
Chapter 2
Stability and the Kleinian View
of Geometry

Zoltán Szabó and József Bokor

Abstract Youla parametrization of stabilizing controllers is a fundamental result
of control theory: starting from a special, double coprime, factorization of the plant
provides a formula for the stabilizing controllers as a function of the elements of the
set of stable systems. In this case the set of parameters is universal, i.e., does not
depend on the plant but only the dimension of the signal spaces. Based on the geo-
metric techniques introduced in our previous work this paper provides an alternative,
geometry based parametrization. In contrast to the Youla case, this parametrization
is coordinate free: it is based only on the knowledge of the plant and a single stabi-
lizing controller. While the parameter set itself is not universal, its elements can be
generated by a universal algorithm. Moreover, it is shown that on the parameters of
the strongly stabilizing controllers a simple group structure can be defined. Besides
its theoretical and educative value the presentation also provides a possible tool for
the algorithmic development.

2.1 Introduction and Motivation

In many of Euclid’s theorems, he moves parts of figures on top of other figures. Felix
Klein, in the late 1800s, developed an axiomatic basis for Euclidean geometry that
started with the notion of an existing set of transformations and he proposed that
geometry should be defined as the study of transformations (symmetries) and of the
objects that transformations leave unchanged, or invariant. This view has come to be
known as the Erlanger Program. The set of symmetries of an object has a very nice
algebraic structure: they form a group. By studying this algebraic structure, we can
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gain deeper insight into the geometry of the figures under consideration. Another
advantage of Klein’s approach is that it allows us to relate different geometries.

Klein proposed group theory as a mean of formulating and understanding geo-
metrical constructions. In [36] the authors emphasise Klein’s approach to geometry
and demonstrate that a natural framework to formulate various control problems
is the world that contains as points equivalence classes determined by stabilizable
plants and whose natural motions are the Möbius transforms. The observation that
any geometric property of a configuration, which is invariant under an euclidean
or hyperbolic motion, may be reliably investigated after the data has been moved
into a convenient position in the model, facilitates considerably the solution of the
problems. In this work we put an emphasize on this concept of the geometry and its
direct applicability to control problems.

The branches of mathematics that are useful in dealing with engineering prob-
lems are analysis, algebra, and geometry. Although engineers favour graphic repre-
sentations, geometry seems to have been applied to a limited extent and elementary
geometrical treatment is often considered difficult to understand. Thus, in order to
put geometry and geometrical thought in a position to become a reliable engineering
tool, a certain mechanism is needed that translates geometrical facts into a more
accessible form for everyday algorithms. The compass and ruler should be changed
to something else, possibly some series of numbers that can bemanipulatedmore eas-
ily and the results can be interpreted more directly in terms of the given engineering
problem (Fig. 2.1).
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(b) Straightedge

Fig. 2.1 Euclidean constructions Klein proposed group theory as a mean of formulating and under-
standing geometrical constructions. The idea of constructions comes from a need to create certain
objects in the proofs. Geometric constructions were restricted to the use of only a straightedge and
compass and are related to Euclid’s first three axioms: to draw a straight line from any point to any
point, to produce a finite straight line continuously in a straight line and to draw a circle with any
center and radius. The idealized ruler, known as a straightedge, is assumed to be infinite in length,
and has no markings on it because none of the postulates provides us with the ability to measure
lengths. While modern geometry has advanced well beyond the graphical constructions that can be
performed with ruler and compass, it is important to stress that visualization might facilitate our
understanding and might open the door for our intuition even on fields where, due to an increased
complexity, a direct approach would be less appropriate
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The link between algebra and geometry goes back to the introduction of real coor-
dinates in the Euclidean plane by Descartes. By fixing a unit and defining the product
of two line segments as another segment, Descartes gave a geometric justification of
algebraic manipulations of symbols. The axiomatic approach to the Euclidean plane
is seldom used because a truly rigorous development is very demanding while the
Cartesian product of the reals provides an easy-to-use model. Descartes has managed
to solve a lot of ancient problems by algebrizing geometry, and thus by finding a way
to express geometrical facts in terms of other entities, in this case, numbers. Note
that being a one-to-one mapping, this “naming” preserves information, so that we
can study the corresponding group operations simply by looking at these operations’
effect on the coordinates (“names”), even though the group elements themselves
might be any kind of weird creatures.

The invention of Cartesian coordinates revolutionized mathematics by provid-
ing the first systematic link between Euclidean geometry and algebra, and provides
enlightening geometric interpretations for many other branches of mathematics.
Thus, coordinates, in general, are the most essential tools for the applied disciplines
that deal with geometry. Descartes justifies algebra by interpreting it in geometry,
but this is not the only choice: Hilbert will go the other way, using algebra to produce
models of his geometric axioms. Actually this interplay between geometry, its group
theoretical manifestation, algebra and control theory is what we are interested in.

The standard way to define the Euclidean plane is a two-dimensional real vec-
tor space equipped with an inner product: vectors correspond to the points of the
Euclidean plane, the addition operation corresponds to translation, and the inner
product implies notions of angle and distance. Since there is no canonical choice
of where the origin should go in the space, technically an Euclidean space is not a
vector space but rather an affine space on which a vector space acts by translations.

2.1.1 Invariants

In contrast to traditional geometric control theory, see, e.g., [2, 9, 39] for the linear and
[1, 18, 19, 25] for the nonlinear theory,which is centeredona local view, our approach
revolves around a global view.While the former uses tools fromdifferential geometry,
Lie algebra, algebraic geometry, and treats system concepts like controllability, as
geometric properties of the state space or its subspaces the latter focuses on an input-
output—coordinate free—framework where different transformation groups which
leave a given global property invariant play a fundamental role.

In the first case the invariants are the so-called invariant or controlled invariant
subspaces, and the suitable change of coordinates and system transforms (diffeomor-
phisms), see, e.g., the Kalman decomposition, reveal these properties. In contrast,
our interest is in the transformation groups that leave a given global property, e.g.,
stability or H∞ norm, invariant. One of the most important consequences of the
approach is that through the analogous of the classical geometric constructions it not
only might give hints for efficient algorithms but the underlaying algebraic structure,
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i.e., the given group operation, also provides tools for controller manipulations that
preserves the property at hand, called controller blending.

There are a lot of applications for controller blending: both in the LTI system
framework, [26, 32] and in the framework using gain-scheduling, LPV techniques,
see [8, 15, 16, 31]. While these approaches exploit the so called Youla parametriza-
tion of stabilizing controllers, they do not provide an exhaustive characterization
of the topic. The approach presented in this book does not only provide a general
approach to this problem but, as an interesting side effect of these investigations,
also shows that the proposed operation leaves invariant the strongly stabilizing con-
trollers and defines a group structure on them. Moreover, one can define a blending
that preserves stability and it is defined directly in terms of the plant and controller,
without the necessity to use any factorization.

2.1.2 A Projective View

As a starting point of Euclidean and non-Euclidean worlds the most fundamental
geometries are the projective and affine-ones. Perhaps it is not very surprising that
feedback stability is related to such geometries. Following the Kleinian project we
have to identify the proper mathematical objects and the groups associated to these
objects that are related to the concept of stability and stabilizing controllers.

The determination of the stability of dynamical feedback systems from open loop
characteristics is of crucial importance in control system design, and its study has
attracted considerable research effort during the past fifty years. Until the early 1960s
almost all these methods were for scalar input-output feedback systems; however,
the rapid developments in the state-space representation of dynamical systems and
their realizations from transfer functions led to an equally important development in
stability criteria for multivariable feedback systems.

Much of the early work attempted to establish generalizations of the Nyquist,
Popov and circle criteria by utilizing an extended version of the mathematical struc-
tures used for establishing scalar results. Later it became clear that such system rep-
resentations are inadequate for the analysis of generalized multivariable operators in
feedback systems. It turns out that an approach based upon the systems input-output
spaces is required: the only systems representation admissible a priori is the input-
output map which defines the system while the existence of every other representa-
tions are deduced from these properties. Thus the concept of input-output stability is
essentially based upon the theory of operators defined on Hilbert (Banach) spaces.

