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Abstract

This thesis investigates the utilization of magnetic field distortions for the localiza-

tion and navigation of robotic systems. The work comprehensively illuminates the

various aspects that are relevant in this context. Among other things, the character-

istics of magnetic field environments are assessed and examined for their usability

for robot navigation in various typical mobile robot deployment scenarios.

A strong focus of this work lies on the self-induced static and dynamic magnetic

field distortions of complex kinematic robots, which could hinder the use of magnetic

fields because of their interference with the ambient magnetic field. In addition to the

examination of typical distortions in robots of different classes, solutions for compen-

sation and concrete tools are developed both in hardware (distributed magnetome-

ter sensor systems) and in software. In this context, machine learning approaches

for learning static and dynamic system distortions are explored and contrasted with

classical methods for calibrating magnetic field sensors.

In order to extend probabilistic state estimation methods towards the localization

in magnetic fields, a measurement model based on Mises-Fisher distributions is de-

veloped in this thesis.

Finally, the approaches of this work are evaluated in practice inside and outside

the laboratory in different environments and domains (e.g. office, subsea, desert,

etc.) with different types of robot systems.





Zusammenfassung

Diese Arbeit beschäftigt sich mit der Nutzbarmachung der Verzerrungen von Mag-

netfeldern für die Lokalisierung und Navigation von robotischen Systemen. Die Ar-

beit beleuchtet dabei umfassend die verschiedenen Aspekte, die hierbei relevant wer-

den können. Unter anderem werden die Charakteristiken von Magnetfeldumgebun-

gen in verschiedenen Szenarien untersucht, in denen Roboter typischerweise zum

Einsatz kommen und auf ihre Nutzbarkeit für die Navigation hin untersucht.

Einen großen Teil nimmt weiterhin die Untersuchung der selbstinduzierten

statischen wie dynamischen Magnetfeldverzerrungen von komplexen kinematischen

Robotern ein, die der Nutzung von Magnetfeldern entgegenstehen könnten. Hi-

erzu werden im Rahmen der Arbeit neben der Ermittlung von typischen Verz-

errungen Roboter verschiedener Klassen auch Lösungsansätze zur Kompensation

und konkrete Werkzeuge sowohl in Hardware (verteilte Magnetometersensorik-

Systeme) als auch in Software entwickelt. Dabei werden unter anderem Ansätze

des maschinellen Lernens zur Erfassung der statischen und dynamischen Verzer-

rungen verfolgt und klassischen Methoden zur Kalibrierung von Magnetfeldsensoren

gegenübergestellt.

Um die Zustandsschätzung mittels probabilistischer Methoden um die

Möglichkeiten der Lokalisierung in Magnetfeldern zu erweitern, wird darüber

hinaus in dieser Arbeit ein auf von Mises-Fisher-Verteilungen basierendes Mess-

modell entwickelt.

Abschließend werden die Ansätze dieser Arbeit im konkreten Einsatz innerhalb

und außerhalb des Labors in unterschiedlichen Umgebungen und Domänen (u.a. Un-

terwasser, Wüste) mit verschiedenen Arten von Robotersystemen evaluiert.
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Chapter 1

Introduction

The magnetic field of our planet Earth is available at the deepest points of the seafloor

and in the troposphere where most airplanes fly, in buildings as well as in the most

remote outdoor places, even deep underground in the Earth crust. Basically, if one

is not located in a zero-Gauss chamber, the magnetic field will be measurable. Since

the magnetic flux is not a scalar value but has a certain direction and strength, the

magnetic field may be significantly distorted in both of these components, but it will

be there.

This may not be true for all planets, but fortunately on Earth, the magnetic field is not

only available, but it also has a certain exploitable and defined quasi-static structure

(for details see section 2.3), that is quite robust against disruptions, that otherwise

often restrict or even prevent the function of sensors used in mobile robotics.

However, since the beginning of the usage of magnetic needles in the 11th century,

the utilization of the Earth magnetic field for navigation purposes, although refined,

has not come very far: the basic principle is still to use only the projected horizon-

tal component of the magnetic field for heading estimation, ignoring other available

information from the local magnetic field vector.

