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A B S T R A C T

The problem of Total Finite Settling Time Stabilization of

linear time-invariant discrete-time systems is investigated 

in this thesis. This problem falls within the same area of 

the well known deadbeat (time-optimal) control and in 

particular, constitutes a generalization of this problem. 

That is, instead of seeking time-optimum performance, it is 

required that all internal and external variables (signals) 

of the closed-loop system settle to a new steady state after 

a finite time from the application of a step change to any of 

its inputs and for every initial condition. The state/output 

deadbeat control is a special case of the Total FSTS problem.

Using a mathematical and system theory framework based on 

sequences and the polynomial equation (algebraic) approach, 

we are able to tackle the FSTS problem in a unifying manner. 

The one-parameter (unity) feedback configuration is mainly 

used for the solution of the FSTS problem and FSTS related 

control strategies. The whole problem is reduced to the 

solution of a polynomial matrix Diophantine equation which 

guarantees not only internal stability but also internal FSTS 

and is further reduced to the solution of a linear algebra 

problem over !R. This approach enables the parametrizat ion of 

the family of all FSTS controllers, as well as those which 

are causal, in a Youla-Bongiorno-Kucera type parametrization.

The minimal McMillan degree FSTS problem is completely solved 

for vector plants and a parametrization of the FSTS 

controllers according to their McMillan degree is obtained. 

In the MIMO case bounds of the minimum McMillan degree 

controllers are derived and families of FSTS controllers with 

given lower/upper McMillan degree bounds are provided in 

parametric form.

Having parametrized the family of all FSTS controllers, the 

state deadbeat regulation is treated as a special case of 

FSTS and complete parametrization of all the deadbeat

Hi



regulators is presented. In addition, further performance 

criteria, or design constraints are imposed such as, FSTS 

tracking and/or disturbance rejection, partial assignment of 

controller dynamics, i1-, ¿“-optimization and robustness to 

plant parameter variations.

Finally, the Simultaneous-FSTS problem is formulated, and 

necessary as well as sufficient conditions for its solution 

are derived. Also, a two-parameter control scheme is 

introduced to alleviate some of the drawbacks of the 

one-parameter control. A parametrization of the family of 

FSTS controllers as well as the FSTS controllers for tracking 

and/or disturbance rejection is given as an illustration of 

the particular advantages of the two-parameter FSTS 

controllers.

two-parameter
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Chapter 1

INTRODUCTION

The advent of the digital computers in the early fifties has 

brought an unprecedented revolution in our society. Industry 

in particular, could not escape from that. Numerous 

industrial control systems include now digital computers and 

operate using digital technology. Low-cost microprocessors 

and microcomputers are feasible solutions for even small- 

scale control systems.

This wide-spread use of digital computer technology in system 

analysis and design has arisen considerable interest among 

engineers and system theorists in the relatively new area of 

discrete system theory. Several methods, mainly as 

counterparts to the continuous-time methods, were proposed 

and applied; state-space techniques, difference equations as 

opposed to differential ones, and transformation techniques 

like z-Transform, representing the counterpart of the Laplace 

transform.

As in the case of continuous-time dynamical systems the 

algebraic approach has emerged as one of the most powerful 

methods for both analysis and design purposes. Recent work 

in this area is mainly based on what is termed as Fractional 

Representation Approach, including the Polynomial one [Des., 

2], [Kai., 1], [Kuc., 1], [Ros., 1], [Sae., 2], [Vid. , 1] , 

[You., 1], and corresponds to the use of matrix fractions 

with matrices having elements from special rings. This 

approach arises naturally from the need to describe 

algebraically the familiar problems of stability, 

realizability and performance of linear systems. As a
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consequence, most of the control system problems are reduced 

to the solution of (sets of) matrix equations and in many 

cases complete parametrization of the solutions is also 

possible [You., 1], [Kuc., 1].

The main feature in discrete-time systems is that they 

process signals that appear in discrete time instances, i.e. 

sequences. The framework of studying discrete-time systems 

in terms of sequences and in particular formal power series, 

has been used by Kalman [Kal., 1] and Kucera [Kuc., 1]. The 

most general mathematical representation of sequences is as 

formal Laurent series in one indeterminate over [R. A further 

classification of sequences as recurrent, rational, causal 

and stable, appeared first in the literature in the context 

of digital signal processing (see e.g. [Ope., 1] and 

references therein), and it was quickly adopted by control 

theorists. The aforementioned sets of sequences are either 

fields or rings, and sequential matrices can be described as 

matrix fractions with elements from these sets.

From the very early applications of discrete system theory a 

distinctive property of linear discrete-time systems was 

realized; namely, their ability to achieve steady state in 

finite time [Ber. , 1] . This problem, and especially the 

time-optimal one, has intrigued control engineers for many 

years. In the continuous-time case it has resulted in 

nonlinear bang-bang control whereas the discrete-time case 

took the form of the so-called deadbeat control. Linear 

time-invariant discrete-time controllers, mostly in the form 

of constant state feedback, can be implemented in order to 

drive the states or the outputs of the discrete system to the 

origin in minimum time and for every initial condition. A 

large variety of versions of deadbeat control have appeared 

which differ due to the type of problem considered and the 

adopted approach. The approaches that are used for the 

solution of the deadbeat problem fall in either of the 

following two broad areas: the state-space approach and the 

algebraic (transfer function) approach the later having the 

advantages of complete parametrization of solutions.
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The present work constitutes a generalization of the deadbeat 

problem. Instead of seeking time-optimum performance, it is 

required that all internal and external variables (signals) 

of the closed-loop system to settle to a new steady state 

after a finite time from the application of a step change to 

any of its inputs and for every initial condition. We call 

this problem Total Finite Settling Time Problem. Deadbeat 

response is a special case of the FSTS problem and an 

algebraic formulation of this problem, that also guarantees 

internal FST behaviour, on one hand unifies existing results 

and on the other hand provides the solution, again in a 

unifying manner, of a variety of problems like the minimum 

design problem, tracking and/or disturbance rejection in FST 

sense, optimization, robustness and simultaneous FSTS.

In the following chapter we present a quick review of the 

basic tools of the algebraic approach within the context of 

discrete-time systems and an attempt is made for a unifying 

mathematical formalism. We refine Kucera's [Kuc., 1] 

treatment of discrete-time signals as sequences and attempt 

to unify his approach with Kalman's [Kal., 1] by providing 

all necessary tools and properties linking both approaches 

together. The important feature to this is the re-establish-

ment of the isomorphism between certain classes of formal 

series in one indeterminate over [R and series expansion of 

functions over [R. In addition some basic results of rational 

vector spaces are given and solvability conditions of matrix 

equations over rings are presented.

Chapter (3) is a summary of basic concepts and results of 

linear systems theory for discrete-time systems. The ring 

isomorphism between formal series and series expansions due 

to the infinite nature of 1R, is exploited for a consistent 

treatment of discrete-time systems. To this end a unifica-

tion between the d- and z-representations of discrete linear 

systems and the computation of the McMillan degree from 

either description is made possible. The internal and the 

external behaviour of the systems is described and the 

concepts of reachabililty/controllability, observability/

3



constructibility and stability are discussed in some detail. 

In the final section the properties of the unity feedback and 

its use as the main control scheme in this thesis are 

examined.

In the fourth chapter we place the deadbeat control problem 

within the context of the FSTS problem. We attempt a

classification of the variety of deadbeat problems that have 

emerged over the past years and to survey the two main 

approaches, namely the state-space and the algebraic 

approach, for the solution of the deadbeat problem. As a 

consequence we extend some basic results. In particular, we 

extend the so-called main theorem of discrete-time systems 

given by Kalman [Kal., 2] to the MIMO case and in addition we 

obtain an explicit parametrization of the family of all 

deadbeat state regulators. It is pointed out that most of 

the work, if any, in FST has focused on deadbeat and thus 

examined special types of control problems. Therefore by 

taking the viewpoint that deadbeat response is a special case 

of the FST response, a considerable advance in the discrete 

control analysis and design can be achieved.

The core chapter of this thesis is chapter (5) where the 

problem of Total Finite Settling Time Stabilization for the 

case of SISO discrete-time systems is defined. The approach 

for its solution is purely algebraic based on the 

mathematical and system theory framework as it has been 

discussed in chapters (2) and (3) . The whole problem is 

presented as a solution to a scalar polynomial Diophantine 

equation which can be reduced to the solution of a linear 

algebra problem over IR. This leads to the Youla-Bongiorno- 

Kucera type of parametrization of the family of FSTS 

controllers as well as their parametrization according to 

McMillan degree and the solution to the minimal McMillan 

degree problem. In the case of minimally realized plant and 

controller internal (state) FST, and not only internal 

stability, is guaranteed by the adopted approach. Further 

performance related problems are also considered in a 

unifying manner, such as strong FSTS, tracking and

4



disturbance rejection of a class of signals in FST sense, FST 

controller design with partially assigned dynamics and FSTS 

for sampled-data systems exhibiting ripple-free FTS response.

Chapter (6) is the extension of the single variable case of 

the TFSTS problem to the case of multivariable time-invariant 

discrete-time systems. Using the same algebraic approach and 

a unity feedback scheme as in chapter (5), we tackle the FSTS 

problem as a solution of a polynomial matrix Diophantine 

equation. This enables the parametrization of the family 

3; (P) of causal FSTS controllers in terms of a relatively 

simple generic condition and the computation of the family 

S' (P) is reduced to the solution of a set of Toeplitz type 

linear equations over R. All the problems discussed in 

chapter (5) are extended to the MIMO case in a 

straightforward manner except of the minimal design problem 

and the parametrization of the FSTS controllers according to 

McMillan degree.

The minimal design problem is examined by providing lower and 

upper bounds for the minimum McMillan degree of all FSTS 

controllers. In addition, a parametrization of all FSTS 

controllers according to column/row degrees or complexity is 

achieved allowing for the characterization of the family 3= (P) 

according to bounds on the McMillan degree. This 

parametrization leads to the complete characterization of all 

deadbeat regulators and the development of an algorithm for 

their computation. Finally, it is shown that in the case of 

vector plants a complete parametrization of FSTS controllers 

according to McMillan degree is possible which gives rise to 

the solution of the minimal design problem as well.

In chapter (7) we define the problem of Simultaneous-FSTS 

(S-FSTS), i.e. the problem of finding a discrete, linear, 

time-invariant controller that stabilizes in FST sense a 

family of distinct, linear, discrete-time plants. The 

motivation of this work comes from the so-called Simultaneous 

Stabilization Problem (SSP) and in the first section of this 

chapter we give a brief summary of some background results
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concerning the SSP. In the sequel, we consider the general 

case of S-FSTS of a family of MIMO plants. We associate to 

this family, a family plant matrix and its properties lead to 

a classification of the various types of families as well as 

general conditions for solvability of the S-FSTS problem. It 

is shown that for the left regular and coprime families a 

solution always exists, whereas for the right regular case of 

plant families what we call Space Structure Condition (SSC), 

i.e the existence of partitioned unimodular matrices in a 

given rational space, is the most significant condition for 

the solvability of the S-FSTS problem. Alternatively, with 

an approach similar to that in Vidyasagar and Viswanadham 

[Vid., 2], we derive necessary, sufficient conditions of the 

general S-FSTS problem. For the cases of families of vector 

plants SSC becomes the prevailing solvability condition and 

testable necessary and sufficient conditions are derived. 

These conditions may be tested using tools of the minimal 

basis theory of rational vector spaces, or equivalent 

standard linear algebra tests over [R. The derivation of 

computationally verifiable criteria for the SSC in the 

general case is still an open problem and under 

investigation.

The aim of the eighth chapter is twofold. On one hand we 

consider optimization, shaping and robustness problems in 

FSTS sense within the framework of the one-parameter feedback 

scheme used so far, on the other hand we introduce a two- 

parameter feedback scheme to alleviate some of the 

limitations of the one-parameter control design. The 

optimization, shaping and robustness problems reduce to the 

minimization of an t1 -, or £°°-norm of certain vectors and 

they can be further reduced to the solution of corresponding 

finite linear programming problems where all the benefits of 

the linear programming optimization can be exploited.

In the final section of chapter (8) we replace the unity 

feedback scheme by a two-parameter control scheme. A 

complete parametrization of the family ? (P) of all causal

6



FSTS controllers is derived, now in terms of two independent 

parameters T and S e M{\R[d]) in an affine manner. The 

advantages of the two-parameter FSTS compensation over the 

one-parameter one, are demonstrated in the case of tracking 

and disturbance rejection in FST sense where it is clearly 

shown that the two performance requirements are independently 

affected by the two distinct parameters T and S.
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Chapter 2

MATHEMATICAL PRELIMINARIES:
A Unifying Mathematical Background for the Study 
of Discrete-Time Systems

2.1 Introduction

In the study of discrete-time as well as continuous-time 

dynamical systems the algebraic approach has emerged as one 

of the most powerful methods for both analysis and synthesis 

purposes. The objective of this chapter is to present a 

quick review of the basic tools of this approach and to 

emphasize their use in the study of discrete-time control 

systems in particular. Furthermore, an attempt is made to 

provide a unifying mathematical formalism for the topic of 

discrete-time systems which is the subject of this thesis.

The notion of sequences - infinite as well as finite - over 

the field [R of real numbers is introduced and a 

classification is given for control purposes. The framework 

for studying discrete-time systems in terms of sequences, or 

formal power series has been used by Kalman [Kal., 1] and 

Kucera [Kuc., 1]; in the present chapter we attempt to unify 

their approaches by providing all necessary tools and 

properties linking them together. In this context, 

polynomials are formal polynomials defined as finite causal 

sequences and are regarded as algebraic objects over R rather 

than polynomial functions on IR. It turns out that there is a 

relationship between the two polynomial notations which 

becomes a ring isomorphism when they are defined over an 

infinite field like R [Zar., 1].
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In the sequel, fractions of sequences, sequential matrices 

and matrix fractions are introduced, the Smith form and 

Smith-McMillan form of a matrix are defined and some basic 

results on the algebraic structure of rational vector spaces 

are presented. Finally, necessary and sufficient conditions 

for the solution of matrix equations over rings are given and 

a parametrization of solutions, when possible, is presented.

2.2 Sequences - Formal Laurent and Power Series

Consider any field 3: and let Z be the set of integers (posi-

tive, negative or zero) and IN be the set of natural numbers.

Definition 2.1: We shall denote by 3=2 the set of all 

infinite sequences

f = {f , f ....,f ;f ....,f ,...} , f e $ and n € [N (2 . la)
1 -n -n+1 - 1 0  k ‘ k

By convention we separate the elements of negative and non-

negative indices by a semicolon. Alternatively, an f € f2 

may be represented by

f = {f , f , . . . , f , . . . } f e cF and n e Z (2.1b)
1 n n+1 k ‘ k

and it describes a mapping k i---> f̂  from the set of

integers into the set &.

□

We can introduce now the two binary operations 3^ x 3^ i---»

3^ of addition and multiplication between elements of 3^

and the binary operation 3: x 3=2 i---> 9^ of multiplication

between elements of 3- and elements of 3=2 as it is shown 

below:
Z

a. pointwise addition: the pointwise sum of f, g e 9- 

is an h e 3^ such that

h = (f + g) := f + g
n n n n

b. convolutory multiplication: the convolution product

of f,g is an h e 9^ such that
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h = (f*g) := Y f a
n n £_< 1 m

1 + m = n

c. multiplication between f e 3; and g e ff2 : the pro-

duct of f e S' and g e 3^ is an h e 3=2 such that

h = (fg) := fg
n n n

It is simple to establish that with the aforementioned two 

operations (a) and (b) , becomes a field.

Theorem 2.1 [Bur., 1]: Under the operations of pointwise

addition and convolutory multiplication, S'2 forms a field. 

The zero element of 3^ is the sequence {0; 0,0, . . . } and the 

identity element is the sequence {0;1,0,0,...}.

□

The subset of all sequences of f2 of the type iv = {0;a,0,...} 

a e & constitutes a subfield of S'2 isomorphic to S'. 

Therefore, we shall no longer distinguish between a e % and 

{0;a , 0, . . . } e 3=2 . The elements of 3-, regarded as sequences, 

will be called constant sequences, or just constants.

Definition 2.2: We call the sequence {0;0,1,0,0,...} an in-

determinate and we will denote it by x.

□

Clearly, {0;a ,0,...}*{0 ; 0,1,0 ,... } = {0;0,a,0, . . . } = ax.

Also, for each k e Z+ the (convolution) power xk := x*x*...*x 

with k factors, is the sequence xk : T. i---> & with (xk) = 8
i ik

V i e Z and 5 the Kronecker delta, as it can be shown by 

induction on k. The inverse of x, denoted by x~l, is the 

sequence x 1 = {1; 0, . . . , 0 , . . . } and x~k-.= x~1*x~1* . . . *x~1 with 

k e TL factors, is the sequence with (x~k) = 8  V i e Z .
+ i i(-k)

Hence, by defining by x the identity sequence, xk k e Z, 

is a sequence of zeros except for the element 1 at the kth 

position. Accordingly, the product
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{0 ; a , 0 , . . . } *xk

{0;0,0,. ..,0,3,0,...}, k £
<--  k + 1 -- »

{a , 0 , . . . , 0 ; 0, . . . } , k < 0
<—  - k -- »

k= ax (2 .2 )

is the sequence with zeros everywhere except at the kth 

position, where its value is a e f. Therefore, any sequence 

f e 3^ can be written in the form of a formal Laurent series

f = f xn + f xn+1 + f xn+2 + ■ • •, n e Z fixed (2.3)
n n+1 n+2

Remark 2.1: It should be emphasized that x is simply a new 

symbol, or an indeterminate over 31, totally unrelated to the 

field 3: and in no sense represents an element of 3L In fact, 

x is an element of 3=Z and serves as a 'position-marker' in 

the sequence. The series (2.3) is formal, it should not be 

interpreted as a function of x and there is no question of 

convergence whatsoever; it is just a convenient way of 

writing the sequence (2.1b).

□

The series notation (2.3) will be adopted to represent the 

elements of 3^ and 3^ itself will be denoted as 3-<x> and 

shall be called the field of formal Laurent series over 3-. To 

this extent, an element f e 3^ with indeterminate x will be 

denoted as f (x ). An important definition in connection with 

3=<x> is that of order given below.

Definition 2.3 [Kuc., 1]: If f = £ ^kxk i-s a nonzero element 

of 3:<x>, then the smallest integer n such that xn appears in 

the sequence is called the order of f and is denoted by 

x[f) . By convention r({o}) = oo.

□

The following result may be readily established.

Theorem 2.2 [Bur., 1]: If f, g are nonzero elements of 3;<x>, 

then
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a. either f + g = 0, or x(f+g)  ̂min{x(f),x(g)}

b. x (f*g) = x (f) + x (g)

□

Using the notion of order we can define an important subring 

of 9-<x>, namely the ring of formal power series.

Definition 2.4: The set of all sequences in one indeterminate 

x over 9 with nonnegative order is called the set of formal 

power series over 3= and is denoted by 3= [ [x] ] . Therefore, a 

sequence f of 3=[ [x] ] can be written in the form

f = f xn + f xn+1 + f xn+2 + • • • , n e DM fixed
n n+1 n+2

□

Under the operations of pointwise addition and convolutory 

multiplication the set 9= [ [x] ] forms a ring and the structure 

of it is given by the following theorem.

Theorem 2.3 [Bur., 1]: The set of formal power series 3= [ [x] ]

is a principal ideal domain. The units of 3= [ [x] ] are the

sequences of zero order, the primes of & [ [x]] are the

sequences of order one and the nontrivial ideals of 3= [ [x] ]

are of the form (xk) , where k e Z ; in fact 9; [ [x] ] is a local+
ring with (x) as its maximal ideal.

□

A simple relation between the ring of formal power series 

31 [ [x] ] and the field of formal Laurent series 3^ exists.

Theorem 2.4 [Bur., 1]: SF̂  is the field of quotients, or the 

field of fractions of the domain 3-[ [x] ] .

□

Remark 2.2: Every f e 9: can be expressed as a quotient 

f = ^ jyl = b (x) *a_1 (x) a (x) , b{x) e 3= [ [x] ] and a (x) s 0a. \X)

-1 Hwhere a (x) is the inverse in 3: of a (x) and

x (f) =x (b) -x (a) .The representation of f is not unique and 3^
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is the set of equivalence classes of these fractions. The 

representative of each equivalence class is a fraction with 

coprime numerator and denominator sequences.

□

Example 2.1: Let a {x) = a xn + a xn+1 + ••• e 9 [ [x] ] , and
n n+1

b {x) = b xm + b xm+1 + ••• e 9 [ [x] ] . Then, there is the
m m+1

inverse of a (x) in &<x> denoted by g ix) = a-1 {x) , i.e. g*a =

{0;1,0, . . . } . Therefore, r(g) = -x(a) = -n and

a (x) = g (x) = g x + g x + •••
-n -n+1

where

a g =
n -n

1
*-n =

1/an
a g
n -n+1

+
a n+l^-n =

0 .-. g
-n+1

= -a g /a
n+1 -n n

a g
n -n+2

+
a n+l9r-n+l

+ a g
n+2 -n

= 0 .-. g
3 -n+2

Hence,

b{x)*a~1{x) = b g  xm~n+{bg +b g )xm~n+1+
m -n m -n+1 m+1 -n

is a Formal Laurent series with x (b*a_1) = m-n.

□

Notation. From now on we will drop the symbol * for the 

convolutory multiplication. It will only be used when it is 

not clear from the context whether we refer to convolutory 

multiplication, or to pointwise one. In fact, under the 

formal series representation, convolutory multiplication 

becomes the usual multiplication.

Example 2.2: Let f = {f̂ , f^+i, . . . } and g = {g,g

f. , g. e 9-. The convolutory multiple of f, g is then

f*g = (f g ,f g +f g,...}
a 1 na k' n^k+1 n+l^k J

Consider now the power series representation of f and g, i.e. 

f = f x + f x +•••, and g = g x + g x +■••
n n+1 a ^k ^k+1

The usual multiple of f and g, treating x as variable is then

j. n+k , j, „ , n+k+1fg = f g x + f g +f g )x
n3 k n^k+1 n+l3 k
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which is nothing more than the formal power series repre-

sentation of f*g.

□

2.2.1 Polynomials and polynomial fractions over a field

An important subring of the domain of formal power series 

3= t [x] ] is the ring of formal polynomials defined next.

Definition 2.5: The set of all finite formal power series

^ [ [x] ] is called the set of formal polynomials in one 

indeterminate x over the field 3F and is denoted by & [x] ,

i . e . :

& [x] = { f + f x + - - - + f x n I f  e 9 }
1 0 1 n 1 k J

□

According to the above definition, polynomials are sequences 

with nonnegative order and all but a finite number of 

elements zero. Therefore, they are regarded as algebraic 

objects with the indeterminate x over rather than as 

functions of z. It is readily verified that

Theorem 2.5 [Har., 1]: The set of polynomials & [x]

constitutes a subdomain of [ [x] ] . The units of & [x] are

the constant polynomials f (x) = fQ which are viewed as

isomorphic with the nonzero elements of '¡F.

□

A concept similar to that of the order of a sequence is that 

of the degree of a polynomial defined below.

Definition 2.6 [Kuc., 1]: Given the nonzero polynomial

f = f + ••• + f xn in ? [x] , we call f , f * 0 the leading 

coefficient of f and the integer n is referred to as the 

degree of the polynomial f and it is denoted by d{f) . By 

convention, the degree of the zero polynomial is defined as 

-oo. Also, f is called monic if f = 1 .
n

□
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Thus 5 is a function from 3= [x] to IN u {-00} and we have the 

following properties.

Theorem 2.6 [Har. , 1]: For every a, b in 3= [x]

a. d {ab) = 5(a) + 5(h)

b. 5(a+jb)  ̂max{5 (a) , 5 (jb) }

c. a I b => 5 (a) i 3(f)

d. V a, b e 31 [x] with b ï 0 , 3 g,r s 31 [x] uniquely 

defined such that a = bq + r and 5 (r ) < 5  (jb) .

□

Remark 2.3: The restriction of 5 on 1 [x] - {0} is a function

8 : 1 [x] - { 0 } 1---» IN

which is a Euclidean valuation due to the properties (c) and 

(d) of theorem (2.6) . Therefore, the integral domain 3-[x] 

is a Euclidean Domain and thus a Principal Ideal Domain as 

well as a Unique Factorization Domain. [Har., 1].

□

Definition 2.7 [God., 1]: Let f = f + f x  +••■+ f xn e 1 [x]
0 1 n

and S’ be an overfield of 1 . Then, for every u e S we write 

f (u) for the element f + f u + - - - + f u n e S  and we call
0 1 n

f (u) the value of f at u. If f (u) = 0, then u is said to be

a zero of f, or a root of f.

□

It can be easily shown that for a fixed u e S the map

f 1--» f (u) is a ring homomorphism from 3-[x] into S [Har.,

1] . In the sequel, we give some important properties of the

ring of formal polynomials 1 [x]. These properties help us to 

establish the relationship between formal polynomials and 

polynomial functions, which plays a key role in the present 

work; for this reason we give also their proofs as well. For 

an extensive treatment of the subject one could look in texts 

of abstract algebra e.g. [God., 1], [Har., 1], [Van., 1], 

[Zar. , 1] .
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Lemma 2.1 [Har., 1]: Let f e 3 [x] and a e ^ . Then, a is a 

root of f, if and only if. x - a divides f.

Proof. From theorem (2.6), 3 g, r e 3 [x] : f = {x - a) q + r 

and 3(r) < d (x - a) = 1 .  Therefore, r is a constant and

applying the isomorphism f \---» f (a), i.e. substituting x = a

in the above equation, we have f(a) = r = 0 because a is a 

root of f. So, f = (x - a)q, i.e. x - a divides f.

□

Theorem 2.7 [Har., 1]: A polynomial f e 9:[x] of degree n  ̂ 0 

has at most n distinct roots in ?.

Proof. We prove theorem (2.7) by induction on n . If 3(f) is 

zero, then f is a nonzero constant and therefore, has no

zero, so that the theorem is true for n = 0. Suppose that it

is also true for n - 1 and a is a root of f. Then according 

to lemma (2 .1 ), f may be written as f = {x - a)q , where the 

degree of q is n - 1 (theor. 2.6). If b is another root of f

in 9= we have 0 = (£> - a) q (b) and so the zeros of f in 9g

other than a are the zeros of g. Since g is of degree n - 1, 

it has at most n - 1 zeros in cF by the inductive hypothesis 

and so f has at most n roots in %.

□

We consider now the relationship between the formal poly-

nomials already defined and the polynomial functions. Let
S'

91 be a field and 9; the set of all functions from ? to f.
9-

Then ^ becomes a ring under the pointwise operations given 

by
(f + g) (u) := f [u) + g (u)

(-f) (U) := -f(U)

(fg) (u) := f (u)g(u)
9;

for f,g e 9= and u e 9=.

Definition 2.8 : Let f = f + f x + • • •
0 1

associate with f a function 0(f) : 9= h

0 ( f ) ( u ) = f  + f u + • ■ ■ + f un
0 1 n

+ f xn e 9= [x] . We can
n

— > 9; as follows

(u 6 90 (2.4)
□
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Thus 0 is a map from 3= [x] to 31 ; in fact, <p is a ring homo-

morphism as it can be shown using the pointwise operations in 
3;

9 [Har., 1] . Then, im</> is called the ring of polynomial 

functions on 3- and ker0 consists of all elements of 3: [x] 

which vanish identically on 31. Therefore, two polynomials f, 

g e % [x] determine the same function on 3= if and only if 

f - g e ker0 and this is precisely the reason why we cannot 

in general identify a formal polynomial in 31 with a poly-

nomial function on 3 . The criterion for this to be true,

i.e. the map 0 to be injective, is stated below.

Theorem 2.8 [Har., 1]: The map 0 : 9= [x] 1---> 9 is injective,

if and only if 3= is an infinite field.

Proof. Let 3; be infinite and f e ker0. Then, f (u) = 0 for 

all u e 3;, i.e. every element of J is a root of f. Since any 

nonzero element of 3- has only finitely many roots then, f has 

to be zero. Therefore ker0 = {0 } and 0 is injective. Assume 

now that 9= is finite and let u , . . . ,u be its elements. So, 

(x-u ) • ••(x-u ) is a nonzero element of 3; and has every 

element of 9: as its roots. Hence it belongs to ker0 and so, 

ker0 * {0 } if 3; is finite.

□

Remark. 2.4: According to theorem (2.8) the notions of formal 

polynomials and polynomial functions coincide when they are 

defined over an infinite field. Therefore,

f = f + f x + • ■ • +  f xn f e 3=
0 1 n k

can be treated either as a finite sequence or as a polynomial 

function and x is an indeterminate i.e. a sequence by itself, 

or a variable in 3F correspondingly. We will use italic x 

to denote that x is an indeterminate and normal x if x is 

treated as variable. If no distinction is to be made between 

the two notions then italic x is used indiscriminately.

□

Example 2.3: Consider the ring $ [x] of formal polynomials in 

one indeterminate x over the Boolean field B = {0,1}. The

3-
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formal polynomial

-r 2f = X + X

is quite distinct from the formal zero polynomial in $ [x] ,

but f{ 0) = f{ 1) = 0 i.e. f = 0 V x e $. So, f e ker0, where
$

0 : SB [x] i > SB and as a polynomial function cannot be

distinguished from the zero polynomial.

□

Remark 2.5: Formal polynomials in SB [x] are used in automata 

theory and in modeling of digital systems such as flip-flops, 

shift registers etc., where both the independent variable of 

time and the amplitude of the signals processed are 

quantized. It is an approximation, justified by the minimal 

effect of the amplitude quantization, that polynomials and 

sequences in general, are considered over the field [R of real 

numbers when treating discrete control systems.

□

We close this section by a brief discussion on fractions of 

polynomials. As both formal polynomials and polynomial 

functions are integral domains we can construct their fields 

of fractions.

Definition 2.9: We call rational fractions or rational

sequences in one indeterminate x over ?, the field of 

fractions of the formal polynomials and we denote it by 9 (x). 

Accordingly, the field of fractions of the polynomial 

functions is called the field of rational functions in 9= and 

is denoted by % (x).

□

Remark 2.6: Since 3 [x] is a subdomain of [ [x] ] , the field

of rational fractions is isomorphic to a subfield of the 

field of formal Laurent series !F<x> (theorem 2.4) . 

Therefore, the field of rational fractions is a set of 

sequences that can be written in the form (2.3) of formal 

Laurent series. We call this subfield of formal Laurent
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series the field of rational formal Laurent series and for 

this reason rational fractions are called rational sequences

as well.

□

In the case where 31 is infinite, 9 (x) and 9-(x) are isomorphic 

as it can be shown with the help of the following lemma.

Lemma 2.2 [Zar., 1]: Let R and R' be two isomorphic integral 

domains, let Tq be an isomorphism of R onto R' , and let if and 

if' be respective fields of fractions. Then Tq can be 

extended in a unique manner to an isomorphism T of if onto if' .

□

Theorem 2.9: The field of rational fractions 9 (x) in one in-

determinate x over 3= is isomorphic to the field of rational 

functions ^(x) in 9, if and only if 9 is an infinite field.

Proof. According to theorem (2.8) the integral domain of

formal polynomials 3; [x] is isomorphic to the integral domain 

of polynomial functions ^[x], if and only if ? is an infinite 

field. Since 3: (x) and 3= (x) are the respective fields of

fractions of 3= [x] and 3 [x] they are isomorphic if and only if 

31 is an infinite field (lemma 2 .2 ) .

□

Many times it is necessary to define the value of a rational 

fraction in one indeterminate x over 3= at points whose 

coordinates lie not in ^ but in an arbitrary extension 

field of OF. At the most elementary level it is clearly 

indispensable to be able to attribute a value to a rational 

fraction with real coefficients at a point with complex 

coordinates. We have then the following definition.

Definition 2.10 [God., 1 ]: Let S' be a field, 3 a subfield

of S and f a rational fraction in one indeterminate x over 9 . 

We say that f is defined at u e S or that u is substitutable

in f, if there exist polynomials a, b e f[x] such that

f = b/a and a(u) * 0
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If u e 'S is substitutable in f we define the value of f in u 

as the element b(u)/a(u) of 'S and we write

f(u) = b(u)/a(u) and a (u) * 0

□

Example 2.4 [God., 1]: u = 0 is substitutable in the ratio-

nal fraction

X / (X + x)

because this fraction can also be written as

x/(x + 1 )

in which form it is clear that the denominator does not 

vanish at u = 0 .

□

Definition 2.11 [God., 1]: Let f e ? (x) and S’ be an overfield 

of 9. Then u e S is a pole of f if f is not defined at u and 

f is defxned at u.

□

Remark 2.7: It is clear from definitions (2.10) and (2.11)

that a rational fraction f e & (x) is defined at u e S if and 

only if there are uniquely defined coprime polynomials a, b 

and a is monic, such that f (u) = b(u)/a(u) e S and a(u) * 0 . 

In that case, u is a pole of f if and only if u is a root of 

the denominator a e 9 [x].

□

To summarize, any rational Laurent series f (x) over a field 9= 

of the form

f {x) = f xn + f xn+1 + f xn+2 + • • • , n 6 2 fixed
n n+1 n+2

can be regarded in two different ways. Either is formal,

i.e. f(x) is a rational sequence, x is an indeterminate over 

^ and no question arises of convergence whatsoever, or it is 

a rational function in 9= which associates with at least one 

element x e 9; another element f {x) 6 9=. In the case where & 

is infinite no distinction need be made between the two 

points of view and f {x) can be treated either as a rational
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sequence, or as a rational function. In the most elementary 

case 9- = IR, the set of real numbers, and as overfield of [R is 

usually regarded C, the set of complex numbers. Then

Remark 2.8: C is the algebraic closure of [R, i.e. the roots

of polynomials with one indeterminate x over !R lie in C and

the isomorphism between formal polynomials over IR and

polynomial functions in C with coefficients in [R is still

valid [God., 1], [Zar., 1] . The irreducible polynomials in

[R [x] are of the form /3 +/3 x, or y +y x+y x2 with y2-y y <0 .
0 1 0 1 2  1 0  2

We can also compactify the complex plane C by including the 

point at infinity and we can then talk about poles of 

rational fractions at infinity in the usual way.

□

Example 2.5: Consider the ring [R (x) of rational sequences in 

one indeterminate x over the field of real numbers IR. Then, 

any f {x) e IR (x) can be written in the form of formal Laurent 

series as

f (x) = = f X + f  X + •■• , n € z (2.5

a (x) , b(x) 6 IR [x] are coprime. Since IR is an infinite field, 

f(x) can be treated as a rational function as well with x e C 

as variable (theor. 2.9, rem. 2.8). Therefore there is at 

least an x = x e C such that the series (2.5) converges. 

Due to this fact, it can be proved [Chu., 1], [Opp., 1] that 

series (2.5) converges uniformly V x e C : |x| < \x \ , and 

x * 0, if t {f) = n < 0 .

The greatest circle about the origin (the origin excluded if 

n < 0 ) such that the series converges, is called the circle, 

or region of convergence of the series (2.5). The series 

cannot converge at any point x^ outside that circle, for in 

that case it would converge everywhere inside the circle 

centered at the origin and passing through x̂ . The first 

circle could not then be the circle of convergence.

It can also be proved [Chu., 1] that series (2.5) represents 

a continuous function of x at each point interior to its 

circle of convergence, and since it can be represented by a
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rational function due to the isomorphism between rational 

fractions and rational functions, the region of convergence 

is bounded by the poles of fix) = b{x)/a(x). Therefore the 

roots of a{x) cannot lie inside the region of convergence, 

and for this reason the region of convergence is called 

forbiden region as well.

Consider for example the formal series

f T
{Q;1 )
0 ; 1 , -1 }

{ 0 ;1 ,1 ,1 , . . .} or

fix) bjx) 
a (x)

1
1 -x 1 + X + x2 +•■•

Then the series £”_0-x’n treated as a function, converges V x e 

<C : \x\ < 1 , and therefore it can be represented by the 

rational function 1/ (1-x) within the region of convergence. 

In other words, the series £°° xn represents the power series 

expansion of the function

The function

f (x) = — ^  |x| < 1

ft(x) 1
1-  X X * 1

is defined and analytic everywhere except at the point x = 1 

and is the analytic continuation of f into the domain of all 

points x e <D-{l} [Chu., 1] . It represents the series Y00 xn
n = 0

only within the region of convergence S . The region of 

convergence S is the open unit disc D[0 ,1 ) and is bounded by 

the pole of f ix) at x = 1 .

□

2.2.2 Further classification and properties 

of the formal Laurent series

For the study of linear dynamical systems, discrete and 

continuous the field which is considered is the field of real 

numbers [R. In the case of discrete-time systems the 

indeterminate will be denoted by d and the field of formal

22



Laurent series over (R by IR<d>. An element f of \R<d> will be 

denoted by

f = f dn + f dn+1 + f dn+2 + • • -, n € Z fixed (2.6)n n+1 n+2

Since IR is an infinite field, series (2.6) can be regarded 

either as sequences over IR or functions in IR, at least for 

the rational case.

If the series (2.6) is formal then f is a rational sequence 

and can be considered as the impulse response of a linear, 

lumped, discrete-time system though not necessarily causal as 

it will be shown in detail in chapter (3). In this case, d = 

{0 ;0 ,1 ,0 ,...} is a sequence by itself, or an indeterminate, 

it serves as a position marker and the powers of d represent 

the discrete time.

Otherwise, the series (2.6) can be considered as a rational 

function in IR with d being a variable. In fact, since C the 

field of complex numbers, is the algebraic closure of IR, 

series (2.6) can be regarded as a function from C to C with 

real coefficients (remark 2.8) . In this case, the Laurent 

series can represent the transfer function of a linear, 

lumped, discrete-time system, and if we replace d e C with 

z 1 the series (2.6) is no more than the z-Transform [Jur.,

1 ] of the impulse response f = {f ,f , . ..,f , . . . } .

Some basic definitions and results for the sequences in IR<d> 

which are related to system properties are given next.

Definition 2.12 [Kuc. , 1]: A sequence f e IR<d> is called

recurrent, if there exist nonnegative integers r, s and reals 

A , ... ,X such that
1 r

f. + A f + ••• + A f  = 0, j = n+s,n+s+1,... (2.7)j+r 1 j+r-1 r j

where n is the order of f. The set of recurrent sequences 

will be denoted by IR{d } .

□
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The meaning of the recurrence condition (2.7) is that the 

sequence f can be generated by a linear system. The relation

(2.7) is not unique in the sense that recurrence relations of 

different length can represent the same sequence. For this 

reason we will always consider that (2.7) is of a minimum 

recurrence length. The following theorem clarifies the 

foregoing statements.

Theorem 2.10 [Kuc. 1]: The set R{d} of recurrent sequences

is isomorphic to the field R (d) of rational sequences.

Proof. According to definition (2.9) each rational sequence 

f = f dn + f dn+1 + f dn+2 + • • • (2 .8 )
n n+1 n+2

can be uniquely expressed as a polynomial fraction £>(d)/a(d) 

with a, b coprime in R (d) and n=x (f) =z {b) -x (a) . Therefore,

dn (u + ¡1 d+ ■ • ■ +11 cf)
0 1 m

1+X d+---+X d r
1 r

J i + 1  j -  ,n+2f d + f d + f d + • • •
n n+1 n+2

By multiplying f by a and equating to the sequence b we have 

the recurrence relation (2.7) for the sequence f. Hence, 

f is a recurrent sequence. On the other hand, if f is 

recurrent there exist integers r, s and reals X^,...,X such 

that

f + X f + • ■ • +  X f =0, j = n+s,n+s+1,...
j+r 1 j+r-1 r j

Setting a (d) = d* [1+X^d+-■-+X^dr) with k= |min{r (f) , 0 } I , we

deduce that b (d)=f(d)a(d) is a polynomial. Moreover, a,b are 

coprime, because if they were not, a recurrence relation of 

smaller length would have existed.

□

Remark 2.9: The significance of recurrent sequences is due

to the fact that they can be expressed as polynomial 

fractions. Because R{d} is isomorphic to R(d), R{d} is also a 

field and we can refer to both fields of recurrent and 

rational sequences with the same notation R(d).

□
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Example 2.6: Consider the rational fraction

fid) bid) 
a id)

1 + d

d2+3d3+2d4

fid) is a rational sequence which can be obtained by dividing 

bid) by aid) in ascending powers of d; it consists in finding 

for each integer r^O, a polynomial f of degree  ̂ r such that 

b id)-f id) a id) is a multiple of dr+ . The polynomial f is 

obtained from the formal Laurent series fid) by deleting the 

terms of degree > r [God., 1] . Here we apply a method in 

accordance to the results of section (2 .2 .1 ), i.e. fid) is a 

sequence of order xif) = z (Jb) - x(a) = 0 - 2 = -2 , and can be 

written as

fid) = bid) 
a id)

1 +d ,-2 _ -— 1 _ — - — -2
---------  = f d +f d +f +f d+f d + •
,2 .3 4 -2 -1 0 1 2d +3d +2d

Therefore £>(d) = a id) f id) , or

1 + d = f + f d + f d2 + f d3+ f d V  
- 2 - 1  0  1 2

+3f d+3f d2+ 3f d3+3f d V  -2 -1 0 1

+2f d2+2f d3+2f d V  
- 2  - 1 0

Equating corresponding terms of both sequences, we have

f = 1  
-2

f + 3  f = 1  
-1 - 2

f + 3f + 2f
j+2 j+1 j

= 0 j = -2 ,-1 ,0 ,1 ,2 ,

(2.9)

which shows that f id) is a recurrent sequence with Aj = 3 and

A. = 2 .
2

Suppose now that fid) is a recurrent sequence satisfying the 

recurrence relations (2.9). Then fid) can be written as ra-

tional fraction. Define aid) e R [d] as aid) = dk (l+^d+A^2) 

where Ai = 3, = 2 and k = |min{rif),0 }I = |min{-2 ,0 }| = 2 .

Therefore, aid) = d2 (l+3d+2d2) and bid) = a id) f id) = 1+d due 

to the recurrence relations (2.9). So

fid) = bid) 
a id)

1 + d

d2+3d3+2d4
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If aid), bid) were not coprime in \R [d] , e.g. a' id) = (2+d) a (d) = 

d2 (2 + 7d+7d2+2d3) and jb' (d) = (2+d) jb (d) =2+3d+d2, then the frac-

tion b' id) /a' id) gives rise to the same recurrent sequence 

f(d) as above, but the recurrence relation is

2f. + 7f. + 7f + 2f = 0
j+3 j+2 j + 1 j

which is longer than that of (2 .9 ).

j = -2 ,-1 ,0 ,1 , . . .

□

Definition 2.13 [Kuc., 1]: A recurrent sequence f is said to 

be causal and is denoted by R°(d), if it has a nonnegative 

order. In addition, if f has a positive order it is called 

strictly causal.

□

Clearly, IR° id) is a subset of formal power series [R , or 

[R [ [d] ] . A causal sequence f may be represented by

f = f + f d + f d2 + • • • (2.10)
0 1 2

The following properties of the set 1R° (d) may be readily 

established and their proof is omitted.

Proposition 2.1 [Kuc., 1]: The set of causal sequences \R° id) 

is a subdomain of tR [ [d] ] with the following structure:

a. The units of \R° id) are sequences of order 0, i.e.

f = f + f d  + f d2 + • • • , f *0 (2 .1 1 )
0 1 2  0

b. The primes of [R° id) are sequences of order 1, i.e.

f = f d  + f d 2 + - - - ,  f * 0 (2 .12)
1 2  1

Definition 2.14 [Kuc., 1]: A causal sequence f is called

stable, if it converges to zero, i.e.

V k  e \M 3 eik) e IR : If |<e V k^k0 0 k 0

The set of stable sequences will be denoted by IR+ id) .
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Proposition 2.2 [Kuc., 1]: The set IR+(d) of stable sequences 

is an integral domain; moreover, \R+ (d) is a subdomain of 

IR° id) .

□

The following proposition gives an alternative and very- 

important, from the system theoretic point of view, 

characterization of the stable sequences.

Proposition 2.3 [Kol., 1]; Let f={f , , . . . , f , . . . } e IR° (d) 

Then, f e IR+(d) if and only if f is absolutely summable, i.e.

00

E l f fcl < « (2.13)
k= 0

C

The algebraic structure of IR+(d) is more complicated than 

that of IR°(d) and is left to be examined at the end of this 

section where it is shown that both domains can be expressed 

as polynomial fractions. It can be easily observed that the 

set IR [d] of polynomials in one indeterminate d is a subdomain 

of the set of stable sequences IR+(d) and the following 

properties hold true.

Corollary 2.1: The rings of sequences IR [d] , [R+ (d) , IR° (d) and 

DR (d) are at least integral domains and the following 

inclusion properties are valid

[R [d] c [R+ (d) c IR° (d) c IR (d)

where by "c" we denote subring property.

□

Some important classes of polynomials are defined next which, 

with lemma (2.3) to follow, help to give a fractional 

characterization of all recurrent sequences.

Definition 2.15 [Kuc., 1]: Let f e IR [d] . Then,

a. f is called causal if it is a unit of R°(d).

b. f is called stable if it is a unit of IR+(d) .
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Recalling the properties of the ring R° (d) we may characte-

rize the family of causal polynomials.

Proposition 2.4: A polynomial f = fQ + f^d +---+f dn e [R [d]

is causal if and only if fQ * 0, or f(0) * 0.

□

The characterization of stable polynomials is more compli-

cated and will be examined later on. First we state the 

following important lemma.

Lemma 2.3 [Zar.f 1]: Any ring between a Euclidean domain R

and the quotient field of R is a quotient ring of R with 

respect to some suitable multiplicative system in R.

□

Since [R [d] is a Euclidean domain and the sets of causal and 

stable polynomials are such suitable multiplicative systems 

in IR td] , we have the next theorem.

Theorem 2.11: Let f = b/a e [R (d) be a coprime polynomial

fraction. Then

a. The ring of causal sequences is a quotient ring of 

[R [d] with a being a causal polynomial.

b. The ring of stable sequences is a quotient ring of 

[R [d] with a being a stable polynomial.

□

Theorem (2.11) allows for the characterization of the units 

of the various rational sequences.

Remark 2.10: The units of the causal and stable rational

sequences are characterized as follows:

a. The units of IR° (d) are rational fractions with both 

numerator and denominator causal polynomials.

b. The units of \R+ id) are rational fractions with both 

numerator and denominator stable polynomials.

For this reason we call the units of R° (d) bicausal sequences 

and the units of IR+(d) bistable sequences.
□
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In the classification of the recurrent sequences so far we 

have used polynomials as formal polynomials; hence, causal 

and stable rational sequences and causal and stable 

polynomials have been treated as algebraic objects with d as 

indeterminate over [R, rather than as functions of d. We 

define next the corresponding rational functions and we give 

the characterization of the stable formal polynomials.

Definition 2.16: Let f = b/a e [R (d) be the set of rational

functions and a, b be polynomial functions over IR with 

variable d e (D. Then,

a. the set of rational functions with denominator a a

polynomial function corresponding to a causal 

formal polynomial is called the set of causal

rational functions and is denoted by IR°(d) .

b. the set of rational functions with denominator a

a polynomial function corresponding to a stable 

formal polynomial is called the set of stable

rational functions and is denoted by IR+(d) .

□

Since R is an infinite field and the sets of formal 

polynomials IR [d] and rational sequences IR (d) are isomorphic 

to the sets of polynomial functions IR [d] and rational 

functions IR (d) respectively the following corollary may be 

readily established.

Corollary 2.2: The sets of sequences IR [d] , IR+(d), tR°(d) and 

IR(d) are isomorphic to the sets of rational functions IR [d] , 

IR+(d), IR0 (d) and IR(d) respectively, they all are principal 

ideal domains and the following inclusion properties hold 

true

IR [d] c IR+(d) c IR° (d) c IR (d)

IR [d] c !R+(d) c IR° (d) c IR (d)

where by "c" we denote subring property.

□

We examine now the characterization of the stable polynomials.
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Proposition 2.5: A polynomial sequence a e IR [ci] is stable if 

and only if its roots lie outside the closed unit disc D.

Proof. Since every stable polynomial sequence is a unit of

the ring of 

is such that

stable rational sequences then a=aQ+a d+- d
u

n

-------- -------  = f +f d+-• -+f d V  • • e R+(d) (2.14)
. ji 0 1 ka +a d+- ■ -+a d

0 1 n

But f e \R+{d) iff is absolutely summable (proposition 2.3) . 

By invoking the isomorphism between rational sequences and 

rational functions and performing the bilinear transformation 

z 1 = d, eqn. (2.14) becomes

n n-1a z +a z + *■ • +a
0 1 n

f +f z 1 + ---+f z k+---, z e £
0 1 k

(2.15)

The left-hand side of eqn. (2.15) is the z-Transform in clos-

ed form of the sequence {fk}, which is absolutely summable 

iff the roots of the denominator polynomial a(z) lie inside 

the open unit disc [Jur. , 1] . This is, due to the bilinear 

transformation, equivalent to the roots of the formal 

polynomial a (d) lying outside the closed unit disc D.

□

A test to check whether a nonzero polynomial a e [R [d] is 

stable is given by Kucera [Kuc., 1]. This test is similar to 

the table form based on the early work of Cohn [Coh., 1] and 

later on the work of Marden [Mar., 1] and Jury [Jur., 2].

We close this section by giving an alternative 

characterization of the rings of causal and stable rational 

sequences which constitutes the so called frequency domain 

criteria for causality and stability.

Remark 2.11: According to theorem (2.11) and propositions

(2.4) and (2.5), the rings of causal and stable rational 

sequences can be described as follows.
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Causal rational sequences fid) can be represented as coprime 

polynomial fractions b (d)/a(d) , where a (d) has a nonzero 

constant term aQ or a(0 ) * 0 , i.e. a(d) has no roots or f (d) 

has no poles at zero.

Stable rational sequences f (d) can be represented as coprime 

polynomial fractions b(d)/a(d), where the roots of aid) or 

the poles of fid) lie outside the closed unit disc ID [0,1] .

□

Example 2.7: Let f = {f , f, f ,...} be a causal recurrent

sequence such that f =1 , f =0 .1 , and f +0.9 f +0.2 f =0 for
0 1 j+2 j + 1 j

J = 0 ,1 ,2 , According to theorem (2.10) f can be written

as a fraction of coprime polynomials aid), bid) where aid) = 

l+0.9d+0.2d2 and bid) = 1+d, i.e.

bid) 1+dfid) = a id)
1+0 .9d+0.2d'

- = f +f d+f d + ■
.2 0 1 2

Then, f (d) has an inverse in DR° id) , i.e. fid) is bicausal, 

because £>(0)=1*0. Indeed

f"1 (d) g(d) a (d) 
” b(d)

l+0.9d+0.2d2 
1 + d e [R°(d)

Also f(d) is stable since the roots of aid), pi=-2.5 and 

P2=-2, lie outside the unit disc ID [0,1] . In fact from the 

recurrence relation

f = {0;1,0.1,-0.29,0.171,-0.096,0.052,-0.028,...}

i.e. f approaches zero as k tends to infinity. But f is not 

bistable since the root of bid) z=1 , does not lie outside the 

closed unit disc ID [0,1] and therefore the inverse g id) of 

fid) is not a stable sequence.

□

2.3 Matrices, Polynomial Matrices 

and Rational Vector Spaces

The objective of this section is to gather some of the 

fundamentals of the standard theory of polynomial and
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rational matrices [Gan., 1], [Kai., 1], [Ros., 1] which are 

essential for the further developments. The intention is not 

to give a proper review, but rather to summarize the basic 

results and introduce some notation.

Let ft be a ring and ftlxm denote the txm matrices with 

elements from ft. Then, if we define addition and 

multiplication in the familiar way, the square matrices ftmxm 

form a noncommutative ring. The units of this ring, i.e. the 

matrices in ??mxm whose inverse belongs to Rmxm, are called 

unimodular matrices. Such matrices are products of 

elementary transformations over ft -at least when ft is a PID- 

and are characterized as follows.

Lemma 2.4: A matrix U e ftmxm is unimodular, if and only if 

detU is a unit in ft. We denote such a matrix as U e U{m,ft) 

and we call it ft-unimodular.

□

Example 2.8 The [R [d]-unimodular matrices, i.e. the unimodu-

lar matrices in [Rmxm [d] , are those polynomial matrices whose 

determinants are nonzero real constants.