Control theory should study also stability of feedback systems in which the open-
loop operator is unstable or at least oscillatory. Such maps are clearly not contained
in Banach spaces and some mathematical description is necessary if feedback sta-
bility is to be interpreted from open loop system descriptions. This is achieved by
ruling out from the model class those unbounded operators that might “explode” and
establishing the stability problem in an extended space which contains well-behaved
as well as asymptotically unbounded functions, see [12]. The generalized extended
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space contains all functions which are integrable or summable over finite intervals.
A disadvantage of the method is that the resulting space is a Banach space while
we would prefer to work in a Hilbert space context for signals, and the set of stable
operators for plants.

Since unbounded operators on a given space do not form an algebra—nor even
a linear space, because each one is defined on its own domain—the association of
the operator with a linear space, its graph subspace, turns to be fruitful. This leads
us to the study of the generalized projective geometries that copy the constructions
of the projective plane into a more complex mathematical setting while maintaining
the original relations between the main entities and the original ideas. In doing this
our main tools are algebraic: group theory, see [33], and the framework of the so
called Jordan pairs will help us to obtain the proper interpretations and to achieve
new results, see [34].

All these topics involves an advanced mathematical machinery in which often
the underlying geometrical ideas remain hidden. Our aim is to highlight some of
these geometric governing principles that facilitate the solution of these problems.
We try to avoid, wherever is possible, the technical details which can be found in
the cited references. We assume, however, some background knowledge from the
reader concerning basic mathematical constructions and control theory. Therefore
the style of the book is informal where the statements are rather meta-mathematical
than mathematical. Throughout the presentation we always assume a reasonable
algebraic structure in which our plants and controllers reside: as an example, the set
of matrices, MIMO plants form RL ∞ (RH ∞), the set of finite dimensional LTV
(LPV) plants. In a strictly formal presentation the details would be overwhelming
that would distract the reader from the main message of the book. Concerning the
possible details that one should complement to the statements of the work in order
to construct a formal framework for robust LTV stability see, e.g., [22].

The main concern of this work is to highlight the deep relation that exists between
the seemingly different fields of geometry, algebra and control, see Fig. 2.2. While
the Kleinian view makes the link between geometry and group theory, through dif-

Fig. 2.2 Interplay:
geometry, algebra and
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ferent representations and homomorphism the abstract group theoretical facts obtain
an algebraic (linear algebraic) formulation that opens the way to engineering appli-
cations. We would like to stress that it is a very fruitful strategy to try to formulate
a control problem in an abstract setting, then translate it into an elementary geomet-
ric fact or construction; finally the solution of the original control problem can be
formulated in an algorithmic way by transposing the geometric ideas into the proper
algebraic terms.

Themain contribution of this work relative to the previous efforts is the following:
it is shown that, in contrast to the classical Youla approach, there is a parametrisation
of the entire controller set which can be described entirely in a coordinate free way,
i.e., just by using the knowledge of the plant P and of the given stabilizing controller
K0. The corresponding parameter set is given in geometric terms, i.e., by providing
an associated algebraic (semigroup, group) structure. It turns out that the geometry
of stable controllers is surprisingly simple.

2.2 A Glimpse on Modern Geometry—The Kleinian View

Geometry ranges from the very concrete and visual to the very abstract and funda-
mental: it deals and studies the interrelations between very concrete objects such
as points, lines, circles, and planes while on the other side, geometry is a bench-
mark for logical rigour. Algebraic structures form a parallel world, in which each
geometric object and relation has an algebraic manifestation. In this algebraic world
the considerations may be also very concrete and algorithmic or very abstract and
fundamental.

While it is relatively easy to transform geometric objects into algebraic ones the
“naive” approaches to representinggeometric objects are very often not the right ones.
Introducingmore sophisticated algebraic methods often proves to be ultimatelymore
powerful and elegant. Finding the right algebraic structuremayopennewperspectives
on and deep insights into matters that seemed to be elementary at first sight and help
to generalize, interpret and understand.

There is a rich interplay of geometric structures and their algebraic counterparts.
In this section we will study very simple objects, such as points, lines, circles, conics,
angles, distances, and their relations. Also the operations will be quite elementary,
e.g., intersecting two lines, intersecting a line and a conic, etc. The emphasis are on
structures: the algebraic representation of an object is always related to the operations
that should be performed with the object. These advanced representations may lead
to new insights and broaden our understanding of the seemingly well-known objects.
Moreover these findings will be also useful in our control oriented investigations.

In the plane very elementary operations such as computing the line through two
points and computing the intersection of two lines can be very elegantly expressed if
lines as well as points are represented by three-dimensional homogeneous coor-
dinates (where nonzero scalar multiples are identified). Taking a closer look at
the relation of planar points and their three-dimensional representing vectors, it is
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apparent that certain vectors do not represent points in the real Euclidean plane.
These nonexistent points may be interpreted as points that are infinitely far away;
extending the usual plane by these new points at infinity a richer geometric system
can be obtained: the system of projective geometry, which turned out to be one of
the most fundamental structures having the most elegant algebraic representation.

Projective geometry was viewed as a relatively insignificant area within the
domain of Euclidean geometry until in 1859 Cayley demonstrated that projective
geometry was actually the most general and that Euclidean geometry was merely a
specialization. Later, Klein demonstrated how non-Euclidean geometries could be
included. In the spirit of the Erlangen program projective geometry is characterized
by invariants under transformations of the projective group. It turns out that the inci-
dence structure and the cross-ratio are the fundamental invariants under projective
transformations.

Projective geometry become a fundamental area of modern mathematics with far
reaching applications both in the mathematical theory, as algebraic geometry, and
also in different applications fields, such as art, computer vision or even control
theory, see, e.g., [11]. For a thorough treatment of the subject the interested reader
might consult [10] or [4, 6]. In elaborating this chapterwemostly follow the approach
of the more recent enlightening account of [30] to the topic.

2.2.1 Elements of Projective Geometry

Following Hilbert’s approach a projective plane is a triple (P, L , I ) where P is
a set, called the set of points, L is a set called the set of lines, and I is a subset of
P × L , called the incidence relation ((P, l) ∈ I means: P is contained in l). The
axioms of this geometry are: every two distinct points are contained in a unique line,
every two distinct lines contain a unique point and there are four distinct points of
which no three are collinear, i.e., lie on a single line. We will denote by l = A ∨ B
the line passing through two points and by L = a ∧ b the intersection of two lines.

A complete quadrangle is a set of four points A, B,C and D, no three collinear,
and the six lines determined by these four points: AB andCD, AC and BD, and AD
and BC are said to be pairs of opposite sides. The points at which pairs of opposite
sides intersect are called diagonal points of the quadrangle.

A fourth axiom for a projective plane is Fano’s Axiom: the three diagonal points
of a complete quadrangle are never collinear. A projective plane that does not satisfy
this axiom is the Fano plane determined by the seven-point and seven-line geometry.

In the ordinary plane parallel lines do not meet. In contrast, projective geometry
formalizes one of the central principles of perspective, i.e., parallel lines meet at
infinity. In essence it may be thought of as an extension of Euclidean geometry in
which the direction of each line is subsumed within the line as an extra point, and in
which a horizon of directions corresponding to coplanar lines is regarded as a line.
Thus, two parallel lines meet on a horizon line in virtue of their possessing the same
direction (Fig. 2.3).
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Fig. 2.3 Fano plane: the
corresponding projective
geometry consists of exactly
seven points and seven lines
with the incidence relation
described by the attached
figure. The circle together
with the six segments
represent the seven lines
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Thus we can introduce a special hyperplane, the hyperplane at infinity or ideal
hyperplane, and the points at infinity will be those on this hyperplane. Idealized
directions are referred to as points at infinity, while idealized horizons are referred
to as lines at infinity.

We say that two subspaces are parallel if they have the same intersection with
this special hyperplane. Parallelism is an equivalence relation, however, infinity is a
metric concept. A purely projective geometry does not single out any points, lines or
plane and in this regard parallel and nonparallel lines are not treated as separate cases.
In contrast, an affine space can be regarded as a projective space with a distinguished
hyperplane.

