97 research outputs found

    Design and development of a hominid robot with local control in its adaptable feet to enhance locomotion capabilities

    Get PDF
    With increasing mechanization of our daily lives, the expectations and demands in robotic systems increase in the general public and in scientists alike. In recent events such as the Deepwater Horizon''-accident or the nuclear disaster at Fukushima, mobile robotic systems were used, e.g., to support local task forces by gaining visual material to allow an analysis of the situation. Especially the Fukushima example shows that the robotic systems not only have to face a variety of different tasks during operation but also have to deal with different demands regarding the robot's mobility characteristics. To be able to cope with future requirements, it seems necessary to develop kinematically complex systems that feature several different operating modes. That is where this thesis comes in: A robotic system is developed, whose morphology is oriented on chimpanzees and which has the possibility due to its electro-mechanical structure and the degrees of freedom in its arms and legs to walk with different gaits in different postures. For the proposed robot, the chimpanzee was chosen as a model, since these animals show a multitude of different gaits in nature. A quadrupedal gait like crawl allows the robot to traverse safely and stable over rough terrain. A change into the humanoid, bipedal posture enables the robot to move in man-made environments. The structures, which are necessary to ensure an effective and stable locomotion in these two poses, e.g., the feet, are presented in more detail within the thesis. This includes the biological model and an abstraction to allow a technical implementation. In addition, biological spines are analyzed and the development of an active, artificial spine for the robotic system is described. These additional degrees of freedom can increase the robot's locomotion and manipulation capabilities and even allow to show movements, which are not possible without a spine. Unfortunately, the benefits of using an artificial spine in robotic systems are nowadays still neglected, due to the increased complexity of system design and control. To be able to control such a kinematically complex system, a multitude of sensors is installed within the robot's structures. By placing evaluation electronics close by, a local and decentralized preprocessing is realized. Due to this preprocessing is it possible to realize behaviors on the lowest level of robot control: in this thesis it is exemplarily demonstrated by a local controller in the robot's lower leg. In addition to the development and evaluation of robot's structures, the functionality of the overall system is analyzed in different environments. This includes the presentation of detailed data to show the advantages and disadvantages of the local controller. The robot can change its posture independently from a quadrupedal into a bipedal stance and the other way around without external assistance. Once the robot stands upright, it is to investigate to what extent the quadrupedal walking pattern and control structures (like the local controller) have to be modified to contribute to the bipedal walking as well

    Robot Navigation in Distorted Magnetic Fields

    Get PDF
    This thesis investigates the utilization of magnetic field distortions for the localization and navigation of robotic systems. The work comprehensively illuminates the various aspects that are relevant in this context. Among other things, the characteristics of magnetic field environments are assessed and examined for their usability for robot navigation in various typical mobile robot deployment scenarios. A strong focus of this work lies in the self-induced static and dynamic magnetic field distortions of complex kinematic robots, which could hinder the use of magnetic fields because of their interference with the ambient magnetic field. In addition to the examination of typical distortions in robots of different classes, solutions for compensation and concrete tools are developed both in hardware (distributed magnetometer sensor systems) and in software. In this context, machine learning approaches for learning static and dynamic system distortions are explored and contrasted with classical methods for calibrating magnetic field sensors. In order to extend probabilistic state estimation methods towards the localization in magnetic fields, a measurement model based on Mises-Fisher distributions is developed in this thesis. Finally, the approaches of this work are evaluated in practice inside and outside the laboratory in different environments and domains (e.g. office, subsea, desert, etc.) with different types of robot systems

    Focal Spot, Summer 1987

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1046/thumbnail.jp

    Annual Report 2019-2020

    Get PDF
    LETTER FROM THE DEAN As I write this letter wrapping up the 2019-20 academic year, we remain in a global pandemic that has profoundly altered our lives. While many things have changed, some stayed the same: our CDM community worked hard, showed up for one another, and continued to advance their respective fields. A year that began like many others changed swiftly on March 11th when the University announced that spring classes would run remotely. By March 28th, the first day of spring quarter, we had moved 500 CDM courses online thanks to the diligent work of our faculty, staff, and instructional designers. But CDM’s work went beyond the (virtual) classroom. We mobilized our makerspaces to assist in the production of personal protective equipment for Illinois healthcare workers, participated in COVID-19 research initiatives, and were inspired by the innovative ways our student groups learned to network. You can read more about our response to the COVID-19 pandemic on pgs. 17-19. Throughout the year, our students were nationally recognized for their skills and creative work while our faculty were published dozens of times and screened their films at prestigious film festivals. We added a new undergraduate Industrial Design program, opened a second makerspace on the Lincoln Park Campus, and created new opportunities for Chicago youth. I am pleased to share with you the College of Computing and Digital Media’s (CDM) 2019-20 annual report, highlighting our collective accomplishments. David MillerDeanhttps://via.library.depaul.edu/cdmannual/1003/thumbnail.jp

    Modular and Analytical Methods for Solving Kinematics and Dynamics of Series-Parallel Hybrid Robots