□

Definition 2.17: Let ft be a PID and A, A' e ^ lxm such that

A = LA'R (2.16)

where L e U{l,ft) and R e U(m,ft) . Then A, A' are said to be 

^-equivalent and this is denoted by A A' . If ft = [R, then 

they are called strict equivalent and if L = I , or R = I
1 m

they are called right-, left-equivalent and this is denoted 

by A A', A A' respectively. E E ^ ,  E^ are equivalence 

relations and the corresponding equivalence classes of A are 

denoted by E^(A), E^(A), E^(A) respectively.

□

Next, we shall denote by the strictly increasing, lexico-

graphically ordered sequences of k integers chosen from
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{ l , 2 , . . . , n } [Mar., 2]. Then we define the compound of a 

matrix as follows.

Definition 2.18 [Mar., 2]: Let A e R lxm and 1 < r  ̂ min{£,m}. 

The rth-compound of A is the [ r )x( r ) ma1:r^x whose entries 

are the minors \A[oc/l3] I, that is the determinants of the sub-

matrices defined by the rows corresponding to a e Q i and

columns corresponding to ¡3 e Q

c  U)  .
r

r, m
This matrix is denoted by

3x3Example 2.9: Suppose A e 'R and r = 2. Then

C M )  =

1,2

1,2
1.3

1,2

2.3

1,2

1,2

1.3
1.3
1.3
2.3
1.3

1,2

2.3
1.3
2.3
2.3
2.3

□

Definition 2.19: If A e Ü lxm i e m denote the columns

and a , 
—j

j e l the rows of A, then

a. if i 5 ni C M)
' i := a — 1

• • A a 
—i

called

is an 1 x 171
¿

the exterior, orrow vector and it is 

Grassmann product of the rows of A. 

b. if in  ̂l, C (A) : = a A ••• Am — 1
vector and it is called the exterior, or Grassmann 

product of the columns of A.

a is an—m
i
171

-column

An important result relating the properties of the compound 

of the product of two matrices to the product of compounds is 

the Binet-Cauchy theorem stated below.

Theorem 2.12 [Mar., 2] (Binet-Cauchy Theorem): Let A e ftlxm,

B e ??mxk and 1 s p < min{£, m, h), then

C {AB) = C (A)C (B) (2.17)
p p p

□
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2.3.1 Polynomial and rational matrices

Polynomial and rational matrices appear throughout linear 

systems theory. The basic mathematical theory of polynomial 

matrices can be found in MacDuffee [Mac., 1], Gantmakher 

[Gan., 1] and Wedderburn [Wed., 1] . Some basic defini-

tions, notations, and properties from the system theoretic 

point of view are summarized in this section (see, e.g, 

[Cal., 1], [Kai., 1], [Kar., 1], [Kuc., 1], [Ros., 1],

[Var., 1], [Wol., 1] and the references therein).

Basic definitions and notation

Let P(d) e Rlxm(d) where d e C := C u {oo} . The rank of P(d)
e J

over [R (d) is denoted by p(P(d)) = r  ̂ min{£,m} and is

referred to as normal rank, whereas the rank p (P(X)) = r.
C  À

of P(d) over C , for some X e (D , is called the local rank at
e e

d = X. The tools for investigating rank properties are the 

Smith-McMillan forms. If r = min{£,m}, then P (d) is said to 

be nondegenerate, otherwise, i.e. if r < min{£,m}, it will be 

called degenerate.

If x (d) = [xi (d) , . . . ,X'i (d) ]t e (F^td^then 5 (x (d) ) =max{5 (x, (d) ) , 

i e £} is called the degree of x{d) . If P (d) =PQ+P^d+-• • -+P dn 

€ IRlxm [d] , P e [Rlxm, then P * 0 is defined as the leading
i n

coefficient matrix of P(d) and n = d (P (d) ) as the scalar
S

degree of P(d) . The polynomial matrix P(d) is said to be 

proper or regular if its leading coefficient matrix P is
n

nonsingular.

Rlxm i[d] and p(P(d)) = m. Then

e m} is defined

and c,

s.=a (p. (d) ) , i

„ := T"1 S as the column P î=l i
(row degrees and row complexity are

£

Let P(d) = [p (d),...,p (d) ] e
— 1 — m

the set of indices = {5 : 

as the set of column degrees 

complexity of P(d)

defined in a similar manner). The 

C (P (d) ) = p (d) A.. .A p (d) := p (d) A is called the Grassmann

vector of P(d) [Kar., 2], and 5(P(d)) := 5 (p(d)A) is referred

to as the matrix degree, or simply as the degree of P(d). If 

p(P(d)) = r i min{£,m}, d (P (d) ) is the maximum degree among

m polynomial vector
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the degrees of all maximal order minors (rxr minors) of P(d) 

and if P(d) = 0, 3(P(d)) = -<» [Ros. , 2], By using the Binet- 

Cauchy theorem we have the following important property.

Proposition 2.6: If P(d) e IRlxm[d] and Q(d) e [Rmxm [d] with

p (P (d) ) = p(Q(d)) = m, then

3(p(d)Q(d)) = a (P (d) ) + a (q (d) ) (2.18)

If p.(d) p d^ 1 +•••+ p , then we may write
— i,h —  i,0 J

P (d) = P h]—m, h diag { d } + P (d)

□

(2.19)

where the columns of P(d) have degrees less than 6 .. The 

matrix P = [p ,...,p ] := [P(d)j e IRlxm is referred to
h — 1, h — m, h h

as the high column coefficient matrix of P(d) and if p (P ) =m

then P(d) is called column reduced (high row coefficient 

matrix, and row reducedness are defined similarly) . A very 

important characterization of the column reduced polynomial 

matrices is given by the next theorem.

Theorem 2.13 [For., 1], [Vek., 1] ( T h e  P r e d i c t a b l e - D e g r e e  

P r o p e r t y ) : Let P(d) be a polynomial matrix of full column

rank, and for any polynomial vector p(d), let

q (d) = P(d)p(d) (2.20)

Then P(d) is column reduced, if and only if

3(g(d)) = max { a (p. (d) ) + 5. } (2 .2 1 )
i:p ( d)iO

i

where p. (d) is the ith entry of p(d) and 6 . is the degree of 

the ith column of P(d).

□

A very useful application of this result is the i n v a r i a n c e  o f  

c o l u m n  d e g r e e s  o f  c o l u m n  r e d u c e d  m a t r i c e s  given by the 

following lemma.
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Lemma 2.5 [Kai., 1]: Let P(d) and P (d) be two column reduced 

matrices, with column degrees in ascending order, such that

P(d) = P(d)[7(d) U (d) R[d]-unimodular

Then P(d) and P(d) have the same column degrees.

□

Smith, Smith-McMillan forms

For a matrix P (d) e Rlxm(d) canonical forms may be defined 

under left, or right equivalence over R (where R is either 

IR [d] , or any other quotient ring of [R [d] whose field of 

fractions is !R (d) ) . Such forms are referred to as Hermite 

forms if P(d) is defined over R , and Hermite-McMillan forms 

[Kar., 1] if P(d) is rational in general. Under

^-equivalence we define respectively the Smith forms, if P(d) 

is from R, and Smith-McMillan forms if P(d) is rational. The 

Smith, Smith-McMillan forms are central in the study of 

structure of linear systems and they are described next.

(a) Smith form over R [d] [Gan., 1], [Kai. 1 ]

Let P(d) e Rlxm[d] and p (P (d) ) = r  ̂ min{£,m} . Then there

exist U(d) and 7(d) R[d]-unimodular matrices such that

U (d) P (d) V (d) = Sp (d)
Sp(d) 0 } r

(2 .2 2 )
0 0 } 1 - r

u r m- r J

S p (d) = diag{fi (d) , ...,f (d)},
r J

f. (d) 1
e R [d]

Sp(d) is called the Smith form and the monic polynomials 

f . (d), i e r are called the invariant polynomials of P(d) and 

satisfy the division property f. (d)|f (d) V i=l,...,r-l.

The set of f (d) may be defined by the Smith algorithm. Let 

dQ (d) = 1 and d^{d) be the monic greatest common divisor of

all ixi order minors, i = l,...,r of P(d). Then d (d) Id (d) 

i = 0 , . . . , r-1 and
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1,2, . . . ,r (2.23)f. (d ) = d. (d) /d. , (d) , i =i i 1-1

The polynomial zp (d) = f. (d) is called the zero poly-

nomial of P(d) . If Zp(d) is factorized into irreducible 

factors over C as

Zp(d) = (d Zi> (d - z ) Z  6 C, Z  * Z
i i j

then the set <pp = { z., i e p } is called the root range, z. 

the zero of P(d) and r the algebraic multiplicity of z .i i
The zeros are the finite values of d where P(d) loses rank 

below its normal rank r and the number v = r - p(P(z ) ) isi i
defined as the geometric multiplicity of z. . Generally, v.  ̂

t and if equality holds, the zero is called simple. The 

matrix P(d) is called simple, if all its zeros are simple, 

otherwise it is called nonsimple. By factoring each of the 

f id) into irreducible factors over C and collecting all 

terms corresponding to zero z. , we define the set of 

elementary divisors for z.,

Dp z := { (d " z1'> lk' k = 1/2,...,v } 
' i 1

where v. is the geometric multiplicity and = r.

(b) Smith-McMillan form over IR [d] [Kai. , 1], [Vid. , 1]

Let P(d) e IRlxm(d), p(P(d)) = r s min{£,m} and d (d) be the

least common multiple of the denominators of the elements of 

P(d). Then P(d) = d_1(d)W(d), where N (d) e [Rlxm [d] . If
p

U (d) N (d) V (d) = Sw (d)

is the Smith reduction of N(d), then the Smith-McMillan form 

of P(d) is defined by

Mp(d) = g Sw (d) e [Rlxm (d) (2.24)
p

where all possible numerator-denominator cancellations in
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Mp (d) are assumed to have been carried out. Hence,

*
V

ffp(d) 0

0 0
u r m - r

(d'l/i/j. (d) , i e r}

} 1-r
(2.25]

The sets e. (d) , (d) , i e r are the elementary zero- pole-

polynomials of P(d) and satisfy the divisibility properties

e (d) Ie (d) I ... Ie (d) , i/i (d)\ip , (d) | . . . |<ft (d) (2.26)

The polynomials zp (d) = (d) , pp (d) = (d) are

defined as the zero-, pole-polynomials of P(d) and S(p (d)):= 

6^(P) is defined as the finite McMillan degree of P(d).

Remark 2.12: The range of the poles and zeros of P(d) is the 

range of the poles and zeros of the entries of P(d) . Their 

multiplicities are given by the Smith-McMillan form of P(d).

□

Remark 2.13: Since for any [R [d]-unimodular matrix U, detU = 

c e [R - {o} means that U has a singular structure at d = oo, 

the Smith and Smith-McMillan forms give the zero-, pole- 

structure of P(d) at d e C and finite. The (highly non

unique) unimodular matrices [7(d) and 7(d) in eqns. (2 .2 2 ) and 

(2.25) may destroy the structure of P(d) at infinity (see 

e.g. [Kai., 1]) .

□

Remark 2.14 [Vid. , 1]: As it was mentioned at the beginning 

of this section all the results of this section carry on, if 

[R [d] is replaced by any PID 7? such that R (d) is its field of 

fractions. In particular, this is true for any quotient ring 

7? of [R [d] . Then because the structure of P(d) is defined up 

to units in 7?, it is defined only over the so called forbid-

den region specified by 7?.

□
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Example 2.10: Consider the case where R = [R+ (d) , the PID of 

stable rational functions in d, i.e. the functions whose 

poles lie outside the closed unit disc ID [0,1] . Therefore the 

forbidden region is the closed unit disc ID [0,1]. Then [R (d) 

is the field of fractions of IR+(d) and in the Smith-McMillan 

form of P(d) e IRlxm(d) over IR+(d) , e. (d) , i/j id) are stable 

rational functions instead of polynomials. Since they are 

defined up to units in !R+(d) (the bistable rational

functions), they define the zeros and poles of P(d) in the 

closed unit disc ID [0,1] (see e.g. [Vid., 1]).

□

According to remark (2.14) the structure of the rational 

matrix P(d) at d = oo can be determined by the Smith-McMillan 

form of P(d) over IR (d) , the ring of proper rational 

functions.

(c) Smith-McMillan form at d = oo [Var., 2]

Let P(d) e IRlxm(d) and p(P(d)) = r. There exist IR (d)-
pr

unimodular matrices [7(d) and 7(d) such that

U {d) P (d) 7 id) = Mp {d)

Mp* {d) = diag{d 1,

00 * 

W P
0

0 o
r m - r

,d r}, * ••• — q̂

(2.27)

Mp(d) is uniquely defined by P(d) and is called the

Smith-McMillan form at d = œ of P(d). If p is the number of00
q 's with q > 0 ,  then we say that P(d) has p poles at
i i 00

infinity, each one of order q > 0 .  If z is the number of
i oo

q.'s with g. < 0, then we say that P (d) has z zeros at
1 i 00

infinity, each one of order |g. | . The number

(p) ■= C v g. > 0

is defined as the McMillan degree at infinity of P(d) . If 

P(d) is proper, it has no poles at infinity and fi“ (d) = s“ (d)
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is the Smith form at d = œ describing the infinite zero 

structure of P(d).

Mp{d) can be defined from the standard Smith-McMillan form of

P(1/V) [McM., 1], [Pug., 1] at w = 0. Alternatively, the

g.'s may be computed by the valuation algorithm [Kun., 1 ]

[Kai., 1], [Var., 2], [Ver. 1], [Ver., 2]. We recall that by

valuation at infinity of a rational function f id) =b id) /a id)

a[d), bid) coprime polynomials, we define the map v : \R id)
00

i---» Z u {oo} such that

u if id)) 00

diaid)) - a ibid) ) , if f id) * 0

oo, if f id) = 0
(2.28)

If i/l} = the least valuation among the valuations of all ixi 

minors of Pid), i = l,2 ,...,r then

( i-l)
<7. = v1 oo - V ( i ) i = 1 ,2 ,...,r, v. ( o ) = 0 (2.29)

By adding up the left-hand side and the right-hand side of 

eqn. (2.29) we have the following relationship

i  1, -- t r> (2-30)
1 = 1

or, that the number of infinite zeros minus the number of 

infinite poles of P id) equals i/r) . i/r) plays an important 

role in systems theory and in the characterization of the Mc-

Millan degree of a system as we will see in the next chapter. 

For this reason we give a formal definition and an important 

property of u (r).

Definition 2.20 [Kun., 1], [Var., 3], [Ver., 1]: Let Pid) s

[Rlxm(d), p(P(d))=r and define the map : IR id) i---» TL u {oo}

such that

v iPid)) 00

v (r) , if P id) * O 00

co, if P id) = O
(2.31)

where ( r )Voo is the least valuation among the valuations
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of all rxr minors of P(d) . u (P(d)) is called the valuation
00

at d = co of P(d) and is denoted simply by v (P) .

□

Proposition 2.7 [Var., 3]: If P(d) e [Rlxm(d) and Q(d) e

Rmxm(d) with p(P(d)) = p(Q(d)) = in, then

u (P(d)Q(d)) = u (P (d) ) + u (Q (d) ) (2.32)
00 00 00

□

According to the definition of the valuation at infinity of a 

rational matrix and eqn. (2.30), it follows

Remark 2.15: The valuation at infinity of a rational matrix 

P(d) expresses the difference between the total number of in-

finite zeros and the total number of infinite poles of P(d)

IMP) = {# of infinite zeros} - {# of infinite poles} (2.33)

□

Finally, from the Smith-Mcmillan forms over !R [d] and at 

infinity we conclude the following for the McMillan degree of 

a rational matrix P(d).

Remark 2.16: The McMillan degree 8 ^ (P) of a rational matrix 

P(d) is the number of finite as well as infinite poles of 

P(d). Therefore

V p) - +

□

Matrix divisors and coprimeness of polynomial matrices

Let P(d) e IRlxm [d] and p(P(d)) = m. A matrix P(d) e lRmxm [d]

such that

P (d) = P' (d)P(d)

is called a right matrix divisor (RMD) of P(d). If P(d) is 

any other RMD and
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Rid) = W{d)R{d)

then Rid) is called right greatest matrix divisor (RGMD) of 

P id) . If p iP id) ) = l, the notions of left matrix divisors

(LRD) and left greatest matrix divisor (LGMD) are defined 

similarly.

A matrix P id) e [Rlxm [d] with p (P id) ) = m is called right ir-

reducible, or least degree if all RMDs are [R [d]-unimodular. 

Nonunimodular RMDs contain a subset of the zeros of the 

original matrix. Therefore, a matrix P id) is right irre-

ducible, if it has no finite zeros, i.e. p(P(A)) = m V A e C, 

or equivalently S id) = [I O]1. A left irreducible matrix
r m

is defined in a similar manner.

A matrix P id) e [Rlxm [d] with p(P(d)) = m (or ¿) , is called a

minimal basis [For., 1], if it is right (left) irreducible 

and column (row) reduced. Minimal bases have no finite and 

no infinite zeros.

v_} is a set of matrices, then 

v
e lRlxm [d] , l = Y iii = 1

is called a matrix representative of P , and P is right
r r

regular, if p iTr id) ) = m. If P is right regular, then a
r r

right common matrix divisor (RCMD) and a right greatest 

common matrix divisor (RGCMD) of P is defined as a RCMD and
r

a RGCMD of T^(d) respectively. The set P is called right
r r

coprime (RC) , if it is right regular and Tp(d) is right 

irreducible. For a set of matrices with the same number of 

rows, the matrix representative, left regularity property, 

left common matrix divisors (LCMD), left greatest common 

matrix divisor (LGCMD) and left coprimeness (LC) are defined 

in a similar manner.

1 xm

If P := {P. id) e R 1 [d] , i

the matrix

Tpid) : =

P i id)

P  id)v
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A very important property of the RGCMD of P s P , i=l,...,v
i r

is given by the following lemma.

Lemma 2.6 [Ros., 1], [Vid., 1]: Let P e P , i=l,...,v and R
i r

any RGCMD of P . Then there exist polynomial matrices X. ,

i=l,...,v such that

v
R = V X P

i i
i = 1

(2.34)

□

A very useful generalization of lemma (2.6) when i = 2, is 

given next.

Lemma 2.7 [Kai., 1] (Generalized Bezout Identity): Let

(N{d),D{d)) be right coprime polynomial matrices, with D(d) 

nonsingular. Then there exist polynomial matrices X (d), X (d) 

Y (d), Y (d) such that

-X (d) Y (d) 

D(d) N (d)

-w(d) r(d)

D(d) X (d)

-W(d) K(d) 

D(d) X (d)

-X (d) y (d) 

D(d) N(d)

I 0

- 0 I

1 I 0

0 I

(2.35)

(2.36)

We call (2.35) the forward Bezout identity and (2.36! 

reversed Bezout identity.

the

□

We close this section by stating two important theorems about 

division of polynomial and general matrices.

Theorem 2.14 [Kai., 1]: Let D(d) e [Rmxm [d] and also be non-

singular. Then, for any N (d) e Rlxm [d] , there exist unique 

polynomial matrices Q (d), P(d) such that N (d) = Q (d)D (d)+R(d) 

and P(d)D 1 (d) is strictly proper. If D (d) is column 

reduced, uniqueness is ensured if the columns of P(d) have 

degree strictly less than the corresponding column degrees of 

D (d) .

□
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Theorem 2.15 [Vid., 1]: Suppose R is a Euclidean domain, D,N 

are right-coprime matrices with entries from R  and D is 

square. Let d = detD and n denote the smallest invariant 

factor of N. Then the sets

{d + rn : r z R} and {\D + RN\ : R matrix in R) 

are equal.

□

Matrix fraction descriptions

Suppose that G id) e [Rlxm(d) and p(G(d)) = min{¿,m} . Then it

is well known that G(d) can always be factored (in a 

non-unique way) as

G(d) = D_1 {d) N (d) = N {d) D_1 (d) (2.37)

where N (d) , N (d) , Did), D (d) are polynomial matrices with 

appropriate dimensions, and detD(d), d e t D {d) * 0. The pair

(D(d), Nid)) (N(d), D (d)) is called left (right) matrix

fraction description (MFD) of the rational matrix G(d). If

ibid), N{d)) (N(d), D (d)) are respectively left, right

coprime, then the corresponding MFDs are referred to as

coprime.

Coprime MFDs are not unique and the following theorem gives a 

characterization of their family.

Theorem 2.16 [Kai. , 1], [Ros. , 1]: Let {N  (d)D_1 (d), i = l,2}i i J
be two coprime MFDs. Then there exists an [R [d] -unimodular 

matrix U (d) such that

D^d) = D2 (d) U {d) , Ni(d) = N2(d)U(d) (2.38)

□

Remark 2.17 [Kai., 1], [Ros., 1] : Let (D(d), N (d)), and

(W(d), D[d)) be left, right coprime MFDs of the rational

matrix Gid). Then
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The invariant polynomials of N (d) and N(d) and the 

elementary zero-polynomials of G(d) are associates 

to each other.

The nonunit invariant polynomials of D(d) and D (d) 

and the elementary pole-polynomials of G(d) are 

associates to each other. We call the matrices 

D(d) and D(d) extended associates and we denote 

that by i.e D •- D.

□

Finally, we give a test for the properness of a rational 

matrix through its MFD and we state the notion of bicoprime- 

ness and its important properties.

Lemma 2.8 [Kai., 1]: If D(d) is column reduced, then G(d) = 

N (d) D 1 (d) is strictly proper (proper), if and only if each 

column of N (d) has degree less than (less than or equal to) 

the degree of the corresponding column of D(d).

□

Definition 2.21 [Vid., 1]: Suppose G(d) is a rational

matrix. A quadruple {N, D ,N,K) of polynomial matrices is a 

bicoprime factorization of G(d) if

a. detD * 0 and G = ND~rN + K

b. (N, D ) are right and (D, N) are left coprime.

□

Theorem 2.17 [Vid., 1]: Suppose G(d) e IRlxm(d) and (D,N),

(N,D ), (C,A,B,K) are any left coprime, right coprime and

bicoprime factorizations of G(d) over R[d]. Then detD, detD 

and detv4 are associates, i.e

detD ~ detD ~ det^

□

Due to the properties of coprime factorizations the following 

corollary is true.

Corollary 2.3 [Ros. , 1], [Vid., 1]: Suppose G(d) e IRlxm(d)

and (D,N), (W,D), (C,A,B,K) are any left coprime, right
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coprime and bicoprime factorizations of G(d) over R [d]. Then

G(d) e IRlxm [d] if and ony if D, D, A are R [d] -unimodular

□

Remark 2.18: Most of the results in section (2.3.1) were

described for matrices with entries that are polynomials with 

real coefficients. Generally, these results hold true for 

entries drawn from any principal ideal domain and in 

particular from suitable quotient rings of R [d] whose field 

of fractions is the field of rational functions R (d) . This 

is especially true for MFDs of such quotient rings [Vid., 1].

□

2.3.2 The algebraic structure of rational vector spaces

Let G(d) e Rlxm(d), l  ̂ m, and p(G(d)) = m. Let us also

denote by V the set of all linear combinations of the 

columns of G(d) with multipliers in R(d), i.e.

if G (d) = [g (d), ,g (d)], then
—  1 — m

VG - SpanK (d) (2, (d>.......2„<<*>}
(2.39)

Then, V is a linear vector space over R (d) , dim1/_ = m, andCy (j
it is called the rational vector space generated by G(d).

From any rational basis G(d) of V^ we can generate a poly-

nomial basis of V by means of a right MFD of G(d) , i.e. if 

G(d) = N (d) D 1 [d) with N(d) e Rlxm [d] , D (d) e Rmxm [d] ,

detD(d) * 0, then clearly the columns of N(d) define a poly-

nomial basis of V . More precisely, if N{d) = [n (d),...,n (d) ] 

then

VQ = spanR (d) {nx (d) , . . . ̂ ( d )  } and

m n - sPanR [d] (Si(<J)....
(2.40)

where M denotes the set of all linear combinations of the N
columns of N id) with multipliers in R [d] . The set M.T is aN
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free [R [d] -module [Mac., 2] and it is called the polynomial 

module generated by N (d) .

Proposition 2.8 [Kou. , 1] : Let M m , M-. be the 
N  2 polynomial

modules generated by the {d) , N 2 (d) _ lxm re IR [d] , p (Wi (d)) =

P (N2 ( d ) ) = m . If N 1(d) = N 2 (d)Q(d) , where Q (d) € [Rmxm [d] ,

detQ(d) * 0, then

M  c jh 
N  N1 2

□

Proposition 2.9 [Kou. , 1]: Let N^id) , Nz(d) e IRlxm [d] be two 

polynomial bases of the same polynomial module Then,

there exists a [R [d] -unimodular matrix Q(d) such that

N^d) = N2(d)Q(d)

Furthermore, for any AT (d) there is a 1R [d]-unimodular Q (d) 

such that N^{d) is column reduced.

□

Thus unimodular matrices represent coordinate transformations 

for a polynomial module.

Proposition 2.10 [Ros., 1]: Let N (d) be a basis of the poly-

nomial module M . Then the matrix degree of N (d) is an inva-

riant of Mn , or in other words, if Â  (d) is any other basis 

of M then 3 {N (d) ) = 3 [N (d) ) .N 1

□

From propositions (2.7), (2.8) and (2.9) we have the follow-

ing important result.

Theorem 2.18: Let (d) , N 2 (d) e IRlxm [d] , l ^ m, p (Wi(d)) =

p(W2(d)) = m, and d = a ( N i (d)), d2 = d { N z (d):) . If

N 1 (d) = N 2 ( d ) Q ( d ) , Q(d) e Kmxm[d] , 3 (Q (d) ) = q ~ 1 (2.41)

then

a. d = d + q (2.42)

b. M.t c/v iv1 2
(2.43)
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where M.^, are the polynomial modules generated by the

polynomial matrices N^{d), id) respectively.

□

Clearly, eqn. (2.41) represents the extraction of a right 

divisor Q(d) of the polynomial matrix N^(d) . This

observation leads us to the following conclusions.

Lemma 2.9: Let N^{d) e Rlxm [d] , l  ̂m, p {N (d) ) = m be a po-

lynomial matrix which can be written in terms of its columns 

as NAd) = [n1 (d) , . . . , n1 (d) ] . Assume also that N (d) is not1 —1 —m 1
irreducible and let

V = SpanK(d) .... MN = SpanR[d] ^ ! (d)............. ^ (d)}

be the rational vector space V and the polynomial module M

spanned by its columns, 

divisors of N^{d), i.e.

N l
Then if Q. (d) , i = 1,2,... are right

N {d) = N (d ) Q  {d) , i
1 i+l 1

and d (Q (d) ) = q > 1 are such that q  ̂q  ̂q •
i 1 2  3

= 1,2,...

we have

and

Moreover, 

that {d)

M.r c M.t c M.r c N N N (2.44)
1 2 3

a(N (d)) a: a(N (d))  ̂a(N (d))  ̂ ••• (2 .4 5 )
1 2  3

if QG (d) is a greatest right divisor of N^(d) so 

= N (d)QG (d), then

Mn  c Mn  and 8 (N (d)) * a (N (d) ) (2.46)
1

□

The polynomial module M is the maximal submodule of the

rational vector space V and all its polynomial bases are

least degree, or irreducible polynomial matrices. In other

words, if we consider the set of all polynomial vectors in V

then this set coincides with the module M.r defined above.N

Clearly, although the ascending chain of modules which is 

defined by eqn. (2.44) is not unique (it depends on the 

choice of Q. (d)), the maximal module MN is defined uniquely. 

In the context of extraction of matrix divisors and modules,
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the previously defined concept of a minimal basis may also be 

defined as

Definition 2.22 [For., 1]: A matrix N (d) e [Rlxm [d] with l^m

and p {N(d)) = m is said to be a minimal basis of the rational 

vector space V spanned by the columns of a polynomial matrix 

A?i (d) e (Rlxm [d] , i ^ m, piN^id)) = m, if and only if N^[d) =

N{d)QG (d), where QG (d) is a greatest right divisor of (d) 

and N (d) has the following properties:

a. N (d) is least degree, or irreducible.

b. N (d) is column reduced.

□

Remark 2.19: Let N^d) e Rlxm [d] , l * m, p (N (d) ) = m. If

N (d) , N (d) e [R xm [d] are two minimal bases of the rational 

vector space V spanned by the columns of N (d) , then

N(d) = N*(d)Q(d)

where Q (d) is a IR [d] -unimodular matrix

□

Remark 2.20: Let x(d) be a polynomial vector of the rational 

vector space V spanned by the columns of (d) e IRlxm [d] , 

p{N^{d)) = m, and let N (d) be a minimal basis of V. Then 

x[d) can be expressed as a polynomial combination of the 

columns of N (d).

□

Given in general, a G(d) € [Rlxm(d), l * m, p{G{d)) = m, For-

ney [For., 1] describes a way of computing a minimal basis 

for the rational space V spanned by its columns. It is thenLr
shown that the column degrees 5. = S (n. (d) ), i = 1, ...,m of a 

minimal basis N (d) = [n (d),...,n (d) ] are invariant for—1 —m
every minimal basis of V Forney calls these degrees the 

invariant dynamical indices of V and
Gr

m
SF := I 5. (2.47)

i = l 1

is the invariant dynamical order of V .G
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Remark 2.21: Clearly, §F is the complexity of N (d) and since 

N (d ) is a minimal basis , it is equal to the matrix degree of 

N (d) . We have to note that the invariant dynamical indices

and the invariant order do not 

complete invariant for V i
Gr

minimal basis [For., 1], [Kai., 

Consider now the dual space vt,
Gr

orthogonal to every y e  V . 

theorem.

characterize V completely. A
Gr

s given by the echelon type 

1] .

□

to V , i.e. every z e vt, is 

Then we have the following

Theorem 2.19 [For., 1]: Let vt, be the dual space to V
Ct Gr

Then the invariant dynamical orders of Vz, and V are the
Gr Gr

Finally, we define the minimal column and row indices and the 

Forney order of a polynomial MFD.

Definition 2.23: Let ( D (d), N (d)) and { N (d), D (d)) be two

left and right coprime polynomial MFDs of G(d) e IRlxm(d) with 

[Nl (d) Dt{d)]t column reduced and [N(d) D(d)] row reduced. 

Consider then the spaces X := col. sp.R ̂  { [Nl (d) Dt(d)]t} 

and X̂  := rowsp. R ̂  { [N (d) D(d)]}. We call the invariant

dynamical indices p, i = 1 , ...,m of X , the right, or column 

minimal indices of G(d), and the invariant dynamical indices 

v i = 1, . . . ,l of X , the left, or row minimal indices of
i r

G(d) . Also we call the invariant dynamical order of X , or
x c

Xr = Xc, the Forney dynamical order of G(d) and we denote it 

by 8p (G), i.e.
m 1

Sf (G) := E h. or 8f (G) := £ ^

2.4 Sequential Matrices

Matrices whose elements are sequences are called sequential 

matrices. In particular, we have the following notation.
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Definition 2.24 [Kuc., 1]: The sets of Ixm matrices with

elements in [R (d) , R° (d) and [R+ (d) are denoted by [R (d) , 
o +

IR (d) and [R+ (d) and are called rational-sequence,lm lm
causal-sequence and stable-sequence matrices respectively. 

Obviously, d is not a variable but an indeterminate over [R.

□

A matrix P e IR (d) can be written as the matrix recurrentlm
sequence

P = P dn + P dn+1 + ••• , P e [Rlxm (2.48)n n+1 k

If P * 0, then n is the order of P denoted by x (P) . Thus, 

if x (P) £ 0 then P is a causal sequential matrix, and if x (P)

£ 0 and P — > 0 as k — » oo elementwise, i.e. (p ) — » 0 ask j k
k — » oo, then P is a stable sequential matrix.

Example 2.11:

P

Let P e IR (d) be such that2x1

r *. . 2 ,2 3.3 -11 + ad + a d  + a d  + •••

+ d - 2£>d2 + 2b2d3 - •••

Then P can be written as

1 + a d + r 2 -|a
.2
d + r 3a

0 1 _-2b 2 b2 _

Hence, x (p) = 0, so P is a causal matrix, and if |a| < 1 and 

Ub| < 1, P is a stable matrix as well.

□

Polynomial-sequence matrices P [d] e IRlxm [d] are finite 

sequence matrices with order greater than, or equal to zero. 

Then the following inclusion property holds true.

IR [d] c R+ {d) c IR° (d) c IR (d) (2.49)
lm lm lm 1m

Square sequential matrices form noncommutative rings and 

their units according to lemma (2.4) and remark (2.10) are 

characterized as follows.
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Proposition 2.11: The units of rational (recurrent) sequence 

matrices (IR (d)-unimodular) are nonsingular matrices, the

units of causal sequence matrices (IR0 (d) -unimodular) are 

those with determinant a bicausal sequence and the units of 

stable sequence matrices (IR+ (d) -unimodular) are those with 

determinant a bistable sequence.

□

We can define also causal and stable polynomial sequence 

matrices in a way similar to the scalar case, i.e.

Definition 2.25: A polynomial sequence matrix P(d) is

a. causal if it is IR° (d) -unimodular

b. stable if it is IR+(d)-unimodular

□

According to propositions (2.4), (2.5) and (2.11) stable and

causal polynomial matrices can be described as follows.

Proposition 2.12: A polynomial matrix P(d) is

a. causal if and only if detP(0)*0, i.e. detPQ*0, 

where Pq is the constant matrix term of P(d)

b. stable if and only if the roots of detP(d) lie 

outside the closed unit disc ID [0,1] .

□

Since IR+(d) and K° (d) are quotient rings of IR [d] and their 

field of fractions, including that of IR [d] , is the field of 

rational sequences IR (d) , formal matrix series (2.48) can be 

written in closed form and also most of the properties 

presented in section (2.3) carry on in this case. In

particular, sequential matrices can be expressed as Polyno-

mial Matrix Fractions. Using the terminology introduced by 

definition (2.25), and according to remarks (2.12) and (2.17) 

we have the following important property.

Proposition 2.13: A coprime polynomial MFD {Did), N (d)),

(N (d) , Did) ) is
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a. causal if and only if Did), or D (d) is causal

b. stable if and only if D (d), or D(d) is stable.

□

We conclude this chapter by a brief discussion of the basics 

of matrix equations over rings, which play an important role 

in our development.

2.5 Matrix Equations Over Rings

As it was mentioned in the introduction chapter, many control 

problems when using the algebraic approach, can be reduced to 

the solution of certain polynomial, or polynomial matrix 

linear equations. In this final section we give a quick 

review on the solution of matrix equations over rings. We 

will elaborate more if necessary, in subsequent chapters.

Suppose that R is a PID and Rlxm is the set of txm matrices 

in R. We can distinguish mainly between two broad categories 

of matrix equations over R, namely; linear equations of the 

form AX = B, and linear Diophantine equations (for more 

details see e.g. [Kuc., 1], [Kuc., 2], [Kar., 1] and 

references therein).

2.5.1 Linear matrix equations

Consider the matrix equation

AX = B (2.50)

where A e Rlxm, B e ??lxk are known matrices, and X e Rmxk is 

to be computed.

Theorem 2.20 [Kar., 1]: Eqn. (2.50) has a solution X over R, 

if and only if either of the following conditions is 

satisfied :

a. A is a left divisor of B in R

b. [A B ] E^ [A O]

If Xq is a particular solution, then any solution is of the
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form

X = Xq + WY (2.51)

where W is a basis of the right null space of A and Y is an 

arbitrary ^-matrix with appropriate dimensions.

□

2.5.2 Linear Diophantine matrix equations

We distinguish two types of linear Diophantine matrix 

equations; either AX + BY = C (XA + YB = C), which is called 

unilateral matrix equation, or AX + YB = C {XA + BY = C ), 

which is called bilateral matrix equation.

Unilateral Diophantine matrix equations

Consider the equation

AX + BY = C (2.52

XA + YB = C (2.53

where A e Rlxm, B e ftlxn, and C e Rlxk (or any appropriate 

dimensions for eqn. (2.53)) are given matrices with elements 

in R.

Theorem 2.21 [Kuc., 1]: Eqn. (2.52) (eqn. 2.53) has a solu-

tion pair X, Y in R, if and only if the greatest common left 

(right) divisor G in R of matrices A and B is a left (right) 

divisor of C in K.

□

It is possible to parametrize the solution to eqns. (2.52), 

(2.53) and the family of solutions is given by the next 

theorem.

Theorem 2.22 [Kuc., 1]: Let Xq, Yq be a particular solution 

of eqn. (2.52), r = ( [A B] ) and [-B̂  be a basis of the 

right null space of [A B]. Then the general solution of eqn. 

(2.52) is given by
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X
(2.54)

= X - B T  o 1
Y = Y + A To 1

where T e ^ (m+n-r)xk -¡_s an arbitrary matrix in R.

□

Remark 2.22: It can be shown [Kuc., 1] that one particular

solution to eqn. (2.52) can be given by (Xq, Yq) = (P^C , 

Qxcx) where P , Q are a solution to the Diophantine equation

AP + BQ = Gi i

with G a greatest common left divisor of A and B, and C is

such that C = GC . Then
i

X P -B 1 r ci= i i i
Y L Q: AiJ T

Similar parametrization of solutions for the eqn. 

be obtained.

(2.55) 

(2.53) can

Bilateral Diophantine matrix equations

Consider the equation

AX + YB = C

where A e Rlxm, B e ftnxk and C e Klxk.

(2.56)

Theorem 2.23 [Kuc., 1]: Equation (2.56) has a solution if

and only if the matrices

A 0 A C
and

0 B 0 B

are ^-equivalent.

□

The parametrization of solutions of the eqn. (2.56) is not as 

simple as that of equation (2.52) and can be found in [Kuc., 

1], [Emr., 1] and [Zak, 1]. Similar results can be obtained 

for the dual of equation (2.56).
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2.6 Conclusions

A unifying mathematical background for the study of discrete-

time systems has been presented in this chapter. The main 

objective has been to set up a framework in terms of sequen-

ces for the treatment of discrete-time systems.

In this context an attempt has been made to unify the 

approaches by Kalman [Kal., 1] and Kucera [Kuc., 1], use the 

distinguishing properties of the rings of formal power series 

and of the series expansion of functions and show under which 

conditions the two notions coincide, or the two rings are 

isomorphic. The main prerequisite for that is that formal 

power series are to be defined over an infinite field.

In the case of discrete-time systems, as opposed to digital 

systems, the field used is the field of real numbers [R, and 

the rings of recurrent formal Laurent series and rational 

functions are isomorphic. This important property is 

exploited in the next chapter where a formal definition and 

some basic system properties of discrete-time systems are 

presented. The whole approach is algebraic and provides a 

unifying mathematical formalism and a powerful method for 

both analysis and synthesis purposes.

Also, a brief review of polynomial and rational matrix theory 

has been given including Smith and Smith-McMillan forms, 

definition of poles and zeros over C := C u {<»} , and coprime 

and bicoprime factorizations of rational matrices over [R [d] 

with hints of how these results can be extended to suitable 

quotient rings of R [d] whose field of fractions is R (d).

Finally, we concluded this chapter by a quick discussion of 

the basics of matrix equations over rings with emphasis on 

Diophantine equations. Necessary and sufficient conditions 

for the solution of such equations were given including the 

parametrization of solutions when possible.
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Chapter 3

DISCRETE LINEAR SYSTEMS:
Unification of d- and z-Representations and Related 
Properties

3.1 Introduction

This chapter is a summary of the basic concepts and results 

of linear systems theory adapted to accommodate the needs of 

discrete-time signals and systems. The systems are studied 

by means of their mathematical models. According to Minsky 

[Min. , 1] , [Cel. , 1] , a model (M) for a system {¡f) and an 

experiment [&) is anything to which & can be applied in order 

to answer questions about f. The most basic requirements to 

determine such a model are to specify the time set on which 

the system behaviour is defined and the spaces of admissible 

input and output signals.

A signal can be considered as a function that conveys 

information, generally about the behaviour of a physical 

system. Mathematically it can be represented as a function 

of one or more independent variables drawn from a particular 

domain (or domains). The independent variable may be either 

continuous or discrete.

Continuous-time signals are signals that are defined at a 

continuum of times whereas discrete-time signals are defined 

at discrete times, i.e. they can be represented as sequences. 

If both time and amplitude are continuous, the signal is 

called analog and if both time and amplitude are discrete, 

the signal is called digital.

Systems that process discrete-time signals, i.e. their inputs 

and outputs are such signals, are called discrete-time
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systems. In sections (3.2) and (3.3) we deal with the two 

main system representations for linear time-invariant 

discrete-time systems, namely the input-output and the state- 

space one, and the relationships between the two 

representations. Also, the concepts of reachability/ 

controllability, observability/constructibility and stability 

for this class of discrete-time systems are discussed in some 

detail. In section (3.4) we give the basic features and 

properties of the so-called unity, or one-parameter feedback 

system which is the main control scheme we shall employ 

throughout this work.

3.2 Linear Discrete-Time Systems 

Input-Output description

As it was mentioned in the introduction, discrete-time 

systems are systems that are stimulated at their inputs by 

sequences and produce sequences as responses at their 

outputs. We examine systems that process sequences in one 

indeterminate d over [R and in particular those whose 

behaviour is governed by recurrent formal Laurent series.

We thoroughly exploit the fact that recurrent formal Laurent 

series and rational functions are isomorphic due to the 

infinite nature of [R, and use the algebraic framework 

presented in chapter (2) for a unifying treatment of discrete 

time systems. Many concepts, definitions and properties of 

this section can be found in a wide range of textbooks like 

Chen [Che., 1], Jury [Jur. , 1], Kailath [Kai. , 1], Kucera 

[Kuc., 1], Rosenbrock [Ros. , 1], Sontag [Son., 1] Vardulakis 

[Var., 1], Vidyasagar [Vid., 1] and references therein. Our 

aim in this section is to unify the various approaches by 

using the dual nature of sequences as formal power series on 

one hand, and as power series expansions of functions on the 

other. We give now a formal definition of a discrete-time 

system.
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Definition 3.1: A discrete-time system if with m inputs and l 

outputs is a set if (7, 11, V, '§) where J = Z u {00} is the discrete 

time, 11 £ IRm<d> is the input space, V £ !R1<d> is the output

space, and ? is a map from 11 to V , i.e. S’ : 11 1---> V.

□

Therefore, mathematically a discrete-time system is a 

transformation S that maps uniquely a real input vector- 

sequence u to a real output vector-sequence y, i.e.

y = S[u] (3.1)

as it is shown in fig. (3.1) .

u = {u ,u
—p —P+1

Figure (3.1): A discrete-time system

3.2.1 Linearity and time-invariance

Definition (3.1) covers a wide range of discrete-time 

systems. By imposing constraints on the map S we can have 

useful subclasses of discrete-time systems and such a class 

that will be dealt with, is that of linear, time-invariant, 

discrete-time systems. First, we consider the single-input/ 

single-output (SISO) case where 11, V £ R<d>, and then we 

generalize for the multivariable (MIMO) case. Before we give 

a formal characterization of this class of discrete-time 

systems we define a key sequence, namely the impulse sequence 

and the response to that, i.e. the impulse response.

Definition 3.2: The unit sequence d° = {0; 1,0,0,...} is

called impulse sequence, or just impulse and is denoted by 5, 

i.e. 5 := {0; 1,0,0,...}. The response of the system if to the 

impulse 5 is called impulse response and is denoted by g, 

i.e. g := ^ [5] .

□
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Remark 3.1: It is clear from definition (3.2) that the

impulse 6 is a signal of unity amplitude applied at time zero 

and g is the response of the system to that signal. 

According to the definition of the indeterminate (def. 2.2) 

and to eqn. (2.2), 8d = d may be considered as an impulse 

applied at time k at the input of the discrete-time system. 

The response to dk is denoted by glk) and is the impulse 

response of the system if to an impulse applied at time k.

□

Now, a linear system is a system for which the principle of 

superposition is valid. Therefore

Definition 3.3: A discrete-time system if is called linear if

for every u , u e U, and a , a e IR, we have 1 1 2 1 2

3 [a u +a u ] = a i? [u ] +a ^ [u ] (3.2)
1 1 2  2 1 1 2  2

□

If the system if is 'smooth' enough eqn. (3.2) can be extended 

for any number of inputs u , u , ... e \R<d> and any constants 

â , a , ... e !R [Kai. , 1] . By using the formal Laurent series 

representation for the input sequence, we have that

7 = $[u] = Wlj* u d k] (3.3)
k=p k

and for a linear system eqn. (3.3) becomes

y = E* uks[dk] = e" “ksr(k) (3.4)k=p k k=P k

Definition 3.4: A discrete-time system is called

time-invariant if V u e U 'S [dku] = dkW [u] .

□

According to remark (3.1), definition (3.4), and eqn. (3.4), 

the output y of a linear, time-invariant (LTI), discrete-time 

system is given by

y = E” u $[dk] = e” uj?[dks] = e” ud k*ns] =
k=p k k = p k k = p k

v'00 k _oo _jk„oo , 1
= E u d g = Y u d Y g d i.e.^k=p k ^ ^k = p k ^ 1 = ^ 1
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Therefore, for a LTI discrete-time system the system operator 

S' can be replaced by its impulse response g and the convolu- 

tory multiplication. In the multivariable case, where there 

are m inputs and l outputs, eqn. (3.4) becomes

y = g*u or y. = £ u ^ ,  j > p+r (3.5)

m

= / / . / “j ■ 
j = i

i =: 1, •. . ,1

or y := G*u , G =
(gu }

(3.6)

where g is the 
i j

impulse response at the ith output due to an

impulse at the jth input. We have then the following

definition.

Definition 3.5: A linear, time-invariant, discrete-time sys-

tem y is a set if (S', U, V, G, *) where S = Z u {oo} is the discrete 

time, U £ [Rm<d> is the input space, V £ !R1<d> is the output 

space, and G e \R^<d> is a linear map, the impulse response 

matrix, from U to V such that V u e t i B y e y  : y = G*u.

□

Remark 3.2: It is clear from eqn. (3.5) that a linear time-

invariant discrete-time system is a system with memory; that 

is the output at time k depends on the input applied before 

and/or after k. In fact, this is true for any discrete-time 

system described by the input-output relationship of the form 

of eqn. (3.1). Hence, an output y is uniquely determined for 

k i kQ if the input is not only known for k s kQ but also if 

its time history is known for k < kQ. This is the case with 

definitions (3.1) and (3.5) where the input space U is a sub-

space of the space of infinite sequences !R1<d> and any u e U 

is well defined V k e Z u {oo} since C£k=0 V k < x (u) . There-

fore, eqns. (3.1) and (3.5), or (3.6) uniquely define the

output of the system by its input. If this is not the case, 

i.e. u is not known for k < k , then the system must be 

assumed relaxed or at rest at time kQ, and that the output is
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excited solely and uniquely by the input applied thereafter, 

or the so-called initial conditions have to be known, i.e. 

the effect of the input history on the output for k £ kQ.

□

3.2.2 Causality and stability

We have seen in the previous section that the output at time 

k of a discrete-time system depends on the input applied 

before and/or after k. A more restricted class of linear 

time-invariant systems that arise naturally and are of 

practical importance is that of causal systems.

Definition 3.6: A discrete-time system if (7, U, V, S’) is causal 

if the output at any time kQ depends on the input for k z kQ.

□

Due to eqns. (3.5) and (3.6), the causality conditions for a

linear time-invariant discrete-time system are given by the 

following well known theorem.

Theorem 3.1: A linear time-invariant discrete-time system

if O', U, V, G, *) is causal, if and only if r(G)  ̂ 0.

□

Another class of discrete-time systems of particular

importance, is that of stable systems.

Definition 3.7: A discrete-time system if O ,U,y,'§) is bounded 

input bounded output (BIBO) stable or externally stable if

for any bounded input the output is bounded.

□

The conditions for stability for a linear time-invariant 

discrete-time system are given by the next theorem [Opp., 1].

Theorem 3.2: A linear time-invariant discrete-time system

if O  , V . , y ,G,*) , U £ [Rm<d>, V £ [R1 <c?>, is BIBO stable, if and 

only if
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E I (g ) I < ” j=l, . . . ,m
k= T  1J

i j

where G = (g ) , and z = z (g ) .
aiJ ij ij

(3.7)

□

Consider now the discrete-time system ¡f (9", U, V , d, *) , i.e. the 

system with impulse response g = d. Then, for any input

u = u dp + u dp+1 + u dp+2 + • • •
p p+l p+2

with order z (u) = p, the output y = d*u is a sequence 

y = u dp+1 + u dp+2 + u dp+3 + • • •
p p+l p+2

with order z (y) = p + 1. Therefore, what applies as input at 

time k appears at the output at time k + 1 (fig. 3.2) . For 

this reason the indeterminate d will be called alternatively 

the delay sequence or the delay operator and the sequence z = 

d 1 = {1;0,...} will be denoted as the advance sequence, or 

the advance operator.

“ * (up'uP.i ' • • • )
y - =

-  ( V

Figure (3.2): The delay operator

3.2.3 Lumped linear time-invariant discrete-time systems

As it was mentioned previously, LTI systems are those whose 

behaviour is characterized by the impulse response matrix G. 

For a multivariable system with m inputs and t outputs, G can 

be any sequential matrix in one indeterminate d over [R, i.e. 

G e [Rim<d>. However, the systems we study in this thesis are 

a subclass of linear time-invariant systems, namely the 

lumped systems, where the impulse response matrix is a recur-

rent, or rational sequential matrix.
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Definition 3.8: A linear time-invariant discrete-time system 

if (7, U, V, G, *) with m inputs and t outputs is called lumped, if 

G € \R (d) .
lm

□

Causal and stable lumped LTI systems can be classified accor-

dingly. Taking into account theorems (3.1) and (3.2), and 

the definition of causal and stable sequential matrices we 

have the following results.

Corollary 3.1: A lumped linear time-invariant discrete-time 

system if (3", U, V, G, *) with U  £ Km<d>, V £ \Rl <d>, is causal if 

and only if G is a causal sequential matrix, i.e. G  e R° (d) .
lm

□

Corollary 3.2: A causal lumped LTI system if (T, U, V , G, *) with 

U  £ [Rm<d>, V £ R1<d>, is BIBO stable if and only if G is a 

stable sequential matrix, i.e. G e [R+ (d) .
lm

□

Notation. From now on we will refer to lumped linear systems 

as linear systems, since we deal only with this class of 

systems in this thesis. Therefore by linear systems we mean 

systems having a rational sequential matrix as impulse 

response matrix. Also, we drop the convolutory

multiplication symbol from the definition of system if which 

is not necessary anyway, when we use the formal Laurent 

series representation of the signals involved.

Rational sequential matrices can be expressed as polynomial 

matrix fractions and according to corollaries (3.1) and (3.2) 

and propositions (2.12) and (2.13), we have the following 

characterization of causal and stable linear systems.

Theorem 3.3: Consider a linear time-invariant discrete-time

system if (7, U, V, G) , and let (D(d), N (d) ) , (N (d) , D (d) ) be left 

and right coprime polynomial MFDs of G(d) . Then if is

a. causal if and only if D(d), or D(d) is causal, i.e. 

detD(O) * 0, or detD(O) * 0
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b. stable if and only if D (d), or D{d) is stable, i.e. 

the roots of det6(d), or detD (d) lie outside the 

closed unit disc ID [0,1].

□

We define now the transfer function matrix of a system.

Definition 3.9: Let G = {G , G ,...,G ,... }, G e IRlxm be

the impulse response matrix of a LTI system if. We call the 

z-Transform of G the transfer function matrix G(z) of if, i.e.

00

G (z) = Y G z'k, G e Rlxm, z e C (3.8)
k k

k = r

□

Remark 3.3: If we use the notation z = cT1, then from the

definition of the impulse response matrix G(d) and the trans-

fer function matrix G(z) of a system if, we have that

G(z_1) = G (z)

Both G(d) and G(z) can be treated as sequential matrices or 

as rational functions. In the same way z can be either a 

complex variable and z = d 1 e C represents a bilinear trans-

formation, or a sequence z = d-1 = {1; 0, . . . , 0, . . . } and can be 

an indeterminate like d but of different nature (advance 

operator, see fig. (3.2) and discussion there).

We use the notion impulse response matrix for G(d) to stress 

out the sequential nature of G(d), and transfer function 

matrix for G(z) to distinguish the functional aspect of G(z). 

This corresponds more to reality since the delay operator d 

is physically realizable, but of course G(d) and G(z) can be 

interpreted either way, i.e. as sequences or functions. In 

some instances when we want to stress the functional nature 

of both G(d) and G(z) we denote them as d-transfer functions 

and z-transfer functions respectively.