Coordinates are important in the analytical development of projective geometry as
an essential tool for calculations which may be used to verify and illustrate relations
unambiguously. However, coordinates are typically based upon metrical consider-
ations and an important question arose: how could such coordinates be logically
applied to projective relations? Klein supplied an answer to this by suggesting the
use of von Staudt’s projective constructions which are employed to define the algebra
of points. It is important to emphasize that in projective geometry coordinates are
not understand in the ordinary metrical sense; they are a set of numbers, arbitrarily
but systematically assigned to different points.

In order to assign coordinates to points on a line m it is required to select three
distinct points P0, P1 and P∞ which, by the special nature of the constructions, are
endowed with the properties of 0, 1 and ∞.

As an illustration the addition of points on a line is defined using two special
projective constructions, see Fig. 2.4. It can be shown that this algebra of points is
isomorphic to the field of real numbers and can be extended to include the concept
of infinity: a unique real number is associated with each point on the line with the
exception of a single point which assumes a correspondencewith infinity. The unique
real number associated with each point is the non-homogeneous coordinate of the
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Fig. 2.4 Projective addition: for the addition of two points let us fix the points P0 and P∞. Then
a fixed line m0 through P0 meets the two distinct fixed lines m∞ and m′∞ in the points R and S′,
respectively, while the lines Pa R and PbS′ meet m′∞ and m∞ at R′ and S. The line R′S meets m
at Pa + Pb = Pa+b. By reversing the latter steps, subtraction can be analogously constructed, e.g.,
Pa = Pa+b − Pb. Observe that by sending point P∞ to infinity we obtain the special configuration
based on the “Euclidean” parallels and the common addition on the real line

point on the line. The exceptional role of the point associated with infinity can be
removed upon the introduction of homogeneous coordinates.

The cross-ratio plays a fundamental role in the development of projective geom-
etry. It was already known to Pappus of Alexandria and was used by Karl von Staudt
to present the first entirely synthetic treatment of the projective geometry by intro-
ducing the notion of a throw a pair of ordered pairs of points on a line. Throws
are separated into equivalence classes by the projectivities of the line, relative to its
situation in a plane.

As a synthetic definition consider a line m embedded in a projective plane and
use complete quadrilaterals to define addition and multiplication. Given any throw
{[A, B], [C, D]} and any fifth point E , there exist many complete quadrilaterals for
which each of the pairs of the throws lie on the intersections of opposing lines of the
quadrilateral, and such that one of the other lines passes through E . However, for
each of these complete quadrilaterals the remaining line cuts m at the same point.

This defines a quinary operator cr on the points of m. One fixes three distinct
points of m, calling them 0, 1 and ∞ and then places them in a certain way in three
of the arguments of cr to obtain a binary operator. One of these ways defines addition,
and another way definesmultiplication such that the complement of∞ inm becomes
a field.

In order to obtain coordinates for the points of the projective plane P
2(R) we

should chose a projective basis consisting of four distinct points 0, ∞x , ∞y and
1, i.e., the origin, an infinite point on the x-axis mx , an infinite point on the y-axis
my and a point with coordinates (1, 1)T , respectively. We can also define points
1x = (0 ∨ ∞x ) ∧ (1 ∨ ∞y) and 1y = (0 ∨ ∞y) ∧ (1 ∨ ∞x ). A point X on mx is
uniquely determined by the cross-ratio cr(0,∞x , X, 1x ) = x and analogously for a
point Y on my we have cr(0,∞y,Y, 1y) = y. Any point P of P2(R) that does not
lie on the line m∞ = ∞x ∨ ∞y defines uniquely two points Px = mx ∧ (P ∨ ∞y)

and Py = my ∧ (P ∨ ∞x ) from which it can be reconstructed according to P =
(Px ∨ ∞y) ∧ (Py ∨ ∞x ). For an illustration of this construction see Fig. 2.5.



66 Z. Szabó and J. Bokor

Fig. 2.5 Projective
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Although the point triple (P0, P1, P∞) (called scale) is selected arbitrarily, the
addition and multiplication constructions impart them with the special properties
associated with (0, 1,∞). From a projective point of view, however, all points have
identical properties. Three distinct new points may be chosen as another scale and all
other points relabeled in terms of it. By way of projective transformations, all scales
and subsequently all coordinates, are projectively equivalent.

An algebraicmodel for doing projective geometry in the style of analytic geometry
is given by homogeneous coordinates. When the vector space V is coordinatized by
fixing a basis, a projective point is a 1-space {λ(x0, x1, . . . , xn) | λ ∈ F}, i.e., an
equivalence class X ∼ [x] of all vectors that differ by a nonzero multiple, and we
can say that this point has coordinates (x0, x1, . . . , xn). Note that (x0, x1, . . . , xn)
and λ(x0, x1, . . . , xn) denotes the same point for λ �= 0. Such coordinates are called
homogeneous coordinates. By using homogeneous coordinates we can introduce a
special hyperplane, e.g., the one defined by xn = 0, the so called finite points will be
the ones with xn �= 0, while the points at infinity will be those on the hyperplane.

A central concept in projective geometry is that of duality. The simplest illustra-
tion of duality is in the projective plane, where the statements “two distinct points
determine a unique line” and “two distinct lines determine a unique point” show the
same structure as propositions.

A line l passing through two points A and B may be described as the join of the
two points, i.e., l = A ∨ B and dually, the intersection L point of two lines a and b
may be described as the meet of the two lines, i.e., L = a ∧ b.

The principle of duality in the plane is that incidence relations remain valid when
the roles of points and lines are interchanged, where the point P and line p are
(projectively) dual objects.

The dualistic properties of projective geometry may be elegantly expressed in an
analytic manner by employing homogeneous coordinates: the condition for a point
X ∼ [x] with x = (

x0 x1 x2
)T

and a line m ∼ [M] with M = (
M0 M1 M2

)
to be

incident may be expressed as the linear relation
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M0x0 + M1x1 + M2x2 = 0, i.e., Mx = 0.

Since condition x2 �= 0 selects out the finite points the line at infinitywill corresponds
tom∞ ∼ [(0, 0, 1)]. Here we assume that all homogeneous coordinates of a point are
represented by column vectors while those that corresponds to lines are row vectors.
However, it ismore convenient to identify the lineswith column vectors, too. This can
be done through the pairing 〈·, ·〉 asm ∼ 〈m, ·〉. Thus the set of all points on the line r
through the given points P, Q can be expressed with the condition 〈r, λp + μq〉 = 0
for all λ,μ ∈ R.

Assuming that the coordinates M are fixed while the coordinates x are free to
vary, then this equation (x ∈ Ker(mT )) represents the locus of points which are
incident to the line m. Dually, if the coordinates x are fixed and m is free to vary,
then the equation (m ∈ Im(x)⊥) represents the pencil of lines which are incident to
the point x .

Thus we extend the Euclidean plane by introducing elements at infinity: one point
at infinity for each direction and one global line at infinity that contains all these
points. We also have a coordinate representation of these objects. Actually the inci-
dence relation (X,m) ∈ I is expressed as ([x], [m]) ∈ IR2 defined by the condition
x ⊥ m. Thus, by the identification determined by the homogeneous coordinates of
the points and lines with equivalence classes of vectors, we have that (PR2 , LR2 , IR2)

is a projective plane: P2(R). While this is a simple observation it has an important
consequence: it consists the link between geometry and algebra.

From the projective viewpoint the distinction of infinite and finite elements is
completely unnatural: it is only a kind of artefact that arises when we interpret
the Euclidean plane in a projective setup. Often it is fruitful to interpret Euclidean
theorems in a projective framework and vice-versa. To do it we have to model the
drawing of a parallel to a line through a point on the projective plane: set the line at
infinity (m∞) and define the operator parallel (P,m) = P ∨ (m ∧ m∞).

2.2.2 Projective Transformations

Klein stated that a geometry is defined as the properties of a space which remain
invariant under all transformations of space (or the coordinate system) by a group
of transformations. Thus Euclidean geometry is the theory of objects invariant with
respect to Euclidean congruence transformations. For projective geometry, the group
of transformations is characterized by thosewhich preserve relations of incidence.An
analysis of projective transformations not only identifies important invariant relations
but also forms a foundation for developing metrical geometries.

