an algorithm that combines LTVMPC and LMPC based on the models from CDDP. It exploits the suboptimal trajectory from CDDP and achieves offset-free tracking. We apply developed MPC algorithms to an illustrative example for validation. It also supports that multiple linear models are appropriate to control nonlinear processes with or without the nonlinear models.๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด (model predictive control) ๋Š” ์‚ฐ์—…์—์„œ ๋„๋ฆฌ ์“ฐ์ด๋Š” ๊ณ ๊ธ‰ ๊ณต์ • ์ œ์–ด ๊ธฐ๋ฒ•์œผ๋กœ, ๋‹ค๋ณ€์ˆ˜ ์‹œ์Šคํ…œ์˜ ๋™์—ญํ•™๊ณผ ์ œ์•ฝ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•˜์—ฌ ์‹ค์‹œ๊ฐ„์œผ๋กœ ํ˜„์žฌ ์ƒํƒœ์— ๋Œ€ํ•ด ์ตœ์ ํ•ด๋ฅผ ๋„์ถœํ•ด๋‚ธ๋‹ค. ์„ ํ˜• ๋ชจ๋ธ์„ ์ด์šฉํ•˜๋Š” ์„ ํ˜• ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด (linear model predictive control) ๊ฐ€ ๊ฐ€์žฅ ๊ฐ„๋‹จํ•˜๊ณ  ๋งŽ์€ ์ด๋ก ๋“ค์ด ์ •๋ฆฝ๋˜์–ด ์žˆ์œผ๋‚˜, ์‹ค์ œ ๋น„์„ ํ˜• ๊ณต์ •์—์„œ๋Š” ์„ ํ˜• ๋ชจ๋ธ์ด ๊ทผ์‚ฌํ•  ์ˆ˜ ์žˆ๋Š” ์ข์€ ์šด์ „ ์กฐ๊ฑด์—์„œ๋งŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋น„์„ ํ˜• ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด (nonlinear model predictive control) ๋Š” ๋น„์„ ํ˜• ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ๋„“์€ ์šด์ „ ์กฐ๊ฑด์—์„œ๋„ ์ตœ์ ํ•ด๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ๋น„์„ ํ˜• ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ํ’€์–ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ƒ˜ํ”Œ๋ง ํƒ€์ž„์ด ์ž‘์„ ๊ฒฝ์šฐ, ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋‹ค์ค‘ ์„ ํ˜• ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด (multilinear model predictive control) ๋˜๋Š” ์„ ํ˜• ์‹œ๋ณ€ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด (linear time-varying model predictive control) ๋Š” ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์„ ํ˜• ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ๋„“์€ ์šด์ „ ๋ฒ”์œ„์—์„œ ๊ณต์ •์˜ ๊ฑฐ๋™์„ ํ‘œํ˜„ํ•˜๊ณ  ์ตœ์ ์— ๊ฐ€๊นŒ์šด ํ•ด๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์•ž์„  ๋‘ ๊ฐ€์ง€ ์ œ์–ด ๊ธฐ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๋ณด์™„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด ๊ธฐ๋ฒ•์„ ์‹ค์ œ ๋น„์„ ํ˜• ๊ณต์ •์— ์ ์šฉํ•˜๊ธฐ์— ๋˜ ๋‹ค๋ฅธ ์–ด๋ ค์šด ์ ์€ ์‹ค์ œ ๊ณต์ •์˜ ๋น„์„ ํ˜• ๋ชจ๋ธ์„ ์–ป๊ธฐ๊ฐ€ ํž˜๋“ค๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋ฏธ๋ถ„๋™์ ๊ณ„ํš๋ฒ• (differential dynamic programming) ์€ ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ ํ˜„์žฌ ๊ณต์ • ์šด์ „ ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•ด ๋™์  ์ตœ์ ํ™” (dynamic optimization) ๋ฅผ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ดˆ๊ธฐ ์กฐ๊ฑด์—์„œ ์„ค์ •์ ๊นŒ์ง€์˜ ์ตœ์ ์— ๊ฐ€๊นŒ์šด ๊ฒฝ๋กœ๋ฅผ ์ฐพ์•„ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด ๊ธฐ๋ฒ•์„ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ๋ฏธ๋ถ„๋™์ ๊ณ„ํš๋ฒ•์€ ํ˜„์žฌ ๊ณต์ • ์šด์ „ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•ด ์šด์ „ ๋ฐ์ดํ„ฐ ๊ทผ์ฒ˜์˜ ๊ฑฐ๋™์„ ๋ฌ˜์‚ฌํ•˜๋Š” ์„ ํ˜• ๋ชจ๋ธ๋“ค์„ ์–ป๊ณ , ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ฐ˜๋ณต์ ์œผ๋กœ ๋‹ค์Œ ์šด์ „์—์„œ์˜ ์ตœ์ ํ•ด๋ฅผ ์ œ๊ณตํ•˜์—ฌ ์šด์ „ ๊ถค์ ์„ ๊ฐœ์„ ํ•œ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋„“์€ ์šด์ „ ๋ฒ”์œ„๋ฅผ ๊ฐ€์ง„ ๊ณต์ •์—์„œ ์šด์ „ ์กฐ๊ฑด์„ ๋ณ€๊ฒฝํ•˜๊ธฐ์— ์ ํ•ฉํ•œ ๋‹ค์ค‘ ์„ ํ˜• ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด์™€ ์„ ํ˜• ์‹œ๋ณ€ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด ์ „๋žต์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ๋ฒˆ์งธ๋กœ, gap metric์„ ์ด์šฉํ•˜์—ฌ ์„ค์ •์ ์—์„œ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด๋ฅผ ์ ์šฉํ•œ ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์„ฑ์„ ๋ณด์žฅํ•˜๊ณ  ์ž”๋ฅ˜ ํŽธ์ฐจ๋ฅผ ์ œ๊ฑฐํ•˜๋Š” ๋‹ค์ค‘ ์„ ํ˜• ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๋‘๋ฒˆ์งธ๋กœ, ๋‹ค์ค‘ ์„ ํ˜• ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด๊ธฐ์˜ ์ง„๋™ ๊ฐ€๋Šฅ์„ฑ์„ ๋ง‰๊ธฐ ์œ„ํ•ด, ์ดˆ๊ธฐ ์กฐ๊ฑด์—์„œ ์„ค์ •์ ๊นŒ์ง€์˜ ๊ตฌ๊ฐ„์„ gap metric์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๋‚˜๋ˆ„๊ณ , ๊ฐ๊ฐ์˜ ๊ตฌ๊ฐ„์—์„œ์˜ ํ•˜์œ„ ์„ค์ •์ ๋“ค์„ ์ •ํ•˜์—ฌ ์ดˆ๊ธฐ ์กฐ๊ฑด์—์„œ ์„ค์ •์ ๊นŒ์ง€์˜ ๊ฒฝ๋กœ๋ฅผ ํ•˜์œ„ ์„ค์ •์ ๋“ค์˜ ๊ทธ๋ž˜ํ”„๋กœ ํ‘œํ˜„ํ•˜๊ณ , ๊ฐ ํ•˜์œ„ ์„ค์ •์ ๊นŒ์ง€ ๊ฐ๊ฐ ๋ฐฐ์ •๋œ ์„ ํ˜• ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด๊ธฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์„ค์ •์ ๊นŒ์ง€ ๋„๋‹ฌํ•˜๊ฒŒ ํ•˜๋Š” ์ œ์–ด ์ „๋žต์„ ์ œ์‹œํ•œ๋‹ค. ๋‹ค์Œ์œผ๋กœ๋Š” ๊ณต์ •์˜ ๋ชจ๋ธ์ด ์—†์„ ๋•Œ, ๊ณต์ •์˜ ์ž…๋ ฅ ์ œ์•ฝ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•˜๋Š” ๋ฏธ๋ถ„๋™์ ๊ณ„ํš๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์ตœ์ ์— ๊ฐ€๊นŒ์šด ๊ฐœ๋ฃจํ”„ (open-loop) ์ œ์–ด ์ž…๋ ฅ๊ณผ ํ•ด๋‹น ์šด์ „ ๋ฐ์ดํ„ฐ ๊ทผ๋ฐฉ์„ ๊ทผ์‚ฌํ•˜๋Š” ์„ ํ˜• ๋ชจ๋ธ๋“ค์„ ์–ป์–ด, ๋‹ค์ค‘ ์„ ํ˜• ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด๋ฅผ ์ ์šฉํ•˜์—ฌ ์„ค์ •์ ๊นŒ์ง€ ๋„๋‹ฌํ•˜๊ณ  ์ž”๋ฅ˜ ํŽธ์ฐจ๋ฅผ ์ œ๊ฑฐํ•˜๋Š” ์ œ์–ด ์ „๋žต์„ ์ œ์‹œํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ฏธ๋ถ„๋™์ ๊ณ„ํš๋ฒ•์ด ์ œ๊ณตํ•˜๋Š” ์ค€์ตœ์  (suboptimal) ์šด์ „ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด, ์„ ํ˜• ์‹œ๋ณ€ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด ๊ธฐ๋ฒ•๊ณผ ์ž”๋ฅ˜ํŽธ์ฐจ-์ œ๊ฑฐ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด ๊ธฐ๋ฒ•์„ ์ด์–ด์„œ ์‚ฌ์šฉํ•˜๋Š” ์ „๋žต์ด ์ œ์‹œ๋˜์—ˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์ œ๊ณต๋œ ์ค€์ตœ์  ์šด์ „๋ฐ์ดํ„ฐ๋ฅผ ๊ณผ๋„ ์‘๋‹ต (transient response) ๊ณผ ์ •์ƒ ์ƒํƒœ ์‘๋‹ต (steady-state response) ์ด ๋‚˜ํƒ€๋‚˜๋Š” ๊ตฌ๊ฐ„์œผ๋กœ ๋‚˜๋ˆ„๊ณ , ์„ ํ˜• ์‹œ๋ณ€ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด๋ฅผ ํ†ตํ•ด ๊ณผ๋„ ์‘๋‹ต์—์„œ์˜ ์ค€์ตœ์  ๊ถค์ ์„ ์ถ”์ ํ•˜๊ณ  ์ƒํƒœ ๋ณ€์ˆ˜๊ฐ€ ์ •์ƒ ์ƒํƒœ์— ๊ฐ€๊นŒ์›Œ์ง€๋ฉด ์ž”๋ฅ˜ํŽธ์ฐจ-์ œ๊ฑฐ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด๋ฅผ ์ ์šฉํ•ด ์„ค์ •์ ์— ๋„๋‹ฌํ•˜๋„๋ก ํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•๋“ค์„ ๊ณต์ • ์˜ˆ์ œ์— ์ ์šฉํ•˜์—ฌ ๊ณต์ •์˜ ๋ชจ๋ธ ์œ ๋ฌด์™€ ๊ด€๊ณ„์—†์ด ์„ ํ˜• ๋ชจ๋ธ๋“ค์„ ์ด์šฉํ•œ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด ๊ธฐ๋ฒ•์ด ๋„“์€ ์šด์ „ ์กฐ๊ฑด์„ ๊ฐ€์ง„ ๋น„์„ ํ˜• ๊ณต์ •์˜ ๊ณต์ • ์กฐ๊ฑด์„ ์ด๋™ํ•˜๊ธฐ์— ์ ํ•ฉํ•œ ๋ฐฉ๋ฒ•๋ก ์ž„์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation and previous work . . . . . . . . . . . . . 