□

Consider now the case of a SISO linear time-invariant system 

with impulse response the rational sequence g(d). Then g(d) 

can be expressed as a formal rational Laurent series over !R 

and can be represented by a coprime polynomial fraction, i.e.
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bid)
(3.9)g id) = g d’+g d1+1+- • • a ^1+1

b +b d+- • -+b cf0 1______m _

a +a d+ - •• +a dn a id)
0 1 n

where a ,£> * 0. By invoking the isomorphism between ratio-n m
nal fractions and rational functions, gid) can be treated 

either as a formal series with one indeterminate d over IR, or 

as a function of the complex variable d. Series (3.9) can 

represent the behaviour of a SISO linear time-invariant 

system either way.

If series (3.9) is formal and causal, it represents a causal 

rational sequence { , 9l+1> ■ • • > • • • } which can be

regarded as the impulse response of a causal LTI

discrete-time system. If series (3.9) is regarded as a 

causal rational function of d, then it can be considered as 

the transfer function of a linear causal discrete-time

system. This becomes clear if we perform the bilinear 

transformation z_1 = d in the series (3.9), i.e.

b z V  • •+b
giz) = g z~1 +g z 1 1 + --- = zn~m — -------- = giz'1) (3.10)

1 1 + 1  na z +• • *+a
0 n

Then, giz) is the z-Transform of the causal impulse response 

{gk} and therefore a transfer function of a causal discrete-

time system. In fact, because aQ = a(0) * 0 and aid), bid)

are coprime polynomials, it can be easily shown that giz) is 

a proper rational function in z.

Similarly, if (3.9) is formal and stable, it represents an 

absolutely summable sequence {<7k} which can be regarded as 

the impulse response of a BIBO stable discrete-time system. 

On the other hand, if series (3.9) is a stable rational 

function of the variable d, it can be considered as a 

transfer function of a BIBO stable discrete-time system. 

Indeed, giz) represents the z-Transform of an absolutely 

summable impulse response {g^} and can be regarded as a 

transfer function of a BIBO stable system. In fact, since 

the roots of the denominator polynomial aid) in (3.9) lie 

outside the closed unit disc ID [0,1], the poles of giz) lie
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inside the open unit disc ID [0,1) which is an equivalent 

condition for g(z) to be a transfer function of a causal BIBO 

stable discrete-time system.

Finally, taking into account the delay effect of the 

indeterminate d, it can be easily shown that the input-output 

behaviour of linear time-invariant discrete-time systems can 

be described by a difference equation between the input and 

output sequences [Opp., 1], [Jur., 1] . But before we pursue 

that further and generalize the above discussion to the MIMO 

case, we define the McMillan degree of a discrete linear 

system.

3.2.4 McMillan degree, relationship between G(d) and G(z)

It is known (theorem 3.3), that causality and stability of a 

system can be characterized by the location of the poles of 

its impulse response matrix. In fact, the poles of the 

impulse response matrix do not account only for that; they 

are mainly responsible for the dynamic behaviour of the 

system. For this reason we identify them as a system property 

as follows.

Definition 3.10; Let if (J, XL, V , G) be a LTI discrete-time sys-

tem. We define the pole-polynomial of G(d) over R [d] as the 

pole-polynomial of system if and we denote it by p^(d), i.e.

Pep (d) := PG (d) (3.11)

□

From the definition of the pole-polynomial of a rational 

matrix G(d) and remark (2.17) we have the following 

corollary.

Corollary 3.3: Consider a linear time-invariant discrete-

time system if (J, U, V, G) , and let {D (d) , N (d) ) , [N (d) , D (d) ) be 

left and right coprime polynomial MFDs of G(d). Then

p„(d) = cdetD(d) = cdetD(d) c ,c e R-{o} (3.12)■/ 1 2 1 2
□
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Definition 3.11: Let if (V ,Vl,V ,G) be a LTI discrete-time sys-

tem. We define the McMillan degree of G{d) as the McMillan 

degree of system if and we denote it by , i.e.

:= 6J((G) (3.13)

□

We recall (remark 2.16), that the McMillan degree 6 ^ (G) of a 

rational matrix G(d) expresses the total number of finite and 

infinite poles (multiplicities included) of G(d) and can be 

found from the Smith-McMillan forms of G(d) over R [d] and 

R (d) respectively, i.e.
pr

S m (G) := 5'(G) + 6 “ (G)

We derive now an alternative characterization of <5̂ (G) based 

on properties of G(d) without resorting to the aforementioned 

decomposition. As far as we are aware, this approach, though 

not very formally proven, was first given by Kucera [Kuc., 

3]. Later on Gevers [Gev., 1] and Janssen [Jan., 1] derived

the same main result. Here we give a proof based on 

valuation theory. It is close to that given by Janssen but 

more elegant (see also [Kar., 3]) . Before we present the 

main theorem we give some preliminary results.

The next proposition generalizes to the matrix case the 

definition of valuation at d = oo of a scalar function.

Proposition 3.1 [Var., 3]: Let G(d) e Rlxm [d] , l ^ m and

[N(d), D(d)) a right polynomial MFD of G(d) not necessarily 

coprime, i.e. G(d) = W(d)D_1(d). Then

V (G) = 3(D) - a(N) (3.14)00

□

Consider now an l x m  rational matrix G(d) . We define

TrG (d) := G^d) j e R (1+m)xm (d) (3.15)

and refer to that as the right composite matrix of G(d) (t I,Gr
is defined similarly). Then we have the following result
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which is a generalization of that given by Forney [For., 1].

Proposition 3.2: Let R be a quotient ring of [R [d] defined

over C - Q, where Q is a closed region in the complex plane, 

such that V d e f i = > d e f i  and not all the real axis belongs 

to Q. Then for every G id) e Rlxm(d), represented by an 

K-coprime MFD G(d) = W(d)D_1(d), N (d) e R lxm D (d) € Rmxm, the

composite matrix T^(d) is given by the following ft-coprime 

MFD

TG (d)
(d) (3.16)

Also, Tg(d) has no Q-zeros and the same fi-poles as G(d), i.e.

SM iTG ] = SM (3-17) 

where (T’q ) is the fi-McMillan degree of T^(d).

Proof. It is easy to prove (3.16) by substituting G(d) by 

its R-coprime MFD. Then, we must show that ( [Nl (d) Dt(d)]t, 

D(d)) are right ft-coprime. Indeed

' N(d) ' Nid)
Did) 4 Did)
Did) 0

and since (N (d) , D(d)) are ??-coprime, the first part of the 

above equivalence relationship is R-coprime too. Also, since 

[Nl (d) Dt(d)]t is the numerator of the R-coprime MFD of T̂ , it 

follows (remarks 2.14 and 2.18) that T̂ ,(d) has no fi-zeros. 

Clearly, because D(d) is common denominator to both G(d) and

rG (d),

sm {t^  -  s 5 S ( g >

□

Corollary 3.4: Let G(d) e Rlxm(d) and T^id) be the composite 

matrix of G(d) . Then, T̂ ,(d) has no zeros in the extended

complex plane C and the (C -poles of T^(d) are the (D -poles
e e G e

of G(d), i.e.

SM (TG> - SM<3-18>
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Proof. From proposition (3.2) with R = [R [d] , we have that 

T^(d) has no finite zeros and the same finite poles as G(d) . 

If R = R id), then T̂ ,(d) has no infinite zeros and the same
pr G

infinite poles as G(d) . Therefore, TÎ,{d) has no C -zeros and
G  e

the same McMillan degree as G(d).

□

We state now the main result of this subsection.

Theorem 3.4 [Jan., 1], [Kar., 3]: Let G(d) e Rlxm(d), G(d) = 

N (d) D (d) be any right coprirne MFD over [R [d] and i?G (d) : = 

[Nl (d) D^d)]1. Then

Sm (G) := 5'(G) + S” (G) = d(RG (d)) (3.19)

Proof. Consider the composite matrix T^(d) of G(d). Then,

T^(d) G (d) 
I

' w(d) Id "1 (d)
. D(d) J = RG (d)D_1 (d) (3.20)

Also (remark 2.15), i M T ^ ) = {# oo zeros} - {# oo poles} and

since TG (d) has no infinite zeros (corollary 3.4), we have

Ura(T̂ ) = -{# oo poles of TG (d)} -.= -ô” (T̂ )

which again by corollary (3.4) leads to

W  ■ - V G) (3-21)

By proposition (3.1) we have that

Vm (TG) = a (D) - a(J?G) (3.22)

and given that 8 (D) = <5̂  (G) (corollary 3.3), eqns (3.21) and

(3.22) lead to

-5” (G) = <5^(0 - S(J?G (d) ) or 

Sm (G) := 5^(G) + fi“ (G) = 3 (J?G (d) )

□

Note that the degree of the matrix R~(d) [Nl (d) Dt (d) ]t
G

defined by a coprime MFD of G(d) is invariant of the MFD and
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known as the Forney dynamical order of G(d) (def. 2.22). 

Therefore we have the following corollary.

Corollary 3.5: Let <5̂ ,(G) be the Forney dynamical order of

G(d). Then,

:= 8m (G) = 8(RG (d)) = 8 F (G) (3.23)

□

We consider now the relationship between the MFDs of the el-

and z-transfer functions G(d) and G(z) of a system if and 

their corresponding McMillan degrees as well. First we 

examine the problem of constructing coprime MFDs for G(z) 

from coprime MFDs of G(d).

Definition 3.12: Consider the composite matrix R~{d) -.=
Gr

[N (d) D (d) ] = [r„ , . . . , r_ ] associated with a right

coprime polynomial MFD of the l x m rational matrix G(d) and 

let ju. i = 1,.,.,/n be the right minimal indices of G(d) . If 

i?G (d) is column reduced and its columns are ordered in 

descending degree order, i.e.

8(rGi) ut — 8(rG2) u2 Ï * afrgj w

then the MFD is called normal.

□

If we apply the bilinear transformation d = z-1 on R„{d) , we
Gr

have for each column of R^id)Ct

. -V.
£g .(d) = rGi(z ) = z xrGi (z) , £Gi (z) e R m [z] (3.24)

Therefore

R0 (d) - rg (z'‘> f?G l (z).
-n.

' N(d) ' N(z)

_ D(d) D(z)

, (z)]diagjz \ 

S(z)

-Um i. ,z }

(3.25)

Definition 3.13: The pair [N(z), D (z)) constructed as in

eqn. (3.25) will be called the normal dual of (N(d), D(d)).

□
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The properties of the normal dual of a normal right coprime 

MFD of G(d) have been studied by Kucera [Kuc., 3] and

Wolovich and Elliott [Wol. , 2]. Here, in the following

proposition we relax some of their assumptions.

Proposition 3.3: Let {N(d) , D (d)) be a normal right MFD of

the rational matrix G(d) and (N(z), D(z)) be the correspond-

ing normal dual. Then,

a. G(z) ■.= G (z-1) = N(z)D~1(z)

b. (N(z), D(z)) is a normal right MFD of G(z) with the 

same right minimal indices as G(d).

Proof.

a. From (3.25) we have N (d) = N (z) S [z) , D (d) = D{z)S(z). So 

G (z) := G (z-1 ) = G (d) = N{d)D~1(d) = N(z)S(z)S~1 (z)D-1 (z) .-.

G(z) : = G ( z_1 ) =N(z)D~1{z) (3.26)

b. From (3.26) it is clear that (W(z), D(z)) is a right MFD 

of G(z) ; for the later MFD to be normal, it has to be shown 

that it is coprime, column reduced and ordered. Note, that 

V z e C -  {0}, S(z) has full rank (eqn. 3.25) and thus

V z e C - {0}, p i W U d )  DUd)]1) = p([Nfc(z) D^z)]1)

Therefore, [Nl (z) Dt(z)]t has no zeros in C - {o}. Consider 

now [^(0) ¿''(O)]1. From the definition of the high coeffi-

cient matrix and eqn. (3.25) we have

RG,h = limit 
d— >oo

N(d)

Did)

diag{d
-h. -h

m} } =

= limit {
Z — > o

N(z) 1 } 

D (z)

N( 0) 
0 (0)

and since R_(d) is column reduced, i?_, has full column rank,O Ct , h• ~ t ~ t t '
i.e. R£ := [N (z) D (z) ] has no zeros at z = 0. Similarly, 

Rr ( 0) = {[n M z ) Dt(z)]t}u and so { [N1 (z) Dt(z)]t} has fullLr h h
column rank. Hence

piR^(z)) = p{[Nl(z) Dt(z)]t) = m V z e C
e
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For {N (z) , D (z) ) to be normal, the column degrees of R^{z)
Gr

have to be ordered in descending order. Indeed, since R _ (0) 

has full column rank z (rG (d) ) =0, i = and from eqn.

(3.24) we have

S(rGi(z)) = S(rG.(d)) := p., i =

□

According to theorem (3.4) and proposition (3.3) we can prove 

the following results which express no more than the obvious 

property of invariance of the McMillan degree under bilinear 

transformations.

Corollary 3.6 [Jan., 1], [Kar. , 3]: Let <f> (J, U, V , G) be a LTI 

discrete-time system and {N(d), D(d)), (N(z), D (z)) be two 

right coprime MFDs of G(d) and G(z) respectively with corres-

ponding composite matrices R_,(d) and i?x(z) . Then,
Gr Gr

SM 0f) == SM (G(d)) = ô^(G(z)) or 

= d(RG (d) ) = S(Rg(z) )

□

Remark. 3.4: Causal rational matrices G(d) e (R° (d) {no poles 

at zero in the d-plane}, correspond to proper rational 

matrices G(z) e IR^m (z) {no poles at infinity in the z-plane} 

and stable rational matrices G(d) e \R+ (d) {poles outside the
lm

closed unit disc ID [0,1]}, correspond to proper and stable 

rational matrices G(z) e IRlxm (z) {poles inside the open unit 

disc ID [0,1) } .

The advantage of the d-plane description is that the forbid-

den region for stability and causality is rather simple, that 

is the closed unit disc of the d-plane. Testing for causa-

lity is similar in nature to testing for stability since for 

causality we have to test the existence of a pole at d = 0. 

Testing whether the pole-polynomial (d) has no roots in the 

closed unit disc provides a criterion for both causality and 

BIBO stability.

□

73



3.2.5 Linear constant-coefficient difference equations

We close this section about the input-output description of 

discrete-time systems by referring to their representation as 

systems of linear constant-coefficient difference equations. 

This representation is a straightforward consequence of the 

impulse response description of discrete-time systems and it 

has not only theoretical significance but it may as well 

serve as a computational realization for them.

Consider first a causal linear time-invariant SISO discrete-

time system if O', U, V , g (d) ) where g(d) = b{d)/a{d) with b(d), 

a {d) coprime polynomials and a( 0) * 0. Then V u e l i  3 y e V 

such that

y(d) = ^ u{d) or a{d)y{d) = b{d)u{d) 

and if 3(a(d)) = n and a(Jb(d)) = m, we have

{a +a d+-•-+a dn) y {d) = (b +b d+-• • +b d"1) u (d) (3.27)
0 1 n 0 1 m

Taking into account the delay effect of the d-operator, eqn. 

(3.27) becomes

a y +a y + ■
k 1J k-1

■+a y
k-n

= b u +b u + • • ■ +b u V k e 7
O k  1 k-1 m k-m

(3.28)

We then distinguish the following two cases.

a. if is at rest at k = -» and a sequence u e \R<d> applies at 

its input thereafter. So, u is completely known V k e 7, 

and since if is causal y is described completely by the 

difference equation (3.28) V k e 7.

b. if is at rest at k  = -oo but the input sequence is not 

known for k < kQ, for example kQ = 0. Then it can be 

easily shown that eqn. (3.28) describes y uniquely for 

k 2= r := max{m,n} = 5^ [if) when the vector of the initial 

conditions at k - 0, g, = [y , . . . , y ]t e [Rr is known.
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Example 3.1:

where

Consider the causal LTI SISO system if {ïï, U, V , g)

g id) . y id) 
u  (d)

b +b d+b d20 1 2
a +a do 1

a * 0o

Then u, y satisfy the following difference equation.

a y +a y
k ly k-l

b u +b uOk 1 k-1
+b u

2 k-2
(3.29)

a. Suppose if is at rest at k = -oo and u e \R<d> with order 

z (u) . Then y e \R<d> with z (y) = z (u) +t (jb) -z (a) and if bQ * 0 

z (jb) = z (a) = 0, i.e. r (y) = z (u) . Therefore,

f 0, V k e J : k < z (u)

I a”1 {b u +b u +b u -ay ) , V k e 7 : k ^ z [u)
K 0 0 k 1 k-1 2 k -2 1J k-1

b. Suppose y is at rest at k = -oo and u is not known for 

k < 0, i.e. u e IR [ [d] ] . Then {¡f) = max{3 (a) , 5 (jb) } = 2, and 

given the initial conditions vector u = [y ,y ]t y can be 

described by eqn. (3.29) for k > 2, i.e.

unknown V k e 7 : k < 0

yk - y0' y i for k = x'2

a~1 (b u +b u +b u -ay ), \/ k e ïï : k  ̂2
v 0 0 k 1 k-1 2 k-2 l-'k-l '

□

Using polynomial MFDs for the impulse response matrix, we can 

easily generalize to the MIMO case [Kai., 1], [Ros. , 1],

[Var., 1] . To this extend, we have the following definition

of a causal LTI discrete-time system.

Definition 3.14: A lumped causal LTI discrete-time system ¡f 

with m inputs and i outputs is a set f {ïï, U, V, G, g ), where
— in

ïï = IL u {oo} is the discrete time, U  £ IRm [ [d] ] is the input 

space, V £ [R1 [ [d] ] is the output space, G e IR° (d) is a map
lm

from U to V and g e IRr is the initial conditions vector
— in

with r = 6^ (y) the McMillan degree of if.

□
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Remark. 3.5: Note that y  e V can be described uniquely from

the initial conditions vector u. , which accounts for the
— in

past information about the system behaviour, and from the 

input u e U V k e 1 : k  ̂ 0. a is no more than the
—  — in

initial state vector of the reachable and observable part of 

the physical system as we will see in the next section when 

we will discuss the state-space, or the internal behaviour of 

the system.

□

3.3 Linear Discrete-Time Systems 

State-Space description

In the previous section we have considered discrete-time 

systems from an input-output point of view describing them by 

their external behaviour through their input-output 

characteristics. A more comprehensive approach one could 

argue, is the one which takes into account the internal 

dynamics of the systems, the so-called state-space approach. 

As it has already been mentioned (remark 3.5), the state at 

time kQ summarizes all the past information of the system so 

that together with the input after kQ is all that is needed 

in order to determine its future behaviour.

Here we give a quick summary of the state-space approach for 

discrete linear systems and the important concepts of 

reachability/controllability, observability/constructibility 

and stability associated with this approach. On these 

grounds the relationship between the external and internal 

description of systems is presented as a final conclusion of 

this section. The mathematical description of discrete 

linear systems as well as the concepts of this part can be 

found in a large number of texts like Barnett [Bar., 1] , 

Kailath [Kai., 1], Kalman Falb and Arbib [Kal., 1], Kucera 

[Kuc., 2], Padulo and Arbib [Pad., 1], Rosenbrock [Ros., 1], 

Zadeh and Desoer [Zad., 1] and references therein.
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We give now the abstraction of the concept of a discrete-time 

system from the state-space perspective.

Definition 3.15 [Son., 1]: A discrete-time system Z with m 

inputs and £ outputs is a set Z (X, X,11, 0, V , h) where X is the 

discrete time, i.e. X = Z u {oo}, X is the state space, U £

\Rm <d> is the input space, 0 is a map from to X called the

transition map of Z, which is defined on a subset T>, of
<P

{(s,r,x,u): r,s e X , r * s , x e X , u e U }
—  —  —  —  [r, s)

such that the following properties hold:

nontriviality V x e X, there is at least one pair r < s in X 

and some u e li such that u is admissible for x, that is,— [r,s) — —
so that (s,r ,x,u) e

restriction If u e Î1 is admissible for x, then for each
-----------------  —  [r,s) —

t e [r,s) the restriction u := u| of u to the subinter-
— 1 —  [r, t) —

val [r,t) is also admissible for x and the restriction u :=— —2
ul is admissible for d>{t,r,x,u);
—  L t, S ) —  — 1

semigroup If r

r < s < t, if 

that

s , t are any 

u e 1£ and
— 1 [r,s)

three elements 

u e U and
— 2 [s,t)

of X so that 

if x e X so

<p [s,r ,x,uj = x^ and 0 (t, s, x^, uj = X2 

then Is also admissible for x and <p (t, r , x,u) = x2;

identity For each t e ÏÏ and each x e X, the empty sequence 

° e t) is admissible for x and <t> (t ,t, x, °) = x;

y £ IR^d] is the output space and h is a map from ïï x X x U 

to V called the readout or measurement map.

□

Definition (3.15) captures the intuitive notion of a system 

that evolves in time according to the transition rules speci-

fied by 0. We call 0(s,r,x,u) the state at time s resulting 

from starting at time r in state x and applying the input 

function u [Son., 1] .
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3.3.1 Linearity time-invariance and causality

Taking into account definition (3.15) and following similar 

lines as in section (3.2), a lumped, linear, time-invariant, 

causal system is the one whose finite dimensional state at 

time k is a constant linear combination of the state and the 

input vectors at time k - 1, and its output at time k is a 

linear combination of the state and input vectors at time k. 

This gives rise to the following definition.

Definition 3.16: A lumped, linear, time-invariant, causal,

discrete-time system £ with n states, m inputs and i outputs 

is a set £ (X,X, 11, V, A, B, C , D) where X = Z u {oo} is the discrete 

time, X £ IRn<d> is the state space, 11 £ [Rm<d> is the input 

space, V £ IR1<d> is the output space and A, B, C, D are real 

matrices with appropriate dimensions so that V u e li 3 x e X 

and y € V such that

x = Ax + Bu and y = Cx + Du V k e X (3.30)—k+l —k —k —k —k —k

□

Note that the recursive equations (3.30) describe uniquely 

the state x and the output y of the system £ assuming that 

it is at rest at k = -oo. if this is not the case then the 

initial state x must be specified for time k . To this 

extend, as in the input-output approach, we may have the 

following definition.

Definition 3.17: A lumped, linear, time-invariant, causal,

discrete-time system £ with n states, m inputs and i outputs 

is a set £ (X, X, 11, y , A, B, C, D, x q ) where J = Z u {oo} is the dis-

crete time, X £ Rn [ [d] ] is the state space, 11 £ lRm [ [d] ] is 

the input space, y £ [R1 [ [d] ] is the output space, A, B, C, D 

are real matrices with appropriate dimensions so that V u e  

11, 3 x e X and y e y such that

x—k + l Ax + Bu ^
k k l  k e X : k i O  

Cx + Du >—k —k

(3.31a) 

(3.31b)
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x  6 IRn is the initial state vector at k  = 0 and n, the—o
dimension of the X space is the order of the system.

□

It can be easily shown that the solution to the system equa-

tions (3.31) is

X = A*x + Ak 1B u  + • • • +  B u (3.32a)
— k — 0 — 0 — k-1

v = Cx- + D u  (3.32b)
— k — k — k

for k  = 0,1,.. . Therefore the state and output sequences at

time k  are uniquely described by the initial state x^ and the 

input sequence up to time k.

The state response of the system (3.31) to the initial state 

x^ is described by the equation

X = A x  , it e J : Ji i 0—k+l —k (3.33)

and represents the free, u n e x c i t e d , or n a t u r a l  d y n a m i c s  of 

the system. It is called the zero input response and is 

given by

X = A kx  , k 0 (3.34)
— k — 0

If X is an e i g e n v a l u e of A, u is an e i g e n v e c t o r of A associ-

ated with X and u ,...,u is a chain of so-called g e n e r a l i z e d—2 —p
e i g e n v e c t o r s , then the response of (3.34) to the initial 

state x  = v , is-o -p'

-« k
x  = X v—k —P k 1

xk au +• • • + k 11 J -p-i p-i j

. k-(p-1)
X u—1 (3.35)

and is a composition of p motions along the generalized 

eigenvectors of A. These motions are called modes of A cor-

responding to eigenvalue X. The modes corresponding to X = 0, 

if any, are given by

( v for k = 0 , l , . . . , p - l  
x = \ _p_1
k ^ 0  for k  ̂ p

they al l  s e t t l e  to z e r o  in f i n i t e  time, and they are called 

finite modes [Kuc. , 2] .
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The eigenvalues and the modes of A are invariant under 

[R-similarity transformations and they can be considered as 

system properties according to the following definition.

Definition 3.18: Consider the linear time-invariant causal

discrete-time system £ (9", 1, U, V, A, B, C, D, x q ) . The eigenvalues 

of A are called the eigenvalues of £ and the modes of A are 

called the modes of £.

□

Notation. From now on we drop the description of time, 

state, input and output spaces in the definition of systems. 

Therefore, ¡f (J, U, V , G, y. ) will be denoted by if[G,g ) and
— in — in

£(y,X,ll,y ,A,B,C,D,Xo) by £ (A, B, C, D, X q ) .

We investigate now separately the input-state and the state- 

output characteristics of £ (A,B,C,D,x q) by discussing the 

notions of reachability/controllability and observability/ 

constructibility correspondingly. These notions were first 

formally introduced by Kalman [Kal., 2] and they are 

extensively treated in Kalman Falb and Arbib [Kal., 1] and 

Kailath [Kai., 1] .

3.3.2 Reachability

As it has already been mentioned, reachability and control-

lability are properties referred to the underlying system 

Z{A,B,0,0), denoted by £. (A,B) and described by the input-
i -s

state equation

x = Ax + Bu , k = 0,1, . . . (3.36)—k+l —k —k

Definition 3.19: The system £ (A,B,C,D), or the pair (A,B) is 

reachable from the origin, or just reachable, if and only if 

for every k > 0 any state x can be reached from the origin 

in k steps by applying an input sequence Uq,...,u .

□
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An important part in the investigation of reachability is 

played by the so-called kth-reachable spaces that we define 

next.

Definition 3.20: Consider the system E. (A,B) and define
i-s

ft (A,B) = 0 0
Xk(A,B) = Zm [B AB ••• A^B] , k = 1,2,...

(3.37)

We call k^A.B) , k  ̂ 0 the kth-reachable subspace of £.

□

Remark 3.6: According to (3.32a) with x^ = 0, we have

X = A k_1B u  + • • • + B u  —k —0 —k-1

Therefore ft (A,B) £ X and consists of the states x that cank —k
be reached from the origin in k steps by applying an input 

sequence u^,...,u . From eqn. (3.37) the following property 

is clear [Mul., 1]

ft {A,B) = AR (A,B) + 7m B, k = 0,1,... (3.38)k+l k

□

We give now the necessary and sufficient conditions for a 

system £ to be reachable.

Theorem 3.5 [Bar., 1], [Hau., 1], [Ros, 1]: The pair (A,B) 

is reachable if and only if any of the following equivalent 

conditions holds true.

a. There is a nonnegative integer r such that

ft (A,B) = [Rn
r

b. There is a nonnegative integer r such that

p ([B AB ¿r-1B] ) = n.

c. ufcB = 0 and = Ai/ for some constant A implies

=  0 .

d. The matrices (zJ - A, B) are relatively left prime 

over !R [z] .

□
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Definition 3.21: The constant X in theorem (3.5) is an

eigenvalue of A. The modes associated with any such X are 

called the reachable modes of the system £. Accordingly, the 

modes of £ that are associated with any eigenvalue that does 

not satisfy condition (c) of theorem (3.5) are called 

unreachable modes.

□

Reachability Indices

Consider the pair (A,B) and define the integers

p = dim R A  A ,B) - dim R [A,B) , K = 1,2,... (3.39)
k k k-1

Then we have the following important notion.

Definition 3.22: Consider the pair (A,B) and let p be as in
( r )  k

(3.39) and p. be integers such that for i = l,2,...,m

( r )p. := number of p.'s greater than or equal to i 

Then the integers p(r)  ̂ p(r)  ̂ ••• 2: p(r) are called the1 2  m
reachability indices of {A,B).

□

Remark 3.7: It follows from (3.39) that

m
I U1(r) * n
i = 1

with equality holding if and only if {A,B) is a reachable 

pair.

□

3.3.3 Controllability

Another important notion which is related to the input-state 

pair {A,B) is that of controllability. In this section we 

give the dynamic characterization of controllability, the 

criteria for a system to be controllable, and the relation 

between the two notions of reachability and controllablity.
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Definition 3.23: The pair (A,B) is controllable to the

origin, or just controllable, if and only if there is a 

finite k > 0, such that every initial state x^ can be steered 

to the origin in k steps by applying an input sequence

u , . . . , u—0 —k-1

□

Definition 3.24: Consider the system £. (A,B) and define

(3 .4 o:
e {A, B) = 0 0
Gk (A,B) = {x € X £ [Rn : A x e ft U,B) } , k = 1,2,...

We call £ (.4,B) , k  ̂ 0 the kth-controllable subspace of S.

□

Remark 3.8: According to eqn. (3.32a) with x = 0, we have

0 = A* x + Ak~1Bu + • • • + Bu—o —o —k-l

Therefore ?? (A,B) £ X and consists of the initial states x
k — o

that can be steered to the origin in k steps by applying an 

input sequence û , ...,u . From eqn. (3.40) the following 

property is clear [Mul., 1]

¿i?k+i U,B) c 1? (A,B) + 3-m B, k = 0,1,... (3.41)

□

Theorem 3.6 [Bar., 1], [Hau., 1], [Ros, 1] : The pair (A , B )

is controllable if and only if any of the following 

equivalent conditions holds true.

a. There is a nonnegative integer r such that

e (A,B) = IRn
r

b. There is a nonnegative integer r such that

Ar c 3-m [B AB ••• ¿r"1B] .

c. iitB = 0 and u1 A = for some constant A. implies

X = 0 or = 0.

d. The matrices (I - Az~l, Bz"1) are relatively left
n

prime over [R [z q .

□
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Remark 3.9 [Kuc., 2]: From theorems (3.5) and (3.6) it is

evident that reachability implies controllability and that 

the two notions are identical when A is nonsingular. In 

fact, controllability is equivalent to reachability of the 

non-finite modes of E.

□

3.3.4 Observability

The notions of observability/constructibility are dual to the 

notions of reachability/controllability [Kal., 2]. They are 

related to the underlying system Z(A,0,C,0) denoted by 

Es_o (A,C) and described by the state-output equations

X — Ax \

k+1 k 1 k = 0,1,... (3.42)
y = Cx J
1 k k

Definition 3.25: The system Z(A,B,C,D), or the pair (A,B) is 

called observable, if and only if every initial state x^ can 

be observed from a finite output sequence y ,...,y

Definition 3.26: Consider the system E (A,C) and define
s - o

0 (A,C) 

0AA,C)
k

o

3-ax'

C

CA
k = 1,2,...

(3.43)

We call 0^{A,C), k  ̂ 0 the kth-observable subspace of £.

□

Remark 3.10 [Kuc., 1]: According to equations (3.32a) and 

(3.32b) with u = 0, we have
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L—€ 
Y,

Cx— o
CAx —o

„ k-1y = CA x—k-l —0

t
Therefore 0 (A,C) £ [Rn consists of the linear functionalsk
through which the initial state x^ can be observed from the 

output sequence Zq' • • •'Zk_ • The following property is

evident from (3.43)

0 (A,C) = 0^(A,C)A + ?rn C, k = 0,1,... (3.44)

□

Theorem 3.7 [Bar., 1], [Hau., 1], [Ros, 1]: The pair (A,C) 

is observable if and only if any of the following equivalent 

conditions holds true.

a. There is a nonnegative integer r such that
t

0 (A,C) = Rn
r

b. There is a nonnegative integer r such that

P (

C

CA

CA l

n .

c. Cv = 0 and Av = Xv for some constant X implies

v  =  0 .

d. The matrices (zl^ - A, C) are relatively right 

prime over IR [z] .

□

Definition 3.27: The constant X in theorem (3.7) is an

eigenvalue of A. The modes associated with any such X are 

called the observable modes of the system Z. Accordingly, 

the modes of E that are associated with any eigenvalue that 

does not satisfy condition (c) of theorem (3.7) are called 

unobservable modes.

□
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Observability Indices

Consider the pair (A,C) and define the integers

gk = dim 0 (A, C) - dim 0 (A,C) , k = 1,2, . . . (3.45)

Then we have the following important notion.

Definition 3.28: Consider the pair (A,C) and let q be as in
( O ) ^

(3.45) and i>. be integers such that for i = 1,2

y.(o) := number of q.'s greater than or equal to i

Then the integers i/o) £ i/ ° )  ̂ ••• £ i/o) are called the

observability indices of (A,C).

□

Remark 3.11: It follows from (3.45) that

E v[o) * n
i = 1

with equality holding if and only if (A,C) is an observable 

pair.

□

3.3.5 Constructibility

Another important notion which is related to the state-output 

pair {A,C) is that of constructibility.

Definition 3.29: The system Z[A,B,C,D), or the pair {A,C) is 

constructible, if and only if for every initial state x̂ , 

every state can be constructed from the output sequence

y0.... yk.i-

□

Definition 3.30: Consider the system £ (A,C) and define
s - o

Ea (A,C) = 0 o
t (3.46)

0^(A,C) = e !Rn : v A  e 0 (A, C) }, k = 1,2, .. .

We call "0tî {A,C) , k  ̂ 0 the kth-constructible subspace of £.

□
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Remark 3.12 [Kuc., 

(3.32b) with u = 0

and

1 ] : 

we

According to 

have

x—k
-k

= A  X—0

equations (3.32a) and

4-i

t
Therefore S-a (A,C) £ [Rn consists of the linear functionalsk
through which the state x can be constructed from the output 

sequence . The following property is evident from

eqns. (3.46)

Ea U,c) c G* {A, C) A + 9m- C, k = 0 ,1 ,... (3.47)

□

Theorem 3.8 [Bar., 1], [Hau., 1], [Ros, 1]: The pair (A,C)

is constructible if and only if any of the following 

equivalent conditions holds true.

a. There is a nonnegative integer r such that
t

U,C) = [Rn
r

b. There is a nonnegative integer r such that

9-mt A r c ini'

C

C A

C Â
l

c. C v  = 0 and Au = Au for some constant X implies 

X = 0, or u = 0.

d. The matrices (I - Az-1, Cz”1) are relatively
n

right prime over IR [z_1] .

□

Remark 3.13 [Kuc., 2]: From theorems (3.7) and (3.8) it is

evident that observability implies constructibility and that 

the two notions are identical when A is nonsingular. In 

fact, constructibility is equivalent to observability of the 

non-finite modes of £.
□
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3.3.6 Duality

A comparison between (3.37) and (3.43) reveals that

* u S c 1) = o U a .C)
k k

0  (At,Bt) = x U a ,B)
k k

Similarly, from (3.40) and (3.46) we have

G (At .Ĉ ) = SA1 U,C)
k k

Ga {A1 ,Bt) = U,B)
k k

It is clear that there is a symmetry between the properties 

of reachability/controllability and observability/constructi- 

bility and any result that involves one pair of properties 

can be translated into a corresponding result involving the 

other pair. This important property known as principle of 

duality, was introduced by Kalman [Kal., 2] by defining the

dual system £ (A1, , Bt, Dl) , i.e.
d

,tw =A w +C u—k + 1 —k —k

y =b V  +Dtu—k —k —k

(3.50)

of the original system £ {A,B ,C ,D) . Thus observability of £

implies reachability of £d and constructibility of £ implies 

controllability of £ and vice versa.1 d

3.3.7 Invariants under state feedback and output injection

In this section we summarize the complete set of invariants 

under the group of static state feedback, static output 

injection, and state, input and output coordinate

transformations.

Static state feedback relates to the underlying system 

£ (A,B) (eqns. 3.36) where
i-s

u = -Lx + v , L e IRmxn (3.51)
— k — k — k

and the closed-loop system is described by
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k = 0,1,... (3.52)x = {A - BL) X + Bv ,—k+l —k —k

whereas static output injection is a concept dual to static 

state feedback and relates to the underlying system Z (A,C)
s - o

(eqns. 3.42) where

X = Ax - Ky , K e Rlxn (3.53)
— k+l — k — k

and the closed-loop system is described by

X = {A - KC) X \

k+1 k \ k = 0,1,... (3.54)

^k = C*k J

The invariants of Z(A,B,C,D) under the aforementioned group 

of transformations were studied extensively by Brunovsky 

[Bru., 1], Kalman [Kal., 4], Karcanias [Kar., 6], Morse

[Mor., 1], Popov [Pop., 1], Rosenbrock [Ros., 1] and Thorp

[Tho., 1] and are summarized below.

Theorem 3.9: Let Z{A,B,C,D) be a LTI discrete-time system

and L, K be any state feedback and output injection real

matrices. Then for any k = 0,1,...

R (A -k BL,B) = R (A,B)k (3.55)

and

E {A -k BL,B) = S (A,B)k (3.56)

0 (A -k KC, C) = 0 (A,C)k (3.57)

(A -k KC, C) = Go. (A,C)k (3.58)

□

Remark. 3.14: According to theorem (3.9) the reachability

indices M (r), ju<r * , • • • , |Lt(r) of Z(A,B,C,D) form a complete 

set of invariants of the reachable pair Z. (A,B) under the 

feedback group of transformations (state, input coordinate 

tranformations, and static state feedback)

-» (T~ 1 AT ,T~ 1B) , T nonsingular

R nonsingular 

L real

(A, B) 

{A ,B) 

(A,B)

* (A ,BR),

■> (A - BL, B) ,
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Also, the observability indices i^o), 1̂ ° ) > '"" / î 10* °f

Z{A,B,C,D) form a complete set of invariants of the observ-

able pair Zs o (A,C) under the injection group of transforma-

tions (state, output coordinate transformations, and output 

injection)

(A,C) -— > (T 1AT,CT) , T nonsingular

(A,C) -— * (A,Q~'C), Q nonsingular (3.60)

(A,C) -— > {A - KC,C) , K real

3.3.8 The Kalman decomposition

Using the concepts of reachability and observability we can 

always find an invertible state transformation x' = Tx to

rewrite the state equations

X—k+l = Ax—k + Bu ,—k zk = Cx—k + Du—k

in the form

X/ _ 
k + l ÄX-' +—k Bu ,—k y = Cx'—k —k + Du—k

where

I r o 0 A13 0 ' B r o

A = A2 1 Ar o I23 I 24 , B = B r o

o 0 Aro 0 0

0 0 I34 0

c = [ Cu r o 0 Cro 0] D = D

and

1. the subsystem

(A ,B ,C ,D )ro ro ro ro

is reachable and observable;

2. the subsystem

o i r b
, [ C

is reachable and unobservable;

A 0 ' B
(

ro
/

ro

A A BL 21 roJ L ro J

0 ] , Drö

—k —k

(3.61)

(3.62)
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3. the subsystem

A A B
r  o 13

/
r  o

0 I 0
r o J L - 1

is unreachable and observable;

4. the subsystem

(A ,0,0,D )
r o  r o

is unreachable and unobservable.

This general decomposition was first enunciated by Gilbert 

[Gil., 1] and Kalman [Kal., 3] and is shown in figure (3.3), 

where RO stands for reachable and observable, RO for 

reachable but not observable, etc.

Figure (3.3): The Kalman decomposition

3.3.9 Stability stabilizability and detectability

The notion of stability of the system X[A,B ,C ,D) refers to 

the dynamic behaviour of the unforced system

x = Ax , x e [Rn given, k e J : k  ̂ 0

We distinguish mainly between two 

bounded state stability and the

as k approaches infinity, 

types of stability, the 

asymptotic stability.
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Definition 3.31: The system Z(A,B,C,D) is bounded state

stable, or stable in the sense of Lyapunov, if

V x e[Rn | x | < M < co V k e J and k  ̂ 0
— 0 k

□

Definition 3.32: The system Z{A,B,C,D) is asymptotically

stable, if

V x e [Rn x -- » 0 as k -- > oo
— 0 k

□

The following well known theorems give the characterization 

of stable in the sense of Lyapunov and asymptotically stable 

systems.

Theorem 3.10 [Ros. , 1] : The nth order system Z{A,B,C,D) is

stable in the sense of Lyapunov, if and only if all the

eigenvalues of A have moduli less than or equal to unity, 

i . e .

W.(A)\ * 1, i = 1,2,...,n 1

and the unity eigenvalue has a simple structure.

□

Theorem 3.11 [Ros., 1]: 

asymptotically stable, if and

A have moduli less than unity,

U. (A) I < 1,1

The system Z{A,B,C,D) is 

only if all the eigenvalues of 

i . e .

i = 1,2, . . . ,n

□

It is clear that non-repeated eigenvalues of A on the unit 

circle are consistent with bounded state stability but not 

with asymptotic stability. Asymtotic stability is a stricter 

notion to that of bounded state stability and it will be 

called alternatively internal stability. It is also known, 

as we shall see later in this section, that internal 

stabillity implies external (BIBO) one. For this reason we 

adopt here the notion of internal stability as opposed to the 

external one. We then introduce the following notation.
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Definition 3.33: Consider the system £ [A,B,C ,D) . An eigen-

value X of A is called stable if IAI < 1 and the modes of A 

that are associated with a stable X are called stable modes. 

If £ is internally stable the matrix A is termed as stable.

□

We close this section by referring to the notions of 

stabilizability and detectability. They were first

introduced by Wonham [Won., 1] in connection with the

concepts of state feedback and output injection and they are 

the following.

Definition 3.34: The system Z{A,B,C,D) is said to be stabi-

lizable, if its unreachable modes are stable.

□

Definition 3.35: The system Z[A,B,C,D) is said to be detec-

table, if its unobservable modes are stable.

□

Remark 3.15: Since controllability implies reachability of

the non finite modes and the finite modes are stable, then 

Z(A,B,C,D) is stabilizable if its uncontrollable modes are 

stable. Accordingly, due to duality, Z{A,B,C,D) is

detectable, if its unconstructible modes are stable.

□

3.3.10 Transfer functions and minimal realizations

We investigate now the relationship between the state-space 

and the input-output descriptions of discrete-time systems. 

Consider the system £ [A,B ,C ,D ,x ) described by the equations

x = Ax + Cu ^
k l x e IRn given, k e J  : k  ̂ 0 (3.63)

y = Bx + Du )
— k —  k — k

and apply the z-Transform with x^ = 0. Then

y(z) = G(z)u(z) or, if d = z”1 y (d) = G(d)u(d)
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where

and
G(z) = C(zl - A) XB  + D  (3.64a)

n

G(d) = dC{I - dA) 1B + D  (3.64b)

G(z) or G  {d) describe the input-output behaviour of the 

system E without necessarily taking fully into account its 

internal dynamics. Indeed, using the Kalman decomposition 

(3.62) G(z) and G(d) become

G(z) = C (zl - il )_1B + D  (3.65a)
r o n  r o  r o  r oand

G(d) = d c  (I - dl )~1B  + D  (3.65b)
r o  n r o  r o  r o

i.e., as it can be seen from figure (3.3) also, the system 

Z ( A , B , C , D ) behaves as its reachable and observable part 

E {A , B  , C  , D  ) . In fact, E is the m i n i m u m  o r d e r
r o  r o  r o  r o  r o  r o

system, unique within state coordinate transformations, that 

has the same input-output behaviour as E. Obviously, G(z) is 

the transfer function matrix and G(d) the impulse response 

matrix of the physical system described by E { A , B,C ,D) . In a 

similar way, given a system ^(G,v. ) there is a family of 

systems Z ( A , B , C , D ) having the same external behaviour as ¡f.

Definition 3.36: A system Z { A , B , C , D ) is a realization of

y (G, ̂  ) if the quadruple (A,B,C,D) satisfies equations 

(3.65a), or (3.65b). If Z ( A , B , C , D ) is reachable and observ-

able, it is called a minimal realization of f (G, y.. ) .

□

If Z { A , B , C , D ) is a minimal realization of !f (G (z) ,G (d) ) the 

following results are true.

Theorem 3.12: Let Z(A,B,C,D) be a minimal realization of

? [G(z) ,G(d) ) , {D (z) ,N (z) ) and (N (z),D (z) ) be any left, 

right coprirne polynomial MFDs of G(z) respectively, and 

(Di (df) ,Wj (d) ) and (N̂  (d) , (d) ) be any left, right coprirne 

polynomial MFDs of G(d) respectively. Then

det(zJ - A) ~ detD (z) ~ detD (z) (3.66a)
n 1 r

det (I - dA) ~ det D  (d) ~ detD (d) (3.66b)
n 1 r
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Proof. Eqn. (3.66a) is a well known result (see e.g. Rosen- 

brock [Ros. , 1]) but we give its proof here for reasons of

completeness. According to theorem (2.17) it is enough to 

prove that {C,zl -A,B,D) and (dC,I -dA,B,D) are bicoprime
n n

factorizations of G(z) and G(d) respectively. Indeed, 

{C,zl^-A) are right coprime over IR [z] due to the 

observability of £ and (zl -A,B) are left coprime over !R [z]
n

due to the reachability of £. Hence (C,zI-A,B,D) is a bico-
n

prime factorization of G(z) over IR [z] and (3.66a) is true.

Since observability implies constructibility (remark 3.13),

(dC,I-dA) are right coprime over [R [d] . So, what remains to
n

be proved for (3.66b) to be true, is that (I-dA,B) are left
n

coprime over \R [d] . Indeed

I - dA B 1
■- n J

i o
n

O dl

'I - dA dB 1
L n -1

(3.67)

and since reachability implies controllability (remark 3.9),

left coprirne over \R[d] - {0} due to (3.67). Also, for d = 0,

[ - dA B] becomes [ 1^ B ] which is clearly coprirne.

Hence {I -dA,B) are left coprirne over !R [d] , {dC, I -dA, B , D) is
n n

a bicoprime factorization of G(d) over \R[d] and so (3.66b) is 

true.

Remark 3.16 [Kai. , 1], [Kuc., 1]: Obviously, the roots of

det(zln - A) are the eigenvalues of A, whereas the roots of 

det( -  dA) are the inverses of those eigenvalues of A that 

correspond to the non-finite modes of Z(A,B,C,D). Then, 

according to eqns. (3.64) and (3.65) and to theorem (3.12), 

if £ is a non-minimal realization of ¡f (G (z) , G (d) )

det (zl - A) ~ f_f_detD (z) ~ f_f_detD (z) (3.68a)
n r o 1 r o r

det (J - dA) ~ f_f_detD (d) ~ f_f_detD (d) (3.68b)
n C cs 1 c cs r

where f_, f_ e [R [z] with roots associated to the unreachable
r o

and unobservable modes of £ correspondingly, and f , f_ e
c CS

IR [d] with roots associated to the uncontrollable and 

unconstructible modes of £ correspondingly. These modes that
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do not affect the input-output behaviour of £ although are 

part of its internal dynamics are called hidden modes.

□

Theorem 3.13: Let Z{A,B,C,D) be a minimal realization of

if (G (z) , G (d) ) . The reachability indices of £ are the right 

minimal indices of G(z), or G(d) and the observability 

indices of £ are the left minimal indices of G(z), or G(d).

Proof. It is known that this is true for G(z) [Kal. , 4] ,

[Kuc., 2], [Ros., 1]. But according to proposition (3.3),

G(z) and G(d) have the same minimal indices, and this 

completes the proof.

□

In accordance with the presentation of the input-output 

description in section (3.2) and due to the fact that d is 

physically realizable, we will mainly use the notion of the 

d-transfer function, or the impulse response matrix G(d). 

Then the following definition comes naturally.

Definition 3.37: Let Z{A,B,C,D) be a discrete-time system,

with order n. We call det(In - dA) the characteristic poly-

nomial of £ and we denote it by (d) .

□

Remark 3.17: The polynomial det(I - dA) is the conjugate
n

reciprocal of det(zl^ - .4) which is usually referred to as 

characteristic, i.e.

fv (d) := det (I - dA) = dndet (zl - A)
2L. n n

Note that information about the eigenvalues at zero of A and 

consequently its order, is lost in det(I - dA) . But if £ is
n

a minimal realization of if (G) , then this information can be 

recovered since it can be easily shown that

n = SM(f) := 8m (G)

However, since the finite modes of Z(A,B,C,D) do not appear 

in det(I - dA) we cannot affect them by assigning, during
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the design procedure, the characteristic polynomial of £. 

This is not important in our case since our aim is to move 

all the eigenvalues of the system £ to the origin as we shall 

see in chapter (5) . Also, it is not important for 

stabilization purposes since the zero eigenvalues are stable.

□

Finally, we note that according to remark (3.16) internal 

stability of Z{A,B,C,D) implies external stability as well, 

i.e. the corresponding G(z), or G(d) are BIBO stable. The 

converse is true only if £ is stabilizable and detectable. We 

formulate this result as the following corollary.

Corollary 3.7 [Kai., 1]: Suppose that Z[A,B,C,D) is stabi-

lizable and detectable. Then Z{A,B,C,D) is asymptotically 

stable, if and only if the corresponding G(z), or G(d) are 

BIBO stable.

□

Remark. 3.18: Under the stabilizability and detectability

assumptions on a linear system Z(A,B,C,D), the notions of 

internal and external stability become equivalent.

□

Notation. We used up to now the script letter if to describe 

the external behaviour of a physical system and the greek 

letter £ to denote the internal behaviour of it. From now on 

we will refer to a physical system by if and we will use 

italics to denote its impulse response or transfer function, 

and quadruples of the form (A,B,C,D) for its state-space

description.

3.4 The Unity Feedback Configuration

Feedback systems are the systems most widely used for control 

system design. We will mainly use in this thesis the feed-

back system shown in figure (3.4), and we will refer to it as 

the standard, or unity, or one-parameter feedback configura-

tion if̂. Under this configuration, if represents a given
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physical LTI discrete-time system hereafter called the plant, 

and Ŷ  is a LTI discrete-time system called the controller, 

or compensator, to be designed so that the feedback system 

has a desirable performance.

Figure (3.4): The unity feedback configuration

The principal aim of this section is the investigation of the 

problem of stability and stabilization of the unity feedback 

system of figure (3.4) . First we give a set of various 

expressions for the pole-polynomial of the feedback system 

and the closed-loop impulse response matrices from any 

external signal to any signal along the directed path, with 

necessary and sufficient conditions for existence. Then we 

address the problem of internal and external stability and 

the problem of finding the family of all stabilizing 

controllers for a given plant known as Youla-Bongiorno- 

Kucera parametrization.

We refer to the work of Callier and Desoer [Cal., 1], Chen 

[Che., 1], Vidyasagar [Vid., 1], Youla, Bongiorno and Lu 

[You., 1] and Youla, Bongiorno and Jabr [You., 2] for the 

relevant properties and design issues of feedback systems. 

Here we closely follow the work of Karcanias [Kar., 4] and 

Kucera [Kuc., 1] in particular.

3.4.1 General aspects of the unity feedback configuration

Consider the unity feedback system of figure (3.4) and let 

P e (Rlxm(d) , C e [Rmxl (d) represent the d-transfer function

98



matrices, thereafter referred to as transfer function 

matrices, of the plant and controller respectively, û , uz 

denote the externally applied vector inputs, , e2 denote 

the vector inputs to controller, plant, and y , y d e n o t e  the 

vector outputs of the controller and plant respectively. All 

signals are vector sequences in d. Also, by R we will denote 

[R [d] , or any quotient ring of R [d] whose field of fractions 

is [R (d) , and M (??) is the set of matrices with elements from H 

and appropriate dimensions.

Such a configuration, though not the ideal one for fairly 

complicated design cases, is quite versatile and may accomo-

date several control problems. For instance, in a problem of 

tracking, u would be a reference signal to be tracked by the 

output y . In a problem of disturbance rejection, or desensi-

tization to noise, would be the disturbance/noise. 

Depending on whether , or u is the externally applied 

control signal (as opposed to noise etc.) the configuration 

can represent either feedback or cascade compensation.

Structure and external stability of the feedback system

The feedback system under consideration can be described by 

the transfer function

where

or, due to linearity, by the two transfer function matrices

H(P,C) : e := H(P,C)u 

W(P,C) : y := W(P,C)u

(3.69a) 

(3.69b)

The system equations can be written as

e = (I + FG) ~1u and y = G (I + FG) _1u

where

F o I
, G = C 0

-I o ! O p and I + FG I P 
-C I

(3.70)

(3.71)
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We will refer to the unity feedback system of figure (3.4) as 

if , or the pair (P,C). It can be readily verified (Schur 

formula), that

t (d) := det(I + FG) = det (I + PC) = det (I + CP) (3.72)

Definition 3.38: The pair (P,C) is well-formed, if t(d) is a

nonzero element of !R (d) , i.e. t (d) is not identically zero 

for all d e C.