The group of automorphisms of n-dimensional projective spacePn(R) are induced
by the linear automorphisms of Rn+1. These can be projective automorphisms, pro-
jective collineations or regular projective maps. The group of projective automor-
phisms of Pn(R) is denoted by PGL(n), and is called the projective linear group.
Thus the action of projective automorphisms on points can be expressed as [Ax] and,
accordingly, on the hyperplanes [A−Tm].
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The fixed points of the projective automorphisms are given by the (right) eigen-
vector of the matrix A. It follows that every projective transformation has at least
one invariant point and one invariant line. Moreover there is exactly one projective
isomorphism which transforms a given fundamental set into another one.

The restriction of a projective mapping in P
n(R) to a line l is called a projec-

tivity, which is uniquely defined by the images of three distinct points of the line.
A projective automorphism of a line, if it is not the identity mapping, has 0, 1, or
2 fixed points. Then the corresponding projective automorphism is called elliptic,
parabolic or hyperbolic, respectively. In the complex projective plane there are no
elliptic projectivities.

A collineation is a one–to–one linear transformation preserving the incidence
relation in which each element is mapped into a corresponding element of the same
type (e.g., point to point) whereas a correlation differs in that each element is mapped
into a corresponding dual element (e.g., point to line).

It is often useful to consider singular linearmappings,whose domain is a projective
space of dimension n and whose image space has a different dimension. Singular
projective mapping means a linear mapping which is not quadratic and regular, i.e., it
is not a projective isomorphism. Such mappings are generalizations of the concept of
central projection from projective three-space onto a plane. A central projection from
P
n(R) onto a subspace V via a center W is given by π(P) = (O ∨ P) ∧ V , where

it is required that W and V are complementary subspaces. For all linear mappings
λ : P

n �→ P
m there is a central projection π from onto a subspace V and a projective

isomorphismα of V ontoPm such that λ = πα. A linearmapping has a kernel (center
or exceptional subspace) Z which is independent of the decomposition. The points
Q ∈ P ∨ Z have the property that π(P) = π(Q).

2.2.3 A Trapezoidal Addition

We conclude this section by reviewing a specific configuration of the projective
plane, and its associated special addition law, which bears relevance to the study of
feedback stability from a projective point of view.

First, let us list some facts important to us concerning the case d = 1, i.e., the
projective line P1(R). If V is a one dimensional subspaces (line) of a vector space,
by choosing a basis of V gives an identification of V with P

1(R). But another
choice of basis of V gives another identification of V with P

1(R) , leading to the
group of projective transformations of P1(R). As it is shown by this case, groups
(isomorphisms) occur in the description of the differences between parametrizations
that preserve a certain structure.

The projective line P1(R) is the set of lines through 0 in R
2. For M =

(
a b
c d

)
in

GL(R2) we have the map: R2 �→ R
2, x �→ Mx that sends lines through 0 to lines

through 0, and hence gives us a map from P
1(R) to P1(R). Written out in detail
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(
x0
x1

)
�→

(
ax0 + bx1
cx0 + dx1

)
,

i.e., in inhomogeneous coordinates

(
x
1

)
�→

(
ax + b
cx + d

)
, x �→ ax + b

cx + d
,

if cx + d �= 0. Thus the fractional linear transformations from R to R is linear in
homogeneous coordinates.

It is obvious that M and M ′ in GL(R2) give the same projective transformation on
P
1(R) precisely when there is a k inR∗ with M ′ = kM . Thus the group of projective

transformations (projectivities) of P1(R) is the quotient group PGL(R2) of GL(R2)

by the subgroup of scalar matrices.
In other words, Möbius transformations can be seen as the restriction of the

projective transformation to the set of finite points. Note that while the projective
transformation M is linear, and it is defined everywhere, the Möbius transformation
is nonlinear (rational) and it is defined only on the domain cx + d �= 0. If (x, 1)T and
(y = ax+b

cx+d , 1)T are considered as specific (normalized) homogeneous coordinates of
the finite points, then we can say that the Möbius transformation acts on a coordinate
level while the projectivity M acts on the geometric, projective level.

Projective transformations leave the cross ratio

cr(p, q, r, s) = (r − p)/(r − q)

(s − p)/(s − q)
, p, q, r, s ∈ P

1(R)

invariant, i.e., if g is a projective transformation then

cr(g(p), g(q), g(r), g(s)) = cr(p, q, r, s).

Since Möbius transformations are only a restriction of projective transformations on
finite points, invariance holds.

We have already seen that in terms of homogeneous coordinates the Euclidean
plane R2 can be embedded into P2(R) by taking its finite points, i.e., by the map

R
2 �→ P

2(R) , (x, y)T �→ (x, y, 1)T .

Thepoints ofP2(R) that are not in the image of thismap are the ideal points (x, y, 0)T .
Thus the set of ideal points is in bijectionwith the set of points (x, y)T of the projective
line P1(R). This is the set of directions in R

2, that correspond to the points on the
horizon in P2(R).

An example for this embedding in terms of projective coordinates is depicted on
Fig. 2.5. Recall that in order to obtain coordinates we should choose a projective
basis consisting of four distinct points 0, ∞x , ∞y and 1. In an obvious way the
construction defines an addition operation on the plane, see Fig. 2.6.
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Fig. 2.6 Parallel addition: set the origin to the pointY and letmx andmz the directions determinedby
the points X and Z . If the points∞x ,∞y are set to infinityweobtain a usual setting for parallel vector
addition: the coordinates of the pointW are constructed by taking parallels tomx andmz throughW .
For a “projective” vector addition we can set the points∞x ,∞y on a given line a ofR2 intersecting

mx and mz . The point W is provided as W =
[(

(X ∨ Y ) ∧ a
) ∨ Z

]
∧

[(
(Z ∨ Y ) ∧ a

) ∨ X
]

In [5] these constructions were generalized in order to provide a friendly intro-
duction to Jordan triplets and to illustrate algebraic concepts through elementary
constructions performed in the plain geometry. We reproduce here those construc-
tions from [5] that are relevant for our control oriented view.

Parallel addition: recall thatwe imagine a point “infinitely far” on the line l, given
by intersecting l with an ideal line i ; then the parallel to X is the line joining this
infinitely far point l ∧ i with X : k = X ∨ (l ∧ i) is the unique parallel of l through
the point X .

In the usual, parallel, view given three non-collinear points X,Y, Z we can con-
struct a fourth point according to

W =
((

(X ∨ Y ) ∧ i
) ∨ Z

)
∧

((
(Z ∨ Y ) ∧ i

) ∨ X
)
,

which is the intersection of the parallel of X ∨ Y through Z with the one of Z ∨ Y
through X .

Note that the initial construction works well if we assume that X,Y, Z are not
collinear, but it is not defined if X, Y, Z are on a common line l. Nevertheless, themap
associating to the triple X,Y, Z the fourth point W admits a continuous extension
from its initial domain of definition (non-collinear triples) to the bigger set of all
triples.

If we choose a line a in the plane and three non-collinear points X,Y, Z in the
plane such that the lines X ∨ Y and Z ∨ Y are not parallel to a then it is possible to
construct the point

W =
((

(X ∨ Y ) ∧ a
) ∨ Z

)
∧

((
(Z ∨ Y ) ∧ a

) ∨ X
)
.
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One can imagine this drawing to be a perspective view onto a plane in 3-dimensional
space, where line a represents the horizon. Dragging the line a further and further
away from X,Y, Z the perspective view looks more and more like a usual parallel-
ogram construction.

The fourth vertex W is a function of X,Y, Z , therefore we introduce the notation
W = X +Y Z , andwriteW = {XY Z}.Wewrite O instead of Y if it is fixed as origin,
i.e., let X + Z = X +O Z .

Since the operations ∨ and∧ are symmetric in both arguments the law (X, Z) �→
X + Z is commutative. But the choice of the origin O is completely arbitrary, thus,
the free change of the origin should be facilitated by a more general version of the
associative law (called the para-associative law):

X +O (U +P V ) = (X +O U ) +P V

where O and P may be different points. Thus, to cope with the problem of collinear
points we can use the para-associative law:

(X +O P) +P V = X +O (P +P V ) = X +O V .