    Get PDF
    While serial robots are known for their versatility in applications, larger workspace, simpler modeling and control, they have certain disadvantages like limited precision, lower stiffness and poor dynamic characteristics in general. A parallel robot can offer higher stiffness, speed, accuracy and payload capacity, at the downside of a reduced workspace and a more complex geometry that needs careful analysis and control. To bring the best of the two worlds, parallel submechanism modules can be connected in series to achieve a series-parallel hybrid robot with better dynamic characteristics and larger workspace. Such a design philosophy is being used in several robots not only at DFKI (for e.g., Mantis, Charlie, Recupera Exoskeleton, RH5 humanoid etc.) but also around the world, for e.g. Lola (TUM), Valkyrie (NASA), THOR (Virginia Tech.) etc.These robots inherit the complexity of both serial and parallel architectures. Hence, solving their kinematics and dynamics is challenging because they are subjected to additional geometric loop closure constraints. Most approaches in multi-body dynamics adopt numerical resolution of these constraints for the sake of generality but may suffer from inaccuracy and performance issues. They also do not exploit the modularity in robot design. Further, closed loop systems can have variable mobility, different assembly modes and can impose redundant constraints on the equations of motion which deteriorates the quality of many multi-body dynamics solvers. Very often only a local view to the system behavior is possible. Hence, it is interesting for geometers or kinematics researchers, to study the analytical solutions to geometric problems associated with a specific type of parallel mechanism and their importance over numerical solutions is irrefutable. Techniques such as screw theory, computational algebraic geometry, elimination and continuation methods are popular in this domain. But this domain specific knowledge is often underrepresented in the design of model based kinematics and dynamics software frameworks. The contributions of this thesis are two-fold. Firstly, a rigorous and comprehensive kinematic analysis is performed for the novel parallel mechanisms invented recently at DFKI-RIC such as RH5 ankle mechanism and Active Ankle using approaches from computational algebraic geometry and screw theory. Secondly, the general idea of a modular software framework called Hybrid Robot Dynamics (HyRoDyn) is presented which can be used to solve the geometry, kinematics and dynamics of series-parallel hybrid robotic systems with the help of a software database which stores the analytical solutions for parallel submechanism modules in a configurable and unit testable manner. HyRoDyn approach is suitable for both high fidelity simulations and real-time control of complex series-parallel hybrid robots. The results from this thesis has been applied to two robotic systems namely Recupera-Reha exoskeleton and RH5 humanoid. The aim of this software tool is to assist both designers and control engineers in developing complex robotic systems of the future. Efficient kinematic and dynamic modeling can lead to more compliant behavior, better whole body control, walking and manipulating capabilities etc. which are highly desired in the present day and future robotic applications

    Evolutionary Legged Robotics

    Get PDF
    Due to the technological advance, robotic systems become more and more interesting for industrial and home applications. Popular examples are given by robotic lawn mower, robot vacuum cleaner, and package drones. Beside the toy industry, legged robots are not as popular, although they have some clear advantages compared to wheeled systems. With their flexibility concerning the locomotion, they are able to adapt their walking pattern to different environments. For instance they can walk over obstacles and gaps or climb over rubble and stairs. Another possible advantage could be a redundancy for locomotion. A faulty motor in one limb could be compensated by other motors in the kinematic chain. As well, multiple failing legs can be compensated by an adapted walking pattern. Compared to this, the more complex mechatronic systems represent a major challenge to the construction and the control. This thesis is dedicated to the control of complex walking robots. Genetic algorithms are applied to generate walking patterns for different robots. The evolutionary development of walking patterns is done in a simulation software. Results of various approaches are transferred and tested on existing systems which have been developed at RIC/DFKI. Different robotic systems are used to evaluate the generality of the applied methods. Eventually, a method is developed that can be utilized, with a few system specific modifications, for a variety of legged robots. As basis for the development and investigation of several methods, software tools are designed to generalize the application of applying genetic algorithms to legged locomotion. These tools include a simulation environment, a behavior representation, a genetic algorithm and a learning and benchmark framework. The simulation environment is adapted to the behavior of real robotic systems via reference experiments. In addition, the simulation is extended by a foot contact model for loose surfaces. The evaluation of the genetic algorithm is done on several benchmark problems and compared to three existing algorithms. This thesis contributes to the state of the art in many areas. The developed methodology can easily be applied to several complex robotic systems due to its transferability. The genetic algorithm and the hierarchical behavior representation provide a new opportunity to control the generation of the offspring in an evolutionary process. In addition, the developed software tools are an important contribution for their respective research fields

    Central Florida Future, Vol. 36 No. 49, March 15, 2004

    Get PDF
    Lyons and Co. score NCAA appearance; Poet compelled by oppression: Marjorie Agosin spins tales of hardship and injustice; Coach O\u27Leary vows to take a \u27sleeping giant\u27; Spike TV looks to UCF for game show contestants.https://stars.library.ucf.edu/centralfloridafuture/2741/thumbnail.jp

    Energy harvesting of low-grade waste heat with colloid based technology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    The New Hampshire, Vol. 78, No. 37 (Feb. 26, 1988)

    Get PDF
    The student publication of the University of New Hampshire
    • …
    corecore