□

It is possible to obtain several equivalent expressions for 

H{P,C) and W{P,C) [Kar. , 4], [Vid., 1] such that

H (P, C) -C I

I-P{I+CP)'1C -P{I+CP)~ 

(I+CP)_1C (J+CP)'1

(I+PC)"1 -{I+PC)~1P

C(I+PC)_1 I-C{I+PC)'1P

W(P,C) C 0 
0 P

I P 
-C I

1

C-CP(I+CP) *C -CPil+CP) 

P(I+CP)~1C P[I+CP)~

cd+pc)'1 - c d + p c )  xp  
pcd+pc)-1 p -p c a+pc )  ~ ' p

(3.73)

(3.74)

Remark 3.19: From (3.73) and (3.74) we see that the

condition t(d) s 0 (eqns 3.72) for well-formedness, is 

necessary and sufficient to ensure the existence of H(P,C) 

and W{P,C).

□

An important relationship between H{P,C) and W(P,C) is given 

next.

Lemma 3.1 [Vid., 1]: Suppose the feedback system if{ is well- 

formed. Then
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W(P,C) = F [H {P, C) I) (3.75)

and so W(P,C) e M (K) , if and only if H(P,C) e M (IR) .

□

Remark 3.20: According to lemma (3.1), the transfer function 

matrix H{P,C) may be used in the investigation of causality 

and external stability of the unity feedback configuration of 

figure (3.4) .

□

Theorem 3.14: Let the pair (P,C) be well-formed. Then the

nonunit elementary pole-polynomials of H , H(P,C) and
e,  y /u

W (P,C) are associates.

Before we prove theorem (3.14) we give the proof of the 

following lemma.

Lemma 3.2: Let G e M (IR (d) ) , (N, D) be a right coprime MFD of

G over [R [d] and H e M(IR[ci]) . Then ( {N+HD) , D ) is a right

IR [<f] -coprime MFD of G + H and therefore the elementary pole- 

polynomials of G and G + H are associates.

Proof. Since (N, D) is a polynomial right coprime MFD of G, 

then

G + H = ND_1 + H = N D 1 + HDD'1 = (N+HD) D'1

Due to the coprimeness of (N, D) the pair ( {N+HD) , D) is

right coprime.

C

Proof of theorem (3.14). We denote H(P,C) and W(P,C) by H 

and W in short. Then according to lemma (3.2) the elementary 

pole-polynomials of W = FH - F and FH are associates. But 

H ~ FH and therefore the elementary pole-polynomials of H, W 

are associates. Also

H — H — H + O

W FH-F _ FH -F

and due to lemma (3.2), the elementary pole-polynomials of

101



are

H and [Hl HtFt]e,y/u are associates. But

' H H "

FH 0

and therefore the elementary pole-polynomials of H / 

associates to the elementary pole-polynomials of H.

□

Remark 3.21: Theorem (3.14) is richer than lemma (3.1).

According to theorem (3.14), the pole structure over C of the 

feedback system can be described by any of the transfer 

functions H , H(P,C) , or W[P,C) . It is common to use thee,y/u
error transfer function matrix H[P,C) for this reason.

□

Definition 3.39: The pair (P,C), or the feedback system if ̂

is externally stable, if H(P,C) e M(IR+(d)).

□

Assume now that both plant and controller transfer function 

matrices are represented by MFDs over \R [d] , i.e.

p = d 1n
p p

D 1N = N D

N D 1
p p 
-l

(3.76)

(3.77)c c c c

Then by inserting (3.76), (3.77) into (3.73), (3.74), H(P,C)

and W(P,C) become

d
p

N
p

- D 0
p

-NL c Dc J 0 DL c -1

DC 0 D Nc p
-l

0 D -N D
p -1 *- c p J

D C A’1 [ D
p

-N ]
p J

+ O 0

NL C J 0 I

-N
p A" [ N DC C J - I 0

DP J 0 0

(3.78a)

(3.78b)

(3.78c)

(3.78d)
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W(P,C) =
N

-D

A"1 [ D -N 1 +
L p p J

0 O

1 o

where

If

Q ■■ =

D
p

A'1 1-
-
1

o b* 0 1 _
1

+ 0  -I

N 0  0
p J

N + D D and A := N N + D Dc p C p p C pc

D N - D Nc p and Q : = p p

Nc D
p J

N Dc c J

(3.79a)

(3.79b)

(3.80)

(3.81)

we have the following important theorem.

Theorem 3.15 [Kuc., 1]: Let the feedback system y be well-

formed and P, C are represented by coprime polynomial MFDs. 

Then (3.78a) and (3.78b) are left, right coprime polynomial 

MFDs and (3.78c), (3.78d) are bicoprime polynomial MFDs of

H{P,C) . In addition A, A, Q and Q are extended associates

A ■- Q Q

i.e. they all share the same nonunit invariant polynomials. 

Also the elementary pole-polynomials of H(P,C) are associates 

to the nonunit invariant polynomials of A, A, Q and Q.

□

Corollary 3.8: According to theorem (3.15) the pole-polyno-

mial of the feedback system y is given by

Py (d) := PH (d) ~ detA ~ detÀ ~ detQ ~ detQ (3.82)

□

Corollary 3.9: Consider the feedback system y^ with P, C e 

M([R(d)) the transfer function matrices of the plant and 

controller respectively, and let {D , N ) , {N , D ) be any
p p p p

left coprirne MFD, right coprirne MFD of P over \R[d] and {D ,
 ̂ C
N ) , [N , D ) be any left coprirne MFD, right coprirne MFD of C
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over [R [d] . Then the following statements are equivalent.

a. (P,C) is externally stable

b. A := N N + D D is a stable polynomial matrix
c p c p

c. À := N N +
P c

D D
P C

is a stable polynomial matrix

D N
d. Q : = C p is a stable polynomial matrix

-N DL C p J

D N
e. Q : = p p is a stable polynomial matrix

-N D
^ c c J

Causality and well-posedness

□

It has been mentioned that the unity feedback system is well- 

formed if det (I + FG) = det (T + PC) = det (I + CP) s 0 as a 

rational function. This allows the existence of the various 

closed-loop transfer functions. However, nothing has been 

said regarding the causality of them.

Definition 3.40 [Kar., 4]: A composite system is said to be 

well-posed if the transfer function of every subsystem is 

causal and the closed-loop transfer function from any point 

chosen as an input terminal to every other point along the 

directed path is well defined and causal.

□

In the design of feedback systems the well-posedness property 

is essential, if no signal is to be unduly amplified, or 

otherwise if the smoothness of signals throughout the system 

is to be preserved. Since causality is a special case of 

stability then, according to lemma (2.1), the causality of 

the feedback system ¡f can be described by the causality of 

H(P,C) .

Theorem 3.16: Consider the unity feedback configuration of 

figure (3.4) and let P, C e M (IR0 (d) ) be the causal transfer 

functions of the plant and the controller. The feedback
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system is well-posed, if and only if

det (I + P(0)C(0)) = det (I + C(0)P(0)) * 0 (3.83)

Proof. It is enough to show that

n -1
H(P,C) = I P 

-C I e M([Ru(d)

Since P, C e M (\R (d) ) then I P 
-C I is causal and for H (P,C)

to be causal, I P 
-C I must be bicausal. This is true if

and only if (3.83) is valid.

□

According to theorem (3.15) the following corollary can be 

readily verified.

Corollary 3,10: Consider the feedback system ¡f with P, C e 

M(R°(d)) the causal transfer function matrices of the plant 

and controller respectively and let [D , N ) , (N , D ) be any
p p p p

left coprime MFD, right coprime MFD of P over R [d] and (D ,
C

Nj , (N' , D̂ ) be any left coprime MFD, right coprime MFD of C

over R [d] . Then the following statements are equivalent.

a. (P,C) is well-posed

b. detA(O) ~ detA(O) ~ detQ(O) ~ detQ(O) * 0.

□

Remark 3.22; If the plant is strictly causal, then P(0) = 0

and (3.83) is valid for any C. Therefore, the unity feedback 

system is well-posed for any causal controller C, if the 

plant P is strictly causal.

□

3.4.2 Internal description of the unity feedback system

The question of internal stability of the unity feedback 

configuration of figure (3.4) is examined briefly in this 

section. Assume that the plant and controller are

characterized by the following sets of not necessarily
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minimal state-space equations.

if :
p

X—p,k+l = A X
P—P.k

+ B e ,
p— 2,k £ 2>k

= C x
p— p,k

+ D e
p— 2,k

if :
c

X
— c,k+1

= A x
c— c, k

+ B e ,
c— 1, k

= C x
c— c, k

+ D e
c— 1, k

If P, C are the transfer functions of the plant and the

controller, then according to (3.64b) D = P(0), D = C ( 0)
p c

and the next corollary readily follows from theorem (3.16).

Corollary 3.11: The unity feedback configuration of figure

(3.4) is well-posed, if and only if

det (I + D D ) = det (I + D D ) * 0 (3.84)
p c  C p

We define now the closed-loop systems if , if and if correspo-

nding to transfer functions H , H{P,C) and W{P,C), i.e.
e,y/u

if :f X —f
r t := [X 
—P

tn t 
X ] ,—C IT—f := U , —f

r t t. t:= [e y ] (3.85a)

if :h X —h := [X1 
—P

tn t
x ] ,—C IT—h := U , := e (3.85b)

if :w X —w := [X1 
~P

tn t
x ] ,—C U —w ;= U , := y (3.85c)

We have then the following important property.

Lemma 3.3: Suppose that the feedback configuration of figure 

(3.4) is well-posed. Then, it may be described internally by 

the state-space representations of any of the systems if , if
£ h

or if given by the eqns. (3.85a) to (3.85c) .

Proof . The three systems share the same state and input 

vectors, so they have common internal stability and reachabi-

lity properties. From figure (3.4) we have that

y = Fe - Fu (3.86)

with F given by (3.71). If we ignore u, F represents an out-

put coordinate transformation for if , if and if is observable
h w h

if and only if if is observable. Also, since
W
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is observ-

e r

r t t-, t:= [e y ]

y is observable, if and only if either of ¡f , iff h w
able (due to 3.86).

□

According to lemma (3.3), the closed-loop system

if : X
h — h,k+l

A Xh—h,k + B uh—k e—k C X 
h— h, k

+ D u
h— k

(3.87)

with the corresponding transfer function H(P,C), describes 

completely internally the feedback system ¡f The following 

proposition is well known.

Proposition 3.4 [Vid. , 1]: Consider the well-posed feedback

system y with plant f and controller y . Then
h p c

a. y is reachable, observable, if and only if both f
h p
and ¡f are reachable, observable.

C

b. ¡f is stabilizable, detectable, if and only if both 

y and ¡f are stabilizable, detectable.
p c

□

We may now state the main theorem of this section.

Theorem 3.17 [Vid., 1]: Consider the well-posed feedback

system y with the plant y and the controller y both
h p c

stabilizable and detectable. Under these assumptions, y is 

internally stable, if and only if H{P,C) is BIBO stable.

□

By theorem (3.17) and proposition (3.4) it follows.

Corollary 3.12: Consider the well-posed feedback system iP

with the plant and controller systems y , y minimal and the
p c

transfer functions P, C represented by the [R [d] coprime MFDs 

p = D^N = flJ)'1 , C = D-1W = N D“1
P P  P P  c c  c c

Then the pole-polynomial of y and the characteristic
h

polynomial of y are associates, i.e.
h

det (I - dA ) ~ det {N N + D D ) ~ det {N N + D D ) (3.88)
h c p  c p  p c  p c

□
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Remark 3.23 [Kuc., 1] , [Kai., 1]: If the plant and

controller are not free of hidden modes then

(d) := det (I - dA ) ~ f f detA ~ f f detA
J h p c p c
h

where f , f^ are the hidden pole-polynomials of the plant, 

controller respectively.

□

3.4.3 Stabilization of the unity feedback system

The essence of feedback systems is to design a controller 

such that the overall system has a desired performance. The 

minimum required performance is clearly stability. According 

to theorem (3.15) and to corollary (3.9) one could pose the 

following two problems of stabilization.

(a) Assignment of the elementary pole-polynomials

Design a controller such that H[P,C) has a desired set of 

elementary pole-polynomials {p p̂ , ..., p}, i.e. À, A have 

{Pj/ P2/ •••/ Pr) as nonunit invariant polynomials.

(b) General stabilization

Design a controller such that H(P,C) e M (IR+ (d) ) , i.e. A, A 

are stable polynomial matrices.

Definition 3.41: Consider the unity feedback system if . Any 

controller that solves either problem (a) or problem (b) is 

called a stabilizing controller.

□

It turns out that both problems (a), (b) can always be solved

and the solution is given by the following theorem.

Theorem 3.18 [Kuc., 1], [Vid., 1] : Consider the feedback

configuration of fig. (3.4). Let P e Rlxm(d) be the transfer 

function of the plant, (D , N ) , {N , D ) be left, right co-
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prime polynomial MFDs of P satisfying the Bezout identity

X(d) Y(d) -N (d) Y {d) I 0
p = (3

D (d ) N (d) D {d) X (d) 0 I
p p J p

and À, A given stable polynomial matrices of appropriate 

dimensions. Then the family of controllers

C = D^N = N D
c c c c

that assign the denominator matrix À, A of the feedback 

system ¡f satisfies either of the following Diophantine 

equations

A N N + D D or A -.= N N + D D (3.90)
c p  c p p c  p c

and it is parametrized by the following manner.

N ' X D À
C — p

D
CJ

Y -N
L p J

R

[ D SJ = [ A S ]
Y X

-N D
p PJ

(3.91)

(3.92)

where A, A e M (R [d] ) have a set of given stable invariant 

polynomials {pi? p̂ , ..., p^}, r  ̂ min{£,m} (problem (a)), or 

A, A are any stable polynomial matrices (problem (b)), and R, 

S are arbitrary polynomial matrices with the following 

properties.

a. (A, S) are left coprime, (R , A) are right coprime to 

ensure coprimeness of (D , N ), (N , D ) respectively.
c c c c

b. det (A (0) 7(0) - S(0)N (0)) ~ det(T(0)A(0) - N (0)R(0)) * 0
p p

to ensure causality of the controller.

□

Remark. 3.24: Theorem (3.18) gives the parametrization of all 

controllers that are stabilizing a given plant under the 

feedback configuration of fig. (3.4). This parametrization 

is affine in the free parameters R or S . The reason that the
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feedback system ¡f is also called one-parameter feedback 

system, is that only one parameter (either R or S) is needed 

for the parametrization of the family of all stabilizing 

controllers. This parametrization is known as Youla- 

Bongiorno parametrization due to the work of Youla, Bongiorno 

and Lu [You., 1] and Youla, Bongiorno and Jabr [You., 2] , 

but for the case of discrete-time systems it has appeared in 

an earlier work by Kucera [Kuc., 4], [Kuc., 5] . We will call 

the parametrization (3.91), (3.92) of the stabilizing

controllers as Youla-Bongiorno-Kucera parametrization and we 

will denote it by YBK parametrization.

□

Remark 3.25: If the plant and the controller are minimal

realizations of the MFDs given by theorem (3.18), then 

according to corollary (3.12) and remark (3.17), the design 

procedure of theorem (3.18) will assign the nonzero eigen-

values of the closed-loop feedback matrix 

positions.

to desired

□

Proposition 3.5: Consider the pair (P,C). Then, any causal 

stabilizing controller C ensures well-posedness.

Proof. For any stabilizing controller C, A, A are stable and 

therefore causal polynomial matrices, i.e.

detA(O) ~ detA(O) * 0

Hence, since C is causal, the conditions of corollary (3.10) 

for well-posedness are satisfied.

□

Corollary 3.13: Consider the pair (P,C) with the plant

strictly causal. Then any stabilizing controller C is causal 

and the pair (P,C) is well-posed for any C.

Proof. Let (N , D ) be a right coprime polynomial MFD of P,

i.e. P = N D . Since P is strictly causal and N , D
p p p p

coprime we have N (0) = 0  and D (0) * 0. Then
p p
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A ( 0 ) = D (0 )D (0)
c p

and detA(O) * 0 implies detD (0) * 0, i.e causality of the
C

controller and well-posedness of the feedback system.

□

3.5 Conclusions

The aim of this chapter was on one hand to summarize the 

basic concepts of system theory of linear discrete-time 

systems and on the other hand to describe the use and 

properties of the unity feedback control scheme. In doing 

so, we heavily relied on the algebraic framework introduced 

in chapter (2) . We thoroughly exploited the fact that 

recurrent formal Laurent series in one indeterminate d over !R 

and rational functions over [R are isomorphic due to the 

infinite nature of [R. This resulted in particular in a 

unification between the d- and z-representations of linear 

discrete systems and the computation of their McMillan degree 

from either description. The internal and external 

descriptions of the systems with the system theoretic 

concepts specifically related to each of them were presented 

in some detail as well as the relationships between the two 

system descriptions.

In the final section the main features of the unity feedback 

configuration as a basic control scheme were described. A 

brief investigation of the problem of stability and 

stabilizability of the unity feedback scheme was given and 

was shown how the fraction representation approach leads to 

the well known Youla-Bongiorno-Kucera parametrization of the 

family of stabilizing controllers.
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Chapter 4

FINITE SETTLING TIME CONTROL OF 
DISCRETE-TIME SYSTEMS:
A Survey and Some New Results

4.1 Introduction

The problem of Finite Settling Time behaviour and especially 

the time-optimal one of a linear system has intrigued 

engineers for many years. Their efforts have resulted in 

nonlinear bang-bang control for continuous-time systems 

whereas in the case of discrete-time systems the FST problem, 

or the more commonly known deadbeat one, was solved through 

the use of linear time-invariant controllers. To this 

respect, deadbeat regulation, i.e. the forcing of the state, 

or the output vector of a system from any initial condition 

to the origin in minimum time, is unique in discrete-time 

systems. It was first introduced by Bergen and Ragazzini 

[Ber., 1] and then Kalman [Kal., 2] presented an elegant 

state-space solution of the discrete time-optimal linear 

regulation. In both cases the problem covered the single-

variable case.

A large variety of versions of deadbeat have appeared which 

differ due to the type of problem considered and the adopted 

approach. Most of the work carried out until now has treated 

the case of state and output deadbeat regulation via state 

feedback, or in the case of inaccessible states via a 

combination of an observer and feedback of the state 

estimates. The main aim of the above problems is to shift 

all the eigenvalues (or almost all in the case of output 

deadbeat) of the closed-loop system to the origin. As the
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solution to the problem of eigenvalue, or pole placement is 

not uniquely determined in the multivariable case, specific 

types of deadbeat controllers have been proposed based on 

techniques varying from procedures on selecting independent 

vectors from a certain vector space to the solution of 

discrete Riccati equations [Ack., 1], [Kuc., 11], [Kuc., 12], 

[Led., 1], [Lew., 2], [O'R., 1], [O'R., 2].

On the other hand, Kucera has pioneered the use of polynomial 

algebra methods for the study of state and output deadbeat 

control problems of both single-variable and multivariable 

discrete-time systems [Kuc., 4] to [Kuc., 10]. Many other 

researchers followed this approach, e.g. [Eic., 1], [Wol., 

3] , with the most recent work of Zhao and Kimura, where the 

problem of robustness for multivariable deadbeat tracking is 

addressed [Zha., 1] to [Zha., 4].

In this chapter we attempt to survey the two main approaches, 

namely the state-space and the algebraic (transfer function) 

approach, for the solution of the deadbeat control problem 

and extend some basic results. In particular, we extend the 

main theorem of discrete-time systems given by Kalman [Kal.,

2] to the MIMO case and by that we obtain an explicit 

parametrization of the family of all deadbeat state 

regulators.

4.2 Deadbeat Versus Finite Settling Time

Deadbeat and finite settling time (FST) are widely used in 

the literature many times interchangeably, meaning mainly the 

unique property of discrete-time systems to achieve specified 

response in finite time. Usually, deadbeat means in addition 

time-optimal response, and quite often the terminology is 

confusing.
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In this brief introductory section we define formally the two 

terms; deadbeat and FST, and these definitions will be used 

consistently throughout the thesis.

Definition 4.1; A linear discrete-time system exhibits a

finite settling time response, if it settles to a steady 

state in finite time.

□

Definition 4.2: A linear discrete-time system exhibits a

deadbeat response, if it settles to a specified steady state 

in minimum time.

□

Remark 4.1; FST is a more relaxed concept than the deadbeat. 

It only assumes steady state behaviour in finite time whereas 

deadbeat apart from requiring time-optimal behaviour it also 

guarantees performance criteria, e.g. error deadbeat means 

zero steady state error in minimum time.

□

Most of the work carried out up to now is, or claims to be of 

the type of the deadbeat control rather that FST. For this 

reason we will devote the survey, if not entirely, at least 

mainly to the deadbeat control.

4.3 Deadbeat Control - A State-Space Approach

Consider an n-dimensional discrete-time system

x = Ax + Bu , y = Cx + Du , k  ̂ 0 (4.1)
— k + l  — k  — k — k — k  — k

where x e IRn, u e IRm, y e [R1, A not necessarily invertible
— k — k — k

and p(B) = m .

In this section we concentrate on the state-space solution of 

the deadbeat control and mainly on the state and output dead-

beat regulation.
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4.3.1 State deadbeat regulation by state feedback

Within the state-space framework two main approaches were 

developed. The one introduced by Kalman in its elegant work 

'On The General Theory of Control Systems' [Kal., 2] is based 

on the concept of controllability as well as properties of 

kth controllable subspaces . We will refer to this approach 

as the dynamic approach. The other one is based on the

result by Wonham on arbitrary eigenvalue assignment under 

state feedback [Won., 1], since the deadbeat regulation is 

equivalent to the assignment of the eigenvalues of the

closed-loop system to zero. We call this approach, the

spectral approach. We present here both approaches general-

izing also for the multivariable case Kalman's result [Kal., 

2] that state deadbeat regulation can be achieved, if and

only if constant state feedback is used.

State deadbeat regulation : the dynamic approach

Consider the discrete-time system described by equations 

(4.1) . The problem of state deadbeat regulation is to drive 

to zero in minimum time any initial state that can be driven 

to zero. According to section (3.3.3) the space of all

initial states that can be driven to zero in at most k steps 

is the kth controllable subspace G (A,B), i.e.

S, (A,B) = {x : Akx = -¿k-1Bu - ••• -Bu } (4.2)

The following properties of to (A,B) are clear.

Lemma 4.1 [Aka., 1], [Kal., 2], [Mul. , 1]: If C (A,B) is
k

given by (4.2) then

£ = {0 o 1

t?k+i = A 1{t?k + range (B) } (4.3)

S c S  c  • • • £  [ Rn
o 1

where A 1 is the functional inverse of A. Also, if
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m = dim*? - dim& and ju = min{/i : S = S' } (4.4)
k k k-1 1 k+1 k J

then
S = S V if i jLl (4.5)
k k+1

and ju is the maximum reachability index of the system.

□

We follow now an approach similar to that given by Mulis 

[Mul., 1], to prove for the multivariable case the main 

result of the state deadbeat regulation presented by Kalman 

[Kal., 2].

Lemma 4.2 [Mul. , 1]: Let Q = {x : Ak x + Bu = 0, x <£ S },
k —  —  —  —  k-1 ‘

Qq = {0}. Then

s =k S’ ©Q = Q © • •k-1 k 0̂ ■

v k * o (4 .6)

Proof. By induction. For k == 1 =» S = {x : 1 l—0 Ax = —o -Bu } —0 1 =

\x : Ax + Bu = l—0 —0 —0 = 0} = {0}©Q1 = E ©Q = 0 1 Qo©Qi. Suppose

= fs ®Q k k-1 k = Q © •• • ©Qk
and

Q = \x : A Xk+1 l— — + Bu = 0, x t S }— k

Consider also a space V : S = i? ®V . Then^ k+1 k+1 k k+1

V x e S 3 w—0 k+1 —i 6 Q., i = 1, . . . ,k A v e—k+1 Vk+1 such that

X = w + • —0 —1 • • + w—k + V —k+1

Therefore, 3 u , —0
,i... ci : A w—k-1 —x + Bu—i-1 = 0, i = 1, • •. ,k. So,

x = Ax +Bu —1 — 0 — 0 = Aw +A(w +• • •— 1 — 2 +v )+Bu = A(w +—k+1 — 0 —2 • • •+V ) —k+1

x = Ax +Bu —2 — 1 — 1
2 2= A w +A {w + •— 2 — 3 • • +V ) —k+1 + Bir = A2 (w + ■ • •— 1 —3 +v )— k+1

k+1x = A v + Bu = 0 and v £ fS i.e. v e Q
— k+1 — k — k — k + 1 k — k+1 k+1

Hence,

S  C Q © .•• © Q
k+1 0 k+1

Clearly Q ® ■ • ■ ®Q si? . Therefore S = n © • • • ©Q
2 0 k+1 k+1 k+1 0 k+1

□
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Remark 4.2: According to lemma (4.2), every x e £ can be

written uniquely as

x = P v + ••• + P v (4.7)
—  1— 1 k— k

m
where u. e [R are arbitrary real vectors and P. is a basis 

matrix of Q. for i = 1

□

Lemma 4.3: For every x e then Aklx e Q .

Proof. V x e Q  3 u e Rm : .4kx + Bu = 0 A xgg '  . Then,
------- —  k —  —  —  —  k-1

A1 (J4k_1x) + Bu = 0 (4.8)

• k-1 k-1 k-1
i.e. x e . For .4 x to belong to , A x must not 

belong to i. Suppose Ak_1x e K . Then,

,1-1 , ,k-l , ,l-2_ _A (A x) = -A Bu - • • • -Bu , i.e.— —0 -1-2
,k-l ,1-2_ _A X = -A Bu - • • • -Bu , i.e.— —O -1-2

X € S'
—  k-1

which is not true because x e Q . Therefore
—  k

¿k-1x i E (4.9)
—  l - i

So, from relationships (4.8), (4.9) we have that Ak_1x e Qi .

□

Remark 4.3: According to lemma (4.2) and remark (4.2), every 

vector x^ that can be driven to the origin in at most k steps 

can be decomposed uniquely in k vectors such that

the £th component is driven to zero by applying an input 

u such that a V  + Bu = 0 while v is left free until
— l - i  — l  - l - i  — l

Remark 4.4: From lemma (4.1) and remark (4.2) we have that 

every initial state x^ of the system (A,B,C,D) that can be 

driven to the origin in any time k is uniquely expressed as
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(4.10)X —0 P V + 1—1 + P V
u-u

where u is the maximum reachability index of the system.

□

Remark 4.5: £ is the maximal space containing all the

initial states x^ of the system {A,B,C ,D) that can be driven 

to the origin. If tS = [Rn, then every x^ e [Rn can be driven 

to zero in at most ju n steps.

□

Theorem 4.1: Consider the discrete linear system (A,B,C,D)

described by equations (4.1) with maximum reachability index

Id. Every initial state x e 'G (A,B) can be driven to zero in—o Id
minimum time, if and only if u = -Fx^, where F is such that

F-[Pi P2 ••• P ] = [B+APi O O] (4.11)

and B+ is a, not uniqely defined, left inverse of B, i.e., 

B+B = I .

Proof. V x e S, k = 1, ,/d, 3 v e 1R 1, i/ e Q , i =
------- — 0 k — i — i i

1, ,k, such that

„ (0) „ (0) (0) (0)
— 0 1— 1 k— k — 1 — k

Then, 3 u : x = Ax + Bu e % and Aw(0) + Bu =0. So, 
— o — l — o — 0 k-l — 1 — o

x = A (w + • • • + v— 1 — 2 —k

= I/(1> + ••• + V (1), w a) € Q , i = 1, . . . ,/C-l
— 1 — k-l — i i ' '

u = -B+A v i0) — 0 — 1

Using the same procedure we can prove that

+ (k) (k)
uk = -B Av^ , € Qi# k = 0,1, . . . , /LX-1 (4.12)

Clearly relationships (4.12) constitute a control law of 

constant state feedback nature, where only part of the 

current state - namely the one that can be driven to zero in 

exactly one step - is used for the feedback. Therefore, if a 

feedback F is to be applied to the state at each time k,
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it has to be orthogonal to Q2,...,Q and F\Q^ = B+A\Q^.

Indeed, for every x that can be driven to zero

Hence

u = -Fx V k = 0,1,...,n-l— k — k
m.

= -F(P v + • ■ ■ +  P v ) V v e IR 1l — i id—n —i

= -B+AP vl — i

f FP -B+AP FP L 1 1 2 FP 1 U  — 1 O V u  € E 1—i

This is true if and only if the left block matrix is zero, or

F - [ P1 P2 Pn ] = [ B+APX 0 "• 0 ] (4-13)

Equation (4.13) has always a solution since P = [ P̂  P ] 

has full column rank and in the case of a controllable system 

P e [Rnxn and p (P) = n.

□

Remark. 4.6: The requirement that is driven to zero in

minimum time forces us to use constant state feedback given 

by equation (4.11). This result was first proved by Kalman 

[Kal., 2] for the single-variable case and it was called the 

fundamental theorem of linear control systems. O'Reilly 

tried unsuccessfully to extend it to the multivariable case 

[0'R ., 2]. Indeed, relationships (20) to (23) in his afore-

mentioned work are not correct and do not readily come from 

his previous treatment of the problem as he claims. In fact, 

if we are to use a constant feedback a priori, then F must 

satisfy the equation

F- [I A • ■ • A11'1] = [D G ■ ■■ D G ]11 2 2

where D. , G. are constant matrices given in O'Reilly [O'R., 

2], and not the equation

F- [A 1BD • ■ ■ A~UBD ] = [-D 0 • • • O]l id l

as he claims.

□

119



Remark 4.7: According to theorem (4.1), what is needed for

the computation of the constant state feedback matrix F is to 

derive bases P , P , ... ,P of the vector spaces Q ,Q , ,Q 

and a left inverse B* of B. This can give us a parametriza- 

tion of all the matrices F that achieve state deadbeat 

regulation as follows. If W is a basis of the left null

space -^{b } of B and U^,U2,...,U are nonsingular real 

matrices of appropriate dimensions, then the family of all 

matrices F is given by

F-[ P F  P2I72 ... P U ] = [ (B; f XW)APUi 0 ]u u

where X is an arbitrary real matrix of appropriate 

dimensions.

From theorem (4.1) and remark (4.7) it is clear that the most 

important part for the computation of the constant state 

feedback matrix F for state deadbeat regulation is the 

derivation of the bases P^,P2,...,P of the vector spaces 

Q1, Q2, ■ ■ • ' • We demonstrate this by the following

analysis, which also provides a new efficient algorithm for 

the computation of F.

Consider the discrete linear system described by the 

difference equations

x = Ax + Bu—k+l —k —k (4.14)

To find the space ^(^,5) we have to solve the following 

equations with respect to x .....x .u ..... u
^ — 0 —  k-l — 0 — k-1

X = Ax + Bu 
— 1 — 0 — 0

x = Ax + Bu —2 —1 — 1

x = Ax + Bu = 0—k —k-l —k-l

(4.15)

Equations (4.15) can be expressed in matrix form as
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A B X 0
— k-l

-I 0 A B 0 U 0
— k-l

-I O A B
■ = •

0 ’ • X 0—0
-I 0 A B u 0U J L —0 -J

:= T (A,B)k

Then the part of the right null space N {Tk(A,B)} that

corresponds to x^ can give us the space and bases

P ,P , . ..,P of the vector spaces Q ,Q , . . .,Q . Note that if1 2 fj, 1 2 fd
W is a basis of N {T thenIf T' *■ J

0
w = Wk wL k-l

k
-

(see also proposition (6 .2) ) . To

we consider the following example.

illustrate the above

Example 4.1: Consider the system

1 0 0 1 0

2 0 0 and B = 0 1

0 1 1 0 1

Then

\U =
2

0 0

0 0

0 0

0 0

0 0

0 1

1 0

-1 2

0 ,r _1

0 -2

1

2

0

-1

-2

1

0

0

To“
o

0

1 

-l

0

0

1

0

0

-1

-1

X— 1

u—l

x—0

u—0

(4.17)

(4.18)
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We note from (4.18), that a basis of the space £ is [P P ].
3 .

Therefore & = (R which means that any initial state can be

driven to the origin in at most two steps using constant 

state feedback. A left inverse B+ of the matrix B of (4.17), 

is

B
+ 1 1-1

0 0 1

Then the state feedback F with this particular P̂ , 

is a solution of the following equation

P and B+
2

which gives

0 1 0 0 1 0
1 0 0 =

0 2 0-1 2 -2

0 0.5 0 5
F —

0 1.0 1 0

2
Note that (A - BF) = O . It is clear from the above

3

procedure that the most important part for the computation of 

F is to bring the right null space of T (A,B) in the form of 

1/ . This is always possible according to lemma (4.2) and 

provides an algorithm for the computation of the P.'s.

□

It is clear from the entire analysis of this section, that 

the most important aspect of the state deadbeat regulation is 

the characterization of the fith controllable space t£^(A,B) . 

For an n-dimensional system (A,B,C,D), this reduces to the 

specification of an adequate selection procedure for 

determining n linearly independent columns of Jo . Lemma 

(4.2) provides such a universal procedure by decomposing £ 

to a direct sum of the uniquely defined spaces Q. , i=l,...,m. 

This allows for the generalization of Kalman's fundamental 

theorem of linear control systems [Kal., 2].
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This result has been rediscovered by many authors in a 

variety of different forms, not always correct and not always 

leading to time-optimal regulation as it is claimed by many 

of them, like Fahmy, Hanafy and Sakr [Fah., 1], Kucera [Kuc., 

11] , [Kuc. , 12] , Leden [Led. , 2] , Lin [Lin 1] , Ludyk [Lud. ,

1] and Tou [Tou 1] . For a brief discussion of the most of 

the aforementioned work one could refer to O'Reilly's survey 

'The Discrete Linear Time Invariant Time-Optimal Control 

Problem - An Overview' [O'R., 2].

State deadbeat regulation : the spectral approach

In the previous section we concentrated mainly on the 

structural properties of the kth controllable subspaces 

of the linear discrete-time system (A,B,C,D).

Following theorem (4.1), we observe that the optimal closed- 

loop state matrix

K = A - BF.

has the following properties.

Property 4.1 [Cad., 1], [Far., 1], [Kuc., 11]: The matrix K 

is nilpotent, the maximum reachability index fi of the system 

being its nilpotency index, i.e. (.4 - BF)^ = 0.

□

Property 4.2 [Cad., 1], [Far., 1], [Kuc., 11]: The eigen-

values of A - BF are all zero and its eigenvectors span the 

right null space N {A - BF} of A - BF.

□

Property 4.3 [Cad., 1], [Kha., 1], [Kuc., 11]: The Jordan

canonical form J of the matrix K is composed of m nilpotent

Jordan blocks J of order \i _, j = 1,2
h . j
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0

J =

0

(4.19)

where ju = ju  ̂ ¡jl > • ■ ■ > ¡jl are the reachability indices of
1 2  m

{A, B , C , D) . Each Jordan block is a ¡1 x  ¡jl matrix with ones
j j

on the first superdiagonal and zeros elsewhere, i.e.

0

0
1

o

(4.20)

□

From properties (4.1) to (4.3), it is clearly indicated that 

the state deadbeat regulation problem is a special eigenvalue 

assignment problem by constant state feedback; that is a 

problem where all the eigenvalues of the closed-loop system 

are assigned zero values and in addition its Jordan canonical 

form is of the form of (4.19) . The structure of the Jordan 

canonical form (4.19), guarantees that every initial state of 

the system {A,B,C,D) that can be driven to the origin it is 

driven in the minimum possible time z  ̂ u . The minimum time 

as a whole is equal to the maximum reachability index ij . and 

is attained by those states that can be steered to the origin 

in exactly and only ¡i steps. These minimality conditions 

define the state deadbeat regulation and force us to the use 

of constant state feedback.

We can relax the strict time-minimality conditions by 

allowing the states to move to the origin not in the absolute 

minimum time z ,  but in time not greater than ¡jl . We define 

this problem where the overall minimum deadbeat time is n, as 

relaxed state deadbeat regulation. Taking into account the 

admissible Jordan forms for zero eigenvalue assignment [Bru.,
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relaxed state deadbeat

(4.21)

with n £ n > • ■ • > n and1 2  m

n =l = h

+ n ^2 U1 +ii2 (4.22)

+ 3
s

II 
•

»1 + ^2 + • '• • + H = n
m

where the last sum is equal to the system dimension n, if and 

only if the pair (A,B) is reachable. Obviously, if n > n 

the system response is not time-optimal any more but still it 

is achieved in at most finite time n̂  [Fah., 2].

In view of the above discussion the state deadbeat regulation 

problem can be reformulated as that of finding a control law 

of constant state feedback nature

u = -Fx (4.23)—k — k

such that the closed-loop system matrix A - BF is similar to 

the Jordan form J of the form of (4.21) . When strict 

inequalities are applied in (4.22), then F corresponds to the 

relaxed state deadbeat regulation problem.

The state deadbeat regulation problem may be readily achieved 

by transforming (A,B,C,D) into the controllable canonical 

form [Bru., 1], [Lue., 3]

x = Ax + Bu (4.24)—k+l —k —k

1] , the Jordan forms for the 

regulation must be of the form

0

J
n
m

j =

j

j

0
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X = Qx (4.25)
— k  — k

If the non-trivial rows of A and B are given by the matrices 

A and B respectively, then we have the following result.
m m

Theorem 4.2 [O'R., 2]: The state deadbeat regulation problem 

can be solved using constant state feedback

u = -Fx
— k  — k

where

F = W 1 A Q (4.26)
m m

□

The deadbeat controller of theorem (4.2), like the one of 

theorem (4.1) has the properties (4.1) - (4.3). This result

was originally introduced by Ackerman [Ack., 1] and was 

also derived independently by Prepelita [O'R., 2] . Since 

then, it has been rediscovered in that form or in the form of 

relaxed, or non-time-optimal deadbeat, by many researchers 

like O'Reilly [O'R., 1], [O'R., 3], Pachter [Pac., 1], Porter

[Por., 1], Fahmy et al. [Fah., 1].

Looking at the state deadbeat regulation as a special 

eigenvalue assignment problem, it is clear that there is no 

unique feedback matrix F that moves the eigenvalues of the 

closed-loop system to the origin. Since the transient 

response is determined by the eigenvectors as well, the 

deadbeat problem can be considered as an eigenstructure 

rather than an eigenvalue assignment problem and as such has 

been treated by Klein [Kle., 1], Porter and D'Azzo [Por., 2], 

Sebakhy and Abdel-Maneim [Seb., 1] and most recently by 

Elabdalla and Amin [Ela., 1] and Van Dooren [Van., 2] where 

the minimum Frobenius norm matrix F that assigns the 

eigenvalues to zero, is derived.

by means of the state similarity transformation
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It is clear from the analysis so far, that the multivariable 

state deadbeat regulators are not uniquely defined in 

general. Therefore, it is natural to require an explicit 

parametric solution if possible, to compensate for additional 

performance or robustness requirements. Theorems (4.1) and 

(4.2) provide the background for such a parametrization from 

two different points of view and in this section we 

investigate both viewpoints; the results here, as far as we 

are aware, are new. An investigation is needed to whether or 

not the proposed parametrizations are proper, i.e. whether 

only the genuine independent free parameters appear in the 

deadbeat controllers.

The following parametrization is based on theorem (4.1) and 

provides a complete and explicit parametrization of the 

family of all state deadbeat regulators.

Theorem 4.3: Consider the reachable n-dimensional system 

(A,B,C,D) with m inputs, l outputs, p (B) = m and p the maxi-

mum reachability index. Let Q1,Q2,...,Q be the spaces 

defined in lemma (4.2) and P ,P ,...,P be any bases of 

Q1,Q2, • ■ • respectively. Then the family of all state 

feedback matrices that guarantee state deadbeat regulation is 

given by

4.3.2 Parametrization of the state deadbeat regulators

&(A,B) := { F : FP + XF = s } (4.27)

where

P = [ p t p2 ' p ] JU J

R = f -WAPL l 0 ••• 0 ] (4.28)

S = f B + APL 0 1 0 ... 0 ]

B+ is 0 a left inverse of B and W is a basis of the left null

space ^ {B} of B.

Proof. According to remark (4 .7), the family of all matrices
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F- f P U P U  ••• P U 1 = T (B+ + XW) AP U O ••• O 1 (4.29)

where Ui,U2,...,U are any nonsingular real matrices with 

appropriate dimensions. Equation (4.29) may be written as

F- f P P ••• P 1U = f (B+ + XW) AP U 0 ••• O 1 (4.30)
L 1 2  j U J  L  0 1 1  J

where

U = diag {C7x, C/2, ...,17^}

Multiplying both sides of equation (4.30) from the right by 

the inverse of U, we have

F[ P P ■ • • P 1 + Xf -WAP O ■ • • O 1 = f B+AP O • • • O 1
l 1 2  j11 J  L  1 J L 0 1  J

which completes the proof of theorem (4.3).

□

Theorem (4.3) gives an elegant parametrization of the family 

'¡F{A,B) of all state deadbeat regulators as a solution of the 

matrix equation (4.27) over IR. An alternative

parametrization is based on property (4.3) and on the 

treatment of the state deadbeat regulation as a special 

eigenstructure assignment problem.

According to property (4.4) the family of all state deadbeat 

regulators for the pair (A,B) is given by

&(A,B) := { F e Rmxn : A - BF is similar to J } (4.31)

where J is the Jordan matrix of the form (4.19) . Therefore

A - BF = XJX”1 (4.32)

where X e [Rnxn is any nonsingular matrix, or equivalently

AX - XJ - BFX = 0  (4.33)

Hence, the whole problem of state deadbeat regulation is 

reduced to the solution of equation (4.33) with X a non-

singular real matrix. The following theorem is based on the

F that achieve state deadbeat regulation is given by
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above analysis and allows for the parametrization of the 

family 3 (A,B) .

Theorem 4.4: Consider the system {A,B,C,D) with reachability 

indices u = ¡1  ̂ u i ••• i |u . If1 2  m

with

0 1

0 1
0

0
1

o

then the family 9= (A,B) of the state deadbeat regulators is 

given by

£ {A,B) = { F : F = HX 1 } (4.34)

where H, X with X nonsingular is the solution pair of the 

equation

(I®A - Jl®I)x - (T®B) h = 0 (4.35)

with x = ••• xt] 1 and h = [hl ••• ht]t, x ,...,x and
—  — 1 — n —  — 1 — n — 1 — n

h1i■■•'—n being the column vectors of X and H respectively.

Proof. If H = FX, then equation (4.33) is equivalent to

AX - XJ - BH= 0 (4.36)

and F = HX 1 e ^(A,B) if X is nonsingular. It can be readily 

verified that equation (4.36) is equivalent to (4.35) (for 

more details see Bellman [Bel., 1]).

□
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The problem of parametrizing the whole class of the state 

deadbeat regulators was introduced by Sebakhy and Abdel- 

Moneim [Seb., 2] by minimizing a quadratic performance index. 

Their approach has led to an overparametrized description of 

the family. The first attempt for a proper parametrization 

(minimum number of parameters) was given by Schlegel [Sch., 

1] using a procedure similar to that of theorem (4.4) but his 

solution involves only systems with nonsingular transition 

matrix A. Fahmy and O'Reilly [Fah., 2], under the same 

assumption on the invertibility of the transition matrix, 

treated the more general problem of parametrizing the 

non-time-optimal deadbeat regulators. Another approach, 

avoiding the invertibility assumption, was presented by Amin 

and Elabdalla [Ami., 1] . It provides an explicit 

parametrization of the state deadbeat regulators through the 

minimum parameters and is based on the theory of decoupling 

and the properties of square decouplable systems. Finally, 

Funahashi and Yamada [Fun., 1] gave a solution to the 

non-time-optimal (without restricting the dimensions of the 

Jordan blocks to the reachability indices) state deadbeat 

parametrization allowing for systems with singular transition 

matrices.

4.3.3 State deadbeat regulation with inaccessible states

Theorems (4.1) and (4.2) assume complete knowledge of the 

states of the system for the solution of the state deadbeat 

regulation problem. However, this is not usually the case 

and the state is available through the output equation

y = Cx + Du (4.37)—k —k —k

where e [R1 and p (C) = i. The problem then can be solved

in either of two ways. First, we can reconstruct the state, 

or a linear functional of the state in minimum time and then 

use it in a state feedback scheme for state deadbeat, or 

alternatively we can use constant output feedback instead of 

state feedback. In the sequel we describe briefly both
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approaches. For more details one could refer to [O'R., 2]

and references therein.

State DB regulation using observers

One way to solve the inaccessible state deadbeat regulation 

problem is through the use of observers. A full order 

deadbeat observer can be used to reconstruct in minimum time 

the state x and then a feedback law provided by either 

theorem (4.1) or (4.2) can be applied on the reconstructed 

state [Por., 3], [Aka., 1] . The problem of deadbeat

reconstruction is dual to deadbeat control, as it was first 

pointed out by Kalman [Kal., 2]. Therefore the state can be 

reconstructed in no more than v steps, where v is the maximum 

observability index of the system. Hence, the state can be 

driven to the origin in at most ijl + v steps using a full 

order observer.

Taking into account that i states can be computed from the 

inputs and outputs of the system using the output equation 

(4.3 7) , we can use a reduced, or minimum order observer to 

reconstruct the remaining n - l states in minimum time. 

Porter and Bradshaw [Por., 4] and Ichikawa [Ich. , 1] have

proposed such observers based on Luenberger's design method 

for reduced order observers [Lue., 4]. An alternative design 

has been proposed by O'Reilly [O'R., 1] Ichikawa [Ich., 1]

and Inoue et al. [Ino. , 1] . The advantage of the reduced

order deadbeat observers is that they reconstruct the state 

of the system in at most v - 1 steps rather than in v.

Finally, instead of reconstructing the state of the system, 

we can reconstruct directly the deadbeat control law using a
A,

linear function observer. Therefore, the output n of the 

observer estimates the linear functional n = -Fx in minimum—k —k
time x. It can be also required that the order of the dead-

beat observer be minimum. The problem has been treated by 

Nagata et al. [Nag., 1], Kimura [Kim., 1] and Adachi et al.

131



[Ada., 1] where it is pointed out that the minimum settling 

time r is less than or equal to the maximum observability 

index v .

State DB using constant output feedback.

Another way to solve the inaccessible state deadbeat 

regulation problem is by using constant output feedback of 

the form

u = -Lv (4.38)
— k — k

The problem has been treated by some authors but the result 

is not time-optimal. Seraji [Ser. , 1] finds L such that the

closed-loop system matrix A - BLC is nilpotent with index of 

nilpotency n rather than i±, whereas Chammas and Leondes 

[Cha., 3] propose a deadbeat output feedback controller that 

drives the system to the origin in at most jti x v steps.

4.3.4 Bounded, minimum-cost state deadbeat regulation

It is often the case with the time-optimal control that the 

demand for minimum settling time produces unacceptably high 

control inputs, or states which may lead to saturation. For 

this reason and according to the design conditions of the 

particular problem, we may introduce amplitude constraints to 

the controls and/or the states. The time-optimal state 

regulation with constraints will be called bounded or 

constrained state deadbeat regulation. For an n-dimensional 

system

x = Ax + Bu , A e !Rnxn, B e IRnxm (4.39)—k+l —k —k

the constrained state deadbeat regulation is defined as 

follows.
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Find admissible controls and states such that

k = min { k : x {x ;u , u ,...,u ) , u efi, x e T } (4.40)

where

Q is a compact, convex polyhedral set defined by its vertices 

u , ...,w ; containing the origin in its interior (4.41)

and

T is a compact, convex polyhedral set defined by its vertices 

y ; containing the origin in its interior (4.42)

It is clear that the minimum time attained for constrained 

deadbeat is greater than or equal to the time for 

unconstrained deadbeat.

The problem of constrained state deadbeat with bounded 

controls only and Q being the unit cubic in the m-dimensional 

control space, was first introduced by Kalman [Kal., 5] and

it was subsequently analyzed in detail by Wing and Desoer 

[Win., 1] in 1963. They introduced the geometrical concept 

of critical hypersurfaces in the state space and proposed a 

nonlinear state feedback control strategy. Their main result 

was a switching surface in IRn that separates the region of 

positive and negative control. The switching surface is

easily developed for second-order systems, but the actual 

method of implementing the strategy for higher order systems 

was not considered because of its high complexity. A 

systematic algorithm has been developed by Briick [Brii., 2] . 

Based on the convexity of certain modified reachable sets a 

multi-input regulator was realized as a series connection of 

m single-input regulators with a total on-line computation 

effort considerably less than m times the single-input effort 

that was first introduced by Ludyk [Lud., 1] . A different 

procedure applicable to sampled-data systems and based on 

modal control was developed by Crossley and Porter [Cro., 1].
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This led to a design algorithm which is computationally 

straightforward and does not involve the determination of 

switching surfaces.

Gutman and Cwikel [Gut 1] , were the first to solve the 

constrained state deadbeat regulation problem (4.40) where 

state constraints are also included. However, their 

algorithm involves rather difficult computations and the 

determination of a minimum-time feedback law is not simple. 

Keerthi and Gilbert [Kee., 1] offered a new approach to the 

problem in which a facial description of the k-step 

admissible sets is used. The computations were more 

systematic and straightforward and the complete class of 

minimum-time feedback laws was characterized. Finally, we 

note that Kolev [Kol., 2] and Rasmy and Hamza [Ras., 1] have 

reduced constrained deadbeat regulation with bounded controls 

only, to a linear programing problem by minimizing an ^-type 

and £°°-type performance index of the controls 

correspondingly.

An alternative problem to the constrained state deadbeat 

regulation is the minimum gain state deadbeat regulation. We

have already mentioned the work of Elabdalla and Amin [Ela., 

1] and Van Dooren [Van., 2] which produces a minimum 

Frobenius norm deadbeat feedback matrix F. Leden [Led., 1] 

arrives to a minimum feedback gain state deadbeat regulator 

by solving a Riccati equation involving a quadratic 

performance index which penalizes only the final state. 

However, the problem is restricted to systems with invertible 

transition matrix A.

Taking into account the nonuniqueness of the state deadbeat 

regulators it is natural to introduce further performance 

criteria such as minimum-cost state deadbeat regulation. 

Emami-Naeini and Franklin [Ema., 1] have considered a 

quadratic cost function of the states and the controls and 

they discussed also the case of robust deadbeat tracking. 

Sebakhy and Abdel-Moneim [Seb., 2] have considered a similar
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quadratic cost function which has resulted in an optimal 

shaping of the transient response of the closed-loop system 

and to the parametrization of the class of state deadbeat 

regulator. However, as they note in their paper, their 

method leads to overparametrization.

4.3.5 Output deadbeat regulation

A relaxed version of the state deadbeat regulation is the 

output deadbeat regulation, where the output - and not the 

states - of the system (A,B,C,D) is required to be driven to 

the origin in minimum time for any given initial state. 

Clearly, state deadbeat regulation implies output deadbeat 

regulation, but the opposite is not true in general.

The first state-space solution of the above problem was given 

by Kucera [Kuc., 12] for the case of SISO discrete-time 

systems. It is closely related to the theory of inverse 

systems and the output of the system is zeroed in a number of 

steps equal to the relative order of the system. Five years 

later, in 1977, Leden [Led., 3] tackled the multivariable 

output deadbeat regulation for sampled-data (strictly causal) 

systems, using a geometric approach. Leden's regulator 

involves linear state feedback and is essentially a 

cancellation controller since the invariant zeros of the 

plant are part of the poles of the closed-loop polynomial.

A special feedback law of the form

u = - (CB) +CAx (4.43)—k —k

that achieves output regulation in one sampling instant was 

proposed by Corsetti and Houpis [Cor., 1] . Unlike Kucera's 

and Leden's output regulators, this controller does not 

require invertibility of the system transition matrix A. The 

only requirement is the existence of the right inverse (CB) + 

of the matrix CB. Again, if the set of invariant zeros of 

the plant is not empty, the aforementioned controller always
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assigns these zeros as closed-loop poles. This may lead to 

instability when the invariant zeros are located inside the 

unit disc in the d-plane.

To overcome the problem of instability, Leden proposed a 

suboptimal controller where only the stable invariant zeros 

of the open-loop system are allowed to appear in the closed- 

loop characteristic polynomial. The first to consider the 

stability requirements more systematically, were Akashi and 

Imai [Aka., 3] . In their approach, the output deadbeat 

regulator is required to have the additional property that 

the control input to the system converges to zero as time 

goes to infinity. Two configurations of such controllers 

together with the existence conditions were considered; one 

was a state feedback and the other was a dynamic controller 

using an observer. In 1981, Kimura [Kim., 2] treated the 

problem of stability in a systematic way by considering the 

problem of output deadbeat regulation with internal

stability. He used two types of controllers; one was a 

constant state feedback regulator and the other was a 

regulator involving a minimum-time minimum-order function 

observer. In both cases the solvability conditions, the 

minimal settling time and the characterization of the 

minimal-time regulators were derived.