It turns out that for any fixed origin O the plane R
2 with X + Z = X +O Z is a

commutative group with neutral element O .
Trapezoidal addition: in order to obtain a more general schemewe can introduce

two special lines—as if they played the role of the ideal lines—and to define the point
addition as:

W =
((

(X ∨ Y ) ∧ a
) ∨ Z

)
∧

((
(Z ∨ Y ) ∧ b

) ∨ X
)
,

see Fig. 2.7. Note that when the lines a, b and the point Y are kept fixed, the law
given by (X, Z) �→ W depends nicely on the parameters Y, a, b.

If instead of “parallelograms” we use trapezoids, i.e., b = i , the constructions
will depend on the choice of some line a in the plane and the underlying set of our
constructions will be the set G = R

2 \ a of all points of the plane R2 not on a.
Fixing a point Y not on a, and two other points X, Z such that the line Y ∧ Z is

not parallel to a we can construct the point

W =
((

(X ∨ Y ) ∧ i
) ∨ Z

)
∧

((
(Z ∨ Y ) ∧ a

) ∨ X
)
.

Observe that the map W = {XY Z} is not symmetric in X and Z , therefore the
law (X, Z) �→ W = {XY Z} for fixed Y is not commutative. However, the operation
{XY Z} is associative, moreover, the following generalized associativity law holds:

{XO{U PV }} = {{XOU }PV }.
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Fig. 2.7 While the quadrangle XY ZW is not a parallelogram, its construction has something in
common with the one of a parallelogram: the picture illustrates the fundamental process of passing
from a commutative, associative law—vector addition, corresponding to usual parallelograms—to a

non-commutative law:W =
((

(X ∨ Y ) ∧ b
) ∨ Z

)
∧

((
(Z ∨ Y ) ∧ a

) ∨ X
)
. Trapezoidal addition,

i.e., b = i , the point W is provided as W =
((

(X ∨ Y ) ∧ i
) ∨ Z

)
∧

((
(Z ∨ Y ) ∧ a

) ∨ X
)

If we fix some element E ∈ G, then E is a unit element for the binary product
X Z = {XEZ}. Thus for three points X, E, V on a line, we can define a fourth point
W = {XEV } on the same line.

As a conclusion: for any choice of origin E ∈ G, the set G = R
2 \ a is a group

with product X Z = {XEZ}. By using the generalized associativity law follows that
U = (EXE) is the inverse of X . The converse is also true: the ternary law {XY Z}
can be recovered from the binary product in the group (G, e) with neutral element e
as {xyz} = xy−1z.

We can translate these geometrical facts into analytic formulas by using coor-
dinates of the real vector space R2. Then, vectors are written as x = (x1, x2)T and
y = (y1, y2)T while their sum is defined by x + y = (x1 + y1, x2 + y2)T . Recall that
for two distinct points the affine line spanned by x and y is

x ∨ y = {
t x + (1 − t)y | t ∈ R

}
.

Note that the quadrangle with vertices xyzw is a parallelogram if and only if w =
x − y + z. Thus, for a fixed element y ∈ R

2, the law x +y z = x − y + z defines a
commutative group with neutral element y. For y = 0, we get back the usual vector
addition.

The linear algebra of trapezoid geometry can be obtained by fixing a line a given
by a = {x ∈ R

2 | α(x) = 0} for some non-zero linear form α : R2 → R. Since lines
y ∨ x and z ∨ w are parallel, we have that z + t (x − y) for some t ∈ R. The point
u = a ∧ (y ∨ z) should be of the form tu y + (1 − tu)z—since u is on y ∨ z.

Thus, from α(u) = 0 follows that

tu = 1

1 − α(y)α(z)−1
.
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Note that |w − z|/|x − y| = |u − z|/|u − y|, i.e., |t | = |tu |/|1 − tu |, fromwhich fol-
lows that t = α(z)α(y)−1.

Thus, on the set G defined by

G = {x ∈ R
2 | α(x) �= 0}

the point w is defined by

{xyz} = w = α(z)α(y)−1(x − y) + z. (2.1)

Observe that α(w) = α(x)α(y)−1α(z). For a fixed point e ∈ G such that α(e) = 1
we have that G is a group with neutral element e and product

x · z = (xez) = α(z)(x − e) + z. (2.2)

The corresponding group inverse of x is given by

x−1 = α(x)−1(e − x) + x . (2.3)

The set G is open dense in R
2. Moreover, the group law with the corresponding

inversion map are smooth of class C∞. It can be shown that G is isomorphic to
(R,+) × (R×, ·), i.e., it is isomorphic to the affine group of the real line:

GA(1,R) =
{ (

a b
0 1

)
| a ∈ R

×, b ∈ R

}
.

To bring this example closer to the feedback setting let us consider a special
configuration: take the line a such that α = (−p, 1), i.e., the points of this line are
λ(1, p)T . Set e = y = (0, 1) as the unit element and note that α(y) = 1. Consider
the set

Gp = {(k, 1)T ∈ R
2 | 1 − pk �= 0}

and the points z = (kz, 1) and x = (kx , 1) from Gp.
Then, we have that

x ·p z = α(z)(x − e) + z = (1 − pkz)

(
kx
0

)
+

(
kz
1

)
=

(
kx + kz − pkzkx

1

)
,

and

x−p = α(x)−1(e − x) + e =
(−(1 − pkx )−1kx

1

)
.
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Fig. 2.8 Affine
parametrization

In other words, if we fix p and consider all those k for which the matrix

Fp,k =
(
1 k
p 1

)
or F−p,−k =

(
1 −k

−p 1

)
is nonsingular,

then we obtain exactly the set Gp. Moreover, on this set we have managed to define
a group structure, (Gp,+p) with unit element 0 defined by

k1 +p k2 = k1 + k2 − pk1k2, k−p = −(1 − pk)−1k. (2.4)

Observe that for p = 0 we obtain the usual addition on the real line.
The significance of the result for control is straightforward: take p as a plant and k

as a controller. Then condition 1 − pk �= 0 selects exactly the controllers that renders
the loop well-defined. By taking an arbitrary parallel line with p, its intersection with
any other non-parallel line will work as a parametrization of these controllers.

Thus, we have the affine picture sketched on Fig. 2.8. In what follows we are
going to provide further explanations in the context of the stable feedback loop.

2.3 The Standard Feedback Loop

A central concept of control theory is that of the feedback and the stability of the
feedback loop. For practical reasons our basic objects, the systems, i.e., plants and
controllers, are causal. Stability is actually a continuity property of a certain map,
more precisely a property of boundedness and causality of the corresponding map.
Boundedness here involves some topology. In what follows we consider linear sys-
tems, i.e., the signals are elements of some normed linear spaces and an operator
means a linear map that acts between signals. Thus, boundedness of the systems is
regarded as boundedness in the induced operator norm.
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Fig. 2.9 Feedback
connection

To fix the ideas let us consider the feedback-connection depicted on Fig. 2.9. It is
convenient to consider the signals

w =
(
d
n

)
, p =

(
u
yP

)
, k =

(
uK

y

)
, z =

(
u
y

)
∈ H ,

where H = H1 ⊕ H2 and we suppose that the signals are elements of the Hilbert
space H1,H2 (e.g., Hi = L ni [0,∞)) endowed by a resolution structure which
determines the causality concept on these spaces. In this model the plant P and the
controller K are linear causal maps. For more details on this general setting, see [12].

The feedback connection is calledwell-posed if for everyw ∈ H there is a unique
p and k such thatw = p + k (causal invertibility) and the pair (P, K ) is called stable
if the map w → z is a bounded causal map, i.e., the pair (P, K ) is called well-posed
if the inverse

(
I K
P I

)−1

=
(
Su Sc
Sp Sy

)
=

(
(I − K P)−1 −K (I − PK )−1

−P(I − K P)−1 (I − PK )−1

)
(2.5)

exists (causal invertibility), and it is called stable if all the block elements are stable.

2.3.1 Youla Parametrization

A fundamental result concerning feedback stabilization is the description of the
set of the stabilizing controllers. A standard assumption is that among the stable
factorizations there exists a special one, called double coprime factorization, i.e.,
P = NM−1 = M̃−1 Ñ and there are causal bounded systems U, V, Ũ and Ṽ , with
invertible V and Ṽ , such that

(
Ṽ −Ũ

−Ñ M̃

) (
M U
N V

)
= �̃P�P =

(
I 0
0 I

)
, (2.6)

an assumption which is often made when setting the stabilization problem, [12, 38].
The existence of a double coprime factorization implies feedback stabilizability,
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actually K0 = UV−1 = Ṽ−1Ũ is a stabilizing controller. In most of the usual model
classes actually there is an equivalence.