1 1.2 Statement of contributions . . . . . . . . . . . . . . . 4 1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . 7 2. Background and preliminaries . . . . . . . . . . . . . 8 2.1 Offset-free linear model predictive control . . . . . . 8 2.2 Gap metric and stability margin . . . . . . . . . . . . 12 2.3 Multilinear model predictive control . . . . . . . . . 19 2.4 Linear time-varying model predictive control . . . . . 22 2.5 Differential dynamic programming . . . . . . . . . . 24 3. Offset-free multilinear model predictive control based on gap metric . . . . . . . . . . . . . . . . . . . . . . . 28 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 28 3.2 Local linear MPC design . . . . . . . . . . . . . . . . 31 3.3 Gap metric-based multilinear MPC . . . . . . . . . . 35 3.3.1 Gap metric-based gridding algorithm . . . . . 36 3.3.2 Gap metric-based K-medoids clustering . . . . 39 3.3.3 MLMPC design . . . . . . . . . . . . . . . . 42 3.4 Results and discussions . . . . . . . . . . . . . . . . 50 3.4.1 Example 1 (SISO CSTR) . . . . . . . . . . . 50 3.4.2 Example 2 (MIMO CSTR) . . . . . . . . . . . 62 4. Switching multilinear model predictive control based on gap metric . . . . . . . . . . . . . . . . . . . . . . . 75 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Shortest path problem . . . . . . . . . . . . . . . . . 76 4.3 Switching Multilinear Model Predictive Control . . . 80 4.3.1 Local MPC design . . . . . . . . . . . . . . . 80 4.3.2 Path design based on gap metric . . . . . . . . 84 4.3.3 Global MPC design . . . . . . . . . . . . . . 90 4.4 Results and discussions . . . . . . . . . . . . . . . . 96 5. Design of data-driven multilinear model predictive control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 112 5.2 Data-driven trajectory optimization . . . . . . . . . . 114 5.2.1 Constrained differential dynamic programming 114 5.2.2 Model identification around a trajectory . . . . 123 5.3 Data-driven offset-free MLMPC . . . . . . . . . . . . 126 5.3.1 Gap metric-based clustering algorithm . . . . 126 5.3.2 Prediction-based MLMPC . . . . . . . . . . . 129 5.4 Results and discussions . . . . . . . . . . . . . . . . 134 6. Design of data-driven linear time-varying model predictive control . . . . . . . . . . . . . . . . . . . . . . 153 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 153 6.2 Design of data-driven linear time-varying model predictive control . . . . . . . . . . . . . . . . . . . . . 154 6.2.1 Gap metric-based model selection . . . . . . . 154 6.2.2 Offset-free linear time-varying model predictive control . . . . . . . . . . . . . . . . . . . 158 6.3 Results and discussions . . . . . . . . . . . . . . . . 167 7. Conclusions and future works . . . . . . . . . . . . . . 187 7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . 187 7.2 Future works . . . . . . . . . . . . . . . . . . . . . . 188 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . 190Docto
    corecore