Akashi and Adachi [Aka., 2] used a geometric approach for the 

problem of output deadbeat regulation with incomplete state 

observation. The system considered was of the form

x
— k + 1

Z  —k

Ax + Bu—k —k

Cx—k

DX—k

(4.44)

where x^ e Rn is the state vector, e [Rm is the input

vector, yk e [Rp is the output vector directly observed and z 

e [R is the output vector to be regulated. Necessary and 

sufficient conditions for existence were given and a 

controller based on the separation principle was subsequently 

designed. A state estimator resembling a Kalman filter was
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proposed with a time-variable gain obtained as a solution to 

a singular Riccati equation. The feedback gain then is one 

of the minimum-time regulation gains in the case when 

complete state observation is available.

Two years later, Akashi and Imai [Aka., 4] considered the 

problem of output deadbeat under the presence of unmeasured 

disturbances. They defined this problem as the problem of 

disturbance localization and output deadbeat control. The 

model they used was similar to the one described by equations 

(4.44) by adding an additional input of the form Ed, to the 

state equations, where d, is the disturbance vector. 

Necessary and sufficient conditions were given for the 

existence of a controller using an observer that achieves 

simultaneous disturbance localization and output deadbeat 

regulation and an algorithm of designing such a controller 

was presented. But despite the output regulation performance 

under unmeasurable disturbances, the controller proposed by 

Akashi and Imai suffers a considerable drawback; it does not 

guarantee internal stability and so undesirable situations 

may occur.

Another way to solve the deadbeat output regulation problem 

is to formulate it, similarly to the state deadbeat 

regulation case, as an optimal control problem with no cost 

on the controls. Marrari, Emami-Naeini and Franklin [Mar.,

3] have considered such a problem by minimizing the objective 

function

00

J = - V xtQx (4.45)
2 u —  i —  i 

i =0
A A A

where Q = H H such that the system (A,B,H) has no finite 

transmission zeros except for all the stable transmission 

zeros of the plant. Due to the choice of Q, the controls are 

internally stable and drive the output of the system to zero 

in minimum time using state feedback. Two algorithms were 

provided for the solution. One is numerically stable and 

covers the most general case whilst the other, if the plant 

structure makes it feasible, allows some chosen subset of
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outputs to be driven to zero faster than the others using an 

output deadbeat controller. In 1991, an extension to the 

first algorithm, having particular advantages when dealing 

with the case of a plant with multiple stable transmission 

zeros, was presented by Spurgeon and Pugh [Spu., 1].

A different approach was used by F. Lewis for the solution of 

the output deadbeat regulation problem. By taking a 

geometrical approach, and by using a type of orthogonality in 

constructing bases for the kth controllable subspaces, he 

reduced the problem to the solution of a specialized Riccati 

equation whose solution sequence is used to compute the time- 

varying optimal state feedback gains.

4.3.6 Deadbeat tracking

Another aspect of the deadbeat control is that of deadbeat 

tracking where the states, or the outputs of the system are 

required either to settle to a specified value, or to follow 

a specified signal in minimum time. Yih-Shuh Jan [Jan., 2] 

presented a simple algorithm for the deadbeat control of a 

class of SISO linear time-invariant systems with time 

polynomial inputs. The system used was represented in phase- 

variable canonical form and it was required that any initial 

state be forced to a desired state x in minimum settling
— S

time whereas the output follows a reference polynomial 

signal. The restrictions of the method are that it can be 

used in a class of SISO systems and that the highest order of 

the polynomial inputs should be no larger than the system 

order.

Bradshaw and Porter developed a systematic design of linear 

MIMO discrete-time systems for tracking polynomial inputs. 

First, they considered the case of accessible states and 

later on they extended their results to the case of 

inaccessible states [Bra., 1], but their design does not 

necessarily lead to deadbeat control.
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In 1982, De Vlieger et al. [Vli., 1] presented a time-optimal

control algorithm allowing bounds on the control and state

variables. Apart from the constraints the main control

requirement was that the state x and the output y follow 
. . * *

desired trajectories x and y after a minimum time k . The 

whole problem was reduced to a linear programming problem and 

for real-time applications feedback control was achieved by 

recalculating the control sequence each sampling period.

Finally Scott, see [Sco., 1] and references therein, proposed 

a unified approach to solving three optimal control problems 

under general constraints, using linear programming 

techniques. The main objective was to find a feasible input 

sequence which would drive the system from its initial state 

to the desired stable final state x . The problems 

considered were: 1) deadbeat (time-optimal) control; 2) fuel- 

optimal control in fixed time by minimizing the ^-norm of 

the control sequence; 3) deadbeat control with control and 

state constraints.

4.4 Deadbeat Control - A Transfer Function Approach

In the previous section (4.3), we presented an extensive 

survey and some new results on deadbeat control based on a 

state-space approach. An alternative approach, which we will 

investigate in this section, is the transfer function 

approach. This was the approach used by Bergen and Ragazzini 

[Ber., 1], when they first introduced and solved the deadbeat 

tracking problem, and has been promoted ever since mainly by 

Kucera. Kucera's approach depends to a large extend on 

polynomial matrix techniques and the design involves the 

solution of linear matrix equations. For this reason it is 

called by Kucera the polynomial equation, or algebraic 

approach [Kuc., 1], [Kuc., 13], and it offers a 

straightforward and computationally efficient alternative to 

the state-space methods.
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In the following sections we will briefly present the 

application of the algebraic methods to the deadbeat 

regulation and tracking problem. Most of this part of the 

survey is based on the work done by Kucera.

4.4.1 State deadbeat regulation by state feedback

Consider the n-dimensional discrete-time system

x = Ax + Bu , k * 0 (4.46)

where x e [Rn and uk e [Rm. If d = z”1 is the delay operator 

(see chapter 2), the state and control sequences can be 

written as

X = X + x d + x d +— —0 —l —2

u = u 
—  —0

+ u d—l
,2+ u d +—2

Hence, an equivalent description of the system (4.46) is

D x = N u + X
p—  p—  — o

where

D = I - dA e Rnxn[d]
p n

N = dB e [Rnxm [d]

As a generalization of the constant state feedback control 

law we are looking for all control laws of the form

(4.47)

(4.48)

u = - N w , x  = D w  (4.49)
—  C —  —  C —

where w is an internal variable and D e Rnxn [d] , N e
—  C  C

Rmxn [d] . Substituting (4.49) into (4.47) we obtain

X = D (D D + N N )~XX
c P c p c “° (4.50)

U = -N {D D + N N )~1X
—  c p c p c  — 0

If x is to settle to zero in finite time, then x has to be a 

sequence of finite length, i.e. polynomial in d. Since this
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is to hold true for every initial state x , 

satisfy the equation

D and N must
C C

D D + N N = I (4.51)
p c  p c  n

Equation (4.51) has a solution if and only if {D ,N ) are
p p

left coprime, and this is true if and only if the pair {A,B) 

is controllable. However, not all solutions of (4.51) 

qualify for deadbeat (minimum-time) regulation. For deadbeat 

regulation, x has to be not only polynomial but of least 

degree as well. Since

u = -N x
- c—O

X = D X 
—  c— 0

we must take the solution that minimizes every column of D 

(and hence of N ) . We can state now the next theorem.
C

Theorem 4.5 [Kuc., 2], [Kuc., 6]: Consider the discrete-time 

system (A,B) defined by equation (4.46). Then, there exists 

a deadbeat regulator of state feedback form, if and only if 

the pair (A,B) is controllable. The deadbeat gain F is given 

by

F = -N D 1 (4.52)
C C

where N , D , with detD (0) * 0, is a minimum column degree
c c c

solution pair of the equation

D D + N N = I (4.53)
p c  p c  n

and D , N are given by the relationships (4.48) .
p p

□

It must be noted that the polynomial approach, in contrast to 

the recursive state-space methods of section (4.3.1), is 

straightforward and most important, it provides all the 

dynamic state feedback control laws in parametric form.

Remark 4.8 [Kuc., 6]: The state deadbeat regulator (4.52) 

is more general than the one using state-space techniques in 

that it includes dynamical control laws. Any solution of the 

Diophantine equation (4.53) assigns to the closed-loop system
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the characteristic polynomial zn and therefore solves the 

relaxed state deadbeat regulation problem. For deadbeat 

regulation, the closed-loop characteristic polynomial must be 

split into invariant polynomials so that the minimal 

invariant polynomial must be z^, |Lt being the maximum 

reachability index of the system (A,B). This requirement is 

satisfied by the minimum column degree solutions of equation 

(4.53) .

□

4.4.2 State deadbeat regulation by output feedback

It is often the case, as it has already been pointed out in 

section (4.3.3), that the state x of the system

X = Ax + Bu (4.54)
— k+l — k — k

is not directly accessible. Instead, a linear combination of 

the state is available through the output equation

y = Cx + Du (4.55)
— k —  k — k

Applying the d-Transform to equations (4.54) and (4.55) as in 

section (4.4.2), the system (A,B,C,D) can be described by the 

input-output equation

D y = N u + D (4.56)
p—  p—  pO

where D , N are polynomial matrices in d of appropriate
p p

dimensions and D is a column vector accounting for the 

initial conditions.

Accordingly, the state deadbeat regulator is a dynamical 

system described by the equation

D u = -N y + D (4.57)
c—  c—  cO

and the controller transfer function is given by

C (d) = D^N = N D'1 (4.58)
c c c c
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Then, using similar arguments to those of section (4.4.1), we 

have the following theorem.

Theorem 4.6 [Kuc., 2], [Kuc. , 10]: Consider the

discrete-time system (A,B,C,D) and let (D ,N ) be a left \R[d]
p p

-coprime fraction of the plant transfer function such that 

[D N ] is row reduced and row ordered. There exists a state
p p

deadbeat regulator with transfer function

C(d) = N D'1 (4.59)
C C

if and only if the system (A,B,C,D) is controllable and 

constructible. The pair (Dc,N ) is the minimum column degree 

solution of the Diophantine equation

D D + N N = I (4.60)
p c  p c  n

such that D (0) is invertible.
C

□

Remark 4.9: The deadbeat controller (4.59) based on the

Diophantine equation (4.60) provides an efficient alternative 

to the state-space methods described in section (4.3.3). The 

polynomial equation approach unifies the theory as well as 

the design of deadbeat controllers and includes as a subset 

all the observer-based deadbeat controllers of section 

(4.3.3). It is worth noting that the nonminimal solutions to 

equation (4.60), though not of deadbeat type, still drive any 

initial state of the system to zero.

□

4.4.3. Deadbeat tracking

We recall that by deadbeat tracking we mean the problem of 

designing a controller such that the closed-loop system 

settles to zero steady state error for a given reference 

sequence in minimum time independently of the initial 

conditions.
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This is a unique feature of linear time-invariant discrete-

time systems, as it was first mentioned by Bergen and 

Ragazzini [Ber., 1] for the case of SISO sampled-data systems 

as early as 1954. Their method was based on a unity feedback 

scheme incorporating a cancellation controller [Kuo., 1] , 

[Ise., 1], whereby the absolute minimum settling time, 

allowing for realizability of the controller, was achieved by 

canceling out the undesired poles or zeros of the d-transfer 

function of the plant. This, they noted, could lead to 

instability. To avoid this drawback they proposed a design 

that did not allow pole-zero cancellations inside the unit 

disc. Such a controller was internally stable at the expense 

of minimum settling time.

In 1980, Jordan and Korn [Jor., 1] considered the case of 

deadbeat error control of multivariable processes with step 

reference signals. But again, their proposed design could 

neither guarantee stability of the closed-loop system, nor 

finite transient response to state disturbances. Thirty two 

years after the original work by Bergen and Ragazzini, a 

paper by Wang and Chen [Wan., 1] was published dealing with 

the problem of simultaneous deadbeat tracking for SISO 

discrete-time systems as they called it. Their approach, 

apart from the fact that it considered a prespecified class 

of inputs rather than a unique type of input for tracking, 

hardly distinguishes from the work of Bergen and Ragazzini.

All the aforementioned work was based on a transfer function 

approach where the transfer function of the system was 

expressed as a fraction of polynomial matrices. Kucera was 

the first to formulate the deadbeat tracking problem using a 

polynomial equation approach where equations of the form 

(4.56) were used for the dynamic description of the systems 

involved. In his work 'A Deadbeat Servo Problem' [Kuc., 7] , 

a design is proposed for a deadbeat tracking of any reference 

signal from a prespecified class and for any initial 

condition of the single-variable plant. He pointed out that 

the control law based on a unity feedback scheme and
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operating on the tracking error only, is sub-optimal and in 

many cases the plant is required to be initially at rest. In 

this work Kucera argued that for time-optimal control the 

controller has to be placed in the feedback loop. A 

generalization of the polynomial equation approach to the 

multivariable deadbeat tracking case was given by Sebek 

[Seb., 3] and later on by Eichstaedt [Eic., 1] where 

necessary and sufficient conditions for finite settling time 

open-loop and closed-loop tracking were established. In 

Eichstaedt's treatment the initial conditions of the plant, 

the reference generator and controller were taken into 

account and an attempt was made to ensure asymptotic 

stability of the closed-loop system.

Later on, Kucera and Sebek [Kuc., 8] treated more 

systematically the multivariable deadbeat regulation and 

tracking problem by establishing necessary and sufficient 

conditions for the existence of various deadbeat controllers 

under the constraints of loop stability and causality based 

on a detailed analysis of the control sequence generated by 

any deadbeat controller. In a subsequent work Kucera and Hai 

[Kuc., 14] studied the effect of measurement dynamics on 

deadbeat performance in the case of single-variable discrete-

time systems.

The problem of causality and stability of the inner loop 

under deadbeat tracking performance was also investigated by 

Wolovich [Wol., 3] using the polynomial matrix approach. The 

initial conditions of the plant and the controller were taken 

into account and necessary and sufficient conditions for 

ripple-free deadbeat tracking were established.

Chen et al. [Che., 2] investigated the problem of deadbeat 

unit step response with internal stability by using matrix 

fraction descriptions over the set of proper and stable 

z-rational functions. Their deadbeat controllers were 

confined to those achieving a sensitivity transfer function
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S(z) of particular structure. Two different control schemes 

were considered; one with unity feedback and another taking 

into account the sensor dynamics.

As in the state-space approach, the transfer function 

approach provides a family of deadbeat tracking controllers 

and in the later case in parametric form. There is therefore 

a possibility of imposing more performance requirements 

within the family of deadbeat controllers. Minimization of 

the squared errors, or minimum overshoot are the commonest of 

them [Pok., 1], [Pie., 1] [Lor., 1]. Another kind of 

deadbeat tracking was considered by Abdel-Nour and Mulholland 

[Abd., 1] where the single-variable plant is described by an 

autoregressive model with unknown parameters. An algorithm 

was presented combining both a deadbeat and a parameter 

identification task.

We have already mentioned that the main design feature of the 

deadbeat control is the placement of the poles of the closed- 

loop system at the origin of the z-plane. Clearly, this task 

is very sensitive to plant parameter variations and robust 

deadbeat design is needed. Work has been done on this area 

by Zhao and Kimura. In an earlier work [Zha., 1], [Zha., 2] 

they considered the problem of deadbeat robust tracking of 

step inputs using a unity feedback, or a one-parameter 

scheme. The characterization of all finite settling time 

tracking controllers was given based on the Youla-Bonjorno- 

Kucera parametrization of all stabilizing controllers. 

Robustness then was considered for multiplicative plant 

perturbations that were not violating the internal stability. 

The optimality robust design was formulated as the 

minimization of a robustness index that was essentially the 

L2-norm of the sensitivity, and the optimally robust 

controller was computed for a specific finite settling time 

step. Later on, Zhao and Kimura considered the same 

robustness problem by allowing tracking of arbitrary

146



prespecified input sequences and using a two-parameter

control scheme [Zha., 3], [Zha., 4]. A comparison was given 

between the two schemes where the superiority of the two- 

parameter control scheme was proved.

4.5 Conclusions

Most of the work in deadbeat control area has been in the 

state-space set up and focused on specific type of problems 

largely dealing with minimum-time solutions. The transfer 

function approach has the advantages of parametrization, as 

it has been shown by Kucera's work based on polynomial 

equations, but again the work was focused on deadbeat and 

thus examined special type of control problems.

In this thesis, we have adopted the viewpoint that deadbeat 

response is a special case of the finite settling tine 

stabilization problem and that an algebraic formulation of 

this problem, that also guarantees internal finite settling 

time behaviour, can serve in a twofold way. On one hand 

it provides a unification of existing results, on the other 

hand the natural parametrization of solutions associated with 

polynomial matrix equations permits McMillan degree 

parametrizations, shows links with deadbeat and minimum 

McMillan degree solutions, provides a clear treatment of 

tracking and disturbance rejection in FST sense, and a useful 

set up for studying robustness in an FST sense. This

unifying framework will be presented in the following 

chapters.
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Chapter 5

TOTAL FINITE SETTLING TIME STABILIZATION: 
The SISO Case

5.1 Introduction

The aim of this chapter is to introduce the notion of Total 

Finite Settling Time Stabilization (TFSTS) for linear 

discrete-time systems and to consider in detail the SISO 

case. The Finite Settling Time Problem (FSTP), and more 

specifically the deadbeat performance - i.e. state or output 

regulation or tracking in minimum time - is unique in 

discrete-time systems [Ber., 1], [Kal., 2]. As it has 

already been described in chapter (4) (see references 

therein), most of the state or output deadbeat regulators are 

of the constant state feedback type, or in the case of 

inaccessible states a scheme involving observer and state 

feedback is used. The main aim of the above problems is to 

shift all the eigenvalues (or almost all, in the case of 

output deadbeat) of the closed-loop system to the origin. 

Kucera has pioneered the use of polynomial algebra methods 

for the study of state and output time-optimal control 

problems of both single-variable and multivariable discrete-

time systems [Kuc., 4]-[Kuc., 8]. Subsequently, a number of 

researchers followed this approach, e.g. [Eic., 1], [Wol., 3] 

with the most recent work of Y. Zhao and H. Kimura [Zha., 1]- 

[Zha., 4] where the problem of robust deadbeat tracking is 

addressed.

The present work does not directly deal with the time-optimal 

(deadbeat) control, but with the rather more general problem 

of total finite settling time stabilization. That is, all 

internal and external variables (signals) of the closed-loop
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system are required to settle to a new steady state after a 

finite time from the application of a step change to any of 

its inputs and for every initial condition (see also [Lin., 

1]). The state/output deadbeat regulation or tracking are 

then special cases of the TFSTS Problem abbreviated to FSTP 

(finite settling time problem).

The unity feedback configuration of figure (3.4), shown again 

here in figure (5.1), is used for the solution of the FSTP 

and FST related control strategies as described in chapter 

(3) and will become more clear in this chapter. In this 

chapter we deal with the single-input/single-output FSTP 

where we address and solve a variety of control problems. 

The MIMO case is considered in the next chapter, where it is 

shown whether it is possible to extend the results of the 

SISO case to the MIMO one and what are the limitations of 

this process.

Using the mathematical and system theory framework as it has 

been presented in chapters (2) and (3) we are able to tackle 

the FSTP and a set of performance related problems in a 

unifying manner. The whole problem is reduced to the 

solution of a polynomial Diophantine equation which 

guarantees not only internal stability but also internal 

(state) FST. A Youla-Bongiorno-Kucera type parametrization 

of the class of all FST as well as causal FST controllers is 

derived and the necessary and sufficient conditions for the 

existence of stable FST controllers (strong FST) are 

obtained. The minimal design problem is considered together 

with the parametrization of the family of the FST controllers 

according to their McMillan degree.

Having solved in a parametric form the general problem of 

finite settling time stabilization we can impose more design 

constraints to the FST control problem such as FST tracking 

and disturbance rejection of a class of signals, FST 

controller design with partially given controller dynamics, 

and FST for sampled-data systems where a design for ripple-
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free FST is proposed. All of the aforementioned problems are 

considered in separate sections of this chapter.

5.2 Definition of the FSTP - Parametrization of the FST 

Controllers

Consider the closed-loop system of figure (5.1) where u , u 

are the externally applied inputs and all the signals shown 

are scalar. Let also p, c e (R (d) be the impulse responses of 

the plant and controller respectively. Then, the problem of 

finite settling time is formulated as follows.

Definition 5.1: The unity feedback system of figure (5.1) 

exhibits a finite settling time response, if for a step 

change in any of the inputs u , u2 and for any initial condi-

tion, all the signals , e , or y , y settle to a new 

steady state value in finite time. The values of the finite 

settling time and of the steady state are left free.

□

Figure (5.1): The SISO unity feedback configuration

We give next the characterization of the systems that exhibit 

FST response. For an alternative proof, not taking into 

account the initial conditions, see Isermann [Ise., 1].

Lemma 5.1: A causal discrete-time system characterized by an 

impulse response g(d) exhibits an FST response, if and only
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if g(d) is a polynomial in d, i.e. g id) is of finite duration.

Proof. According to definition (5.1), FST response is 

considered for a step input. To allow for the initial

conditions, assume that the input u is a linear combination 

of two signals u and u+, i.e.

where

u = u + u

any value for -kQ < it < -1

0, anywhere else

1, k £ 0

0, anywhere else

(5.1)

(5.2)

(5.3)

"if". Suppose that g id) e R [d] , i.e

g = {0 ; g ...., g , 0, . . . , 0, . . .}O m

Then, the response of ¡f (g (d) ) to u is

y = Y g u~ = Y g u , k  ̂ 0
2 V. u y n k-n ^ k-n

n = 0 n = 0

(5.4)

(5.5)

If k > m - 1, i.e. k - m > -1, (5.2) implies that u = 0,
k-n

for n = 0, ,m. Therefore

y~ = 0, for k  ̂m (5.6)

Also, the response of ¡f{g{d)) to u+ is

oo k k+ V-, + _  + „
t  - E - E ■ E sr„

n=0 n=0 n=0

and for k  ̂m, g = 0, so (5.7) gives

(5.7)

yk = Eg„ ,
n = 0

(5.8:

Hence, due to linearity, the response of the system to u 

+ ir+ i s y  = y + y + and due to (5.6) and (5.8)

= u

t  - E g„ . * * >»
n = 0

(5.9)
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time k = m.f

"only if" . Suppose that y settles to a new steady state 

after finite time = m from the application of a step

input and for any initial condition, i.e.

i.e. y settles to the steady state value Ym g after finite
1 Ln=03n

y k = y k+1, v k * m ( 5 . 1 0 )

This is true for any input u of the form (5.1), and therefore 

for u = u+. In that case (5.7) implies that

k+l

k + 1 k

- E gn = E sr„n = 0 n= 0
+ g.k+l = ^k + k+l

(5.11)

and due to (5.10), g■ = 0 V k a= m. Hence V (g id) ) is a sys-

tem with impulse response length m + 1 (g * 0 for 0 == k < m) .

□

Remark 5.1: Systems that are characterized by an impulse

response of finite duration are known as Finite Impulse 

Response (FIR) systems in signal processing where they are 

used as filters. FIR systems exhibit a finite settling time 

response to almost any recurrent input and not just to step 

inputs. Indeed, consider any input u (d) and express it in 

the form

u (d) = , a (d) , b[d) e \R[d] and coprime.

Then, y(d) = g id) b id) / a id) , g(d) e [R [d] and so y id) is of the 

same type as u id) if the zeros of g id) do not cancel any of 

the poles of uid) (zeros of aid)). Needless to say that a 

FIR system exhibits an output of finite duration if it is 

subjected to any input of finite duration. Such systems are 

denoted by Kucera [Kuc., 9] as Finite Input Finite Output 

(FIFO) systems which is an equivalent way of describing their 

FIR property.

□

Consider now the unity feedback system of figure (5.1) and 

let n^/d^, nc/dc are coprime polynomial fractions in d of the 

transfer functions p, c of the plant and controller
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respectively. If we denote by H(p,c) the transfer function 

from u = [ui to e = [ej , and by W(p,c) the transfer

function from u to y = [yj y^]1 as in section (3.4), then the 

denominators A, A (see 3.80), become scalar and equal to

5(p,c) := n n  + d d  e IR [d] (5.12)pc pc

and H{p,c), W (p,c) are expressed as follows.

- i

H [p, c) =
-n

p
8{p,c) n dC C J + 1 0

d
L p J

0 0

8 (p, c)

d d -n dp c  p c

d n d dp c  p c

- 1

W{p,c) =
" d

p
8(p,c) [ n d 1 +c c -* 0 -1

n
L p -

Oo

1 d n
P c

-n n
P c

8 (p, c) n nL p c n dp c J

(5.13a)

(5.13b)

(5.14a)

(5.14b)

According to lemma (3.1) and lemma (5.1) the following result 

is self-evident.

Lemma 5.2: The unity feedback system of figure (5.1)

exhibits an FST response, if and only if H(p,c) e R [d].

□

We are now able to give the solution to the finite settling 

time problem together with the parametrization of the FST 

controllers.

Theorem 5.1: Consider the closed-loop system of figure (5.1) 

and let p = n /d , c = n /d be coprime polynomial fractions
p P C C

in d of the plant and controller transfer functions 

respectively. Then, the solution of the FSTP exists if and 

only if
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(5.15)8 (p,c) := n n  + d d  s IR - {0}pc pc

Moreover, the family of all causal FST controllers is given 

by

?(p) = { (n ,d ) : n = x + td , d = y - tn ,
c c c p c  p

t e [R [d] and y(0) - t(0)n (0) * 0 if n (0) * 0} (5.16)
p p

where x, y is a particular solution pair of

n n + d d = 1pc pc (5.17)

Proof. According to lemma (5.2), H(p,c) must be a polynomial 

matrix for FST response. Since [n ,d ) , (n ,d ) are coprime,
p p C C

(5.13a) is a bicoprime fraction of ff(p,c), and according to 

corollary (2.3) H(p,c) e M{R[d]) if and only if 8(p,c) is a 

real constant, e.g. 8{p,c) = 1 without loss of generality.

The rest follows from theorem (3.18) and corollary (3.13).

□

It is clear from theorem (5.1) (see also proposition (3.5) 

and corollary (3.13)), that the following corollary holds 

true.

Corollary 5.1: The FST controller is causal

a. V t (d) e [R [d] if n (0) = 0
p

b. V t (d) e IR [d] : t(0) * 7 if n (0) * 0.
n (0) p
p

□

Corollary 5.2: Let n , d , n , d , be as in theorem (5.1) .
p P C C

Then

H (p, c)
d d -n dpc pc

d n d d
p c  p C J

(5.18)

W (p, c)
d n -n npc pc

n n n dpc p c - 1

(5.19)

□
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Remark 5.2: According to theorem (5.1), FST control shifts

the poles of H (p,c) to infinity, i.e. outside the closed unit 

disc D[0,1] and therefore stabilizes externally the closed- 

loop system ¡f . In fact

a. If the plant and controller are minimal 

realizations of p, c, the feedback system is 

internally stable with all its eigenvalues shifted 

to zero, and so exhibits an internal (state) FST 

response as well.

b. If the plant and controller are stabilizable and 

detectable, then the feedback system is internally 

stable with at least the reachable and observable 

modes being finite.

The stabilizing nature of the FSTP suggests that the 

controllers defined by the FSTP may be referred to as Total 

Finite Settling Time Stabilizing (TFSTS) controllers, or 

simply FSTS controllers; the problem of defining them (FSTP), 

may also be referred to as Total Finite Settling Time 

Stabilization Problem (TFSTSP), or simply FSTSP.

□

Example 5.1: Consider the feedback system of fig. (5.1) and 

let the transfer function of the plant be [Ise., 1]

n (d) -0.0132d-0.0139d2
p(d) = --- = ------------------ -

d (d) 1-2.1889d+l.1618d
p

According to theorem (5.1), the family of all controllers 

c (d) that stabilize the plant in FST sense satisfy the 

Diophantine eqn. (5.17) and in this case the equation

(-0.0132d-0.0139d2) n + (1-2.1889d+l. 1618d2) d = 1 (5.20)
C C

It suffices to find one particular solution (x,y) of the 

equation (5.20). One way to obtain a particular solution is 

by reducing [n d ] to its Smith form. Since (n ,d ) are
p p p p

coprime, there exists a 2 x 2 [R [d] -unimodular matrix U such 

that [Kuc., 1], [Kai., 1]
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(5.21)

Such a U is

[n d ] U = [10]
p p

U
-105.3 8 + 66.685d 105.38-230.67d+122.43d2

1+0.7978d 1.3911d+1.4648d2

Therefore, according to (5.21), one particular solution (x,y) 

of (5.20) is

x = -105.38+66.685d 

y = 1+0.7978d

Since the plant has a delay (n (0) = 0) , the family of all
p

causal FSTS controllers is

9 (p) = { (n ,d ) : n = x + td , d = y - tn , V t e [R [d] }
c c c p c  p J

Consider now the response at y2 to step input applied at u . 

According to (5.19), the transfer function from u to y is 

W (p,c) = n n and for n = y, (p,c) becomes

nr (p,c) = 1.3911d + 0.5845d2 - 0.9269d3

For a step change at u , y2 is the following (see also eqns.

(5.7) and (5.9))

y2 = 1.3 911d + 1.9756d2 + 1.0487 (d3 + d4 + ■••) 
or

y2 = {0; 0, 1.3911, 1.9756, 1.0487, 1.0487, 1.0487,...}

We see that y s e t t l e s  to the value of 1.0487 after two steps 

from zero but it does not track the input (the steady

state error e = (u - y ) is e = -0.0487) .
1, ss 1 J 2 ss 1, ss

Therefore, this particular controller c = x/y is not good for 

tracking; it forces though all the states to zero in finite 

time. We will see in subsequent sections how we can select 

among the FSTS controllers those that guarantee tracking or 

other performance criteria.

□
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5.3 Algebraic Computation of the Family SF (p)

It is clear from theorem (5.1) that the computation of the 

family iF (p) requires only the computation of a particular 

solution (x,y) of the Diophantine equation (5.17). One way 

to do that is by reducing [n d ] to its Smith form [1 0], as
p p

it was illustrated in example (5.1). Another way is by using 

Toeplitz matrices [Che., 1] and it will be described in this 

section. This approach enables us to reduce the FSTP to a 

linear algebra problem in [R and to obtain an immediate 

solution of the minimal design problem as well. Let

b +b d+- • • +b d™ n (d)
p  = o i_________ ®  = P

1+a d+ • • • +a dn d (d)
1 n p

be the transfer function of a causal plant and

c +c d+- • • +c d̂ 1 n (d)
c = - 2 - l -------= — -------  (5.23)

f +f d+- ■ -+f dv d (d)
1 V c

be the transfer function of the controller in a unity 

feedback scheme, with (n ,d ) and (n ,d ) R [d]-coprirne
p p c c

respectively.

For FSTS, the pair n , d̂  is a solution to the Diophantine 

eqn. (5.17) which implies that

or

8 (n n ) = a (d d ) .-. a (n ) + a (n ) = a (d ) + 5 (d )
p c  p c  p c p c

m + u = n + v (5.24)

Using Toeplitz matrices for polynomial multiplication, eqn. 

(5.17) becomes
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(n )

+

0 • • • 0 a
n-

= =T (d ) v p
1

: =e

(5.25)

or in compact form

where

T\i,v (n ,d )p p

ie (5.26)

T
IJi,V

in ,d )
p p

T (n ) 
U p

Tv (d )n -*

Therefore the solution of the FSTP reduces to the solution of 

equations (5.26).

Proposition 5.1: There always exists a unique FSTS control-

ler c = ^c/dc with n̂ , (?c having generic degrees 3 (h ) = n-1, 

3 (3 ) = m-1, and the parameter vectors c , f" of n , cL 

respectively, given by

A

c—n-l
?
— m-l

The controller c = h /3 will be referred to as the prime
C C

FSTS controller.

Proof. T „ (n ,d ) e [R<m+n>x(m+n> an(j it is sufficient
------- n-l,m-l p p

to show that it has full rank. Indeed, the transpose of 

T is the matrix
n-l,m-l

= {T (n ,d ) } V
n-l, m-l p p —

(5.27)
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S {n , d )
p p

b b ■...... b o • • • 00 l m

0 b b .
• 0 m

0

0 ■. . . 0 b ....... b0 m

1 a .... a 0 • • • • 0l n
0 1 a .
• n

0

0 • ■ o' 1 ....... • a
nJ

which is known as the resultant 

coprime polynomials n (d) , d (d)
P P

[Che., 1] . So, T (n , d )
n-l.m-l p p

matrix.

or Sylvester matrix of the 

and therefore is full rank 

St(n ,d ) is a full rank
p p

Now, it is possible that c 

the solution parameter vectors c

f , the last components of 

f of equation (5.27),—m-1
to be zero (simultaneously, due to 5.24) . This may be true 

for more pairs (c ,f ) in the solution vector
n-i m-i

] l. The first nonzero pair c—m-l

r-t
[c ,— n-1

f will constitute the
m-i

leading coefficients of h (d) , 3 (d) and therefore

5 (n s n 8 (3 )  ̂m - i , i = 1,2,...

Clearly, the generic values of the degrees are 8 (n ) = n - 1
C

and 5(3) = m - 1.
C

□

Remark 5.3: The prime FSTS controller may not be causal and 

so may not belong to the family W (p) . Nevertheless, it can 

always be used for the parametrization of the causal FSTS 

controllers. If the plant possesses a delay all solutions to 

equation (5.17) are causal and so is the prime FSTS 

controller.

□

Example 5.2: Consider the unity feedback configuration of

figure (5.1) with a plant as in example (5.1) . Then, m=n=2 

and the parameter vectors of the numerator, denominator 

polynomials of the prime FSTS controller are given by the 

following relationship
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where

(n , d )
p p

0.0 0.0 1.0

-0.0132 0.0 -2.1889

-0.0139 -0.0132 1.1618

0.0 -0.0139 0.0

0.0 

1.0

-2.1889 

1.1618

(5.29)

The solution of (5.28) with T as in (5.29) is
l.i

r ~ -1 -105.3836c—l 66.6854
î 1.0000—î

0.7978

and the prime FSTS controller is

h (d) -105.3836 + 66.6854d
~ C
C  = -------  = -------------------------------

3 (d) 1 + 0.7978d
C

We see that 3 (nj = n - 1, 3 (<3j = m - 1. Merely by chance,

the prime FSTS controller coincides with the particular 

solution obtained by reduction to Smith form (example 5.1).

□

5.4 Parametrization of the FSTS Controllers 

Through their McMillan Degree

In this section we study the McMillan degree properties of 

the family of causal FSTS controllers 9= (p) . We recall from 

section (3.2.4) that the McMillan degree S^(g(d)) of a 

rational function g(d) denotes the total number of poles 

(finite and infinite) of g(d). If g(d) is causal, then 6^ 

indicates the total number of poles (finite) of the proper 

transfer function g(z) = g(z_1) e [R (z) . If g(d) is not 

causal then g(z) e IR (z) and it is nonproper; in this case 6^



denotes the total number of poles of g(z), finite and 

infinite. Clearly 6^(g(d)) is a measure of complexity of 

g(d) .

The importance of <5̂  in the study of properties of the 3= (p) 

family is demonstrated by the following self-evident 

statement.

Remark 5.4: Let ^ (p) be the family of all causal FSTS

controllers. Then the following properties hold true.

a. The relationship 3?̂  on ^ (p) defined on every c , c2 

e 3=(p) by

c1 M 2 ô „(c ) = 8 u (c ) 
M i  M  2

is an equivalence relation.

b. Let £^(c) denote the equivalence class of c e 

3= (p) under R^. The family ^  (p) of all equivalent 

classes i?̂ (c) forms a partition of & (p) .

□

Note that each equivalence class is parametrized by a 

distinct number namely, the McMillan degree of the 

equivalence class. A number of important problems that arise 

in this context are considered next. First define:

Definition 5.2: Let 3- (p) be the causal FSTS controller
• *

family, and (p) be the family of all equivalence classes 

£^(c.), c. e 3= (p) with McMillan degree ô^(c.) = i.

a. Define i = <5̂ (c.) as the McMillan index of £^(c.) 

and ) will be referred to as the i-subfamily.

b. The set of indices

I^ip) = {i : i the McMillan index of ï?^(c.), v 6^(c.) € ^ ( p M  

will be called the McMillan index set of 3= (p) .

□
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We may define now the following problems.

a .

b.

c.

Minimal Design Problem (MDP). Define the minimal McMillan 

degree 8 (p) of all causal FSTS controllers.
m

Parametrization Problem (I) (PP(I)). Define the McMillan 

index set IM (p) of IF (p) .

Parametrization Problem (II) (PP(II))

fine a parametric expression of the H 

^ ( c  ), where <5̂ (c.) = i.
JA

V 1 e Jü (p) de" 
equivalence class

In the sequel we give the solution to all three aforemen-

tioned problems.

Theorem 5.2: Consider the closed-loop system of figure (5.1) 

and let p(d) = n (d) /d (d) be the plant transfer function
p p

with (n ,d ) coprime in [R [d] and d (n ) = m, 3 (d ) = n. Then,
p p p p

the McMillan degree <5̂ (c) of the prime FSTS controller c(d) =

nc(d)/3 (d) is the minimal McMillan degree of all FSTS

controllers and is denoted by 8 ip), i.e.m

§m(p) = S^(c) (= max{m,n} - 1, generically)

Proof. Every FSTS controller c = n^id) /d^id) can be parame-

trized as follows.

n = h + td (5.30)
C C p

d = 5  - tn (5.31)
C C p

where t e [R [d] and , 5̂  is the prime FSTS controller. If 

3 (n̂ ) = p and 3 (d ) = v, then according to theorem (3.4)

8M (c) = max{p,i>} and so

§m(p) := min{<5^(c)} = min{max{p, v} } (5.32)

From equation (5.24) it is clear that ju, v achieve

simultaneously their minimum values and therefore it is 

enough to find the minimum value of either of them. We work
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out the minimum value of p = 5 (n ) . According to proposition

(5.1)

d ( h ) < n - 1 (5.33)
C

Also a (td ) = a(t) + a(d )  ̂a(d ) = n (5.34)
p p p

Therefore, from (5.30), (5.33) and (5.34) we have that

U = d (n ) a a (n )
c c

where the equality holds for n = h (t = 0). Hence, the mi-
C C

nimal McMillan degree FSTS controller is the prime FSTS con-

troller. Since generically a (n ) = n - 1 and 3 (3 ) = m - 1,
C C

we have that

S (p) = <5̂ (c) ( = max{m,n} - 1, generically).

□

Definition 5.3: The minimal McMillan degree of the family

& (p) will be denoted by S ip), i.e.m

8 (p) := min (8m (c )) 
c e  9= ( p )

and will be referred to as the McMillan characteristic of the 

family 9 (p).

□

Using the prime FSTS controller for the parametrization of 

the family SF (p) (eqns. 5.30 and 5.31), and the results of 

theorem (5.2), we may examine the minimal design problem and 

the parametrization problems (I) and (II) .

Corollary 5.3 (MDP): Let p, c be as in theorem (5.2). Then, 

the McMillan characteristic 8 (p) of 3 (p) is given bym

a. 5m(p) = 5^(c) (= max{m,n} - 1, generically) if the

prime FSTS controller c is causal.

b. 5m(p) = max{m,n} if the prime FSTS controller c is

not causal.

Proof.

a. According to theorem (5.2), the prime FSTS controller c 

is the minimal McMillan degree controller among all FSTS
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controllers. Since c is causal, then it is the minimal 

McMillan degree controller within the family of causal FSTS 

controllers SF (p) and therefore 5 (p) = 5 „(c) .m M

b. If the prime FSTS controller c = h /3 is not causal,
C C

i.e. c £ & (p) , then 3^(0) = 0 and also (corollary 5.1), the

plant p is not strictly causal (n (0) * 0) . Hence,

V c = n / d  (p)
C C

3 t 6 R[d] - {0}

n = ñ + td ,
c c p

d = 3  - tn
c c p

and t(0) * 3 (0)/n (0) * 0. Therefore, according to (5.33)
c p

and (5.34), 3 (n ) = 3 (t) + 3(d) V c e ?(p). So, min (3 (n ) )
c p C

= 3 (d ) = n is achieved for t e R - {0}, a real nonzero con-
P

stant, and due to (5.24) min(3(d )) = 3 (n ) = m. Thereforec p

<5̂ (p) = max{jn, n} .

□

The following two corollaries are given without proof. Their 

proofs are similar to that of corollary (5.3) and are 

omitted.

Corollary 5.4 (PP(I)): Let p be the plant transfer function 

as in theorem (5.2) and 1^ (p) be the McMillan index set of 

cF(p). Then

I^(p) = {<5̂  (p) ; max{m,n}+it, k = 0,1,2,...}

□

Corollary 5.5 (PP(II)): Let the S^-subfamily of ^ (p) be as

in definition (5.3). Then

a. The 5 -subfamily of ^ (p) consists ofm

1. only the prime FSTS controller c, if c is causal.

2. all the controllers c = n/d that are paramet-
C C

rized by a real non zero constant, if c is not 

causal, i.e.

n = n + td and d = 3  - tn with t e R - (0}
c c p c c p J
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b. The 8 -subf amily, where 5. = max{jn, n }+j, j = 0,1,... 

is parametrized by

n = h + td
C C p

d = 3  - tn
c c p

where

1. t e R[d], 3(t )=j, if n (0) =0.
p

2 . t 6 R[d], 8 (t) = j , t ( 0 ) * a (0 )/n (0 ) , if n (0 )*0 .
c p p

□

As it was mentioned in remark (5.1), all FSTS controllers 

guarantee finite input for finite output, i.e. finite-time 

regulation for any initial condition. Using the results of 

corollaries (5.3) to (5.5) it is possible to solve the 

deadbeat regulation problem, i.e. the time-optimal FSTS 

problem.

Theorem 5.3 (Deadbeat Regulation): Let p = n /d with 8 (n )
p p p

= m, 8 (d ) = n be the transfer function of the plant and c =
p

nc/dc be the transfer function of the controller in the unity 

feedback control scheme of figure (5.1) . If 8 (p) is the
m

McMillan characteristic of the family of FSTS controllers 

^ (p) , then every controller that belongs to the 8 -subfamilym
of & (p) is a deadbeat regulator and forces the output y■ to 

zero in at most

h = m + 8 (p)m

steps, for any initial conditions.

Proof. To account for the initial conditions we assume that 

we apply before zero, finite inputs at u and . The 

transfer functions from u to y and u to y are W (p, c) = 

n n and ]/J (p, c) = n d (see 5.19) . Then, according to
p c 22 p c

lemma (5.1) y will be forced to zero in

K = maxis (n n ), 8 {n d ) } = m + maxis (n ) , 3 (d ) } = m + 8 .Ac)
p c  p c c c J M

steps. For deadbeat response k and therefore 5^(c) must be 

minimum, i.e. 5 „(c) = 8 ip).M m

□
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Example 5.3: Consider the closed-loop system of figure (5.1) 

with the plant

n (d) -0.0132d-0.0139d2
p(d) = --- = ------------------ -

d (d) 1-2.1889d+l.1618d
p

as in example (5.1) . Then according to example (5.2), the 

prime FSTS controller is

h (d) -105.3836 + 66.6854d

d id) 1 + 0.7978d
C

and it is causal as it was expected since the plant possesses 

a delay. The McMillan characteristic of the family % (p) is

8 (p) = maxis (h ) , S (<5 ) } = 1
m c c

The prime FSTS controller is also the unique time-optimal 

(deadbeat) regulator and forces the output y2 to zero in at 

most k = d{n ) + 8 (p) = 3  steps.
p m

□

5.5 Strong FSTS

Consider the unity feedback configuration of figure (5.1). 

The problem of strong FSTS is defined as the stabilization of 

the plant ¡f in FST sense by a stable controller. Testable
p

necessary and sufficient conditions for strong FSTS are 

derived in this section; it turns out that the plant must 

have the same parity interlacing property [Vid., 1], [You.,

2] as in the case of usual strong stabilization where the 

domains of stability of the closed-loop system and the 

controller coincide.

We introduce now the notion of disc algebra A [Sim. , 1] ,
S

[Vid. , 1] that will assist us to derive the solvability

conditions for strong FSTS. A is the set of functions f (d),
S

d e  <C, over the real field [R which are continuous in the 

closed unit disc D[0,1] and analytic in the interior of D,
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multiplication between any two elements of A are defined
S

pointwise and the norm of f (d) e A is
S

|| f || = sup If (d) | 
delD

then, is a commutative Banach algebra with identity over 

the real field. It is clear form the definition of the disc 

algebra A^ that every stable rational function belongs to A 

and the stable polynomials are the polynomial units of A
S .

i.e. the open unit disc D[0,1). If addition and

The conditions for strong FSTS are given by the following 

theorem.

Theorem 5.4 (Strong FSTS): A plant p = n /d , n d coprime
p p p, p

in [R [d] , is strongly stabilizable in FST sense, if and only 

if d (d) has the same sign at all real zeros cr of n (d)
P i p

inside the unit disc ID [0,1] .

Proof.

"only if" . Suppose that there is a stable FSTS controller 

c = n /d . Then
C C

n n + d d = 1 (5.35)
p c  P C

and d is a polynomial unit in the disc algebra A , i.e. d
c S C

is a stable polynomial (d (d) * 0 V d e ID [0,1] ) . Therefore,
C

d (o'.) has the same sign V cr e [-1,1] : n (a ) = 0. Also,
c i  i p i

equation (5.35) becomes for d = a.

d (cr )d {a ) = 1  (5.36)
P 1 C 1

which means that d (cr ) has the same sign as d (<r ) , i.e.
p i  c i

d (d) does not change sign at the real zeros of n (d) inside 
p p

the closed unit disc ID [0,1] .

"if". The proof of this part is constructive. Let d (d)
—  p

not change sign at the real zeros of n (d) inside the closed
p

unit disc ID and n , d^ be a particular solution of equation 

(5.35). Also

n = n+n~
p p p
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where
m

n“= ff! id - z ) e \R [d]
p 11 i=l i

contains all the unstable zeros of n and n+ e [R [d] contains
p p

all the stable zeros of n . Then, d (a ) d {cr ) = 1, V<x e
p p i c i i

[-1,1] : n̂ (cr.) = 0 and therefore d (d) does not change sign

at the real zeros cr of n inside the closed unit disc D.
i p

Hence, there is a unit h in A (not necessarily polynomial) 

that either h or -h possesses a logarithm (depending on 

whether d (cr ) > 0 or d (cr ) < 0  respectively) and which
c i c i

interpolates d (d) and its derivatives at the unstable poles
C

of n [Vid. , 1] , i . e .
p

h (j)(z.) = d tj)(z.), i = 1 ,...,£ j = 1, . . . ,m - 1
1 C 1 i

Then, n+ \ (h - d ) in ^ and let p = (h - d ) /n = c n , p, c
p c s c p l p  l

e A (because n is a polynomial unit in A ) , or
S p S

h - d = c n
c 1 p

Since polynomials are dense in A , there exists a polynomial
S

c such that 
2

K  - c2II s l/||h-1||||np||

define now f = d + c n e 1R [d] . Then,
c 2 p

IIh ~ f|| = || (ci - c2)np|| * (l/||h_1|| ||np||) ||np

i . e .
|| h - f|| s 1/1| h”11

Therefore, f is a polynomial unit in A [Vid., 1] . If d = f
S C

and t = -c then 
2

n = n + t d ,  d = d - tn
c c p c c p

define a stable FSTS controller.

□

Theorem (5.4) may be rephrased into the following corollary 

which expresses the parity interlacing property.

Corollary 5.6 (Parity Interlacing Property): There always

exists a stable FSTS controller, if and only if the number of
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poles of p(d) inside any interval of successive real zeros of 

p(d) inside the closed unit disc, is even.

□

Example 5.4: Consider the plant of example (5.1). The real 

zeros of n (d) inside B[0,1] are
p

cr = -0.9496 and cr = 0 
1 2

and the values of d (d) at cr , cr are
p 1 2

d (cr ) = 4.1264 and d (cr ) = 1
p i  P 2

Therefore, d (d) does not change sign at cr , cr and so it is
p 1 2

strongly FST stabilizable. Indeed, one stable FSTS

controller is the prime FSTS controller (example 5.2).

□

5.6 FST Tracking and Disturbance Rejection

An important problem in control system design is that of 

tracking where the output of a system has to follow a 

particular set of inputs. In the case of FSTS, it is 

required the output y (fig. 5.1), tracks the input û  in 

finite time. The solution to this problem, as in the case of 

asymptotic tracking, is the well known internal model 

principle and is given by the next theorem.

Theorem 5.5 (FST Tracking): Consider the feedback system of 

figure (5.1) . Let p = n /d be the transfer function of the
p p

plant and c = n /d be the transfer function of any FSTS
C C

controller, with all fractions involved being coprime

polynomial fractions. Suppose also that the input u = n /d 

belongs to a specified class of signals. Then, the output y 

tracks the input u in finite time, if and only if d Id d .
1 r p c

Proof. For any FSTS controller, the transfer function from

u to e is fl (p,c) = d d (see 5.18) . If u = n /d , the
1 1  11 p c  l r r

error signal ê  becomes
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d d np e rei (d) = Hu (p, c) ui {d) =

For finite tracking, the error sequence e(d) has to vanish in 

finite time, i.e e (d) e [R [d] . This is possible if and only 

if d Id d .
r p c

□

Another important problem usually encountered in control 

system design is that of disturbance rejection, i.e. every 

non desirable input signal has to vanish at the output of the 

system. In FSTS sense, if u in figure (5.1) is the 

disturbance signal to be rejected at the output y , then y 

has to reach a zero steady state after finite time. The 

conditions for disturbance rejection are summarized by the 

following theorem.

Theorem 5.6 (FST Disturbance Rejection): Let p, c be as in

theorem (5.5) . The output y rejects the input u = n /d in 

finite time, if and only if d In d .
d p c

Proof. According to (5.19) the transfer function from u to 

y„ is W (p,c) = n d . The rest of the proof, as in theorem
2 22 p c

(5.5), follows from the fact that y2(d) must be polynomial 

for the particular set of inputs u = n /d .
2 d d

□

Remark 5.5: According to remark (5.1), every FSTS controller 

will reject at any output , y' in finite time, any non 

persistent disturbance (disturbance of finite duration) 

applied at any input .

□

From theorems (5.5) and (5.6) we can easily derive the 

solvability conditions for simultaneous FST tracking and 

disturbance rejection.

Corollary 5.7 (FST Tracking and Disturbance Rejection):

Consider the feedback system of figure (5.1) . Let p = n /d
p p

be the transfer function of the plant and c - n /d be the
C  C
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transfer function of any FSTS controller, with all fractions 

involved being coprime polynomial fractions. Suppose also 

that the inputs ui = n^/d^, u = nd/dd belong to prespecified 

classes of signals. Then, the output y2 tracks the input û  

and rejects the output u2 in finite time, if and only if

1.c.m.{d , d } I d
r d c

where l.c.m. stands for the least common denominator.

□

Example 5.5: Consider the closed-loop system of figure (5.1) 

with the plant

n (d) -0.0132d-0.0139d2
p(d) = -£--- = ------------------ -

d (d) 1-2.1889d+l.1618d
p

as in example (5.1). The family of all FSTS controllers such 

that the output y2 tracks parabolic signals from ui and 

rejects step changes applied at the input u , in finite time 

can be derived as follows.

u should be of the form 
i

and u
2

Az{z + 1) Ad[ 1 + d) n {d)
u (z) = ---------  = ---------  = — —

(z - 1) (1 - d) 3 d (d)

Bz B n  (d)
u (z) = -----  = -----  = -ii—

z - 1 1 - d d (d)
d

According to theorem (5.5) d must divide d d  , therefore d
r p c  r

must divide d , and according to theorem (5.6) d must divide
c J d

n d , so d must divide d . Hence, d must be of the form
p c d c c

d = (1 - d)3d
C C

Therefore all FSTS controllers that achieve the required 

characteristics must satisfy the following Diophantine 

equation.

n n + d ( l - d ) 3d = 1
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1 (5.37)(-0.0132d-0.0139d2) n + (1-2.1889d+l. 1618d2) (1 -d) V  =
C  C

The least degree solution to equation (5.37) is

x(d) = -315.93 + 745.04d-793.96d2+413.08d3-85.137d4 

y' (d) = 1+1.0186d

which can be considered as the prime FSTS controller for the 

plant

n id)
P' = -----5-------

d (d) (1 - d)3
p

Since n (0) * 0, all FSTS controllers are causal and the
p

subfamily of the FSTS controllers that achieve the desired 

performance is given by

n = x + td (1 - d) 3
c p

d = y‘ (1 - d)3 - tn (1 - d)3
c p

where t e [R [d] . The minimal McMillan degree FSTS controller 

for tracking and rejection of the required signals is 

obtained for t = 0 and is the following.

n id) -315.93+745.04d-793.96d2+413.08d3-85.137d4
cmC = -----  = ---------------------------------------------

m d (d) 1-1.9814d-0.0558d2+2.0058d3-l.0186d4
cm

The responses of the unity feedback system using 

controller c are shown in figure (5.2) . We see that
m

system achieves its performance in six steps.