For a fixed plant P let us denote by WP the set of well-posed controllers, while
GP ⊂ WP denotes the set of stabilizing controllers.

Given a double coprime factorization the set of the stabilizing controllers is pro-
vided through the well-known Youla parametrization, [23, 41]:

GP = {K = M�P (Q) | Q ∈ Q, (V + NQ)−1 exists},

where Q = {Q | Q stable } and

M�P (Q) = (U + MQ)(V + NQ)−1. (2.7)

For a recent work that covers most of the known control systemmethodologies using
a unified approach based on the Youla parameterization, see [20].

HereMT (Z) is theMöbius transformation corresponding to the symbol T defined
by

MT (Z) = (B + AZ)(D + CZ)−1, with T =
(
A B
C D

)
,

on the domain domMT = {Z | (D + CZ)−1 exists}. Note that

QK = M�̃P
(K ) = (Ṽ K − Ũ )(M̃ − Ñ K )−1, (2.8)

and thus Q = 0K corresponds to K0 = UV−1.
Since the dimensions of the controller and plant are different, it is convenient to

distinguish the zero controller and zero plant by an index, i.e., 0K and 0P , respectively.
Observe that the domain of (2.8) is exactly WP ; thus we can introduce the cor-

responding extended parameter set Qwp
P = {QK = M�̃P

(K ) | K ∈ WP}. Note, that
Q0, i.e.,M�̃P

(0K ) = −Ũ M̃−1 = −M−1U , is not inQ, in general. The content of the
Youla parametrization is that K is stabilizing exactly when QK ∈ Q, see Fig. 2.10.

2.4 Group of Controllers

In order to design efficient algorithms that operate on the set of controllers that fulfil
a given property, e.g., stability or a prescribed norm bound, it is important to have
an operation that preserves that property, i.e., a suitable blending method. Available
approaches use the Youla parameters in order to define this operation for stability in
a trivial way. As these approaches ignore the well-posedness problem by assuming
strictly proper plants, they do not provide a general answer to the problem.
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Fig. 2.10 Youla parametrization

In the particular casewhen P = 0P wehaveGP = Q, i.e.,mere addition preserves
well-posedness and stability. Moreover, the set of these controllers forms the usual
additive group (Q,+) with neutral element 0K and inverse element Q → −Q. In
the general case, however, addition of controllers neither ensure well-posedness nor
stability.

2.4.1 Indirect Blending

The most straightforward approach to obtain a stability preserving operation is to
find a suitable parametrization of the stabilizing controllers, where the parameter
space possesses a blending operation. As an example for this indirect (Youla based)
blending is provided by the Youla parametrization. However, this mere addition on
the Youla parameter level does not lead, in general, to a “simple” operation on the
level of controllers:

K = M�P ((M�̃P
(K1) + M�̃P

(K2))). (2.9)

The unit element of this operation is the controller K0 which defines�P , see Fig. 2.11.
Its implementation involves three nontrivial transformations.

Note that an obstruction might appear if the sum of the Youla parameters are not
in the domain of M�P , e.g., for non strictly proper plants where some of the non
strictly proper parameters are out-ruled.

We can formulate this process as a group homomorphism between the usual
addition of parameters Q and the group of automorphisms Q �→ τQ associated to
the space formed by simple translations, i.e.,

τQ =
(
I Q
0 I

)
, τQ1τQ2 = τQ1+Q2 .
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Fig. 2.11 Youla based
blending

2.4.2 Direct Blending

The observation that
(
I K
P I

)
=

(
I 0
P I

)(
I K1

0 I − PK1

) (
I K2

0 I − PK2

)
(2.10)

leads to operation

K = K1(I − PK2) + K2 = K1 �P K2, (2.11)

under which well-posed controllers form a group (WP ,�P). The unit of this group
is the zero controller K = 0K and the corresponding inverse elements are given by

K�P = −K (I − PK )−1. (2.12)

Note that

I − PK�P = (I − PK )−1. (2.13)

Clearly not all elements of WP are stabilizing, e.g., 0K is not stabilizing for an
unstable plant.

Theorem 2.1 (GP ,�P) with the operation (blending) defined in (2.11) is a semi-
group.

Note, that

(I − PK )−1 = (I − PK2)
−1(I − PK1)

−1. (2.14)

By using the notation

(
I K
P I

)
=

(
I 0
P I

)(
I K
0 I − PK

)
= RPT

(P)
K
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we have the group homomorphism T (P)
K1

T (P)
K2

= T (P)

K1�P K2
and K = MRPT

(P)
K R−1

P
(0K ).

On the level of Youla parameters the corresponding operation is more complex:

QK2 �P QK1 = ṼU + Ṽ MQK1 + QK2 M̃V + QK2 Ñ MQK1 =
= (QK2 − Q0)M̃(V + NQK1) + QK1 =
= QK2 + (Ṽ + QK2 Ñ )M(QK1 − Q0), (2.15)

QK�P = Q0 − M−1K M̃−1 =
=Q0 − (QK − Q0)(I + V−1NQK )−1V−1M̃−1. (2.16)

Note that (GP ,�P) and (Q,�P) are related by only a semigroup homomorphism,
while (WP ,�P) and (Q

wp
P ,�P) are related, however, through a group homomor-

phism.

2.4.3 Strong Stability

If a plant is stabilizable in general it is not obvious whether there exists a stable
controller as a stabilizing one. If such a controller exists, then we call it a strongly
stabilizing controller. While their synthesis is non-trivial, in practical applications
strongly stabilizing controllers are preferred, see [13, 14].

The semigroup (GP ,�P) does not have a unit, in general. However, if there is a
stabilizing controller K0 such that

K�P
0 = −K0(I − PK0)

−1

is also a stabilizing controller, i.e., K0 is stable, then (GP ,�P) with

K1 �P K2 = K1 �P K�P
0 �P K2

is a semigroup with a unit (K0). This may happen only if the plant is strongly
stabilizable.

If we denote by SP the set of strongly stabilising controllers, then if this set is not
empty, then.

Theorem 2.2 (SP ,�P) with the operation (blending) defined as

K = K1 �P K2 = K1 �P K�P
0 �P K2 =

= K2 + (K1 − K0)(I − PK0)
−1(I − PK2) (2.17)
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is the group of strongly stable controllers, where K0 ∈ SP is arbitrary. The corre-
sponding inverse is given by

K�−1
P = K0 − (K − K0)(I − PK )−1(I − PK0). (2.18)

Opposed to the possible expectations, we not only have simple expressions for
these operations in the Youla parameter space, but the formulae also resemble (2.11)
and (2.12):

QK = QK2 ⊗ QK1 = QK2 + QK1 + QK2V
−1NQK1 , (2.19)

Q⊗−1

K = −Q(I + V−1NQ)−1. (2.20)

It is important to note that while (2.19) keeps the strong stabilizability, as a prop-
erty, invariant it does not guarantee that the property is fulfilled. This means that
the formula also makes sense for parameters that does not correspond to stable con-
trollers.

2.4.4 Example: State Feedback

In this sectionwe provide some examples in order to illustrate the blending properties
of these newly defined operators. To do this, let us consider first the state feedback

case, i.e., fix the plant P =
[
A B
I 0

]
parametrized by its state space description and

consider the stabilizing (state feedback) controllers given by:

K1 =
[
0 0
0 F1

]
, and K2 =

[
0 0
0 F2

]
,

respectively.
In order to applying operation (2.11) we need to compute the terms PK2, K1PK2,

K1 + K2, etc. To do thiswe apply the formulae (2.41), (2.42) and (2.43), respectively.
Thus, we obtain first

PK2 =
⎡

⎣
A 0 BF2

0 0 0
I 0 0

⎤

⎦ =
[
A BF2

I 0

]
,

where the last equality is obtained by eliminating the uncontrollable andunobservable
modes.
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Analogously follows

K1PK2 =
⎡

⎣
0 0 0
0 A BF2

0 F1 0

⎤

⎦ =
[
A BF2

F1 0

]
,

and K1 + K2 =
[
0 0
0 F1 + F2

]
. Finally we obtain that the dynamic controller as

K = K1 + K2 − K1PK2 =
[

A BF2

−F1 F1 + F2

]
.