Remark 5.6: Example (5.5) provides a design procedure

the parametrization of the class of FST tracking 

disturbance rejection controllers. If d represents
ca

common dynamics of the input signals and u , i.e.

d = l.c.m.{d,d}
ca 1 r d 1

then, the FST tracking and disturbance rejection problem 

reduces to the nornal FST problem for the fictitious plant

the

the

□

for

and

the
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p = n /d
f pf pf

n / d d
p p ca

The FST controllers for this plant are given as a solution to 

the Diophantine equation

/
n n + ( d d ) d  = 1
p c  p ca c

and the family of all FSTS tracking and disturbance rejection 

controllers can be described by
/

c = n /d = n /d d
c c c ca c

The following section is a generalization of the foregoing 

discussion.

□

Figure (5.2): Responses for the example (5.5)
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5.7 FSTS Controllers with Partially Assigned Dynamics

Sometimes it is desirable to assign a priori some of the 

dynamics of the controller; this is certainly the case in 

tracking and disturbance rejection as it has been illustrated 

in section (5.6) . In this section we give the solution to 

this problem for the FSTS case.

Theorem 5.7: Let p = n /d be the transfer function of a
p p

plant and c = n / d be an FSTS controller, i.e. c e & (p) .
C C

The controller c may have partially assigned dynamics, i.e.

/
d = d d , d e [R [d] given (5.38)
c ca c ca

if and only if n , d are IR [d] -coprime and d (0) * 0, if
p ca ca

n (0) * 0. Moreover, the family of all causal FSTS
p

controllers with partially assigned dynamics will be denoted 

by 9 (p) and is parametrized as follows.
pad

9 (p) = { (n ,d ) : n = x + td d , d = (y - tn ) d ,
pad c c c p ca c p ca

V t 6 [R [d] : t(0) * y(0)/n (0) if n (0) * 0} (5.39)
p p

/
where ix,y) is a particular solution for (n ,d ) of the

C C

Diophantine equation
/

n n + d d d = 1
p c  p ca c

Proof. Every FSTS controller c satisfies the Diophantine

equation

n n + d d = l  (5.40)
p c  p c

If d is as in equation (5.38), then (5.40) becomes
C

n n + d d d =  1 (5.41)
p c  p ca c

Equation (5.41) has a solution if and only if n , d are
, p ca

[R [d]-coprime. The family of solutions (n ,d ) of equation
C C

(5.41) is given by

n = x + td d
c, P Ca (5.42)

d = y - tn
c p
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Then, according to (5.38), the family of all FSTS controllers 

with partial dynamics described by d is the following.
ca

n = x + td d
c p e a

d = {y - tn )d
c p ca

where t is an arbitrary polynomial in d. For causality d (0)
C

must be non zero. If n (0) =0, then y(0) , d (0) * 0 due to
p ca

the coprimeness of (n ,d ) hence, d (0) = y(0)d (0) * 0 V t
p ca c ca

e IR [d] . If n (0) * 0, then t(0) * y(0)/n (0) and d (0) * 0
p p ca

for d^ (0) to be non zero. And this proves (5.39) .

□

5.8 FSTS for Sampled-Data Systems

In the previous sections we considered the Finite Settling 

Time Stabilization Problem for purely discrete-time systems. 

The discrete-time FSTS controllers guarantee finite settling 

time performance for the closed-loop system for any 

discrete-time instance. This is completely acceptable since 

the response of the system explicitly occurs in discrete-time 

only, but in many cases this may not be so. The plant may be 

a continuous-time process that is controlled by a discrete-

time controller which processes information acquired at 

specific time instances. Such a system is known as a 

sampled-data system and its behaviour is of interest not only 

at the sampling points but for a continuum of time. Indeed, 

although the sampled-data system may exhibit an FST response 

at the sampling instants, the response may contain quite 

undesirable ripples in many cases.

The sampled-data system considered in this section is the 

closed-loop system of figure (5.3) where the digital to 

analog (D/A) converter is a Zero-Order-Hold (ZOH) device with 

transfer function
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where T is the sampling period. We consider first the notion 

of rippled response and give the reasons of its existence.

Definition 5.4 [Fra., 1]: We define as ripple in any

sampled-data system, the error between sampling instants 

when the error at sampling instants is zero.

□

Figure (5.3): The unity feedback sampled-data system

The main reasons for the existence of ripples in a 

sampled-data system are the following.

a. Pole-zero cancellations between the controller and 

the discrete equivalent plant [Lew., 1], [Wil., 1].

b. Non constant discrete-time control signal y that 

will result to a staircase type continuous signal 

e2(t) (see also fig. 5.4) [Rag., 1].

Figure (5.4): The Zero-Order-Hold device
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In FSTS, pole-zero cancellations are avoided since all FSTS 

controllers satisfy the Diophantine equation

n n + d d = 1
p c  p c

which guarantees coprimeness of (n ,d ) and (d ,n ) . There-
C p C p

fore, the only reason for ripples is a non constant control 

signal y . Consider e.g. the FST tracking case. If u^n^/d^ 

then every FSTS controller for tracking would be of the form

n n
C C

C = ----  =  j----
d d d

c c r

and the control signal y would be

y = W {p,c)u 
2 i li ^ i

d n
p c

n
r

d
r

i.e. y is non constant and of infinite duration. If this 

signal is to be applied to the continuous-time process, it 

will create after the ZOH a staircase type signal e (t) and 

although the error at sampling instants will be zero, by 

design, the plant in between sampling instants will respond 

to step changes. To avoid that, d has to divide d , or in
r p

other words a continuous-time rather than a discrete-time 

internal model has to be implemented. This will result to a 

finite duration discrete-time signal y and to a ripple-free 

response of the continuous-time system. We summarize all the 

above discussion in the next theorem which is similar to the 

one presented in Franklin and Emami-Naeini [Fra., 1] .

Theorem 5.8: Consider the sampled-data system of fig. (5.3) 

where the D/A converter is a Zero-Order-Hold device and g{s) 

represents the transfer function of the continuous-time plant 

and any continuous-time controller. Then, the unity feedback 

system will be ripple-free, if and only if a continuous 

internal model of the input u^{t) that is observable from the 

output is implemented first and then a discrete FSTS control-

ler is designed.
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Proof. We assume that the input u^{t) possesses a rational 

Laplace transform and therefore can be written in the form

p “ i " 1 1 A t

<yt) = e e «„- jr  e 1 (5-44)
i = 1 1=0

"if" . Suppose that the system is designed to track at the 

sampling instants inputs of the form (5.44) with a continuous 

internal model of u implemented. Then according to our 

previous discussion, the control signal y ̂ goes to zero in 

finite time kQ and so does e (t) . Hence the output y (t) for 

t k , is the open-loop response of the continuous-time 

system due to some initial conditions at kQ and can be 

written in the form

y2(t)
p
E

i = 1

- 11
E
1 =0

a.
A tl

l l !

q
E
J = i

j
E

h= 0
ß ~Jh

A t
h

h! (5.45)

The first set of terms is due to the continuous internal 

model and the second is due to the plant dynamics. At the 

sampling instants

y2(kT)
p mi 1 (h T ) 1 q
I E e ‘ + E

i = l 1 = 0 j = 1

m - 1
j

E
h = 0

ß
(flT) h \ k Tejh h ! (5.46)

Also, due to the tracking property,

y2(kT) = u^kT) E
i = 1

m - 1
i

E u
I = 0

(kT)
ii ¿1

l A kTle (5.47)

The functions exp(A.t) are linearly independent and form a 

basis of the linear vector space of pointwise continuous 

functions. Therefore, since (5.46) and (5.47) represent the 

same signal at the points kT, k e Z, k kQ, the corres-

ponding coefficients must match, i.e.

a = u and /3 = 0 V i , j , h (5.48)

Hence, the steady state response of y (t) is
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(5.49)

m - 1
P i

y2(t) = I E U n~TT e 1 s
i = 1 1=0

and is ripple-free.

"only if" . Suppose part of the internal model of the 

exogenous input is implemented in the discrete FSTS 

controller. Then, e2(t) will be of a staircase type (fig. 

5.4) and although we will have tracking at sampling instants, 

in between the continuous-time system will respond to step 

inputs and this will create ripples.

□

Remark 5.7: In the case of tracking polynomial inputs one of 

the poles at s = 0 of the continuous internal model is 

provided by the ZOH. On the other hand, the zero at d = 1 of 

ZOH will cancel one of the poles at d = 1 of the discrete 

equivalent of the continuous internal model, plant. This 

means that this pole at d = 1 must be provided by the 

discrete FSTS controller. This design will create an 

unstable pole-zero cancellation between the FSTS controller 

and the ZOH but instability can be avoided if the continuous 

integrator is reset each cycle [Fra., 1]. A consequence of 

the above discussion is that there is no need of a continuous 

internal model for step inputs and the sampled-data system of 

figure (5.3) will be ripple-free using any FSTS controller 

for the discrete equivalent of the plant only, as it has been 

illustrated in previous sections.

□

Example 5.6: Consider the continuous-time plant with

transfer function

1
g (s) = --------
p s [s + 1)

Using a ZOH with sampling period T = lsec, we will design an 

FSTS controller such that the closed-loop system tracks 

parabolic inputs u^{t) = t and is also ripple-free. We use

both designs (first discrete and then continuous internal
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model) to illustrate the existence and the absence of 

ripples.

a. The discrete equivalent of the plant g (s) using a ZOH
p

with sampling period T = 1 is

0.3679 d + 0.2642 d 2
P (d) = ---------------------- -

1 - 1.3679d + 0.3679d

We see that although the plant and ZOH have together a double

pole at s = 0, p(d) has only one pole at d = 1 (corresponding

to s = 0) the second one being canceled by the zero at d = 1

of the ZOH. Therefore, since the discrete equivalent

dynamics of u (t) are given by d = (1 -d) , the FSTS control-
2

ler must have a partial dynamics factor d = (1-d) . The
C d

least McMillan degree FSTS controller according to theorem

(5.7) is

n id) 7.2967 - 10.1378d + 5.3748d2 - 0.9517d3 
c (d) = — --- = -------------------------- ----------------

d (d) 1 - 1.1364d - 0.3672d + 0.6836d
C

Using the above described c(d) in the feedback system of fig.

(5.3) with g(s) = g is) the error e (t) for a parabolic input 
2 ^

u (t) = t is shown in figure (5.5). We notice the existence 

of ripples due to the absence of a continuous internal model 

of the exogenous input u (t) .

b. Suppose we implement now a continuous internal model of

the input u (t) = t , i.e the ZOH-continuous internal model-

plant must have a factor s3 in their pole polynomial. Hence, 

we have to introduce a continuous internal model g. (s) with 

one pole at s = 0, i.e g^{s) = l/s. Therefore,

1
g(s) = g. (s) g (s) = — -------

1 p s2(s + 1)

and the discrete equivalent of g(s) is

0.1321d + 0.4197d2 - 0.0803d3
p(d) = ------------------------------------

1 - 2.3679d + 1.7358d - 0.3679d
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Again, p (d) has a double pole at d = 1 and therefore the FSTS

controller must contain a factor d = 1 - d. The minimal
ca

McMillan degree FSTS controller is

n (d) 10.4529 - 16.3777d + 9.1769d2 - 1.6701d3
c(d) = — --- = -------------------------------------------

d (d) 1 + 0.9868d - 1.6223d2 - 0.3646d3

The error ej(t) due to a parabolic input u (t) is shown in 

figure (5.6) . We see that the closed-loop system settles in 

6 secs and is ripple-free due to the presence of a continuous 

internal model of the exogenous input u (t) .

e2(t) due to u 1 (t) = t~2
18

16

14

12
<D
■§ 10

E 8
<

6 

4 

2 

0
0 5 10

Time (secs)

Figure (5.5): Behaviour with discrete internal model
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Figure (5.6): Behaviour with continuous internal model

□

Remark 5.8: It is possible that the sampled-data system of

figure (5.3) to be ripple-free using a discrete rather than a 

continuous internal model. This may happen if the sampling 

period T is sufficiently small and so the elapsed time 

between samples is not sufficient for ripples to occur.

□

Example 5.7: The discrete plant p(d) of example (5.5) has

been obtained from the continuous plant

1
g (s) = ----------------
p (1 + 5s)(1 - 2s)
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using a ZOH with sampling period T = 0.5 secs. The response 

of the closed-loop system to a ramp input u^it) = t, using 

the same FSTS controller as that in example (5.5), is ripple- 

free as can be seen from figure (5.7).

Figure (5.7): Behaviour with discrete internal model

5.9 Conclusions

The problem of Total Finite Settling Time Stabilization for 

single-input/single-output discrete-time systems has been 

addressed in this chapter. The approach used for its 

solution is purely algebraic and has led to a Youla-Bongiorno 

-Kucera type parametrization of all FSTS controllers with
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simple conditions for causality. All FSTS controllers are 

derived as a solution to a polynomial Diophantine equation 

which further leads to more simplification involving the 

solution of a Toeplitz type set of linear equations.

The solution to the linear algebra problem over [R provides 

the minimal McMillan degree FSTS controller(s) and the nature 

of the FSTSP allows for the parametrization of the whole 

family of causal FSTS controllers ^ (p) according to McMillan 

degree. Other performance related problems such as time- 

optimal FSTS (deadbeat), tracking, disturbance rejection and 

partial assignment of the FSTS controller dynamics are also 

addressed. Finally, in the case of sampled-data systems, 

necessary and sufficient conditions for ripple-free FSTS are 

derived.

The FSTSP can be considered as a special case of stabili-

zation where the ring of [R [d] -polynomials takes the place of 

IRD-T in Vidyasagar's approach [Vid. , 1] . The forbidden region 

for stability (set of unstable points) becomes the entire 

complex plane whereas the stability region reduces to the 

point at infinity. Although the set of unstable points is 

not closed it does not seem to lead to convergence problems 

if the norm induced by the disc algebra A is used (section
S

5.5) . This has enabled us to derive the conditions for 

strong FSTS and to prove that the well known parity 

interlacing property [Vid., 1], [You., 2] is valid in this 

case as well where the domains of stability of the controller 

(outside of the open unit disc) and of the feedback system 

(point at infinity) differ from each other.

Another problem that could be addressed within the FSTS 

framework is that of the transfer function and/or control 

signal shaping. We leave this problem for a subsequent
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chapter where a method is proposed for the design of i1 and 

i°° FSTS controllers, i.e. FSTS controllers that minimize the 

l1- or ¿“-norm of the error signal.

In the next chapter we will see how the FSTSP can be extended 

to the multivariable case. Using the same algebraic approach 

for its solution it will be shown which of the results of the 

SISO case it is possible to be extended to the MIMO one and 

if not which are the remaining best options.
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Chapter 6

TOTAL FINITE SETTLING TIME STABILIZATION: 
The MIMO Case

6.1 Introduction

This chapter is an extension of the single variable case of 

the Total Finite Settling Time Stabilization Problem to the 

case of multivariable time-invariant discrete-time systems. 

Almost all the results of the SISO case carry on to the MIMO 

one with the only notable difference in the minimal McMillan 

degree problem and the parametrization of FSTS controllers 

according to McMillan degree.

In particular, using the same algebraic approach within the 

unity feedback system of figure (6.1), we tackle the 

multivariable FSTSP as a solution of a polynomial matrix 

Diophantine equation, which enables the parametrization of 

the family T (P) of causal FSTS controllers in terms of a 

relatively simple generic condition. The computation of the 

family ? (P) is further reduced to the solution of a set of 

Toeplitz type linear equations over [R which provides the 

family of all deadbeat (minimal-time) controllers.

The parity interlacing property is revisited again in the 

case of strong FSTS and necessary and sufficient conditions 

are derived for FST tracking, disturbance rejection and 

partial assignment of controller dynamics as in the SISO 

case.

As it was mentioned at the very beginning of the 

introduction, the only results that cannot be fully extended
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to the multivariable case are those concerning the minimal 

design problem and the parametrization of FSTS controllers 

according to McMillan degree. The best approximation to the 

exact solution is the specification of bounds for the minimal 

McMillan degree FSTS controller(s) and a semi parametriza-

tion according to McMillan degree where FSTS controllers of a 

given McMillan degree can be parametrized but not the entire 

subfamily.

Finally, the problem of FSTS for MIMO sampled-data systems is 

addressed and necessary and sufficient conditions for its 

solution are stated.

6.2 Definition of the FSTSP - Parametrization of the FSTS 

Controllers

Consider the one-parameter feedback configuration of figure

(6.1) where u^, û  are vector sequences in one indeterminate 

d over [R representing the exogenous signals to the 

closed-loop system. Let P e Rlxm(d) and C e [Rmxl (d) be the

transfer functions of the plant !f and controller if
p c

respectively and also let M (R) denote the set of matrices and 

U {R) the set of K-unimodular matrices with elements from R 

and appropriate dimensions.

Figure (6.1): The MIMO unity feedback configuration
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According to the presentation of section (5.2) we can have 

the following refined definition of the finite settling time 

response of a discrete linear system.

Definition 6.1: The discrete-time feedback system of figure

(6.1) is said to exhibit

a. an External Finite Settling Time (E-FST) response, 

or to be Externally FST-stable (E-FSTS), if for any

step change in any of the components of the input 

vectors u , u and for every initial conditions, 

all signals y , settle to a new steady state

value in a finite number of steps

b. an Internal Finite Settling Time (I-FST) response, 

or to be Internally FST-stable (I-FSTS), if for 

every initial state vector and any step change at 

the exogenous inputs ui, u all states settle to a 

new steady state in finite time.

□

Note that again the values of the finite settling time and of 

the steady state are left free. Also, the deadbeat response 

corresponds to the case of perfect tracking of step inputs in 

minimum number of steps and thus, it is a special case of the 

FST response. Due to linearity, we can readily extend lemma

(5.2) to the following lemma.

Lemma 6.1: Consider the closed-loop system of figure (6.1)

and let H{P,C) denote the transfer function from u = [u1 ul]t
t t t — —1 —2

to e = [£i e2] . Then, the system exhibits an external FST

response, if and only if H(P,C) e [R(1+m)xil+rn) [d] , i.e. the 

closed-loop system is a FIR system.

□

Remark 6.1: According to definition (6.1) and the properties 

of the unity feedback configuration (see section 3.4), the 

condition H{P,C) e M (IR [d] ) of lemma (6.1) implies that the 

closed-loop system of figure (6.1)

a. is internally stable, if and only if y , f are
p c
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itsstabilizable and detectable since all 

controllable and constructible eigenvalues are 

shifted to zero; however, the later condition does 

not necessarily guarantee internal FST stability, 

b. exhibits a total (external as well as internal) FST 

response, if and only if $ , f are both control-
P c

lable and constructible.

□

From lemma (6.1), remark (6.1) and the standard results from 

the analysis of the unity feedback configuration, as stated 

in section (3.4), we have the following theorem which 

provides the solution for the MIMO finite settling time 

problem.

Theorem 6.1; Let P = N D-1 = D_1W , C = iiD'‘= WC'1 be (R [d]
p p  P P  c c  c c

-coprime MFDs of the plant and controller transfer functions 

in the unity feedback configuration of figure (6.1). Then, 

the solution to the FSTSP exists, if and only if

A := N N +D D e L7(IR[d]) or À := N N +D D e U{\R[d]) (6.1)
c p c p  p c p c

Moreover, the family of all causal FSTS controllers is given 

by

3F (P) = { [N , D ) : N = X + D R, D = Y - N R,
c c c p c  p

R e M (IR [d] ) and \Y {0)-N (0)F(0)| * 0 if If (0) * 0} (6.2a)
p p

or

¡F (P) = { {D ,N ) : N = X + SD , D = Y - SN ,
c c c p c  p

S e M (IR [d] ) and |y(0)-S(0)W (0) I * 0 if N (0) * 0} (6.2b)
p p

where R, S are arbitrary and X, Y , X, Y are appropriate poly-

nomial matrices satisfying the following Bezout identity

-X Y -N Y

OH

p —
D N D X

HO

L p p J L p J  ̂ -1

Proof. According to lemma (6.1), H(P,C) must be a polynomial
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matrix for FSTS. If we consider the expressions of H{P,C)

given by (3.78c) and (3.78d) we realize that they are 

bicoprime due to the coprimeness of the polynomial matrices 

involved. Then H(P,C) e M([R[d]), if and only if A, or A are 

unimodular polynomial matrices (corollary 2.3). The parame- 

trization of the causal FSTS controllers readily follows from 

theorem (3.18) with A, A being identity matrices of 

appropriate dimensions.

□

The family 3= (P) defines the solution to the External-FSTS 

problem if the plant and controller are both stabilizable and 

detectable. When both plant and controller are controllable 

and constructible the family ? (P) defines the solution to the 

Total-FSTS problem. Also, from theorem (6.1), proposition

(3.5) and corollary (3.13) it is clear that the following 

corollary holds true.

Corollary 6.1: Let (P,C) be FST-stable and P, S, Y, Y be

polynomial matrices as in theorem (6.1). The FSTS controller 

is causal

a. V R e M (IR [d] ) , if N (0)=0, or V S e M(\R[d]), if
p

N (0)=0
p

b. V R e M  (IR [d] ) : \Y {0)-N (0)P(0)|*0, if N (0)*0, or
p p

V S e M (IR [d] ) : | Y ( 0 ) -S ( 0 ) N (0)1*0, if N (0)*0.
p p

□

Theorem (6.1) characterizes all FSTS controllers that 

stabilize the plant P in FST sense in terms of a certain 

'free' parameter (P or S) such that there is a one-to-one 

correspondence between the parameter and the controller. By 

substituting the formula that generates all the FSTS control-

lers into the expressions of H(P,C) and W(P,C) in (3.78c) to 

(3.79b) we obtain the following parametrization of the 

closed-loop transfer functions (see also [Vid., 1]).

Corollary 6.2: Let (P,C) be FST-stable and N , D , N , D ,
p p p p

be as in theorem (6.1) . Then
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H(P,C) (6.4a)
D D -D N
c p c p

N D I-N N
*- c p c p

I-N N -N Dpc pc

D N D D' - p c  pc

(6.4b)

W(P,C)
N D -N N

C  P  C  p

I-D D D N
c p c p -1

D N D D -Ipc pc

N N N Dpc pc J

(6.5a)

(6.5b)

where (N , D ) , (D ,N ) are given by (6.2a) and (6.2b) res-
c c c c

pectively.

□

Remark 6.2: In the characterization of the family 1 (P) the

parameters R, or S are not entirely free. They have to 

satisfy condition (b) of corollary (6.1). This condition is 

not so strong and is valid for 'almost all' R, or S e M([R[d]) 

for the following reasons. (Y,N ) are left coprime due to
p

(6.3). Then, according to theorem (2.15)

IY  - N R  | = y  - n r ,  y , n , r e [R [d]
p p p

where y = detT and n is the least invariant polynomial of 

N . Then
p

I T  ( 0 ) N (0)i?(0)| * 0 if and only if r(0) * y(0)/n (0)

This is true for 'almost all' r e [R [d] and therefore for 

'almost all' R e W(IR[d]) . The analogous result can be proved 

for S .

□
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6.3 Algebraic Computation of the Family ¡F(P)

According to theorem (6.1) the computation of the family HP) 

of all causal FSTS controller requires only the computation 

of a particular solution of the Diophantine equation

N N + D D = I  or N N + D D = I  (6.6)cp Cp pc pc

One way to obtain such a particular solution is by reducing 

the problem to a standard linear algebra problem over [R using 

Toeplitz matrices as it was illustrated in chapter (5) for 

the single variable case. The treatment here is similar to 

the one given by Chen [Che., 1] the only difference being 

that the right composite matrix of the plant transfer 

function is column reduced, rather than only the denominator 

matrix of its MFD. We give next the main result with its 

proof.

Theorem 6.2: Let P = N D 1 e Rlxm(d) with [N , D ) right [R [cf]
t t t p p p p

coprime and [N D ] column reduced and let /u i = 1, ,m beÎ
the right minimal indices of P, u = max{fi.}, v . j = 1 ,...,£

be the left minimal indices of P, v = max{i> }. Then, if C =
_! ~ j
D N and n is the maximum row degree of [N D ] , i.e. ,c c c c
3 ( [N D ] ) = n, N ,
S C C C

N N + D Dc p C ]

Proof. N , D , N ,

for at least n  ̂v - 1 (6.7]

Then, equation

N = N + N d + • •• • + N du
p pO pi pjJ

D = D + D d + • ■' • + D
p pO pi Ph

N = N + N d + • '■ • + N dnc cO cl c n

D = D + D d + • '' • + D dnc cO cl c n

(6.7) can be formed as
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0
fN D • • •L cO cO Ncn SJ ~NpO • • • N

pU
DP0 • • • D

pU
NpO N

pU
DpO D

pU

0
NpO
DpO

TrP, n+l

■ o • •
m

0
m

From the special structure of TrP, n+l
relatively easily [Kun. , 2 , [Bit , 1] t

= m(n + 1) + i = 1
for

Also

T*.

N NpO pi
. . . w

pU

D DL pO pi... DpU

has at least £
Z - C i(̂ - zero

N
f

D
pM
)
PU

0 ] m —1 (6 .8)

it can be derived

(6.9)

occurring after the constant coefficient matrix [W1 D1 ]1.
pO pO

Every other Tr , k > 2 has the same minimum number of zero
r  , k

columns l due to its structure [Che., 1] . Let Tl, . be the
Z

, r
P ,  n + l

matrix T‘ after deleting these zero columns. Then the
P ,  n + l

number of columns of t X is
P ,  n+ l

m(ju + n + 1) - l  = m{n + 1) + X U.
i =  1

and by construction

(6 .10 )

p (ip,„.i> ■ p (rp,„«> = m(n + 11 + i
Ì = 1

(6 .11)

But according to definition (2.23) and corollary (3.5)

E ^ = E u, = sM (p
i = 1 1 = 1
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has full columnand therefore, from (6.10) and (6.11), f̂ ,
P, n+l

rank. Also the positions of the zero columns of [I 0 . . .0 1
L m m mJ

coincide with those of t L, and so equation (6.8) has a 

solution for n * v - 1. It is possible that fj O ... O 1 

belongs to the row space of Tp +i for n < v -1 and this is 

the reason of the statement 'for at least n  ̂ v - 1' in 

the expression (6.7).

□

Remark 6.3: The family of solutions of equation (6.8) for
A

n = v - 1, denoted by 9 (P) , may or may not be causal if

the plant does not posses a delay. ^ (P) consists of all

FSTS controllers with the row degrees of the left composite
A

matrix [D̂  AM less than or equal to v - 1. Any C e 9^  ̂(P) , 

regardless of causality, can be used as a particular solution 

of the equation (6.7) and the family ^(P) of all causal FSTS 

controllers can be parametrized according to theorem (6.1).

Similarly, if a row reduced composite matrix [N D ] of the
p p

plant transfer function is used, the dual equation of (6.8)
A

will give us the family & (P) of all FSTS controllers with

column degrees of the right composite matrix [A/’t Dt] 1 less
C C

than or equal to i± - 1, where ¡jl is the maximum right minimal 

index (reachability index for a minimal realization) of the 

plant transfer function P(d).

□

6.4 McMillan Degree Bounds of the FSTS Controllers

In this section we study the McMillan degree properties of 

the family of causal FSTS controllers 3= (P) . We recall from 

section (3.2.4) that the McMillan degree <5̂  (G) of a rational 

matrix G{d) denotes the total number of poles (finite and 

infinite) of G(d) and to this extend it is a measure of 

complexity of G(d). If G(d) = N (d) D 1 (d) = D_1 (d) N (d) e

Rlxm(d), where (N,D), (D,N) are polynomial matrices not

necessarily coprime, then according to theorem (3.4)

S^(G) =5([Wt Dt]t) = d([N D]]) (6.12)
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Let Rgid) = [N D t]t and L^(d) = [N D] be the right and left 

composite matrices of G{d) and r_ , i = 1,2, ...,m, , j =

1,2 be the column and row vectors of P^(d) and L^(d)
Gr Gr

respectively. Then

m 1

8m (G) s [3(ra ), 5^(G) s £ 5 (l ) (6.13)
i=i 1 j=i J

with equality holding if and only if R„(d) , L„(d) come from 

coprime MFDs and are column and row reduced respectively. In 

that case 3 (r^ ) become the right and 3 (£_ ) the left minimal
— Gri —Gj

indices of G(d). In any case, inequalities (6.13) provide an 

upper bound for the McMillan degree of G(d) . We exploit 

mainly this property to establish bounds on the minimum 

McMillan degree of the FSTS controllers and to parametrize 

the family 9 {P) according to column, row degrees of P^(d) and 

L^(d) respectively.

Theorem 6.3 (MDP): Let P = [N1 P1] 1 and L„ = [N D ] be the
P  p p P  p p ix

right and left composite matrices of the plant P e [R (d) , 

where the MFDs involved are 1R [d]-coprime. Let also P = [Nl
t t c c

Dj , Lc = [N̂  Dj be the right and left composite matrices

of any FSTS controller and P_ be a minimum column
Cmin

complexity and ^Qmln a minimum row complexity solution of the 

FSTS problem. If C (P„) and C (L„) are the Grassmann products
1 U  m C.

of the column and row vectors of P̂ , and respectively, then 

the minimum McMillan degree of the FSTS controllers lies 

within the following bounds

max{cr (P ) , c1 (L ) } 5 „ (G)
m G m C  Mm 1 n

s min{c (P . ) ,c (L . ) } (6.14)
c Cmin r Cmin

where

cr(P ) = max{min{3(C (P )) }} m t 1,1 C 1 1
1 Rc

c1 (L ) = max{min{3(C (L_) ) } }m C 1 T u m,1 C
1 Lc

and c (P_ ) , c (L_ ) are the column and row complexities
c Cmin r Cmin

of R„ and L_, respectively.
Cmin Cmin
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Proof. Since the column and row complexities of R_ and
-------  Cm in
L_, are the sum of the column and row degrees of R„ and
tmin -1 Cm in

LCmin corresP°nding1Y (section 2.3.1), the right inequality 

of (6.14) comes straight from relations (6.13). For the first 

inequality we have from theorem (6.1) that for any FSTS 

controller

N X D I

Rr =
c - p

U DL c J 1 1 R
e [R(m+1)xl[d] (6.15)

Then

SM (C) = d(Rc (d) ) = 3(C (Rc)

where C (R ) is the Grassmann product of the columns of R ; a 

column vector containing all the maximal order Ixl 

minors of Rc (d) . Clearly

W C) ■ ■nin la t cuy i )
Rc

From equation (6.15) we see that every minor of R , i.e.Lx
every entry C  ̂. (R̂ ) of Ci (R̂ ) is given by

C (R ) = det (A + B R)
1, i C i i

:6.16:

where A is a corresponding square matrix from CX1 yt]t and 

B is the corresponding part of [D1 -Nl]1 according to thei p p
row partitioning of

U =
X D

]

Y -N
!

U is

and therefore A,, B. are left coprime. Hence, according to 

theorem (2.15), see also [Vid., 1]

det{A + B R) = a + b r
i i i i i

where a. = det.4., b. is the least invariant polynomial of B. 

and r e [R [d] depends on R. Since

d (C (R ) ) = max{3 (C . (R_) ) }
1 C  # 1, i C

we proceed as follows for a lower bound on 8 .. (C) . Forx̂min
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1 = 1,...,k, find r such thati

S(a + b r ) = minimumi i i

by dividing a. by b. . Since the r.'s derived in this way do 

not necessarily correspond to the same matrix R, then

max {a (a + b r ) }i i ii

is a lower bound for 3(C (P ) ) and is denoted by cr (P ) . An-1 C m C
other lower bound is c (L„) which comes from the dual 

expression of the FSTS controllers using left coprime MFDs. 

So finally

max{cr (R ) , c1 (L ) } * S u . (C)
m U m U M m  l n

□

Theorem (6.3) is the multivariable analogue to the SISO 

minimal FST design problem. It is the best approximation to 

theorem (5.2) by establishing bounds for the minimum McMillan 

degree 5 „ (C) of the FSTS controllers instead of providing

the exact solution. We consider next the analogues to corol-

laries (5.4) and (5.5), i.e. the parametrization of the 

family 3-(P) according to McMillan degree.

According to inequalities (6.13), the column and row 

complexities of any FSTS controller C constitute upper bounds 

for its McMillan degree. Therefore, fixed column or row 

degree solutions of the Diophantine equations (6.6) will 

lead to a partial parametrization of the family & (P) 

according to McMillan degree upper bounds. The following 

theorem gives the fixed column and row degree solutions of 

the Diophantine equations (6.6).

Theorem 6.4 (Fixed Column/Row Degree Solutions): Consider

the configuration of figure (6.1) where P = D^N = ND"1 e
P P P P

IRlxm(d) and C = D 1N = N D-1 e lRmxl (d) are the polynomial
c c c c

MFDs for the plant and any FSTS controller according to the 

parametrization of theorem (6.1) . If P„ = [Nl Dt] a n d  =
Jr p p i

[N D ] are normal right and left composite matrices of the
p p

plant, i.e. they are minimal bases ordered in column, row
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descending degree order (def. 3.12), and R„ = [Nl Dl]1 ,
Cmin c c min

L„ = [N D ] are any minimum column, row complexity 

solutions of the Diophantine equations (6.6), then the column 

and row degrees of any other solution are uniquely determined 

by the degrees of the columns and rows of the free parameters 

R, S respectively.

Proof. We give the proof for the fixed column degree 

solutions. The result for the fixed row degree solutions is 

derived in a similar manner. According to theorem (6.1) any 

right coprime MFD of any FSTS controller is given by

=

N " N Dc = c + p

D D -NL c J L c Jmin L p J

R
e R (m+1)xl[d]

or R = R
C umin + Q :6.i7:

D R
where Q =

-N
p -*

Let r_ , r „ , r, q , i = 1, . . . ,£ be the column vectors
— Ui — Ci,min — i — i

of R„, R„ , R and Q respectively. Also, since R„ = [N
C Cm in y  p

D ] is normal, [D -N ] is coprime and column reduced with
p p p

column degrees p  = ¡i >  • • • >  ¡jl . Then, according to the
1 m

predictable degree property (theorem 2.13, [For., 1])

8{q (d)) = max {s (r (d) ) + ¿i.}, i = 1, . . . ,m j = 1
i:r ( d )iO *

i j

Hence, since the minimum column complexity is equivalent to 

minimum column degrees for each column we have that

d (r (d) )
— C i

, d (r . (d) ) , if a (g. (d) ) ^ 8 (r . (d) )
— C  i , m l n — l — C l , m l n

k a(q. {d)), if S(g. (d) ) > 8 (r (d) )
—  i —  i — C  i , m i n

Therefore the column degrees of Rc are uniquely determined by 

the degrees of the entries of R{d).

□
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Remark 6.4: Theorem (6.4) provides a relatively simple 

parametrization of the family of all FSTS controllers 

according to column, or row degrees of the composite matrices 

of the controllers. This parametrization refers to the whole 

family of the FSTS controllers and not to the family 9 (P) of 

the causal FSTS controllers. For causality, the free 

parameters R, S should satisfy, in addition to the degree 

conditions of theorem (6.4), the causality conditions of 

corollary (6.1). These conditions are generic according to 

remark (6.2) and therefore the fixed degree solutions will 

lead to causal FSTS controllers for almost all R, S. In any 

case, fixed degree solutions provide upper bounds for the 

McMillan degrees and constitute the best approximations to 

the exact parametrization problems according to McMillan 

degree that have been successfully dealt with in the SISO 

case.

□

From the previous discussion it is clear that fixed degree 

solutions and in particular minimum column or row complexity 

solutions to the FSTSP play an important role in the 

parametrization issues of the FSTS controllers. In fact, not 

only provide upper bounds for the minimum McMillan degree 

problem and assist in the partial parametrization of the FSTS 

controllers according to McMillan degree, but the minimum 

column complexity solutions, may characterize the entire 

family of the deadbeat regulators as it will be seen later on 

in this section.

For this reason we give next the least column complexity 

solution to the Diophantine equation

N N + D D = I (6.18)pc pc

Using left and right composite matrices for the plant and the 

controller respectively, equation (6.18) can be written as

Lp -Rc = I (6.19)
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If r_ id) , e1, i = 1 are the ith column vectors of
— C  i —

P^id) and I, equation (6.19) reduces to the following set of 

equations

Lp {d)-rCi(d) = e , i = (6.20)

and the next proposition is self-evident.

Proposition 6.1: A least column complexity solution R . of 

equation (6.19) corresponds to a set of least column degree 

solutions r id), i = 1 ,...,£ of equations (6.20) and
— Ci,min

vice versa.

□

Equations (6.20) can be written in a Toeplitz form in a dual 

way to theorem (6.2). If k = d [r „ (d)), then
i ■— Ci

C C l ( d )  ■  — C i , o  +  Ï C l , l d  +
+

- C i , k - C l ,  j
e U^(l+m)xl

and equations (6.20) reduce to

, k +1
i

— C i  ,0 

- C i , k

e
0

0

(6 .21)

where t L,P, k +1 
i

is the dual to TI,P,k +1 
i

(theorem 6.2).

The following theorem gives the entire family of the least 

degree solutions of equations (6.20).

Theorem 6.5 (Least Column Complexity Solutions): Let Lp be a

row reduced left composite matrix of the plant P and p., i = 

1, ... ,m, v., j = 1, ... ,t be the right and left minimal 

indices of P with ju = max{(i.} and v = max{v.} . The least 

column complexity solution of the Diophantine equation (6.18) 

is given by the equations (6.21) where 7*. is the first 

k  ̂u - 1 such that
i
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) (6.22)P  (

r  i-e
P ,  k +1

i
= (m+£) (ft.+l) - £ (/t.+l-ju.)

i i l
j  : AX < ( k + 1 )  

j  i

We denote this k by k and maxÎJi } by k
i i , m i n  i , m i n  min

Proof. Using duality and theorem (6.2), equations (6.21) 

have always a solution for every ft s (i - 1 and therefore ji - 

1 is an upper bound for the least column degree solution. 

Using dual reasoning to the one described by Kung et all 

[Kun., 2] we have that

p (tp ,* «>
i

(m+l) (fr.+l) - £ (k.+l-iit.)i i j
j  : ¡1 < ( k  + 1 )  

j  i

(6.23)

and therefore the first k ^ ii - 1 such that the relationship 

(6.22) holds allows for the least column degree solution of 

equations (6.21) and as a consequence for the least column 

complexity solution of equation (6.18).

□

From the discussion of this section, it is clear that we may 

distinguish between two types of solutions; the ones that 

provide for the least complexity and the ones that provide 

for the least degree of the composite matrices R „(d), or

V d) We formalize that by the following definition.

Definition 6.2: Let P_, = [Nl D1]t and L„ = [N D ] be the
C c c C c c

right and left composite matrices that satisfy the

Diophantine equations (6.6) and let r_ , i = 1,...,m,L» 1 - C i '
j = !,...,£ be the column and row vectors of Rc and

If r_, are the least column degree
— C i , min 3

respectively, 

solutions of

degree solutions of the dual to equations (6.20) with

solutions of equations (6.20) and are the least row
—C j , m i n

k = 8 (r . ) ,i, m i n —U i, m l n kmin = max{k },i,min i = 1,... . ,m

n. . = a u  . ),j,min — uj,min nmin = maxin },j,min j = 1,. .. ,e

we define the family of all FSTS controllers such that 8 (r )
1/ 1
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= k (d(l„ ) = n ) as least column (rowi -c j j
and we denote it by 9-c (P) "n'c

c,min

complexity family 

(P)). Also, we define
r, min

the family of all FSTS controllers with minimum column (row) 

degree i.e., d (i?_(d)) = k (S (L_(d)) = n ) as the least
s U min s C min

column (row) degree family and we denote it by 9= . (P)
c, min

(9= . (P) ) .
r, min

□

According to the above definition and to theorems (6.2) and

(6.5), the following corollary may be readily established.

A  A

Corollary 6.3: Let ? (P) , (P) ^e the FSTS families as

in remark (6.3) and (P) , 9;C (P) , 9: (P) ,
c,min r,min c,min

9- (P) be the FSTS families as in definition (6.2) . Then,
r, min

the following set inclusion properties hold true.

c . (P) £ 3- (P) £ 3 (P)c, min c, min ld-i
As

c . (p )
r, min

£ 9- (P)
r, min

£ 3V-l (P)

□

Remark 6.5: Among all the families of FSTS controllers

depicted in corollary (6.3) the most important from the 

design point of view, are clearly the least complexity 

families. These families provide the best upper bounds for 

the minimum McMillan degree of the FSTS controllers and allow 

for the parametrization of all FSTS controllers according to 

column, or row degrees of the composite matrices and L^. 

Obviously, as we move from more to less restrictive families 

in the inclusion chains of corollary (6.3), the computational 

effort for their characterization decreases. Finally, it 

must be pointed out that only in the case of strictly causal 

plants all the FSTS controllers that belong to any of the 

families mentioned in corollary (6.3), are causal. Otherwise 

the causality conditions of corollary (6.1) must be 

satisfied.

□
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6.4.1 FSTS controllers for deadbeat regulation

As it has already been mentioned in this section, the least 

column complexity FSTS controllers have another very 

important property. They may characterize completely the 

family of deadbeat regulators, i.e. the family of the 

controllers that guarantee minimum settling time to zero 

steady state of all the states of the unity feedback system 

of figure (6.1) for any initial conditions. We prove this 

result within the FSTS framework. For an alternative proof 

one could refer to Kucera [Kuc., 2], [Kuc., 10].

Theorem 6.6 (Deadbeat Regulation): Consider the

configuration of figure (6.1) where the plant if

feedback 

and the 

Then,controller if are both controllable and constructible
C

the family of all causal FSTS controllers C = N D_1 such that
c c

L_ = [N D ] has the least possible column degrees is
L- c c

exactly the family of the deadbeat regulators.

Proof. It is known (chapter 4 and references therein) that

for deadbeat regulation all the eigenvalues of the closed-

loop system of figure (6.1) have to be moved to zero and in

addition a minimum settling time has to be attained. Since

the first task is accomplished by all FSTS controllers, the

family of deadbeat regulators is a subfamily of the family

?(P) of the causal FSTS controllers. What is needed more, is

the minimum time requirement to be satisfied. To allow for

the effect of the initial conditions we assume that finite

sequences ui = u^ and u2 = u w i t h  negative orders and only

negative terms are applied at the inputs of the feedback

system of fig. (6.1) . If r = x (u ) < 0  and r = r (ir ) < 01 _ — 1 2 _ — 2
are the orders of u i and u2 respectively, then u = [cr ̂t

u t]t can be written as — 2

u = dz u where r = min{r , t }, u e R1+m[d] and 8 (u) * -z + 1

Then all the terms apart from the unity one of the transfer

function matrix W (P,C) (eqn. 6.5a) contribute to the outputs

y , y for time k  ̂ 0, i.e.—1 ' —2
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y„ N D -N N—i — c p c p

-d d D N
L — 2 J L c p C  P J

= d l
N

-D

r d -n  i -u
L p p J —

,Td q

where p, e (Rm [d] and g e IR1+m [d] . Hence, y settles to zero 

in at most finite time k{ = x + 9(g) + 1. But

5 (g) < max {k . + 5 (p.) }
i:p ( d)£0 

i

where P are the column degrees of [Wfc -Dt]t. Then k is
i c c f

minimum for every p, if and only if k. becomes minimum and 

therefore any causal FSTS controller with the least possible 

column degrees is a deadbeat regulator.

□

Taking into account corollary (6.1) and the parametrization 

of FSTS controllers according to theorem (6.4), the following 

corollary may be readily established.

Corollary 6.4: Let (P,C) be an FSTS-stable pair in the feed-

back configuration of figure (6.1) and (P) be the
c, min

family of least column complexity controllers. Then

a. If P is strictly causal the family &c coincides
c, min

with the family of all deadbeat regulators.

b. If P is not strictly causal and = [Nl Dt]t
Umin c c min

is one least column complexity solution then

=

N r w i D
C

=
c + p

D D
min

-NL c J L c J L p J

P
6 [R(m+1)xl [d]

defines the family of all deadbeat regulators, 

where R is any polynomial matrix such that has 

the least possible column degrees and detD (0) * 0.
C

□
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It is clear from corollary (6.4) that the family (P)
c, min

of the least column complexity solutions plays an important 

role in the characterization of the entire family of deadbeat 

regulators. In the sequel we give a two-variant algorithm 

for the computation of the family 9=c . . It is based mainly 

on theorems (6.4) and (6.5) and the interim results that we 

are considering next and it allows for an elegant

parametrization of the entire family of the deadbeat 

regulators.

Proposition 6.2 (Toeplitz Kernel Structure): Let P = D rN e

[R xm [d] be a left coprime polynomial MFD of the plant 

transfer function and = [N D ] be a left composite
P  p p

matrix of P with scalar degree d (Lp) = v. If Tp e

[R is the dual to the Toeplitz matrix Tp of

theorem (6.2) and VÎ is a basis of the right null space 

N {Tp } of Tp then V! may be expressed as
r* i y k j y k k

wk

Wk-1

o

or Wk

1 12

22

0

(6.24)

(6.25)

Proof. Lp can be written as

Then

T T  i T r jP  Y lx (m+ 1 )
Lp - LPo + LPid + “ ■ + LPvd ' LPi 6 R

p,k

o

p, 1

where 0̂ , O are zero matrices with dimensions ¿x (m+l) [k-1) 

and t[k-l)x[m+l) respectively and
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P, 1

P o

JP1

L LPv

6  [R
(V’+l)lx(m+l)

If ¥ is a basis of the right null space N {T* }, then
k - l  ^  r  1 P , k - 1  J

it is clear from the structure of T* that
P ,  k - l

k-l

o

forms part of a basis of ^ il’ } and therefore W is of the
r L P , k J k

form of (6.24) and (6.25) follows recursively.

□

We are able now to give another parametrization, apart from 

the one given by theorem (6.4), for the minimum column 

complexity solutions of the Diophantine equation (6.18).

Corollary 6.5: Let R„ = [P_ , . . .,R„ ] be a real
Cm in — Cl,min — Cl, min

matrix of appropriate dimensions representing one particular 

least column complexity solution obtained by equations (6.21) 

according to theorem (6.5). If It is the maximum of the
min

column degrees of the least complexity solution and W.
*  1 Pmin+1

is a basis of N {T* 7 } of the form of (6.25), then the
r y ,  Kmin+1

family of all least column complexity solutions is given by

R
Cm in

R
Cm in

+ W.k +i
min

r—l r—2 ■ • r

o
\ 0 • ■—2 ■ • o

(6.26)

where r , ,r are real and 0 , ... ,0 are zero column
— l — l — l — l

vectors with appropriate dimensions.

Proof. Let, according to theorem (6.5), k be the column
------ i,min

degree of the least column degree solution given by the ith 

equation (6.21) and
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rn. .
— O i, m i n

—Ci,0

-Cl,k
i, min

e IR
(k +1)(l+m)xl
i, min

be a particular solution corresponding to t ! , i.e.
^ 3 P,k +l'

i, min

r . (d) = r +
— C i, m i n — o l, 0 + r . . d—o  i , k

I, min

i ,min

Then the family of the least degree solutions of the ith 

equation (6.21) is given by

where

W
i, min

r_ , = r_ + W ■ r
— Ci.min — Ci,min k +1 — i

i, min

, is a basis of N {TÎ, } and
+ 1 r 1 P,k +1J

i, min

(6.27)

r
P.xl

r. e IR with pr = p (W ) = dinuV {T* }
— 1 ^  k + l '  r l P , k .  . + 1 ;

i, min

Taking into account the structure of the right null space of 

Tp k as given by (6.25), relations (6.27) become

—C i , m i n

o
—  i

:= Rr. .— t i ,min

-C i , m i n

o
—  i

:= R

+ Wk +i
min

r—i

o
(6.28)

C i ,min

where 0. is a zero column vector of dimensions—i
(k . - k, . ) {I + m) and therefore (6.26) holds true.

min i,min

□

An algorithm for the computation of the least column 

complexity family (P) based on theorem (6.4) and
c,min

corollary (6.5) is presented next.
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Algorithm for the computation of (P)c,min

Step 1: Given the plant transfer function P e IRlxm(ci) find a 

left coprirne polynomial MFD (D ,N ) such that = [N D ] is
p p P p p

column reduced. Determine the left and right minimal indices 

Pj» i  v  = max{p.}, p ., j  = ju = max{/Li.}.

Step 2: For i = 1,...,£

a. Find the first k  * ¡jl - 1 such thati

p (
r ie

P, k +1i
) = (m+£) (fc +1) - £ (k +l-u )

j : /Li < ( k +1) 1 J
J i

Denote this k  by k  and alsoi i,min

pr = (m+£) (k +1) - p (t I ’1 i,min P,k +1
i, min

b. Find one particular solution r̂ . of the equation

P, k +1i, min

1

o6M1 1----

0) |o 
• 

1____

-Ci,k i , min 0

:=^Ci

Denote by k  the maxik } .min i,min

OPTION A

Step 3: Find a basis W, of N {ri, , } of the form ofKmin+l r 1 P,/{min+lJ
(6.25). The family of least column complexity solutions is 

determined by the real matrix

RCm in

—C, o

-C,kmin

Cm in k  +1min

r r —1 —2

o o—1 —2

r—l

o—1

where

RCmin
ilei -C2 ■ • r 

— 1

IO I-» CM
Ol IO
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1 with free entries.

r
P  x 1

and r e [R 1
— i

Step 4: The family (P) of all least column complexity
c, min

FSTS controllers is given by

k
, min a 

k
min

?c (P) = { (N ,D
c,min c c

d V  = R +
c c C , 0

+ RC,

Option B

Step 3: If (d) e IR<1+m)xl [d] is the vectorLx 1

r_ (d) = r_ + r d + • • • + r „—C i — Ci,0 — Ci,l —Ci,k.

i, min

i. min

the family of all FSTS controllers is given by the matrix

■R

RC =

N
c

= R~ +
D
p

D
L c J

Cm in -N
L p J

€ [R(m+1)xl [d]

°r RC = RCmin + Q = RCmin + ^  '*• 2^

where R . = [r (d) • • • r (d) ] .
Cmin — Ü1 — Cl

Step 4: The family (P) of all least column complexity
c, min

FSTS controllers is given by

. (P)c, min
{ (N ,D ) : d (q. (d))  ̂S(r (d)) }

c c — i — Ci

Remark 6.6: Fast and stable algorithms for the solution of

Toeplitz type equations that exploit the structure of the 

block Toeplitz matrices are available in the literature, see

e.g. [Kun., 3], [Hei. , 1] and references therein. Their 

existence makes the algorithm for the computation of the 

family 9C (P) computationally efficient and attractive.
c, min

As it has already been mentioned this algorithm is a two- 

variant algorithm.

'Option A’ allows for the parametrization of the family 

cFc (P) through a set of real vectors and in the case of
c,min
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strictly causal plants provides the parametrization of the 

entire family of deadbeat regulators.

’Option BJ provides the parametrization of the family of all 

FSTS controllers and allows for the parametrization of 

deadbeat regulators in the case of non strictly causal plants 

through the polynomial matrix R. Fixed column degree 

solutions can also be obtained by applying the conditions of 

theorem (6.4) on the degrees of the polynomial entries of the 

matrix R. Additional care, in this case, has to be taken for 

causality as well.

□

6.4.2 The case of vector plants

We consider in this section the case of vector plants and in 

particular those with many inputs and a single output (MISO) 

shown in the unity feedback configuration of figure (6.2) .

Figure (6.2): The MISO unity feedback configuration

If and c are the plant and controller transfer functions, 

they can be written as follows using coprime polynomial MFDs.
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(6.29)
t

p
-5-1 ~t= d n
p —p

= n D 1 —P P 6 IRlxm(d)

c = D _1n
c — c

= n d”1
— c c

e Rmxl (d)

where all the vectors are assumed column vectors (i.e. p1 is 

a row vector) . Then the McMillan degrees of the plant and 

controller are

S M( pty) = a U n 1 d]) = a ( [n d ]) (6.31)

5 „(c) = d([n d ] fc) = S ([n d]') (6.32)M —  — c c s — c c

i.e., the McMillan degree reduces to the scalar column degree 

and therefore the results of the previous section can be used 

for the exact solution of the minimal FSTS design problem and 

the parametrization of the family ^ (p) of all causal FSTS 

controllers according to their McMillan degree.

According to theorem (6.1), the family &(p) is given by 

^(p1) = {(n,d) : n = x + D r , d = y - nV,
—  c c — c —  p—  c — p—

r e Rmxl [d] ) and y (0) -nt (0) r (0) # 0 if nl(0) * 0} (6.33)—  — n —  — n 1

where (x, y) is a particular solution of the Diophantine 

equation

(6.34)

s — p p

be expressed as

~tn n + d d = 1—p— c P c

V and a ( [n1 d ]") k, i
s —c c

~t ~t ~t T ~tn = n + n d + + n d
—p —pO —pi -Pv

d = d + d d + + d d
p pO pi Pv

n = n + n d + + n d
— c —cO — cl — c k

d = d + d d + + d d
c cO cl c k

— p p — c

v

and equation (6.34) is equivalent to the following Toeplitz 

type system of equations over [R.
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P, k+1

n 1
—  cO

d 0
cO

.
n 0
—  c k

d 0
c k

where

r
— ck

~t ^n d _
—ip° po  ̂ 0

h d
• — p o p o

' P , k+l
n d
— pV pV

n d—pi> pf

n d
— p 0 pO

0 h 1 d
—  pV pV

<---  k + l blocks --- >

(6.35)

(6.36)

As in the SISO case, we consider now the following problems 

(see also remark (5.4) and definition (5.2)).

a. Minimal Design Problem (MDP). Define the minimal McMillan 

degree S (pt) of all causal FSTS controllers.m —

b. Parametrization Problem (I) (PP(I)). Define the McMillan 

index set I^(pt) of 3 (pl) .

c. Parametrization Problem (II) (PP(II)). V i e Ij^(p) de-

fine a parametric expression of the equivalence class 

^ ( c  ) , where <5̂  (c.) = i.

Theorem 6.7 (MDP): Let {pt , c) be an FST-stable pair with the 

plant and controller transfer functions expressed as in

(6.29) and (6.30) and let W be a basis of the right null 

space N {T } of Tp and r a particular solution of
r* i  j k f  1 i  j k"^l — c k

equation (6.35). Then, the McMillan characteristic 8 (pt) of
m —

the family ^ (p ) , i.e. the minimum McMillan degree of the 

causal FSTS controllers can be derived as follows.
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a. 8 (pt) is the first k such that equations (6.35)m —
have a solution, if the plant is strictly causal, 

otherwise

b. if is the entry of r that corresponds to the

constant term of the controller denominator and v*—2
is the second row of W , then <5 (pfc) is the firstk+l m —
k such that either of the following conditions hold

true

1. d *
— cO

0, or

2. d =
— cO

0 and v

Proof.

a. This part follows straight from theorem (6.5) and corol-

lary (6.1) .

b. If r is one particular solution of equation (6.35) for 

some k, then the family of solutions for this particular k is 

given by

n n
— cO — cO

d d
cO cO

*
• *

n n
— ck — ck

d d
ck ck

+ W -r
k+l —

(6.37)

where r is a real column vector with free entries. For at 

least one causal solution to exist, either d * 0, or if d—cO —cO
= 0, then w * 0 where w is the second row of W . Since

— 2 —  — 2 k+l

the McMillan degree is the column degree k of the solution 

vector, the minimum McMillan degree is given by the first set 

of equations (6.35) that satisfy the aforementioned causality 

conditions.

□

Remark 6.7: Equation (6.37) for k = 8 (pt) , denoted form —
short by 8 , and r such that d = d + w^-r * 0, provides 

the parametrization of all least column degree causal FSTS 

controllers and therefore, according to theorem (6.6), the 

parametrization of the family of all deadbeat regulators.
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Needless to say, that this family coincides with the family 

of minimum McMillan degree causal FSTS controllers. From 

equation (6.23) which describes the rank of the block 

Toeplitz matrices, we conclude that

p'*« „>
m

dîtTLVr { Tp^ g J  
m

E
i : JLX <(<$ +1) 

i m

(S +1-H.)m l (6.38)

where p. i = 1, . . . ,m are the right minimal indices of pl.

Hence, if

5 s min{|L£ }
m L i 1

i
1 (6.39)

the minimum McMillan degree FSTS controller is unique. This 

is clearly a general result and covers not only the MISO but 

the MIMO case as well.

□

Using theorem (6.7) we can define the McMillan index set 

IM (p) of the family 9(p), i.e. the set of McMillan degrees 

of the controllers that belong to 9 (p) .

Theorem 6.8 (PP(I)): Let 6 be the McMillan characteristic
m

of & (p ) and p be the minimum of the right minimal indices
—  min

of p . Then

a. if <5  ̂p - 1
m min

J.(pt) = {6 ; p . + k, k = 0,1,...}M —  m min

b. if 8 >ii - 1
m min

IM = {ôm + k = 0,1,...}

Proof.

a. Let pl = ntD 1 e IRlxm (d) with [n Dl]1 [R [d] -coprime and — —P P p p
column reduced and let c = n d be one FSTS controller

— m — cm cm

with McMillan degree S M {c ) = 8 . The family & {pl) can be

parametrized as follows

n n
— c

=
— cm +

d d
L c J L cm J

D • r n
p — __ — cm
tn d

— p j cm J

+ q (6.40)
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where r = [ri ... r^\t e Rmxl [d] . Then, if jLt. i = 1, . . . ,m 

are the right minimal indices of p1, the degree of g(d) in 

(6.40) is given by

5(g(d) ) = max ( d ( r  
. i i: r ( d ) ̂  0 i

(d)) + U. } - M  .i min
V r e IR [d] - 0

Therefore, according to (6.40) , if c is any FSTS controller

with 8 . A c )  
M  —

the set

£ 8 and 8 ^
m m n  , -min

1 , S M ( c ) takes any value from

{ô ; U +  k,
m min

* ii o H

In addition, c must belong to the family 3 (pt) of causal FSTS 

controllers, i.e.

d (0) = d (0) - nt(0)-r(0) * 0 (6.41)
c cm — p —

This is always possible for the following reason. If the 

entries of nt(0) that correspond to the nonzero entries of
—p

r(0) are zero, then d (0) = d (0) * 0 because c is causal.
—  c cm — m

Otherwise, the nonzero entries of r(0) are completely free 

and therefore there always exists an r(0) such that the 

causality conditions (6.41) are valid. This proves part (a).

b. If 5 2 |i , by the definition of <5 , there does not exist
m m  m

a c e 3 (p ) such that 6,, (c) < 6 and therefore 8 .Ac) takes

values from the set

{6 + k, k = 0,1,...}

Using similar arguments for causality as in part (a) we can 

prove that the aforementioned set coincides with I^{p) and 

this concludes the proof of theorem (6.8).

□

We conclude this section by giving the full parametrization 

of the family 3:(pt) according to the McMillan degree of the 

FSTS controllers. The proof is based on similar arguments 

used in theorems (6.7) and (6.8) and it is omitted.

Theorem 6.9 (PP(II)): Let (p^c) be an FST-stable pair and

j) be the 5^-subfamily of 9 ip1) as in definition (5.2),

i.e.
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V > *  > -  * ,
j j

Then,

a. the 6 -subfamily of f (pt) can be parametrized asm —
follows.

n n
— c 0 — cO

d d
c 0 cO

*

• '

n ~ n ^
— c S — c5

d sm a ™
c 8 C 6

L m J  ̂ m J

+ 8 +1m
r

m

where is a particular solution of equation
m

(6.35) with k = 8 , Ws is a basis of N {T* „ }
m 6 + 1  r L P , 6 +i1m m

and r is any real column vector such that

d = d +i/t- r * 0
cO cO — 2 —

with being the second row of Wh—2 J 6+1m

b. the 5^-subfamily, where

6. = 5 + j or 6 = ju - 1 + j, j = 1,2,...j m J j min J  ' J  ' '

consists of the following controllers.

n n D r
— c

=
— cm

+ p i

d d t-n r
L c J L cm J L _ p J L m J

where (n , d ) is a 6 -controller, r , i = 1, ,m
— cm cm m i

are any polynomials with the following degree 

properties

3 (r (d) ) e -00 U { 0, . . . , 6 -u }i j o
j

with at least one r taking its maximal degree 

value, and r(0) such that
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d (0) = d (0) - n t(0)-r(0) * 0
c cm — p —

and [Dt n ]t is column reduced with column deqrees P — p

Id , ¡d , id and id . = min{/i.}
1 2  m min 1i

□

Remark 6.8: According to theorem (6.2) there is always a

solution, not necessarily causal, of the Diophantine equation

(6.34) with McMillan degree k = id - 1, where id is the maximal 

of the right minimal indices of p1. Using this solution as a 

particular solution in the parametrization of the family 

3;(pt), then any controller with McMillan degree greater than 

or equal to id can be parametrized by a polynomial column 

vector r with all its entries comprising nonzero constant 

terms. This means that the causality conditions (6.41) can 

always be met for k ^ id, therefore

5 £ ¡dm

□

6.5 Strong FSTS

We recall that the problem of strong FSTS is defined as the 

stabilization of the plant P in FST sense by a stable 

controller, i.e. a controller with poles outside the closed 

unit disc D . It turns out that the same parity interlacing 

property as in the case of usual stabilization must be 

satisfied by the plant. The proof is similar to the SISO

strong FSTS case (see also [Vid. , 1]). First we define the

notion of blocking zeros of a transfer function that it will 

be used for the establishment of the conditions for strong 

FSTS.

Definition 6.3: The blocking zeros of a rational matrix P(d) 

are all z e C such that P(z ) =0.i i

□
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Remark 6.9: If N , N are the mumerator polynomial matrices
p p

of any right or left coprime polynomial MFD of a rational 

matrix P and is the least invariant polynomial of either 

N or N , then the blocking zeros of P are the zeros of n .
p p p

□

The conditions for strong FSTS are given then by the 

following theorem.

Theorem 6.10 (Strong FSTS): A plant P = N D 1 = D ̂ N is
p p p p

strongly stabilizable in FST sense, if and only if detD(d) 

or detD(d) has the same sign at all real blocking zeros cr. of 

P inside the closed unit disc ID.

Proof. If X , Y satisfy the matrix polynomial Diophantine 

equation

N X + D Y = I (6.42)
p p

then for every FSTS controller C, D = Y - N R. Therefore,
c p

according to remark (6.2)

ID (d)I = IY(d) - N (d)R(d)| = y(d) - r(d)n (d) (6.43)
c p p

where y(d) = |y(d) I. For C to be stable, ID (d) I has to be a
C

polynomial unit in the disc algebra . According to

equation (6.43), |D (d) I interpolates y(d) and its 

derivatives at the zeros of n (d) inside the closed unit disc
p

ID, i.e. due to remark (6.9), the foregoing statement is true 

for the blocking zeros of P inside D[0,1]. Therefore, 

according to theorem (5.4), y(d) must have the same sign at 

the real blocking zeros cr of P inside the closed unit disc 

ID. Also, equation (6.42) becomes at the blocking zeros z. of 

the plant P

D (z.)y(z.) = I so, ID (z ) |y (z ) = 1
P 1 1 p i i

Therefore, y(d) and |D (d) | have the same sign at the
p

blocking zeros of P, and this concludes the proof.

□
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Theorem (6.10) can be restated as the following corollary 

which expresses the so called parity interlacing property.

Corollary 6.6 (Parity Interlacing Property): There always

exists a stable FSTS controller, if and only if the number of 

poles of P inside any interval of successive real blocking 

zeros of P inside the closed unit disc ID, is even

□

6.6 FST Tracking and Disturbance Rejection

One of the most fundamental performance requirements of a 

control system is that of tracking and/or rejection of a 

family of signals applied at its inputs. In the case of FST 

tracking and/or disturbance rejection, the required

performance must be achieved in finite time. In this sense, 

most of the controllers for deadbeat tracking/disturbance 

rejection can be considered as time-optimum FST tracking/ 

disturbance rejection controllers. The following two 

theorems give the conditions for FST tracking and disturbance 

rej ection.

Theorem 6.11 (FST Tracking): Let (P,C) be an FST-stable pair 

in the unity feedback system of figure (6.1) and be

expressed by a left R [d] -coprime MFD as u D_1h . Then y 

tracks the reference signal û  in FST sense, if and only if 

either of the following two equivalent conditions are 

satisfied.

1. D is a right divisor of D D , i.e.
r c p

3 Q e M(R [d] ) : D D = QD
c p r

2. 3 Q, R e M{\R [d] ) : QD + N RD = YD
r p p p

where all the matrices involved apart from Q are as in 

theorem (6.1).

Proof.
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1. From equation (6.4a), e = D D u  = D D D~rh . For FST
— 1 c p— 1 c p r — r

tracking e must be polynomial, i.e. D D u n  e [Rmxl [d] and
— 1 c p r — r

because D , n are coprime, D D D must be polynomial [Vid. ,
r — r c p r

1] . Therefore, D D D 1 = Q e M (R[d]), or
c p r

D D = QD (6.44)
c p r

2. From theorem (6.1), D = Y - N R  which if substituted in
c p

equation (6.44) gives

QD + N RD = YD (6.45)
r p p p

□

Theorem 6.12 (FST Disturbance Rejection): Let (P,C) be an

FST-stable pair in the unity feedback system of figure (6.1) 

and u be expressed by a left IR [d] -coprime MFD as u = D_1n . 

Then u2 is rejected at the output y_2 i-n F£>T sense, if and 

only if any of the following conditions holds true.

1. D is a right divisor of N D , i.e.
d p c

3 Q e M(!R [d] ) : N D = QD
p c  d

2. 3 Q, S e Jf(F[d]) : QD + N SN = N Y
d P P P

3. D is a right divisor of D N , i.e.
d c p

3 Q e W (IR [d] ) : D N = QD
c p d

4. 3 Q, R e M(1R [d] ) : QD + N RN = YN
d p p p

where all the matrices involved apart from Q are as in 

theorem (6.1).

Proof. The proof of theorem (6.12) can be carried out in the 

same manner as that of theorem (6.11) . We just note that 

condition (1) is derived using the expression of W^{P,C) in 

(6.5a) and (1) » (2) . Also, condition (3) comes from the 

expression of Iî (P,C) in (6.5b) and (3) o (4) .

□

Remark 6.10: The solutions R from conditions (1) in theorem

(6.11) and (4) in theorem (6.12) give the parametrization 

through their right MFDs of all the controllers that achieve
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FST tracking and FST disturbance rejection respectively. The 

solutions Q from condition (2) in theorem (6.12) provide the 

parametrization through their left MFDs of all the

controllers that guarantee disturbance rejection in FST 

sense. The criteria for FST tracking and disturbance

rejection are testable since they are expressed in terms of

equations that are linear with respect to the parameters R or 

S. We elaborate in the following corollary for the FST 

tracking case. The FST disturbance case can be treated in a 

similar manner.

Corollary 6.7: Let (P,C) be an FST-stable pair in the feed-

back scheme of figure (6.1) , {N , D ) , (D ,N ) , (N , D ) ,
P P P P c c

(Dc,Nc) be any right, left coprime polynomial MFDs of P and C 

respectively and X, Y e M([R[ci]) be any particular solution of 

the Diophantine equation N X  + D Y  = I. Then the output y
P P 2

tracks the input u in FST sense, if and only if

N 0 1 N s 1p p 0

0 D 0 D<- l-J

where Sq is a particular solution of

QD + SD = YD
r P P

and [-D D ] is a basis of the left null space of [Dl Dt]t.
1 2  p r

Proof. According to theorem (6.11) all FST controllers for 

tracking are parametrized through R by the equation (6.45). 

Equation (6.45) is equivalent to the following two equations.

QD + SD = YD (6.46a)
r p p

N R = S (6.46b)
p

Since D appears in the right-hand side of equation (6.46a), 

equation (6.46a) has always a solution. If Sq is one 

particular solution, then the family of solutions S is given 

according to theorem (2.22) by

S = S - TD (6.47)
0  1
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where D is such that [-D D ] is a basis of N { [D1 Dt]t) and 

T is any polynomial matrix of appropriate dimensions. 

Substituting (6.47) into (6.46b) we get the bilateral matrix 

Diophantine equation

N R + TD = S
p 1 0

which, according to theorem (2.23), has a solution, if and 

only if

" N
p

0  ' ' N
p
S 10

0 D
iJ

0 D
iJ

□

The testable solvability conditions for FST disturbance 

rejection are similar to corollary (6.7). Finally we note 

the following concerning the problem of simultaneous FST 

tracking and disturbance rejection.

Remark 6.11 (FST Tracking and Disturbance Rejection): If we

want to design a controller such that tracks in FST sense 

a family of inputs from u and rejects in FST sense a family 

of inputs from u , then we must solve according to theorems

(6.11) and (6.12), the following set of equations

Q D + N RD = YD
1 r P p p

Q D + N RN = YN
2 d  p p p

(6.48)

for a common R. The FSTS controllers that guarantee both FST 

tracking and disturbance rejection will be C = N D_1 such
C C

that N = X + D R , D = Y - N R where X, Y are a particular
C p c J5

solution of the equation N X + D Y = I . Since equations
P P

(6.48) are linear with respect to , Q2 and R, testable 

solvability conditions may be found but the whole solution 

procedure may become quite tedious. In addition, the 

performance of the controller depends only on one parameter R 

for both tracking and disturbance rejection which may result
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to a very restricted family of controllers. The answer to 

this problem is the use of a two-parameter feedback scheme. 

This design strategy is considered in chapter (8).

□

6.7 FSTS Controllers with Partially Assigned Dynamics

In the previous section we were able to parametrize the 

entire family of FSTS controllers that guarantee certain 

performance characteristics, namely FST tracking and/or 

disturbance rejection. Although the criteria for such 

performance reduce to the internal model principle in the 

SISO case as can be readily realized from condition (1) in 

theorem (6.11) and conditions (1) and (3) in theorem (6.12), 

the analogy is not as clear cut in the MIMO case in general.

The FSTS controllers provided by theorems (6.11) and (6.12) 

allow for a richer family. Indeed, condition (1) in theorem

(6.11) could express the internal model principle only if

D = D'D (6.49)
c c r

and D , D commute, which may end up to be a very restrictive
r p

condition. The situation is considerably simpler in the FST 

disturbance rejection case where the relationship

D = D'D (6.50)
c c d

satisfies condition (1) in theorem (6.12) and the main 

additional requirement is clearly

N N + D'D D = I
c p c d p

i.e. (N ,D D ) must be right [R [d]-coprime. If the design
P d p

emanating from either equation (6.49) or (6.50) is adopted, 

then the resulting controllers are only part of the family 

that can otherwise be obtained from theorems (6.11) or

(6 .12) .
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Equations (6.49) and (6.50) express no more than the internal 

model principle in the MIMO case and if they can be adopted, 

they result in an easier computation of FSTS controllers for 

tracking and disturbance rejection. Both equations can be 

regarded in more general terms as a partial assignment of 

controller dynamics; treating them as such, we have then the 

following result.

Theorem 6.13: Let (P,C) be an FST-stable pair in the feed-

back configuration of figure (6.1) and {N , D ) , {D ,N ) ,
p p p p

(W^lM , (D ,N ) be any right, left coprime polynomial MFDs 

of P and C respectively. The controller C may have partially 

assigned dynamics, i.e.

D = D' D , D e M (IR [d] ) given (6.51)
c c ca ca

if and only if {N ,D D ) are right IR [d]-coprime and |D (0)1
p ca p ca

* 0 if np(0) * 0, where n^ is the least invariant polynomial 

of N . Moreover, the family of all causal FSTS controllers 

with partially assigned dynamics will be denoted by 3- (P)
pad

and is parametrized as follows.

? (P)
pad

= { (D ,N ) : D = X
c c c

+ SD' ,
p

D
C
= (Ÿ - SN')D

p < /:a

V S e M(IR [d] ) : |?(0) - S( 0)N' (0)1
p

if n (0)
p

* 0} (6.52)

where (X,?) is a particular solution for (N , D' )
C C

of the

Diophantine equation

N N + D'D D = I (6.53)
c p c ca p

and (Z)',W') is a left IR [d] -coprime pair such that

N (D D )-1 = (D' ) N̂' (6.54)
p ca p P P

Proof. Clearly, every FSTS controller with denominator

polynomial matrix D described by (6.51) is a solution of the
C

Diophantine equation (6.53). Equation (6.53) has a

solution for {N ,D') if and only if (N ,D D ) are right
c c p ca p

IR [d]-coprime. If (X,Yj is a particular solution for {N , D')
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of (6.53) and (D',flT) is a left R [d]-coprime pair satisfying 

(6.54) then

N = X + SD' , D' = Y - SN'
c p c  p

and due to (6.51)

N = X + SD' , D = [Y - SN' ) D
c p c  p ca

For causality, we must have I (0)1 * 0; however, according

to remark (6.2), ID (0)1 = (y(0) - s(0)n' (0))|D (0)1, where
c p ca

y(d) = |?(d)| and n^(d) is the least invariant polynomial of 

N' (d) . Due to the coprimeness of {N ,D D ) and (D' ,N') and
P p ca p p p

the relationship (6.54), h' (d) = n (d) (up to a real
p p

constant) and n (0), |D (0)1 are coprime. Hence,p c

ID (0) | = (y (0) - s(0)n' (0) ) ID (0) |
c p ca

and if n (0) * 0, |D (0)| * 0 if and only if |D (0)|  ̂ 0.
p c  ca

□

6.8 FSTS for Sampled-Data Systems

We conclude this chapter by considering the case of FSTS for 

sampled-data systems. Assume that G(s) in figure (6.3), is 

the transfer function of a continuous-time plant if and any
P

continuous-time controller !f which is discretized using 

Zero-Order-Hold (ZOH) devices as D/A converters in each input 

channel.

Figure (6.3): The unity feedback sampled-data system
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For ripple-free FST response, we can easily extend theorem

(5.8) to the MIMO case. Using the principle of superposition 

and remark (5.8) the following theorem may be readily 

established.

Theorem 6.14 (Ripple-Free FSTS): Consider the sampled-data

system of figure (6.3) where the D/A converters are 

Zero-Order-Hold devices and G(s) represents the transfer 

function of the continuous-time plant and any continuous-time 

controller. Then, the unity feedback system will be ripple- 

free, if and only if a continuous internal model of the input 

u(t) = [uj (t) u^t)]1 that is observable from the output is

implemented first and then a discrete FSTS controller is 

designed.

□

Remark 6.12: If F(s) represents the internal model transfer

function and G (s) is the transfer function of the plant, 

then for stability purposes the tandem connection of F(s) and 

G {s) need not be only observable but controllable as well.
p

If u (s), are represented by coprime polynomial MFDs as

u (s) = D 1{s)h {s) and u (s) = D~1(s)h,(s) (6.55)
— 1 r —  r — 2 d  —  d

then F(s) may be of the form

<p 1 (s) I or <p 1 (s) Im 1 (6.56)

for an Ixm plant, where <p{s) is the least common denominator 

of every denominator of D_1 (s) and D_1 [s) . For the tandem
r d

connection of the plant G (s) and F(s) to be coprime, we have
P

the following requirement [Che., 1] .

The tandem connection of 0_1(s)I followed by the Ixm plantm
G (s) (G (s) followed by 0_1(s)J ) is controllable and
p p i

observable, if and only if

P (
AT - A

p

-C
p

B
p

D
p

n + m (n + l) and A : <f> (X) =0 (6.57)
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where (A , B , C , D ) is any irreducible realization of G (s) 
p p p p p

and n is the dimension of A .
p

□

According to theorem (6.14) and remark (6.12) we can develop 

the conditions for ripple-free FST tracking and disturbance 

rejection.

Theorem 6.15: Consider the sampled-data system of figure

(6.3) with an Ixm plant G (s) and G(s) = G (s)0_1( s ) I  (G(s)
P p tn

= 0 (s) I G is) ) , where 0 (s’) is the least common denominator
1 P

of every denominator of D_1 (s) , D-1 (s) and D 1 (s) , D_1 (s) are
r d r d

as in (6.55). Then the closed-loop sampled-data system 

exhibits a ripple-free FST tracking and disturbance rejection 

response, if and only if

P (
B
p

D
p

n + m (n + i) and A : 0(A)= 0

and an FST controller for tracking and disturbance rejection 

is designed for the discrete-equivalent system of G(s) .

□

Remark 6.13: Theorem (6.15) requires the use of the internal 

model 0 1{s) in every input or output channel of the original 

plant and this may result to over design. Nevertheless, it 

provides by itself, a design procedure that guarantees 

ripple-free FST response.

□

6.9 Conclusions

The problem of Total Finite Settling Time Stabilization for 

MIMO discrete linear systems has been defined and solved 

algebraically using the one-parameter feedback scheme of 

figure (6.1). The family ^(P) of all causal FSTS controllers 

has been derived as a solution to a polynomial matrix 

Diophantine equation and parametrized in an affine manner
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with respect to the free parameters R or S (theorem 6.1) . 

Further, the computation of & (P) has been obtained by solving 

a set of Toeplitz type linear equations over [R.

The minimal design problem has been addressed by providing 

lower and upper bounds for the minimum McMillan degree of all 

FSTS controllers. Also, a parametrization of all FSTS 

controllers according to column/row degrees or complexity has 

been achieved allowing for the characterization of the family 

9 (P) according to upper bounds on the McMillan degree. In 

addition, the aforementioned parametrization has led to the 

parametrization of the family of all deadbeat regulators and 

the development of a twofold algorithm for its 

characterization. In the case of vector plants, a complete 

parametrization of the FSTS controllers, according to 

McMillan degree, has been presented and the minimum McMillan 

degree FSTS controller(s) have been derived.

The parity interlacing property has been proved to be again a 

necessary and sufficient condition for strong FSTS and 

families of FSTS controllers that attain certain performance 

criteria as tracking, disturbance rejection and partial 

dynamics assignment have been obtained. Finally, necessary 

and sufficient conditions for ripple-free FSTS have been 

derived and as a result a design procedure for ripple-free 

FST tracking and disturbance rejection has been proposed.
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Chapter 7

SIMULTANEOUS FST STABILIZATION

7. 1 Introduction, Background Results

The problem of finding a discrete, linear, time-invariant 

controller C that stabilizes in Finite Settling Time (FST) 

sense a family of k + 1 distinct, linear, discrete-time 

plants (P , i = 0,1,...,k) is referred to as Simultaneous FST 

Stabilization Problem (S-FSTSP) and is examined in this 

chapter. The motivation for this work comes from the 

so-called Simultaneous Stabilization Problem (SSP) introduced 

by Saeks and Murray [Sae., 1] and Vidyasagar and Viswanadham 

[Vid. , 2] .

The SSP is a type of robust stabilization problem and arises 

naturally in the synthesis of control systems with different 

modes of operation, due for instance to some structural 

changes; the SSP also naturally arises when P , ,P 

represent linearized models of a nonlinear plant around a 

number of operating points, and a common controller C is 

required to stabilize the whole family. Necessary and 

sufficient solvability conditions for the SSP have been given 

in [Sae., 1] and [Vid., 2] , but these conditions are not 

computationally verifiable for the case of more than two 

plants. Vidyasagar and Viswanadham [Vid., 2] provided the 

generalization to the MIMO case of some of the SISO results 

of Saeks and Murray [Sae., 1] . To this end, they have shown 

that the problem of simultaneously stabilizing k + 1 plants 

is equivalent to the problem of simultaneously stabilizing k 

plants by a stable controller. Hence, in the case of two
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plants the problem reduces according to Youla Bongiorno and 

Lu [You., 2], to the satisfaction of the parity interlacing 

property by a single plant, but the problem of simultaneous 

stabilization of more than two plants is not just an 

interpolation but an interpolation/avoidance problem as it 

was introduced in Helton [Hel. , 1] and pointed out sub-

sequently by other authors e.g., Ghosh [Gho., 1], Vidyasagar 

[Vid., 3], Dorato et al. [Dor., 1] and Wei [Wei., 1].

It is also shown in Vidyasagar and Viswanadham [Vid., 2] that 

two l x m plants can be simultaneously stabilized generically 

if either l or m is greater than one. This result has been 

generalized further by Ghosh and Byrnes [Gho., 2] and also by 

Ghosh [Gho., 3] - [Gho., 5] where it is shown that generic 

simultaneous stabilizability of r, l x m plants is guaranteed 

i f max {i, m } s r .

Nevertheless, despite many efforts the SSP has remained 

unsolved for k z 2 and is recognized as one of the hard open 

problems in linear systems theory [Bio., 1] . To this extend, 

many authors have provided necessary or sufficient conditions 

for the solution of the SSP. In Kwakernaak [Kwa., 1] it is 

shown that provided the high frequency behaviour of the plant 

transfer functions satisfies some restrictions, simultaneous 

stabilization is possible if all plants have the same number 

of transmission zeros which are located in the strict left 

half plane. Using a completely different proof, Barmish and 

Wei obtained a similar result first for a family of SISO 

plants [Bar., 2] and then for the MIMO case [Wei., 2] where a 

simultaneously stabilizing controller is constructed through 

a new iterative algorithm.

In view of the simultaneous stabilization conditions given by 

Vidyasagar and Viswanadham [Vid., 2], the issue of finding 

computationally verifiable tests for simultaneous 

stabilization was raised again by Alos [Alo. , 1] and Emre 

[Emr., 2]. In the work of Alos simultaneous stabilization is 

confined to plants which result from a nominal one with
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possible loss of outputs or actuators whereas Emre considers 

the case of a family of k + 1 SISO plants where all the k + 1 

closed-loop systems end up having the same characteristic 

monic polynomial.

The aim of this chapter is to examine the SSP in the context 

of discrete-time systems and for the special type of 

stabilization; namely the FST stabilization. To this extend, 

this part of the thesis can be considered as an extension of 

Emre's work [Emr., 2] where the characteristic polynomials of 

the k + 1 closed-loop MIMO systems are required to be nonzero 

real constants c .
i

The general case of S-FSTSP is considered first for plants of 

i x m common dimension and the results are then specialized 

to the case of £ x 1 or 1 x m families of plants for which 

testable necessary and sufficient conditions are derived. 

With a family of k + 1 plants {P , i = 0,1, . . . ,k), we may 

associate a family plant matrix and its properties lead to a 

classification of the various types of families as well as 

general conditions for solvability of the S-FSTSP. Also, in 

an approach very similar to that in Vidyasagar and 

Viswanadham [Vid., 2], necessary or sufficient solvability

conditions of the S-FSTSP are derived. In the special case 

of vector plants (m = 1, or l = 1) testable necessary and 

sufficient conditions are given and when a solution exists, 

the family of S-FSTS controllers is derived. The necessary 

and sufficient conditions are expressed as properties of the 

plant family matrix and may be tested using tools of the 

minimal basis theory of rational vector spaces, or 

equivalent standard linear algebra tests over [R.

7.2 The Simultaneous FSTSP; Background Mathematics

In this section we consider the mathematical preliminaries 

needed for the solution of the simultaneous FSTS problem. In 

essence we deal with the matrix equation

231



AX = B (7.1)

over the ring of polynomials [R [d] . One result that is 

readily available is theorem (2.20). Here we present another 

set of solvability conditions for the equation (7.1) which is 

more explicit than theorem (2.20).

The analysis that follows applies not only to polynomial 

matrices but to matrices with entries from any PID and 

describes in a more formal way the results given in 

Vidyasagar [Vid. , 1] . A more extensive treatment of the

subject can be found in Karcanias [Kar., 5] . First, we

restate and extend some of the basic definitions of section

(2.3.1).

Definition 7.1: A matrix A e [Rpxq [d] with r = p (A) ^ min{p,g}

will be called:

a. Degenerate if r < min{p,g} whereas if r = min{p,g} 

it will be called nondegenerate.

b. Coprime, if it is nondegenerate and all its 

invariant polynomials are units in [R [d] .

c. Square if r = p = g, left regular if r = p  ̂ g and 

right regular if r = g s p.

□

Definition 7.2 [Kar., 5]: Let A e lRpxq [d] and r = p (A) .

Consider the Smith form decomposition of A defined by

A  A

= SA « A = USAV (7.2)

where S is the Smith form of A, S* = diag{a ,...,a } with a. 

the invariant polynomials of A and U, U = 1/ , V, V = K_1 are

IR [d]-unimodular matrices of appropriate dimensions. If U, V 

are partitioned according to the partitioning of S^, i.e.

V = [ A+ '■ A1 ] (7.3)l. r • r -*

UAV =
O

O

O
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then Â  e [Rrxp [d] , A* e [Rqxr [d] are called left-, right- 

projectors respectively and AX e R (p_r)xp [d] , A* e 

Rqx(q r> [d] are called left-, right-annihilators correspond-

ingly of A.

□

According to definition (3.2), the following remark may be 

readily established.

Remark 7.1: Let A e [Rpxq [d] , r = p (A) and let S* be theA
essential part of the Smith form of A and (A+, A1) , (A+, ^X)

1 1  r r

be pairs of matrices as in definition (7.2). Then, due to 

the partitioning (7.3)

A1 A = 0l

AA1 = 0
r

+ + *
A AA = S,l r A

(7.4)

and A^, A^ are minimal bases of the left, right null IR(d)- 

spaces N {A}, ./V {.¿} of A respectively. Also, if A has full 

rank, then at least one of the annihilators does not exist. 

In particular

A 1 = O, A+ = I,
l l

if and only if “1 ii

A1 = 0, A+ = I,r r if and only if r = q

Using the aforementioned concepts we may express the solvabi-

lity of the matrix equation (7.1) in the following way.

Lemma 7.1 [Kar., 5]: Let A e Kpxq [d] , B e [Rpxs [d] , r = p (A)

and consider the matrix equation

AX = B , X e IRqxs [d] (7.5)

over [R [d] .

a. For any pair (A+, A1) , there exists a pair {A+, A1)
1 1  r r

such that, if
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(7.6)X A+X + ALX
r 1 r 2

the equation (7.5) is equivalent to (7.6) together 

with

AXBl = 0 (7.7)
* +

(7.8)S,X A l = A Bl

b. Conditions (7.7), (7.8) are necessary and

sufficient for the solvability of (7.5). If these 

conditions are satisfied, then for any polynomial 

X solving (7.8), there exists a family of X 

matrices defined by (7.6), where X i s  an arbitrary 

polynomial matrix of appropriate dimensions.

□

According to remark (7.1), lemma (7.1) reduces to the 

following corollary, if the matrix A has full rank.

Corollary 7.1: Let all the matrices concerned be as in

definition (7.1) and lemma (7.1). Then

a. If A is left regular (full row rank), i.e. r = p, 

equation (7.5) is equivalent to

S*AXi = B (7.9)

X = A +X + A1X (7.10)
r 1 r 2

b. If A is right regular (full column rank), i.e. r = 

q, equation (7.5) is equivalent to

a lb  = 0 (7.11)l

S*X = A+B A l (7.12)

□

From lemma (7.1) we can recover the result given in 

Vidyasagar [Vid., 1] regarding the solvability conditions of

equation (7.5).
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Lemma 7.2 [Vid. , 1]: Let A e lRpxq [d] , r = p (A) and let U, V

be IR [d]-unimodular matrices such that UAV = S,, where S, isA A
the Smith form of A with a., i = denoting the

invariant polynomials of A. The equation AX = B , B e  [Rpxs [d] 

has a polynomial solution X if and only if

a. a. divides every element of the ith row of UB

b. all the other rows of UB are zero.

□

We are now ready to give algebraic solvability conditions for 

the simultaneous finite settling time stabilization problem.

7.3 The Simultaneous FSTSP: Statement of the Problem 

and General Results

In this section we deal with the derivation of the 

solvability conditions for the simultaneous stabilization in 

FST sense of a family of discrete, linear systems by a 

discrete, linear, time-invariant controller. Both, the

generic as well as the general MIMO cases are treated and 

algebraic testable conditions are provided when possible.

Definition 7.3: Let = {P. : P e [Rlxm(d), i = 0,1, . . . ,k-1}

be a family of k discrete-time plants represented by their 

transfer function matrices P. or by their IR [d] -coprime left 

or right MFDs (D., N. ) , (W. , B. ) respectively. The problem

of finding the conditions under which there exists a causal 

controller C that stabilizes in FST sense all the plants of 

the family is referred to as Simultaneous Finite Settling 

Time Stabilization Problem (S-FSTSP) and the controller that 

solves the S-FSTSP will be called S-FSTS controller.

□

Definition 7.4: The set of all families Z  of k, l x m  plants 

will be denoted by /  . If Z e yk and the S-FSTSP is
1, m k 1, m

solvable, then Z^ will be called S-FSTS family.

□

235



(6.1), C is an S-FSTS controller, if and only if

If C = N D 1 = D 1N e IRmxl (d) , then according to theoremc c c c

N N + D D = U e U(\R[d]) , i
i c i c i 0,1, ... ,lc-1

or equivalently

(7.13)

N N + D D  =17 6 I7(R[df]), i = 0,1,..., k-1
c i c i i

The above conditions may be expressed as

where

T R r  = Q
k C. u

N D0 0

' Rc : =

N
C

D
L  C  J

, Q = =
U

1

••
•o
'3
 

__
__
_
1

N DL k-l k-1-1

-
1«—1 1

hi 
_
1

or

where
LCTk

T : =
r n •0 • • Nk-1

k
D •L 0 • • Dk-lJ

Q : =u ' U ■L 0 • • U ]k-lJ

' Lr. --[ » & ]

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

Definition 7.5: The matrices T , T are referred to as
k k

left-, right-plant family matrix (L-PFM, R-PFM) respectively. 

The matrices Q e [Rklxl [d] , Q e [Rmxkm [d] are called parti-
U  U

tioned unimodular and the corresponding sets will be denoted 

by U [d] , U [d] .
k,1 k,m

□

In the study of the S-FSTSP either (7.15), or (7.17) may be 

used. We shall refer to (7.15), (7.17) as the right, left

formulation of the S-FSTSP respectively. In the following we 

will work with the right formulation of the S-FSTSP and all 

definitions and results can be translated to the left 

formulation in the obvious manner. According to (7.15) the 

solvability of the S-FSTSP may be summarized as follows.
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Remark. 7.2: The S-FSTSP is solvable, if and only if

T R r  = Qk C u
(7.19)

has an IR [d]-coprime, causal (\D (0)1 * 0) solution R_.
c C

Some preliminary properties of matrices are given next

Remark 7.3: For any Zk e y* ̂  the L-PFM is uniquely

defined modulo permutations of the k row blocks and 

premultiplication by diag{E7o, , where U. e [7(IR[d]),

i = 0,1,...,k-1.

□

Proposition 7. 1: Let Z e ?k , T e Rklx(1+m) [<j] be a L-PFM
k 1, m k

of Ẑ , £ i m and r = p (T̂ ) . Then the following hold true.

a. if {t (d), i = l,...,r} is the set of invariant 

polynomials of T̂ , then t (d) = • • • = t (d) =1.

b. £ s r  ̂£ + m

Proof.

a. Since (D. ,N.) are left [R [d]-coprime for any i, then the 

matrix [W. D ] is a rank £ coprime matrix and part (a) 

follows as well as that l * r.

b. is a k£ x {£ + m) polynomial matrix and therefore 

p(Tk) min{jk£,£+m}. But £ ^ m, i.e. kl  ̂ 21 s m + £, V 2. 

Hence, min{k£,£+m} = £ + m and this proves part (b) .

□

Remark 7.4: The requirement that l z m in proposition (7.1)

is not really restrictive. If this is not the case, i.e, if 

£ < m, then analogous results can be shown for the R-PFM . 

In this chapter, the treatment of the S-FSTSP is based on the 

assuption that £ s m.

□

Remark 7.5: For any Z e ¡fk the Smith form of any L-PFM f
2 k l,m 1 k

with r = p(Tk) / is of the form
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S* = diag{ti + i, . . . ,tr}

(7.20)

□

According to proposition (7.1), the rank of f has wellk
defined bounds. We consider first the case of the minimum 

rank f .
k

Proposition 7.2: Let £ e if* and T be a L-PFM of £ with
k 1, m k k

p(f ) = £. Then

a. For every pair of systems described by the coprime

MFDs (jD ,N ) , {D ,N ) there exists a U e
i i j j ij

t/([R[d]) such that

IN. D.] = u [N D] V i,j e fc = {0,1, ... ,fc-l}

b. There exists a family of S-FSTS controllers, which 

is the family ^(P.), i.e. the family that 

stabilizes in FST sense any pair (D.,N.) e

Proof.

a. If P(^k) = •£/ then any [N. ¿.] matrix, which is by 

definition left coprime, defines a least degree basis for the 

[R(d)-row space X or for the maximal row module M. of T .
r r k

Clearly, any two bases of M are related by IR [d] -unimodular
r

matrices. Part (b) readily follows from part (a).

□

From remark (7.2) it is clear that the S-FSTSP can be reduced 

to the solution of the matrix equation (7.5) over R [d] . 

Therefore, lemma (7.1) can provide the necessary tools for 

the study of the S-FSTSP. First we consider the generic 

cases with the help of corollary (7.1).

Theorem 7.1: Let £ e Xk and assume that any L-PFM T is

both left regular and coprime. Then the S-FSTSP is always 

solvable on the £k family. Furthermore, there exist a pair
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of a right projector and right annihilator (f+,f±) such that
r r

the family of solutions of the S-FSTSP is given by

R„ = T+Q + f1X (7.21)
U r u r

where Q & U  [d] is a partitioned unimodular and X is an
u k, 1

appropriate dimension polynomial matrix such that

A

det(T (0)l

Q (0)
U

x ( 0)
* 0 (7.22)

A

where T is the last i-row block of the matrix [f+ t1] .
r r

Proof. According to remark (7.2), the S-FSTSP is solvable, 

if and only if the equation

T R r = Q (7.23)
k O u

is solvable for R = [N1 t and |D (0) | * 0. Eqn. (7.23)
O c c c

is of the form AX = B , A = T , X = and B = Q e U [d] .
k L u k, 1

Since Tk is left regular, equation (7.23) can be solved

according to part (a) of corollary (7.1) and because f is
* k. * 

coprirne, SA = s  =
k

I. Therefore, if (f+,T1) is a pair ofr r
right projector and right annihilator of Tk respectively,then

' N ' Q
Rr = =

C
= [ f  T1 1

U
(7.24)c D

L  C  J

L r r J
X

where f+, f1r r correspond to A+, A1,r r Q to X and X to X ofu 1 2
equation (7.10) . Equation (7.24) is true for any partitioned

A

unimodular and any polynomial matrix X. If is the last 

i-row block of [T+ T1] , then
r r

A
D (0) = T (0)
c 1

and therefore the relationship (7.22) must be satisfied for 

causality to hold true.

□

Q (0)
U

X(0)
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Theorem 7.2: Let £ e ¡fk and assume that any L-PFM T is
k 1 ,m 2 k

both right regular and coprime. If (f+,f1) is a pair of left 

projector and left annihilator of respectively and T* is 

the last {-row block of T*, then necessary and sufficient 

condition for the causal S-FSTSP to be solvable is that there 

exists a Q e U [d] such that
u k, 1

fL0 = 0 (7.25)
1 U 
A

IT*(0)Q (0)| * 0 (7.26)
1 u

If the above conditions are satisfied, then the solution is 

given by

Rr = T*Q (7.27)
U 1 u

Proof. Using similar arguments to those of theorem (7.1) we 

can easily prove that equations (7.25) and (7.27) are a 

straightforward consequence of part (b) of corollary (7.1)

with SA = S* = I . Also, from (7.27)

A

D = T+0
c 1 u

and therefore (7.26) must be satisfied for causality to hold 

true.

□

Remark 7.6: Theorems (7.1), (7.2) cover the generic cases

where kl < m + l, or where ki > m + l, since nondegeneracy 

and coprimeness are generic properties.

□

Using lemma (3.1), we may state now the conditions

characterizing the solvability for the general case of the 

S-FSTSP.

Theorem 3.3: Let £ e yk , T be an L-PFM of £ and let
k 1, m k k

p(T ) = r. For any pair (T+,f ), there exists a pair (T+,fX)
k 1 1  r r

such that, if
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(7.28)
N
c I- ~ X “I X 1

D
L c J

= | T T
r r J

X
L 2 J

f+X + fxx
r i  r 2

then the S-FSTSP is 

that

solvable if there exist Q e U [d]u k, 1 such

= 0 (7.29)

s * x = f+Q (7.30)
k 1 1 u

~ *
where S is the essential

k
part of the Smith form Sk of f .

k
If equations (7.29), (7.30') are satisfied for some Q

u
, then

the the family of solutions is given by equation (7.28) where

X2 is an arbitrary polynomial matrix of appropriate 

dimensions and such that together with Q , |D (0) | * 0.
U  C

□

Remark 7.7: If ^ {T } * 0, condition (7.29) is present and

expresses the fact that for the solvability of the S-FSTSP, 

it is necessary that the R (d) -column space X of f contains
c k

vectors which form a partitioned unimodular matrix. This 

alternative formulation of (7.29) is also valid when N  if } = 

{o}. We shall refer to this condition as the Space

Structure Condition (SSC) of the S-FSTSP.

□

. ~ *
Remark 7.8: Since S , X in (7.30) have dimensions r x r and

k 1

r x £ respectively and r  ̂ £, the solvability of equation

(7.30) is not a trivial divisor condition, unless r = £. 

Note that if r = £, it follows by proposition (7.1) that S* 

is a unity matrix (Ŝ  = I ) and therefore (7.30) is solvable 

for any Q . Condition (7.30) is thus an essential conditionU
when r > £ and we shall refer to it as the Extended-Divisor 

Condition (EDC) of the S-FSTSP.

□

Conditions (7.29), (7.30) may be combined to give the 

following alternative formulation of theorem (3.3) and hence 

of the S-FSTSP.
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Corollary 7.2: Let Z s yk , T be an L-PFM of Z and let
k 1, m k k

r = p (T̂ ) . The S-FSTSP is solvable if for any pairs (f^f1), 

(T+,TX) and the associated S (the essential part of the
r r k

Smith form S of T ), the following conditions are satisfied 

a. There exists a solution X  € [R(kl+r)xl Qf the

equation

r- ~ *
s 1, - f + 1

l
X

K
•X = 0, X  =

1

0 T1
l J Q ̂ u -*

Q e U [d]
u k, 1

(7.31)

b. For any X  , Q solution of (7.31), there exists X
1 u 2

of appropriate dimensions such that

f +X  + T±X
r 1 r 2

is causal, i.e. |D (0)I * 0.
C

(7.32)

□

Remark 7.9: Equation (7.31) reduces the overall S-FSTSP to

an investigation of the existence of a matrix which is 

partitioned unimodular and has its columns from a given 

rational vector space. It is worth pointing out again that 

if hi * m + i, then generically the families are non-1, m
degenerate and coprime. The space structure condition thus 

becomes the most significant. For special families of 

systems, this condition takes a rather simple form that 

allows the derivation of testable solvability conditions.

□

7.4 Necessary, Sufficient Conditions for the S-FSTSP

The analysis so far has shown that if hi < m + l, then for a 

generic family Z^ the S-FSTSP is solvable (theorem 3.1), 

whereas if kl > m + l and the family Zk is once more generic, 

then the solvability of the S-FSTSP is reduced to a testing 

of the space structure condition (SSC) (theorem 3.2) . The 

general problem associated with the SSC, that is finding the
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conditions for the existence of partitioned unimodular 

matrices in a given rational vector space is still open. 

However, we can provide either necessary or sufficient 

testable conditions for the solution of the S-FSTSP.

Let Z = {P ,...,P } be a family of k + 1, t x m plants

represented by their left IR [d] -coprime polynomial MFDs

{D ,N') , i = 0,1,..., k. Any S-FSTS controller C of the

family Zfc+i must belong to any family ^ (P. ) and thus to

? (P ) . According to theorem (6.1) ^ (P ) consists of all the 0 0
FSTS controllers C with the following right composite 

matrices R

N X D I

: =
C = 0

D
L C J

Y -NL o J R

where X, Y satisfy the polynomial Diophantine equation

N X + D Y = I (7.34)o o

and R is an arbitrary polynomial matrix of appropriate 

dimensions such that ID (0) I * 0. Then a solution to the
C

S-FSTSP exists, if and only if there is an R satisfying 

(7.33) and its causality requirements such that

[ N- Ô ]L- 1 H

or

u. € U(\R [d] ) , i = 1, . k (7.35)

[ \  ^
I

R
= U, e U (IR [d] ) , i = 1, . . . , k (7.36)

where

C \  fi] = [ fi fij
X D

Y -N
(7.37)

or

A = N X + D Y e lRlxl [d] , B = N D  - D N  e IRlxm [d] (7.38)1 1  i i i 0 i 0
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In view of equations (7.33) and (7.36), the S-FSTSP can be 

formulated as follows.

Remark 7.10: Let £ = {P , . . . ,P } be a ifk+1 family, X, Y

be a polynomial solution of the Diophantine equation (7.34) 

and 2., B. be polynomial matrices defined by equations

(7.38) . The S-FSTSP is equivalent to that of finding a 

polynomial matrix R such that

det(2 + BR) = c. e R - {o}, i = 1 , . . . ,k (7.39)

and I (0) | * 0, where D is a denominator polynomial matrix 

of the FSTS controller C e & (PQ) parametrized by R according 

to (7.33), i.e.

' N
C

X D0 J

D
L C J

Y -No J R

The following theorem gives necessary conditions for the 

S-FSTSP.

Theorem 7.4: Let £ = {P , ,P } be a ifk+1 family and 2 ,

B. be polynomial matrices defined by equations (7.38). If a. 

= detX. and B. , i = 1,...,k is the least invariant polynomial 

of B., then a necessary condition for the solvability of the 

S-FSTSP is that

the remainder of the division of a by B must be ai i
real nonzero constant for i = 1

Proof. Since B., ¿7. are left R [d] -coprime and the matrix

X D 1o

Y -NL o J

is unimodular (theorem 6.1), then according to (7.37) A., B.

are left R [d] -coprime. Then due to theorem (2.15)

det (2 + BP) = a + B r  (7.40)1 i i i i
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Hence, for the S-FSTSP to be solvable, it is necessary that

a + b r = c e [R - {0 } (7.41)i i i i 1 1

i.e. d (b )  ̂ a(a ) and the condition of theorem (7.4)i i
follows.

□

Remark 7.11: Equations (7.36) express in the FSTS case the

well known result given by Vidyasagar [Vid., 1], [Vid., 2],

namely that the simultaneous stabilization of k + 1 plants 

can be reduced to the simultaneous stabilization of k plants 

by a stable controller. Indeed, 2., B. can be regarded as 

the left coprime MFDs of the fictitious plants Pf. = A~lB . 

(remark 7.10), and equations (7.36) simply require that the 

family = {Pfi, . . . ,P } is simultaneously stabilized by

the polynomial (stable in FSTS sense) controller R.

□

Remark 7.12: From theorem (7.4) a necessary solvability

condition for the S-FSTSP is the existence of r e [R [d] andi
c. e [R - {0 }, such that

a + b r = ci i i i

This is always possible when b. is a unit in [R [d] (5. = 1 

without loss of generality) . In this case, r is uniquely

determined apart from its constant term.

If b. * 1, then c. is the remainder of the division of a. by 

b. and therefore r , c. are uniquely determined polynomials. 

This is certainly the case of sampled-data systems due to the 

structure of B. (equations 7.38), and the necessary condition 

of theorem (7.4) becomes very important.

□

According to remark (7.10), the S-FSTSP is reduced to the 

solution of the system of equations (7.39) for a common R. 

This problem is a multilinear problem and its solution over 

[R [d] remains open. By allowing only one column of R in

(7.39) to be free, we can linearize the solution to (7.39)
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and therefore obtain sufficient solvability conditions for 

the S-FSTSP.

Theorem 7.5: Consider the S-FSTSP described by the set of

equations (7.39) in remark (7.10), i.e.

det (2 + B R) = c e [R - {0} , i = 1, . . . ,k
i i i 1 J

and let R e [Rmxl [d] be a polynomial matrix with all its 

entries fixed polynomials apart from the entries of one 

column, e.g. the first column r , i.e.