In general this controller is not stable, however, it is stabilizing.
Indeed, one can assemble the closed loop system

ẋ = Ax − BF1xc + B(F1 + F2)x,

ẋc = Axc + BF2x .

Then, by applying the usual change of state variables [x x − xc], the corresponding
closed loop matrix is

Acl =
(
A + BF2 BF1

0 A + BF1

)
,

i.e., K is a stabilizing controller, as expected. Moreover, one can also observe the
blending of the assigned spectrum.

Taking a stabilizing feedback K0 =
[
0 0
0 F0

]
by (2.42) and (2.43) we have

(I − PK0)
−1 =

[
A + BF0 BF0

I I

]
,

i.e., computing K�P
0 according to (2.12) gives

K�P
0 = −K0(I − PK0)

−1 =
[
A + BF0 BF0

−F0 −F0

]
.

This is a stable plant, as it was expected. However, it is not a stabilizing controller,
in general: by taking the basis [x x + xc], the corresponding closed loop system can

be expressed as Acl =
(
A BF0

0 A

)
, which is not stable, in general.

It is obvious, that every static stabilizing state feedback controller is a strongly
stabilizing one. Thus, by fixing a given stabilizing state feedback controller, say K0,
we are going to computing a blending controller according to (2.17). Proceeding as
before, we have
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(I − PK0)
−1(I − PK2) =

=
⎡

⎣
A + BF0 −BF0 BF0

0 A BF2

I −I I

⎤

⎦ =
[
A + BF0 B(F0 − F2)

I I

]
.

This leads to

K = K1 �P K�P
0 �P K2 =

[
A + BF0 B(F2 − F0)

−(F1 − F0) F1 + F2 − F0

]
,

which is clearly stable. Note that the degree of the controller (n) is less than the
expected one (2n). We can also verify, that this controller is stabilizing: the matrix
of the closed loop system in the usual basis ([x x − xc]) can be expressed as

Acl =
(
A + BF2 B(F1 − F0)

0 A + BF1

)
,

i.e., K is a stabilizing controller, as expected. Again, we can also observe the blending
of the assigned spectrum.

Taking a stabilizing feedback K =
[
0 0
0 F

]
and computing K�−1

P according to

(2.18) leads to

K�−1
P =

[
A + BF B(F − F0)

−(F − F0) −F + 2F0

]
,

which is clearly stable.
The corresponding closed loop matrix in the basis [x x + xc] can be written as

Acl =
(
A + BF0 −B(F − F0)

0 A + BF0

)
,

i.e., the closed loop system is stable, as we have already expected.

2.5 A Geometry Based Controller Parametrization

In what follows we fix a stabilizing controller, say K0, and in the formulae we
associate, according to (2.5), the corresponding sensitivities to this controller. Con-
sidering

�̂P,K0 =
(
UV−1 M −UV−1N
V−1 −V−1N

)
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we obtain the lower LFT representation of the Youla parametrization, i.e.,

K = M�P,K0
(Q) = Fl(�̂P,K0 , Q), (2.21)

see, e.g., [42]. Rearranging the terms one has

K = Fl(ΨK0,P , R), with ΨK0,P =
(
K0 I
I Sp

)
(2.22)

and

R ∈ R
Y
K0

= { Ṽ−1QV−1 | Q ∈ Q }. (2.23)

This fact was already observed for a while, e.g., [24] or [3], where it was used as a
starting point for a Youla parametrization based gain scheduling scheme of rational
LTI systems. We have recalled this result with the intention to demonstrate how our
previous ideas on the geometry of stabilizing controllers can be applied in order to
find significantly new information on an already known configuration.

2.5.1 A Coordinate Free Parametrization

In order to relate a Möbius transform to an LFT we prefer to use the formalism
presented in [36]. Thus, recall that �̂P is the Potapov–Ginsburg transform of �P

and formulae like (2.22) can be easily obtained by using the group property of the
Möbius transform. Accordingly, we have that

K = MΓP,K0
(R) = Fl(ΨP,K0 , R), (2.24)

R = MΓ −1
P,K0

(K ) = Fl(ΦP,K0 , K ), (2.25)

where

ΓP,K0 =
(

Su K0

−Sp I

)
, ΨP,K0 = Γ̂P,K0 , (2.26)

Γ −1
P,K0

=
(
I −K0

Sp Sy

)
, ΦP,K0 =

(−K0S−1
y S−1

u

S−1
y P

)
. (2.27)

Observe that (2.25) is defined exactly onWP and let the restriction on the stabilizing
controllers be denoted by RK0 = {Fl(ΦP,K0 , K ) | K ∈ GP}. Apparently, apart the
structure of the set RY

K0
these formulae do not depend on any special factorization.

Moreover, they can be also obtained directly, i.e., without any reference to some
factorization of the plant or of the controller, starting from
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(
I K
P I

)
=

(
I K0

P I

)
+

(
I
0

)
(K − K0)

(
0 I

)

and applying two times the matrix inversion lemma to obtain first

(
I K
P I

)−1

=
(
I K0

P I

)−1

−
(
Su
Sp

)
R

(
Sp Sy

)
,

with R = (K − K0)(I + Sp(K − K0))
−1 and then

(
I K
P I

)
=

(
I K0

P I

)
+

(
I
0

)
R(I − SpR)−1

(
0 I

)
. (2.28)

Thus, it would be desirable to provide, if it exists, a coordinate free description
of RK0 . Exactly this is the point where the geometric view and the coordinate free
results of Sect. 2.4 can be applied.

As a starting point observe that

(
I K
P I

)
=

(
Su K

−Sp I

) (
S−1
u 0
0 I

)
= (2.29)

=
(

Su K0

−Sp I

) (
I R
0 I

) (
I 0
0 (I − SpR)−1

)
. (2.30)

Analogous to (2.10) we have the factorization

(
Su K

−Sp I

)
=

(
Su 0

−Sp I

) (
I S−1

u K
0 I − PK

)
. (2.31)

By using the notations

R(P,K0) =
(

Su 0
−Sp I

) (
S−1
u 0
0 I

)

T (P,K0)
K =

(
Su 0
0 I

) (
I S−1

u K
0 I − PK

) (
S−1
u 0
0 I

)

we have
(
I K
P I

)
= R(P,K0)T

(P,K0)
K

and

T (P,K0)
K1

T (P,K0)
K2

= T (P,K0)

K1�P K2
,
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moreover

K = MR(P,K0)T
(P,K0)

K R−1
(P,K0)

(0K ) = MΓP,K0
(R),

see (2.30) for the last equality. Thus, it is immediate that the operation (2.11) is a
natural choice for this new configuration, too.

2.5.2 Geometric Description of the Parameters

Considering (2.15) and keeping in mind that R = Ṽ−1QV−1 we have the blending
rule on R

Y
K0
:

R2 �P,K0 R1 = K0 + Su R1 + R2Sy − R2Sy Sp R1. (2.32)

For the stable controllers the parameter blending is more simple:

R2 ⊗P,K0 R1 = R2 + R1 − R2SpR1, (2.33)

R⊗−1
P,K0 = −R(I − SpR)−1, (2.34)

see (2.19) and (2.20).
Observe that K0 = Ṽ−1ṼUV−1 ∈ R

Y
K0

and that the corresponding controller is

K = K0 �P K0 = [2K0]�P .

Based on (2.32) it is easy to show that to the controller K = [nK0]�P corresponds
the parameter R = (I + · · · + Sn−1

u )K0 ∈ R
Y
K0
. Thus, if K0 is stable, then all these

parameters are stable. However, the corresponding controllers are not necessarily
stable.

Theorem 2.3 The algebraic structures defined by (2.32) and (2.33) holds also on
RK0 , i.e., they can be introduced in a complete coordinate free way.