R = r + R , R e !Rmx<1 11 [d] fixed

The S-FSTSP is reduced then to the solution of the system 

of equations

*10 + * n r i .  + ••• + S ' i . t i  -  V  1 = 1 ........... k  ( 7 - 42 )

where g , i = j = 0,1,..., Jr are known polynomials

depending on the entries of 2 , B and R, and c , i = 1, ... ,k
i i i

are real nonzero constants.

Proof. The [R [d] -unimodular matrix U = A + B R  can be
------- i i i
written as

U A B]
L i

I I

= C 2 iR r RL _i J

where R is an m x (£-1) fixed polynomial matrix. If we take 

the determinant of [/. by considering the grassmann products 

of

we will have that

2. B.] and
J

r R—l

10
g r +
^ii il

g r
im ml

= C e !R {o}, i = 1,

where g_ are polynomials depending on the entries of 2., 

and R.

B.
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Corollary 7.3: Let R be the polynomial matrix in (7.39) with 

all its entries apart from its first column r fixed 

polynomials. The S-FSTSP is reduced to the solution of the 

system

G-r^ = g (7.43)

where

Theorem (7.5) may be restated as the following corollary.

" V • srlm '
1—

«H

Ü 
• 

1O«H

tn •
i __

- ^ r - la
' • • 

to

, g  : =

g - cL 3k0 k J

, C  6 IR - { 0 }
i 1 J (7.44)

Corollary (7.3) can provide sufficient solutions for the 

S-FSTSP using the analysis of section (7.3) . If b. are not 

real constants, the c. are completely determined and equation 

(7.43) can be solved straightforward using lemma (7.1).

7.5 The S-FSTSP on Families of Vector Plants

As it was pointed out in section (7.3) the most significant 

condition for the solvability of the S-FSTSP is the space 

structure condition (SSC), i.e. the existence of partitioned 

unimodular matrices in a given rational vector space. The 

general problem associated with the SSC is still open; 

however, this problem takes a rather simple form in certain 

special cases and in particular in the case of vector plants 

which we examine in this section. From the formulation of 

the S-FSTSP we note the following.

Remark 7.13: For families and yk the solvability ofl,m 1,1 J
the S-FSTSP is reduced to the study of the following 

equations.

a. ¡f families. From equations (7.15), (7.16) we have1, m --------

T rk—C
jRkx(m+l) [d] ' r—c IRm+1 [d] , 2U e IR (7.45!
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where

r ~tn d ^ c
-HD 0 n—c _ 0

~tn d
' £c := dL c J

' 2U ==
cL -k-l k-lJ L k-lJ

c *0i (7.46)

b. ifv families. From equations (7.17), (7.18) we have
1 > 1

ilT-C k
~t

= lu' T e R
k

(1+1)xk r „ rrh + l ~[d] , ¿c e IR [d] , gu e IR (7.47)

where
r t n —0

dL 0

t n■ ■ • n_l, 1
Tk

—R 1

■ • dk-lJ
■ *c [ -c ] (7.48)

~t
2U 1 

1
0

o

■ • C k-lJ ' C * 0 1

k k
and IR denote all vectors of IR with all coordinates nonzero, o

□

k k
The families if , if contain systems with either one

l,m 1,1 2

output or one input and thus they have vector transfer 

functions. We shall refer to such families as families of 

vector plants. It is clear, that the study of the S-FSTSP 

on such families is simpler, since the partitioned unimodular 

matrices become constant vectors with all components nonzero. 

In the following, the case of many-input single-output (MISO) 

families is considered, whereas the results for the 

single-input many-output (SIMO) case are similar. The case 

of the left regular coprime families has already been 

discussed (theorem 7.1). Since we want to explore the SSC we 

shall assume throughout this section that the families are 

right regular and coprime. The following result is a 

consequence of theorem (7.2).

Theorem 7.6: Let E e 7>k be a right regular coprime
k 1, m

family. If is a L-PFM of Efc, (T*, T^) a pair of left

projector, left annihilator of T and t+ is the last row of 
Z k — i
T+, then the causal S-FSTSP is solvable on E , if and only if
1 k

there exists a q e Rk such that—u 0
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(7.49)fLq = 01— U 
A

t* (0)q * 0 (7.50)— 1 —u

If the above conditions are satisfied, then the solution is 

given by

r == [n1 d = f+a (7.51)—C —c c 1—u

□

The significance of condition (7.49) is emphasized by the 

following result.

Corollary 7.4: Let E e yk , T be a L-PFM and assume thatk l,m k
{Tfc} * 0. Necessary conditions for the S-FSTSP to be

solvable on Ê  is that either of the following equivalent 

conditions hold true.

a. If M is the column module of T , then M has atc k c
least a zero dynamical index; furthermore, if M° is

C

the submodule characterized by the zero dynamical
• • O kindices, then M n lR * 0.c 0 x

b. If r[d] = T + ••• + dnT and T = [Tfc ••• Tt]t,1 a 0 n O n
then jV ( t } n[Rk 5t 0. r1 1 o

Proof. Note that necessary condition for the solvability of 

the S-FSTSP is that f1 (d) q = 0 ,  q e lRk. But by definition 

of (d), T^(d)Tk(d) = 0 and part (a) follows. Clearly, part 

(b) expresses the condition T1 (d)g = 0.1 —u

□

Remark 7.14: Corollary (7.4) provides tools for the

computation of the vectors q e lRk which satisfy the space 

structure condition (7.49). In particular, from part (b) of 

corollary (7.4), we have the following testable condition.
A

If 1/ is a basis matrix for {t } , then the space structure 

condition is satisfied, if and only if the matrix ]/J has no 

zero rows.

□
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Remark 7.15: The space structure condition is necessary for 

the general case of the S-FSTSP for vector plant families 

where the L-PFM is neither right regular or coprime. In 

that case the equation

S*x = T+q
k— 1 1— u

has to be solved for x^, for any that satisfies the SSC.

According to theorem (7.4) and remark (7.12), in the case of 

sampled-data systems, g^ is uniquely defined up to 

multiplication by a nonzero real constant and therefore, the 

SSC can be tested straight away. Also, the causality 

conditions are always valid since all FSTS controllers are 

causal in this case.

□

7.6 Conclusions

The Simultaneous Finite Settling Time Stabilization Problem

has been addressed in this chapter and necessary and 

sufficient conditions for its solvability have been given. 

It has been shown that for the left regular and coprime 

families a solution always exists, whereas for the right 

regular case of plant families the space structure condition 

is the key one. For the case of families of vector plants 

the latter condition is readily testable using standard 

linear algebra tools.

The derivation of computationally verifiable criteria for the 

SSC in the general case is still open and under 

investigation. Alternatively, necessary or sufficient 

testable conditions for the S-FSTSP have been provided in 

section (7.4).

As it was mentioned in the introduction, the simultaneous 

stabilization problem in general, is a particular case of 

robustness problem, where the plants to be simultaneously 

stabilized are distinct and well defined. The next extension
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to that is to assume that the family of plants is an infinite 

one defined by all the plants whose transfer functions 

entries are rational functions having interval polynomials as 

numerators and denominators (see e.g. [Bar., 2], [Wei., 2]). 

Using our notion of FSTS and a two-parameter control scheme, 

Junhua Chang [Cha., 1] has been able to solve this problem 

for the FSTS case of SISO plants by reducing it to the one 

described in section (7.5) and testing mainly for the SSC of 

a finite family of plants. The general MIMO case remains 

still unsolved.
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Chapter 8

FURTHER DESIGN ASPECTS FOR FSTS: 
Optimization, Shaping, Robustness and Two-Parameter 
FSTS

8.1 Introduction

In this last chapter we consider some further performance 

requirements apart from tracking and disturbance rejection 

imposed on the family 3-(P) of FSTS controllers of a plant P. 

In particular, using the parametrization of ¡F (P) obtained in 

chapters (5) and (6), it is shown how optimal, or robust FSTS 

controllers can be constructed and finally we try to 

alleviate some of the restrictions of the one-parameter 

feedback scheme by adopting the most general linear control 

scheme of the two-parameter, or two-degrees-of-f reedom 

compensation.

Thus, the problems we deal with in this chapter are twofold. 

On one hand, we consider optimization, shaping and robustness 

FSTS problems within the framework of one-parameter unity 

feedback compensation. On the other hand, we use a two- 

parameter feedback scheme to solve problems of similar nature 

to those encountered in chapter (6).

Specifically, in the next three sections we examine:

a. I1-, l°°-optimization where among the FSTS controllers we 

select those with a minimum i1 - or £°°-norm of a certain error 

vector.

b. shaping, where error, control, or transfer function 

shaping in addition to FST performance is obtained, and

c. robustness, where robust FSTS controllers are designed 

for plants with multiplicative uncertainty.
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The common denominator for the solution of the aforementioned 

problems is that they are mainly linear, time-domain problems 

and they can all be reduced to the solution of corresponding 

finite, linear programming problems where the full advantage 

of the linear programming optimization can be exploited.

In the final section the FSTSP is defined for a two-parameter 

control scheme where a full parametrization of all the FSTS 

controllers is derived depending now on two rather than on 

one parameter and the benefit of this dependence is exploited 

for tracking and disturbance rejection purposes.

8.2 l1- and ¿“-Optimal FSTS

With the emergence of the YBK parametrization and the 

introduction of the //“-control theory, the optimization 

problem in the form of min-max optimization has attracted a 

considerable amount of attention [Cha., 2], [Fra., 1], [Fra., 

2], [Saf., 1], [Vid., 1]. Subsequently, the ^-approach, 

introduced by Vidyasagar [Vid., 4] and followed by Dahleh and 

Pearson [Dah., 1] to [Dah., 4], has complemented the

//“-optimization by handling problems that cannot be treated 

by the //“-theory.

The objective in both methods is to minimize the maximum 

amplitude of the system error when the system inputs are 

signals with bounded norm but otherwise arbitrary. In 

general the error transfer function can be written as

A . A. A A A

$ = H - UQV

A A A  A

where H, U, V are given stable rational matrices and Q is an 

arbitrary stable rational matrix. The objective of the
As

minimization problem is to minimize a suitable norm of $ with 

respect to Q. In particular, the //“-theory handles signals 

with finite energy, i.e. with bounded ¿-norm and minimizes
A. A s

the //“-norm ||$||ro of $, and the ¿-theory handles signals with 

bounded magnitude, i.e. with finite ¿“-norm and minimizes the
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^-norm ||$|| of $ [Dah., 4] . Therefore, the //“-optimization 

is effectively a frequency-domain approach where signal 

energy is most adequately represented, whereas the

^-optimization is a time-domain approach that treats 

persistent signals, i.e. signals that act more or less 

continuously with time and do not satisfy the bounded energy 

condition of the //“-theory [Dah. , 4] .

In many cases of optimal control, the interest might be 

directed to the minimization of the error amplitude for 

specified signals such as steps, ramps, sinusoids etc., and 

the ^-theory as such does not provide a solution to that 

problem. Dahleh and Pearson [Dah., 5] considered such a

problem by minimizing the amplitude of the regulated output 

due to a specific bounded input for the SISO discrete-time 

case.

In the FSTS case, the system output is of the same type as 

the system input after finite time though the system error is 

not zero. Therefore, by minimizing the i1 - or the ¿“-norm of 

the system error due to a specified input for a specific 

settling time we can have an 'approximate tracking' FSTS 

controller, in the sense of attaining minimum error in finite 

time. In this case the optimization problem is reduced to a 

finite linear programming problem, whereas in the general 

^-optimization a semi-infinite linear programming problem 

must be solved.

In the sequel, we give a brief review of some suitable norms 

for discrete-time systems and also a brief review of the 

linear programming method before we deal with the problem of 

FSTS optimization.

8.2.1 Norms for discrete-time systems

In this section we introduce various norms that define the 

problem of FST optimization and that of FST robustness that 

we treat in section (8.4) . For a detailed account of the
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norm properties given subsequently, we refer to [Des., 1] and 

[Vid., 5]. Here we follow the approach and terminology given 

in Dahleh and Pearson [Dah., 4].

Consider the set of formal power series R [[d]] with one 

indeterminate d over the field of real numbers R. Then,

00

v f = {f, } = I f.d1 e R [ [d] ] (8.1)1 ii =0

the expressions

f || = ="p { E lf,v i =0

■\ 1/p
Ip J- , 1 i p < 00 (8.2)

||f|| :II II oo = suplf. | (8.3)
i

define a norm which is denoted as the p-norm of f . The space 

of all sequences f such that IlfII is defined, i.e. IIfII < oo,ii p ii ii p
is denoted by ip.

Any sequence f e R [[d]] can represent the impulse response of 

a linear time-invariant system. It is a well-known fact 

(theorem 3.2), that the system is BIBO-stable, if and only if 

f is an l1 sequence. We recall that the series (8.1) are 

formal and d is an indeterminate and not a variable. If f is 

an l sequence, the series (8.1) are summable for some d e C 

and f may also represent a function of the complex variable

d. To distinguish the two expressions we represent the
A

function corresponding to the sequence f by f(d) , or just by

f. In system theory terms, f = if.} is the impulse response 

of a linear time-invariant system whereas f(d), which is no 

more than the z-Transform of if } with d = z 1, is the 

transfer function of the system .

Let A denote the space of all matrices with elements
A

BIBO-stable functions. Therefore, for every G e A, G = (g. .)

i = 1, ,m, j = 1,...,n is its impulse response matrix with

g. , e l1, or G e l 1 . If £°° is the space of all bounded
i J mn n

vector sequences f with a norm
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||f|| == max||fJ|| , f = ( f 1 , . . . , f n)t (8.4)
II —  II CO 11 11 00 —

j

we can regard A as the space of bounded linear time-invariantA
operators on £°°, i.e. V G e A, f € £°°, then

As

n m
A

Gf = G*f

The induced norm on A is given by

max E IlgJIj := (8.5)

Therefore, A and £°° are identified with each other with the
mn

above norm. We can generalize the previous concepts as 

follows.

A

Definition 8.1 [Des. , 1]: An operator G is said to be
A

£p-stable, l < p < oo, if and only if G is a map from lp to lp 

and the gain of the operator defined as

g (g )
p

:= sup
ll£llp*°

(8 .6)

□
A

Remark 8.1: For linear time-invariant systems, the gain of G
As

is the induced norm of G as a bounded linear operator on lp. 

In the case of lumped LTI systems, A is the space of rational 

matrices with poles outside the closed unit disc and l1 is
mn

the set IR+ (d) of sequential matrices with entries stable
mn

sequences. In this case, according to the analysis in
As

chapter (2), these two spaces are isomorphic. Thus, G(d) and 

G represent the same algebraic entities and may not be 

distinguished from each other. From the definition of the 

gain of the operator we have

gro(G) = || G || ̂  (8.7)

256



g2(G) = || G || ̂ (8.8)

□
We conclude this section with the following theorem.

Theorem 8.1 [Vid., 5]: Given a lumped linear time-invariant
A

system described by the transfer function G, then the 

following statements are equivalent.
A

1. G is £°°-stable.
A

2. G is ^-stable.
A

3. G is £p-stable for all p e [1 oo] .
A

4. G e A.
A

Furthermore, the f°°-induced norm on G bounds from above all 

other £p-induced norms, or equivalently

A A A

g (G) s g (G) = IIGil . (8.9)p oo 11 " A

□

8.2.2 A brief review of the linear programming method

As it has already been mentioned in the introduction of this 

chapter, both optimal and robust FSTS reduce to the solution 

of a finite linear program. In this section we give the 

fundamentals of the finite linear programming optimization.

A linear program (LP), is an optimization problem with linear 

objective function and linear constraints. If the number of 

variables and the number of constraints is finite, then the 

linear program is called a finite linear program. In this 

work we deal only with finite linear programs and so we will 

subsequently refer to them as linear programs. In 1947, D.G. 

Dantzing [Dan., 1] discovered the simplex algorithm for the 

solution of such problems. Its elegance and completeness 

make the LP the most appealing of all optimization 

techniques. The main reasons for the popularity of the 

simplex method seem to be its extreme efficiency and its
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ability to provide a complete solution to the optimization 

problem. As well as the optimal solution, the simplex 

algorithm contains useful information about the sensitivity 

of the solution to data variations, crucial when these data 

are known only imprecisely.

In the past 25 years, there has been a movement towards an 

abstract approach to optimization which has resulted to a 

better understanding of the optimization theory. A landmark 

in this area is the work of D.G. Luenberger [Lue., 1] and the 

most recent work is that of E.J. Anderson and P. Nash [And., 

1] both encompassing finite and infinite dimensional 

problems. We give now the definition of a linear program.

Let A be a linear map from the linear vector space X to the 

linear vector space Z, b an element of Z and let c be a 

linear functional on X. The linear program is

LP: minimize <x,c >

subject to Ax = b,

x e X, x ^ 0.

(8 .10)

In the case of real linear vector spaces the LP (8.10) 

becomes

LP: minimize £ X

subject to Ax = b,

x e Rn, x  ̂ 0

( 8 . 11 )

where c e IRn, b e ¡Rm and the m x n matrix A are given. The 

positivity constraint x £ 0 means that x. =: 0, i = 1, . . . ,n. 

The linear program described by equations (8.11) will be 

referred to as standard form LP.

Remark 8.2: LP (8.11) is an equality-constrained program.

In the case of an inequality-constrained program we can 

transform the inequality constraints to equality form by 

adding surplus and/or slack variables. Thus the constraint
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Ax  ̂ b becomes Ax - z = b, z ^ O ,  z being the surplus 

variables, and the constraint Ax  ̂b becomes Ax + z = b, z  ̂

0, z being the slack variables.

□

Definition 8.2: For any linear program LP, we call x

feasible, if x satisfies the constraints of LP, including any 

positivity constraints. The set of all feasible solutions of 

LP is denoted by F(LP), or just F, i.e.

F(LP) = { x: Ax = b, x  ̂ 0 }

A program for which at least one feasible solution exists is 

called consistent and a feasible solution that minimizes the 

objective function is called optimal.

□

Definition 8.3: A solution x to the constraints Ax = b of

the LP is called basic, if the number of non-zero components 

of x is no greater than the rank of j}. x_ is called non-

degenerate, if this number is equal to the rank of A, and 

degenerate otherwise.

□

Definition 8.4: A basic solution to the LP, which is also

feasible is called a basic feasible solution.

□

We can state now the fundamental theorem of linear 

programming.

Theorem 8.2 [Lue., 2] (The Fundamental Theorem of LP): Given 

a linear program LP in standard form, then whenever LP has an 

optimal solution one can be found among the basic feasible 

solutions of it.

□

We conclude this section by considering the case of free 

variables and the treatment of absolute values within the LP 

framework.
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Remark 8.3: If one or more of the unknowns in the standard

LP form is unconstrained in sign, the problem can be 

transformed to standard form as follows. Suppose that the 

restriction x a 0 is not present. We can then write

= x* - x~ , x*, x~ £ 0 (8.12)

If we substitute x* - x~ for xj everywhere in (8.11), the 

linearity of the problem is preserved and all the variables 

satisfy the nonnegative constrains. The problem is expressed 

in terms of the n + 1 variables x+, x~, x , .. ., x . There

is obviously a certain degree of redundancy introduced by

(8.12). However, this does not hinder the simplex method of 

solution. Indeed, according to definition of basic variables 

and theorem (8.2), we can always keep either x* or x” out of 

the basic solution when the other one appears in it. Hence, 

at least one of x*, x can be always zero and we can write 

the absolute value of xl

lx | = x* + x~ (8.13)l i l

We will use these useful comments extensively in the 

following sections.

□

8.2.3 Definition and solution of the optimal FSTS

The whole FSTS approach encompasses the design of a unity 

feedback system that guarantees finite settling time 

behaviour for step inputs but by no means tracks them or is 

time-optimal. In chapter (6) we treated the case of tracking 

and/or disturbance rejection of a family of signals and also 

we proposed time-optimal controllers within the family 9 (P) 

of the FSTS controllers. Here, we follow a different 

approach. Instead of seeking perfect tracking, we select the 

FSTS controller that minimizes the f'-norm of the steady 

state error, or the £°°-norm of a certain error vector; this
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may result of course in perfect tracking. We consider the 

case of step inputs but any other fixed bounded input can be 

treated similarly.

Consider the discrete linear unity feedback system of figure

(8.1), where P = N D 1 = D_1W e Rlxm(d), C = N D_1 = D^N e
P P P P  c c c c

IRmx {d) and (N , D ) , {D ,N ) , {N , D ) , (D ,N ) are pairs of
P P  P P  c c  c c

coprime polynomial matrices.

u—2

u—l

Figure (8.1): The MIMO unity feedback configuration

If the system is FST stabilized, then the error transfer 

function from u to e is
— l — l

H  (P,C) = D  D (8.14)
11 c p

Suppose the scalar degrees of the polynomial matrices are 

d {D ) = v and 5 (D ) = n. Then D  , D may be written as
s p s c  p c

D = D  + D  d +■■■+ D  dU (8.15)
p pO pi pV

D  = D  + D  d +■■ ■+ D  dn (8.16)
c cO cl cn

The error due to a step at the input ui of the form

00

u = {0; u , u , . . . } = Y u d1, u e R1 (8.17)
i =0

may be derived as follows. First we calculate the vector

u = D u (8.18)
— p p— l
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This gives

, . ,V ,V+1 .u = u + u d +•••+ u (d + d +■■■)
— p — pO — pi — pi/7

(8.19)

where

u = I D u , k = 0,...,v
— pk pi— c

i =0
(8 .20 )

Then according to (8.14) and (8.18)

e—l D u
c— p

or e
— lk

Y D u
L‘ ci—  1 

i + j = k Pj
(8 .21 )

Therefore,

e = D u
— 10 cO—pO

e = D u + D u—li c0— p 1 c 1 — pO

e II S + D +•••+— Ik cO cl

18.22)

cn — pi/7

Therefore, e reaches its steady state value in at most n + v 

steps. For the rest of the analysis we define the following 

error vectors.

and

E : —i [
te—10

t . t
e ]
— l(n+l>)

e
— 1, ss

e
— 1 (n+V7)

(D + D
CO Cl D ) u

cn — pV

(8.23)

(8.24)

We can now consider the following optimization problems.

a. Optimization Problem (I), l1-minimization. Find an FSTS

controller that minimizes the ^-norm lie || of the
11 — 1, ss 111

steady state error for a given settling time.

b. Optimization Problem (II), ¿^-minimization. Find an FSTS 

controller that minimizes the i°°-norm ||E || of the error 

for a given settling time.
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Let Lp = [N D ] be a left composite matrix of the plant, R 

= [N̂  Dj be a right composite matrix of any FSTS controller

with 8 (L ) = v and 8 (P ) = k and k  ̂ k where k is the
s f s o  min min

degree of any minimum column degree solution of the 

Diophantine equation N X + D Y = I . Then, for every k =
p p i

8 (P_) z k , the solution of the Diophantine equation
s C min

N^X + D Y  = is given by

T N — I
CO 1

D 0
cO

.

N 0
ck

D 0
ck J

(8.25)

where Tp k+i is the left Toeplitz plant matrix (chapter 6) . 

If e1 is the ith column of the unity matrix I and n , d
—  1 — cji — cji

is the ith column 

(8.25) becomes

of N . and D . respectively, equation
cj cj

diagiT*
3 1 P,k+l

• ■ ,T
P, k+

n _ r i -i e—c01
d 0—c01 .
■

ln e—ckl
d 0—ckl

(8.26)

Rearranging the order of the solution vector in (8.26), i.e. 

reordering the columns of the block diagonal matrix in 

(8.26), we have

(8.27)

where
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n—c01 ' 5 = ' d—c01 ' 1̂ =
r in e

n—ell d—ell 0

n—c(k-l)l d—c(k-l) 1
le

nL- —ckl -J d—ckl o

The steady state error e is given by 

a known vector according to (8.20). If 

of D , equation (8.24) becomes
Cj

(8.24) where u is
t .r is the ith row

— cji

1, ssl

1, ssl

U~pV
tu-pv

0

0

t t
u • • • u
— pV — pV

<—  k+ 1 --»

r—c01
r
— ell

r
— ckl

r—c01

-cl 1

r
— ckl

(8.29)

By rearranging the order of the entries of the solution 

vector in (8.29), we have

A z
2 1 —

e = 0
— l,ss —

(8.30)

Also, according to definition of Ê  in (8.23) and to 

equations (8.22) E , like e , can be written as
— 1 — 1, ss

E = A z 
—1 2 1 —

(8.31)

where A^ is a known real matrix and z is given by [8.28]

We can give now the solution to the two optimization 

problems OP(I) and OP(II).
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left IR [d] -coprime MFD of the plant transfer function and C = 

Wc-D 1 e [Rmxl (d) be a right IR [d]-coprime MFD of any FSTS 

controller. Let also Lp = [N D ] be the left composite 

matrix of the plant and R = [Nl D^]t be the right composite
L/ C  C

matrix of the controller with 3 (L„) = v and 3 (i?_) = k.s y s c
Then, there always exists an FSTS controller such that 

lie II = minimum, if k  ̂ k where k is the degree of
l,ss"l min min a

any minimum column degree solution of the Diophantine 

equation N X + D Y = I .
p p i

Theorem 8.3 (l1-Optimal FSTS): Let P = D_1N e IRlxm(d) be a
p p

Proof. For every k a k , equations (8.27) qive
------- min

solution to the FSTS problem. Combining equations (8.27)

(8.30) together with the minimization of the {'-norm of 

we end up to the following problem.

the

and

e
— 1, ss

minimize

subject to A A 0 Z b
li 12 _ — l

A 0 -I y 0
21 1 J e

L — 1, s s J
:= A := X := b

(8.32)

Since x is not necessarily positive, (8.32) reduces to the 

following linear program (see remark 8.3).

l
minimize Y (e+ + e” )

1,ssi 1 ,ssi
i = 1

(8.33)

subject to [ A -A ] x

x~

□

Theorem 8.4 (i°°-Optimal FSTS): Let P = zT'n  € [Rlxm(d) be a
p p

left IR [d]-coprime MFD of the plant transfer function and C = 

e IRmxl (d) be a right IR [d] -coprime MFD of any FSTS 

controller. Let also Lp = [N D ] be the left composite 

matrix of the plant and R = [Nl D^]t be the right composite
L/ C  C

265



matrix of the controller with 3 (L„) = v and 3 (R_) = k.s y s c
Then, there always exists an FSTS controller such that \\E\\m 

= minimum, if k  ̂ k where k is the deqree of any
min min

minimum column degree solution of the Diophantine equation 

N X + D Y = I .

Proof. For every k a k the solution of the Diophantine
-------  min

equation N^X + D^Y = can be expressed by the system of

equations (8.27). Since ||E ||w = max \E \ , i = l,...,l{k + v) 

the problem in consideration can be described as

minimize max|E
1 i

subject to r &
1 1  

A

A 0 1 12 z r b i
— i

AL 2 1 0 -I1 J
y 0
E

L  _ i  J

(8.34)

where A^, A^, z, y, are as in theorem (8.3) and A is

given by equation (8.31) . The above problem can be reduced 

to a standard linear program as follows (see also Spath 

[Spa . , 1] ) . Let

max|Ei. | = r e [R^ (8.35)

Then -r £ E  s r, i = 1, ,l(k + v) , and if the ith row
A 11 A.

of A denoted by a , we have from (8.33)
21 —211

A. A

£2i.z + r i 0 and -â  .z + r  ̂ 0 (8.36)

Hence, by introducing surplus variables ^  > 0, _̂2 - 0, and 

denoting by i the column vector with ones everywhere, 

problem (8.34) becomes

minimize r

subject to li A 1 2 0 0 0
A

21 0 iC -J1 0
A

-A■ 21 0 ic 0 -I

z

y
r

u—i
u—2

jb —i

O

(8.37)
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Since z, y are not necessarily positive, we have finally the 

following linear program.

minimize r

subject to

A
l  l

A

-An
A

A
1 2

-A
1 2

0 0 0

A
2 1 

A

-A
21

A

0 0 ic -I
l

0

-A
2  1

A21 0 0 ic 0 -I
1

z

z

y

y

r

u 
— 1
u—2

(8.38)

□

Remark 8.4: The absolute minimum of the ^-norm lie || of
11 —  1, ss 111

the steady state error is clearly zero, which corresponds to 

perfect tracking. Therefore, if for k = d (R„) there exists
s 0

a tracking FSTS controller, this will be obtained as solution 

to the optimization problem (8.33) of theorem (8.3). The 

solution to this problem may not be unique and this may 

create convergence problems to the optimization algorithm. 

One way to aleviate these problems is to introduce more 

constraints to the LP problem as it will be demonstrated in 

the following section.

□

8.3 Error, Control and Transfer Function Shaping

In the previous section we rigorously demonstrated how two 

optimization problems, namely the minimization of the f'-norm 

of the steady state error and the minimization of the maximum 

error amplitude, can be transformed to normal finite linear 

programs. The essence of this transformation is the 

linearity of the signals involved with respect to controller 

parameters. We proved for instance, that the error signal

e = D D u (8.39)
— 1 c p— 1
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can be written as

i?! = ¿2iz (8.40)

A

where z is the vector of parameters of D (see 8.28), A is
c 21

a known real matrix and is a step input of the form of 

(8.17). Similarly, the control signal

e = N D u (8.41)
— 2 c p— 1

and the transfer function

W (P,C) = I - D D (8.42)
21 c p

from ui to y , can be expressed in the form of (8.40), where 

z represents the appropriate parameter vector. It is then 

natural , within the LP framework, to impose further shaping 

constraints on the error and/or the control signals, or the 

closed-loop transfer function (see also the recent work by 

McDonald and Pearson [McD., 1]).

If for a matrix A we denote by |.A| the matrix 

the absolute values of the elements of A, and 

matrices A, B of equal dimensions A  ̂B means 

we can define the following problems.

with

for
<

ij

elements

any two

b , then 
i j

a. Error Shaping Problem. Find an FSTS controller that

minimizes lie II , or II£7 II and shapes the error signal
11 —  l,ss"l * 11 — 111 00 ^ 3

£i due to a step input u , for a given settling time.

b. Control Shaping Problem. Find an FSTS controller that

minimizes lie II , or II£7 || and shapes the control

signal u2 due to a step input u , for a given settling

time.

c. Transfer Function Shaping Problem. Find an FSTS

controller that minimizes ||e II , or ||£ || and shapes
11 —  l,ssnl 11 — 1 1100 r

the transfer function W^(P,C) for a given settling time.

The following theorems give the answers to the aforementioned 

problems. The proofs are omitted since they follow in an

identical manner from theorems (8.3) and (8.4).
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left [R [d] -coprime MFD of the plant transfer function and C = 

AT D 1 e [Rmxl (d) be a right [R [d] -coprime MFD of any FSTS 

controller. Let also = [N D ] be the left composite
F  p p

matrix of the plant and P_ = [W1 Dt]t be the right composite
O  c c

matrix of the controller with 8 (L„) = v and 3 (P ) = k.
s F  s C

Then, the problem of minimizing the r-norm of e , or the 
00 —1» ss 

i  -norm of and shaping the error e as

Theorem 8.5 (Error Shaping): Let P = D_1N e Rlxm(d) be a
p p

I e I s e , e given
— li — i — i

can be reduced to a linear program if k  ̂ k , where k is
min min

the degree of any minimum column degree solution of the 

Diophantine equation N X  + D Y  = .

□

Theorem 8.6 (Control Shaping): Let P = D 1N e [Rlxm(d) be a
p p

left [R [d] -coprime MFD of the plant transfer function and C = 

N^D^1 e [Rmxl (d) be a right [R [d] -coprime MFD of any FSTS 

controller. Let also Lp = [N D ] be the left composite 

matrix of the plant and R„ = [N1 D^]1 be the right composite 

matrix of the controller with 5 (Ln) = v and S (P_) = k.
s r s C

Then, the problem of minimizing the r-norm of e , or the
— l,ss

l -norm of E^ and shaping the control signal e a s

I e I s <p , m given
—2 i  —i —1

can be reduced to a linear program if k  ̂ k , where k is
min min

the degree of any minimum column degree solution of the 

Diophantine equation N X  + D Y = I j.

□

Theorem 8.7 (Transfer Function Shaping): Let P = D_1N e
lxm P P

[R (d) be a left [R [d]-coprime MFD of the plant transfer 

function and C = e Kmxl (d) be a right R [d] -coprime MFD

of any FSTS controller. Let also = [N D ] be the left
F  P P

composite matrix of the plant and R = [Nl Dt] b e  the right

composite matrix of the controller with S (L„) = v and 8 (P_)
s F  s C

= k. Then, the problem of minimizing the ¿-norm of e , or—1 , SS
the {“-norm of E and

— l
shaping the closed-loop transfer

function ]/J21 (P,C) as
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\W {P,C)| < f , $ given

can be reduced to a linear program if k  ̂ k , where K is
min min

the degree of any minimum column degree solution of the 

Diophantine equation N X  + D Y = I ̂.

□

Remark 8.5: Theorems (8.5) to (8.7) state that the shaping

problem can be reduced to a linear program. The solvability 

of the shaping problem subject to the given constraints, 

comes from the solvability of the corresponding linear 

program. To this extent, the completeness of the solution of 

the simplex method, including the sensitivity analysis due to 

variation in the shaping constraints, can be fully exploited 

[And. , 1] , [Dan. , 1] .

□

8.4 Robust FSTS

It is clear from the analysis in chapters (5) and (6) , that 

the main feature of FST stabilization is the placement of the 

poles of the closed-loop d-transfer function at infinity, or 

the eigenvalues of the closed-loop system at zero. This 

makes the FSTS design very sensitive to plant uncertainty. A 

naive selection of R in the case of tracking for example (see 

theorem 6.11), may result as a system with poor performance 

against plant parameter variations and model inaccuracy. 

Since R is the free parameter that specifies the FSTS 

controller, and for the case of tracking R is specified not 

uniquely by the solution of the equation

QD + N RD = YD (8.43)
r P P P

we can select R for robust performance.

Zhao and Kimura [Zha., 1] to [Zha., 4] have considered the 

problem of robust output deadbeat control, as opposed to FST 

control. In this section, making full use of the norm 

properties of section (8.2.1), we introduce a different and
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more efficient robustness index to that used by Zhao and 

Kimura. This enables us to exploit the linearity of the 

formula (8.43) and to reduce the whole robustness problem to 

a linear program. In the sequel, we assume that the nominal 

plant perfectly tracks in FST sense, inputs with known 

dynamics and bounded ¿“-norm, and that it is subjected to 

multiplicative perturbations.

Consider the unity feedback scheme of figure (8.1) and let Pq 

denote the transfer function of the nominal plant and P the 

dynamics of the actual plant. Then, under multiplicative 

perturbation we may have

P - P = AP-P, AP ¿“-stable and g (AP) = p (8.44)
0 oo

The nominal closed-loop transfer function from u to y is
— 1 —2

Go := ^2i(Po'C) = PoC(I + PoC)~1 (8.45)

and the perturbed closed-loop transfer function is

G := W {P,C) = PC (I + PC)"1 (8.46)

After straightforward manipulation we have

G - G = AG-Go
where

AG = (I - G ) APo

Therefore

g (AG)  ̂g (I - G )g (AP)
p p o

(8.47)

(8.48)

(8.49)

and since the induced ¿“-norm bounds from above all the other 

induced norms we may choose as robustness index the ¿“-norm

of I - G , i . e .o
p := g J I  - Go) (8.50)

In the case of FST stabilization, G = Io
becomes

p = g {D D )
00 C p

D D , and (8.50)
c p

(8.51)

The following theorem is the solution to robust FSTS.
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Theorem 8.8 (Robust FSTS): Consider the feedback configu-

ration of figure (8.1) and let P = D~lN = N D 1 e [Rlxm(d)
0 pO pO pO pO

C = e [Rmxl (d) be left and right !R [d] -coprime

MFDs of the nominal plant and controller respectively. If u 

= D h , IIlt II < oo is a left MFD of the input to be tracked, 

then the robust FSTS to multiplicative perturbations can be 

described by the following linear program

minimize g ( {Y - N R) D ) = || [Y - N R)D ||
00 p p 11 p p 11 1

(8.52)
subject to QD + N RD = YD

r P P P

for some particular k = d (P) for which the equation
S

QD + N RD = YD (8.53)
r P P p

has a solution, and Y is a particular solution of the 

equation N X + D Y = I .
p p i

Proof. If (X,y) is a particular solution of the equation

N X + D Y = I
p p i

then the family of FSTS controllers that track the input u = 

D^n^, is given by

N = X + DR, D = Y - N R  (8.54)
c p c  p

where R satisfies eqn. (8.53) . For robustness, if k = d (J?)
S

p, ■■= g (D D ) = g ( (y - N R) D ) = || (Y - N R) D ||
k o o c p  oo P P  p p  l

must be minimum. This results to the optimization problem 

(8.52) which is a linear program according to the analysis of 

section (8.2.3) .

□

Remark 8.6: Due to the nature of the linear programming, the 
. . *

optimal solution p for a particular k = 8 (R) is a

suboptimal solution to the optimization problem with l = 

(R) > k. Therefore, is a monotonically decreasing
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function of Ji, i.e.
* < *

! i k

Hence, we can improve the robustness performance of the 

closed-loop system by increasing the settling time of its 

response. This is also true for the optimal FSTS and the 

shaping problems of sections (8.2) and (8.3).

□

Remark 8.7: The controller of theorem (8.8) does not

necessarily guarantee stability of the perturbed closed-loop 

transfer function. Indeed, from equation (8.47) we have that

G = (I - AG)_1Go

For stability (I - AG) 1 must be stable, and this is possible 

( [Des . , 1] ) , if

g (AG) = g ((J - G ) AP) < 1 

Therefore, a k = d (R) must be chosen such that
s

gro(I - Gq) = minimum and g^ ( (I - Gq) AP) < 1

□

Remark 8.8: If the plant is not strictly causal, the

solution to the optimal, or robust FSTS does not guarantee a 

causal FSTS controller. Nevertheless, according to remark

(6.2) a suboptimal causal FSTS controller can be found such 

that the objective function is as close to optimal as 

desired.

□

8.5 Two-Parameter FSTS

The FSTS analysis and design up to now, was based on the 

unity, or one-parameter feedback scheme of figure (8.1). 

Under this scheme, the FSTS controllers can be tuned with 

respect to one free parameter either R or S (theorem 6.1) . 

This gives a considerable degree of freedom for accomplishing
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further performance requirements like tracking, disturbance 

rejection, optimization, or robustness but puts some limits 

in the case of multitask control which may result to be 

severe and to poor performance. For example, in the case of 

both tracking and disturbance rejection, a 'single' parameter 

R e M (IR [d] ) determines both performance requirements.

In this section the unity feedback system is replaced by a 

more general scheme which employs a controller which is 

usually referred to as two-degrees-of-freedom, or two-

parameter controller. This controller performs the most 

general linear time-invariant scheme, that is

£ = C^u - C2y , C, C e M(R°(d)) (8.55)

and is shown in figure (8.2).

Figure (8.2): Infeasible implementation of
a two-parameter controller

The implementation of figure (8.2) does not make sense for

reasons of internal stability unless is stable. A

feasible implementation of the two-parameter controller is

shown in figure (8.3) where we assume that C = [C C ] and
1 2

(¿c, [W W ]) is a left [R [d] -coprime MFD of C. For a more 

extensive discussion of the two-parameter controller one is 

referred to Vidyasagar [Vid., 1] and references therein.
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Figure (8.3): Feasible implementation of
a two-parameter controller

8.5.1 Definition and solution of the two-parameter FSTSP

In this section we define the FSTS problem under the two- 

parameter control scheme. The results are generalizations of 

those of chapter (6), or may be derived in a manner similar 

to that given by Vidyasagar [Vid., 1].

Definition 8.5: Consider the feedback scheme of figure

(8.3) . The closed-loop system exhibits an FST response, if 

for a step change to any of the inputs , û , or u all

outputs y , y2 settle to a new steady state in finite time.

□

Lemma 8.1: The closed-loop system of figure (8.3) exhibits

an FST response if and only if the transfer function W{P,C) 

from u = [û  u2 u^]t to y = [ŷ  y^]1, is a polynomial matrix

in d .

Proof. According to definition (8.5), y , j = 1,2, must 

exhibit an FST response to a step input at u. , i = 1,2,3.

This holds true, if and only if the transfer function from u. 

to y , i = 1,2,3, j = 1,2, is polynomial in d (lemma 5.1), 

i.e., if W(P,C) is a polynomial matrix in d.

□
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Theorem 8.9: Consider the two-parameter feedback scheme of

figure (8.3) and let P e [Rlxm (d) be a given plant transfer 

function. Suppose (N ,D ) , (D ,N ) are any right, left R [d] -
p p p p

coprime MFDs of P, (D , [N W ]) is a left [R [d]-coprime MFD

of C = [Ĉ  Ĉ ] , and that X, Y satisfy the Diophantine

equation XN + YD = J. Then the closed-loop system of
p p

figure (8.3) is FST-stable, if and only if

A -.= N N + D D  e I7(R[d]) (8.56)
c2 p c p

Moreover, the set ^ (P) of all causal two-parameter FSTS 

controllers is given by

3= (P) = { (?-SW ) 1 [T X+SD ] , S, T e M (R [d] ) and
2 P p

|?(0)-S(0)W (0)1 M  if S (0)  ̂ 0}
p p

(8.57)

The set of all transfer matrices W(P,C) is of the form

W(P,C)
D T
p

N T
p

D (Y-SN )-I
p p

N (Y-SN )
p p

-D (X-SD )
p p

-N (X - S D  )
p p J

(8.58)

Proof. The tranfer function IV (P, O) can be written as

W{P,C) = N D_1Nr 1

where

J 0 I -D 0 -J 0

, D = p
' *1 =

0 N b N N N 0 N
p J u c c2 p J L cl c2 J

with {Nr,D) right R [d] -coprime and (D,N ) left R [d]-coprime 

[Vid., 1]. For W(P,C) to be polynomial, D must be unimodular 

in R[d]. This is true, if and only if

A := N N + D D e L7(R [d] ) , [Vid. , 1]
c2 p c p

The parametrization of the family of FSTS controllers is 

derived in a straightforward manner as a solution of the 

Diophantine equation (8.56).
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Remark 8.9: Equation (8.58) shows that W{P,C) depends on two 

free parameters S and T and this is the reason that the FSTS 

controller of figure (8.3) is called a two-parameter 

controller as opposed to the one-parameter controller of 

figure (8.1). Thus the two-parameter scheme offers greater 

flexibility in that the transfer matrix from u to the—l
outputs can be adjusted independently from that between 

and the outputs. This is not so, in the case of the unity 

feedback configuration. This flexibility is illustrated in 

the next section where we design FSTS controllers for 

tracking and disturbance rejection.

□

8.5.2 Two-parameter FSTS for tracking 

and disturbance rejection

In this section we show how we can exploit the flexibility of 

the two-parameter FSTS controllers in order to achieve 

tracking and disturbance rejection of a family of signals in 

FST sense, i.e. the performance requirements are accomplished 

in finite time. The proofs of the results are similar to the 

one-parameter case (theorems (6.11) and (6.12)) and are 

omitted.

Theorem 8.10 (Two-Parameter FST Tracking): Let

FST-stable pair in the feedback system of figure 

be expressed by a left IR [d] -coprime MFD as u = 

tracks the reference signal in FST sense, 

if there are T, W e M (IR [d] ) such that

N T + WD = I (8.59)
P r

where all the matrices involved apart from W are as in 

theorem (8.9).

□

Theorem 8.11 (Two-Parameter FST Disturbance Rejection): Let

(P,C) be an FST-stable pair in the feedback system of figure

(8.3) and u be expressed by a left IR [d] -coprime MFD as u2 2

(P,C) be an

(8.3) and u —i
iflh . Then
r — r

if and only
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D 1h . Then u is rejected at the output y in FST sense, if 

and only if there are S, Vi e M{R[d]) such that

WD + N SN = N Y (8.60)
d p p p

where all the matrices involved apart from W are as in 

theorem (8.9).

□

It is clear from theorems (8.10) and (8.11), that FST 

tracking and disturbance rejection can be acheived 

independently of each other by tuning the two free parameters 

T and S e Af ([R [cZ] ) of the FSTS controller. This is the main 

advantage of the two-parameter-controllers over the one- 

parameter controllers.

8.6 Conclusions

In this final chapter we considered some advanced design 

problems for FST stabilization. On one hand we dealt with 

the problems of optimization, shaping and robustness within 

the framework of the unity feedback configuration used 

throughout this thesis. On the other hand we introduced more 

flexibility in the FST stabilization problem by using a two- 

parameter control scheme.

In particular, we demonstrated how within the unity feedback 

scheme the problems of

minimization of the ('-norm of the steady state error

minimization of the £°°-norm of the error

shaping of the error, control or transfer function

robustness to multiplicative plant perturbations

can be transformed to finite linear programs where all the 

benefits (effectiveness, efficiency and ability to provide 

complete solution to the optimization problem) of the simplex 

method can be exploited.
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In the final section we have replaced the unity feedback 

scheme by a two-parameter control scheme for FSTS purposes. 

Under this more flexible configuration, the FSTS problem was 

redefined and the parametrization of the family ^ (P) of all 

causal two-parameter FSTS controllers was derived. The 

flexibility of the two-degrees-of freedom FSTS compensation 

was further demonstrated in the case of FST tracking and 

disturbance rejection where tracking and disturbance 

rejection can be affected independently by two distinct 

parameters T and S e M[\R[d]) .

Further problems like strong stabilization, simultaneous 

stabilization, optimization and robustness can be treated in 

an analogous way to the one-parameter case. There are 

indications that the minimal design problem can be solved 

completely in the case of two-parameter compensation, and 

this is a subject of further research.
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CONCLUSIONS



Chapter 9

CONCLUSIONS

The motivation for this thesis was to provide a 

generalization and a unification of the deadbeat control 

problem. Deadbeat response is a fascinating and unique 

feature of linear discrete-time systems and has intrigued 

many engineers over the last forty years. Most of the work 

in deadbeat control has been in the state-space set up and 

focused on a variety of versions of deadbeat, using constant 

state feedback or state estimation and then constant feedback 

of the estimated states. By reassessing Mullis's work [Mul., 

1] on discrete time-optimal control, we were able to 

generalize to the MIMO case Kalman's theorem [Kal., 2] about 

the inevitability of the use of constant state feedback and 

to give a complete parametrization of the family of state 

deadbeat regulators. On the other hand, the transfer 

function approach has by its nature, the advantages of 

parametrization, as it has been shown by Kucera's work based 

on polynomial equations, but again his work was focused on 

deadbeat and thus examined special type of control problems.

In this thesis, we have adopted the viewpoint that deadbeat 

response is a special case of the finite settling time 

stabilization problem. An algebraic formulation of this 

problem, which also guarantees internal finite settling time 

behaviour provides a unification of existing results. 

Moreover, the natural parametrization of solutions associated 

with polynomial matrix equations permits McMillan degree 

parametrizations, shows links with deadbeat and minimum 

McMillan degree solutions and provides a clear treatment for 

a variety of performance related FSTS problems.
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Indeed, the algebraic (polynomial equation) approach has been 

extremely beneficial and powerful for a unifying treatment of 

the FSTS problem. The review and refinement of the concept 

of sequences (formal series) in one indeterminate d over [R, 

and the isomorphism between them and the corresponding series 

expansions of functions, has provided a better understanding 

of the nature of the input-output description of discrete 

linear systems by enabling us to treat the impulse responses 

and transfer functions as identical algebraic objects - a 

feature which has no counterpart in the continuous-time case.

This mathematical framework within the one-parameter (unity) 

feedback compensation and the requirement that both the error 

and control sequences settle to their steady state values in 

finite time for a step change to any of the system inputs, 

leads to the solution of a polynomial matrix Diophantine 

equation of the form AX + BY = I, which guarantees not only 

internal stability but internal FSTS - both features missing 

in many of the previouly tried approaches. In addition, the 

reduction of the FSTS problem to the solution of a unilateral 

Diophantine equation, naturally results in a Youla-Bongiorno- 

Kucera parametrization of the family of all FSTS controllers 

in an affine manner with respect to a ’free' polynomial 

matrix.

It is worth noting, that the FSTS problem can be considered 

as a special case of stabilization where the ring of 

polynomials in d replaces IRDH00 in Vidyasagar's approach [Vid., 

1]. The forbidden region for stability becomes the entire 

complex plane and consequently the stability region reduces 

to the point at infinity. Although the set of unstable 

points is not closed (essential in Vidyasagar's treatment), 

it does not lead to convergence problems if the norm induced 

by the disc algebra A is used. This enabled us to derive
S

the conditions for strong FSTS and to prove that the well 

known parity interlacing property [Vid., 1], [You., 2] is 

valid in the FSTS case as well, where the domains of 

stability of the controller (exterior of ID [0,1)) and of the 

feedback system (point at infinity) differ from each other.

281



A further reduction of the solution of the polynomial matrix 

Diophantine equation to a linear algebra problem over [R 

together with the YBK parametrization of FSTS controllers 

leads to the characterization of the solutions according to 

column/row degrees. This enables us to obtain upper and 

lower bounds of the minimum McMillan degree FSTS controllers 

and to characterize the family of FSTS controllers according 

to upper and lower bounds of their McMillan degrees. 

Moreover, the state deadbeat regulation problem comes 

naturally as a special case of the FSTS problem (minimum 

column complexity solutions) , and a complete parametrization 

of the family of all deadbeat regulators follows readily. In 

addition, within the same FSTS framework, further performance 

criteria and design constraints may be imposed such as, 

tracking and/or disturbance rejection, partial assignment of 

controller dynamics, ripple-free response, l1-, f°°-optimiza- 

tion, shaping, and robustness to parameter variations.

In the cases of optimization, shaping, and robustness, the 

problems are reduced to finite linear programming problems 

with the finite settling time serving as a design parameter 

and with the optimal/robust controller being the outcome of 

the solution. This approach differs distinctively from the 

approaches adopted so far, in the following manner.

In the case of the state-space set up (section 4.3.4), the 

linear programming solutions provide the optimum control 

sequence (and not the controller parameters) , and therefore 

they constitute an open-loop control strategy. In order to 

obtain a closed-loop control law the linear programming 

optimization has to be performed on-line for each sampling 

instance using the results of the previous run as initial 

conditions. This clearly leads to a considerably costly 

control strategy and to the need for a search of 

time-efficient linear programming methods.

In the case of the algebraic approach [Dah., 1] to [Dal., 4], 

the YBK parametrization over the ring [R+ (d) of stable 

sequences leads to a semi-infinite linear program. This
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semi-infinite linear programming problem is further reduced 

to a finite linear program by truncation, but the truncating 

parameter is not directly related to a performance criterion 

like the finite settling time.

Finally, within the unity feedback FSTS framework, the 

Simultaneous-FSTS problem has been formulated and

computationally verifiable necessary and sufficient

conditions for the case of families of vector plants have 

been given. It has been shown that the so-called Space 

Structure Condition (SSC) is the most important condition to 

be met for the solution of the MIMO S-FSTS problem. The 

existence of testable criteria for the SSC is still an open 

issue. Alternatively, necessary or sufficient testable 

conditions for the solution of the general S-FSTS problem 

have been provided.

This work presented a coherent approach for the solution of 

the Total FSTS problem and a unifying framework for the 

solution of a complete variety of FSTS related problems. 

However, there are two areas, one of theoretical and the 

other of numerical nature, that are in need of further 

investigation.

In particular, the MIMO minimal FSTS design problem, the 

parametrization of MIMO FSTS controllers according to 

McMillan degree, and the derivation of computationally 

verifiable criteria for the SSC in the general S-FSTS case 

remain still open and under investigation. In addition, the 

numerical aspects of the solution of the FSTS problem are of 

extreme importance. The reduction of the solution of the 

Diophantine equation to a Toeplitz type linear algebra 

problem over [R is only a partial answer to this problem. 

Some work has been done concerning the scalar case [Kuc., 

15] . However, very little work, of experimental nature, has 

taken place regarding the solution of the general matrix 

polynomial equation [Kra., 1] and at least a theoretical 

comparison of the existing algorithms is essential.
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Finally, as an alternative design procedure, a two-parameter 

feedback scheme has been introduced and the FSTS problem has 

been defined and solved within this framework. The family of 

all two-parameter FSTS controllers has been completely 

parametrized in an affine manner with respect to two 'free' 

polynomial matrices, and the controllers that guarantee 

tracking and disturbance rejection in FST sense have been 

provided. The superiority of the two-parameter feedback 

scheme has been demonstrated in this case, where the FST 

tracking and disturbance rejection controllers can be tuned 

with respect to two independent parameters. Further 

performance requirements can be tackled in a similar manner 

to the one-parameter FST case.
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