Due to lack of space, we do not continue to deduce all the formulae, e.g., inverse,
shifted blending, etc., for the parameters. Instead we show, in what follows, that the
operation (2.32) can be obtained directly, without the Youla parametrization. To do
so, observe that

I − PK = (I − PK0)(I − SpR1)
−1,

thus
(
I S−1

u K
0 I − PK

)
=

(
I S−1

u (K0 + Su R)

0 S−1
o

) (
I 0
0 (I − SpR)−1

)
.
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Then, according to (2.30) we have

(
Su K

−Sp I

)
=

(
Su K0

−Sp I

) (
I R1

0 I

) (
I 0
0 (I − SpR1)

−1

)

(
I S−1

u (K0 + Su R2)

0 S−1
o

) (
I 0
0 (I − SpR2)

−1

)
. (2.35)

Now, keeping in mind that

R = MΓ −1
P,K0

(K ) = M
Γ −1
P,K0

⎛

⎝ I K
P I

⎞

⎠
(0K ) = M

Γ −1
P,K0

⎛

⎝ Su K
−Sp I

⎞

⎠
(0K ),

the assertion follows after evaluating (2.35).
We have already seen that {0, K0} ⊂ RK0 . Moreover, we have seen thatQ ⊂ R

Y
K0

by an identification of Q → Ṽ QV , i.e., R → Q. It turns out that this inclusion is
also a coordinate free property, i.e., the inclusion holds regardless the existence of
any coprime factorization.

Theorem 2.4 The inclusion Q ⊂ RK0 holds.

Indeed, by taking a controller K ∈ KK0 , where

KK0 = { K = Fl(ΨK0,P , Q) = K0 + Q(I − SpQ)−1 | Q ∈ Q}, (2.36)

after some standard computations, that are left out for brevity, we obtain

(I − PK )−1 = (I − SpQ)(I − PK0)
−1 (2.37)

(I − K P)−1 = (I − K0P)−1(I − QSp) (2.38)

(I − PK )P−1 = −(I − SpQ)Sp (2.39)

K (I − PK )−1 = −Sc + (I − K0P)−1Q(I − K0P)−1−
− (I − K0P)−1Q + Q. (2.40)

Thus KK0 ⊂ GP , as desired.
From a mathematical point of view, there is a small missing here. When a double

coprime factorization exists, we should also prove that the set defined by (2.23), and
the set defined by (2.28) are equal, i.e., RY

K0
= RK0 . But this is equivalent to the

fact that the Youla characterization of stabilizing controllers is exhaustive. This is a
highly nontrivial issue and it is beyond the scope of this paper to address this topic
in general. We should mention, however, that this property holds for discrete time
systems, see, e.g., [12].
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2.6 From Geometry to Control

As it was already pointed out in the introduction of this paper we have found very
useful to formulate a control problem in an abstract setting, then translate it into an
elementary geometric fact or construction. In the previous sections some examples
were presented to illustrate this point. Now, it is time to demonstrate the way that
starts from the abstract level and ends into a directly control relevant result.

The reader customised with system classes, like LTI, LPV (linear parameter vary-
ing), nonlinear, switching, etc. might find our presentation of the geometric ideas
quite informal.We stress that this is a “feature” of themethod. Recall that geometry—
and also group theory—does not deal with the existence and the actual nature of the
objects that are the primitives of the given geometry but rather captures the “rules”
they obeys to. It gives the abstract structures that can be, for a given application,
associated with actual objects, i.e., responds to the question “what can be done with
these objects” rather than “how to synthesise the object having a given property (e.g.,
stability)”.

We illustrate this fact by the example of the Youla parametrization. A basic knowl-
edge is to place the topic in the context of finite rankLTI systems, i.e., those associated
with rational transfer functions R, and to interpret the result only in this context.
However, we should not confine ourselves to this class: it is clear that an LTI plant
can be also stabilized by more “complex” controllers, e.g., nonlinear ones, see, e.g.,
the IQC approach of [35]. This is also clear from the geometry: nothing prevents the
Youla parameter to be any stable plant (not necessarily linear) in order to generate
the stabilizing controller. Moreover, the nature of the parameter (e.g., nonlinear) is
inherited by the controller through the Möbius transform.

We stress that the geometric picture behind the Youla parametrization has been
applied under the hood even in the cases when the classes at hand do not have
a sound input-output description, e.g., the class of switching systems or even the
LPV systems. For the difficulties around these systems when we want to cast them
exclusively into in input-output framework see, e.g., [7]. These difficulties does not
prevent engineers to reduce the design of the switching controllers to switching
between the corresponding values of the parameters, see, e.g., [3, 26, 37]. Moreover,
the idea can be extended also for plants that are switching systems themselves, [7,
17], or LPV plants, [40].

Observe that in all these examples the authors spend a considerable amount of
effort to solve the existential problem, i.e., how to obtain K0. In all these cases this
problem is cast in a state space framework and the taxonomy of the methods revolves
around the type of the Lyapunov function (quadratic vs. polyhedral norm, constant
Lyapunov matrix vs. parameter varying) involved that is used as stability certifier.

Themotivation behind the increased complexity of the controller is that some addi-
tional performance demand is imposed either for the closed loop or for the controller,
which cannot be fulfilled in the LTI setting. Concerning closed loop performances,
the advantage of theYoula based approaches is that the performance transfer function
is affine in the design parameter.
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As an example consider the strong stabilizability problem. It is a standard knowl-
edge that in R the problem does not always have a solution. However, it is less
known that if one considers time variant (LTV) controllers, the problem is always
solvable, see [21]. Moreover, for the discrete time case the problem is solvable in the
disc algebra A or even inH∞, see [28, 29].

To conclude this section we point out some additional properties of the paramet-
rization presented in Sect. 2.5. As a consequence of (2.22) and (2.36), for every
controller K0 there is a stable perturbation ball 
, contained in the image of the ball
with radius 1

‖Sp‖ under the map x(1 − x)−1, such that the pair (P, K0 + δ) is stable
for all δ ∈ 
. In particular, if the controller K0 is strongly stabilizing, then all the
controllers from K0 + 
 are strongly stabilizing. This fact reveals the role of the
sensitivity Sp in relation to the robustness of the stabilizing property of K0. Due to
the symmetry, analogous role is played by Sc for P .

This knowledge, together with (2.32) can be exploited to generate a hole branch
of strongly stabilizing controllers starting from an initial one, K0, with this property;
e.g., one has to choose arbitrarily a stable R with a sufficiently small norm (less than
1

‖Sp‖ ) and then apply (2.32) iteratively.

2.7 Conclusions

In this work we have shown that based on the direct blending operation the set RK0

of stabilizing controllers can be defined and characterized in a completely coordinate
free way, without any reference to a coprime factorization. For practical purposes it is
also interesting to know that K0 ∈ RK0 , moreoverQ ⊂ RK0 holds as a coordinate free
property, too. We emphasize, that a fairly large set of stabilizing controllers can be
constructed (parametrized) just starting from the knowledge of a single stabilizing
controller, without any additional knowledge (e.g., factorization). This underlines
an important property of the geometric (and also input-output) view: describes the
structure of the given set—in our case those of the stabilizing controllers – but does
not provide a direct method to find any of the actual objects at hand. To do so, we
need to ensure (e.g., by a construction algorithm) the existence at least of a single
element with the given property.

Up to this point only projective geometric structures were considered. In order
to qualify a given controller K as a stabilizing one (validation problem) metric
aspects should be also considered, i.e., euclidean, hyperbolic, etc. geometries; e.g.,
concerning the Youla parametrization QK ∈ Q, or in the geometric parametrization
RK ∈ RK0 , should be decided. It is subject of further research how these geometries
find their way to control theory and vice versa.

Acknowledgements The authors would like to thank Prof. Tibor Vámos for the inspirative and
influential discussions that led us to start the research on the relation between geometry and control.
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Appendix

A state space realization for the sum of systems is given by

[
A1 B1

C1 D1

]
+

[
A2 B2

C2 D2

]
=

⎡

⎣
A1 0 B1

0 A2 B2

C1 C2 D1 + D2

⎤

⎦ , (2.41)

while the product of the systems can be expressed as:

[
A1 B1

C1 D1

] [
A2 B2

C2 D2

]
=

⎡

⎣
A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2

⎤

⎦ . (2.42)

Note that these realizations are not necessarily minimal. If D is invertible then a
realization of the inverse system is

[
A B
C D

]−1

=
[
A − BD−1C −BD−1

D−1C D−1

]
. (2.43)
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