Whereas humans don’t have the capability to sense the magnetic field directly

by themselves, it is known that certain species of migratory birds are using geo-

graphic variations in the strength and inclination of the magnetic field to deter-

mine their position [Hiscock et al., 2017]. In fact, after the first discovery of mag-

netotaxis in certain bacteria in 1963, magnetoreception has been discovered in a

variety of species, for example salmon, homing pigeons, honeybees and sea tur-

tles [Kirschvink et al., 2001]. For specific species, there is evidence that the mag-

netoreception may be related to cryptochromes in the retina as well as to magnetite

1
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(a) Migrating Birds (b) Leatherback Sea Turtle

Figure 1.1: Animals with magnetic field sensing capabilities (Magnetotaxis)

crystals in parts of the beak [Johnsen and Lohmann, 2008]. And although the specific

sensory principle of magnetoreception in animals is still a field of ongoing research,

it is clear, that biological systems like those depicted in figure 1.1 are ingeniously

exploiting the features of the surrounding magnetic field deeper than we currently

do by merely using a compass.

1.1 Motivation

Navigation is a topic that has had huge influences in the past of mankind, society

and trade. Arising technical inventions combined with long gathered knowledge of-

ten constituted new navigational methods with a major impact. For example the

invention of the marine chronometer combined with knowledge of the stars allowed

for precise astronavigation, which in turn paved the way for the age of exploration:

estimating the latitude was already possible by measuring the altitude of celestial

bodies like Polaris with a sextant and looking up the coordinates schedule in an al-

manac, but solving the longitude problem took great efforts over centuries and only

the substitution of estimating lunar distances with precise time measurements after

the invention of the modern chronometer in 1761 allowed for precise localization that

was needed for modern maritime trade.

Today’s commercial localization technique has found its reference technology in

Global Navigation Satellite Systems (GNSS, e.g. GPS), but is only applicable to sur-

face navigation, where there is a free view of the sky, and may deteriorate or even fail

completely in more demanding environments. Even in established and well-defined

application scenarios, it is often needed to supplement the major sensor modality

with extra sensing capabilities that make the localization solution more robust and

are crucial in situations, where certain sensors might fail (see for example figure 1.2).
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Figure 1.2: Position estimation failure due to multipath GNSS signals in urban en-

vironment from [Lee et al., 2013]

Current robots are taking a more and more prominent role in the world of today,

where they have to leave classic domains like (aero-)nautical or indoor office environ-

ments and have to cope with increasingly tough environments in more demanding

and unstructured terrain, where humans or remote-controlled systems cannot go.

And in correlation with the progress of robotic skills and the advances in the degree

of autonomy, expectations are raised and society legitimately demands that robotic

systems support humans not only in laboratory environments but in real-world sce-

narios (see e.g. [Garcia-Soto et al., 2017]), from everyday situations at home to most

challenging and maybe also dangerous tasks.

The area of localization and mapping plays an important role in robotics since

decades and has seen huge advances in recent years (see Chapter 3), nonetheless,

there are still open issues, especially when leaving laboratory or office-like environ-

ments and dealing with long term autonomous robotic operations. Commonly used

sensors in such applications, apart from the aforementioned global navigation satel-

lite systems, often include sensors in the visual spectrum like cameras (stereo, time

of flight, monocular, RGB-D, etc.), LIDARs or different kinds of sonars (especially

in the underwater domain) as well as a huge variety of other exteroceptive sen-

sors [Thrun et al., 2005, Siegwart et al., 2017], all of which may fail in certain sce-

narios depending on the ambient condition of the situation at hand. For example,

strong smoke or excessive dust may significantly limit the effectiveness of such sen-

sors in disaster scenarios, the same holds true for intense turbidity or marine snow

conditions in subsea applications. Sensors utilizing the runtime of signals (e.g. GPS,

acoustic sonar, etc.) may be subject to strong performance restrictions due to multi-

path effects or even complete signal extinction as a result of total internal reflection

at the interface between two media, a common problem in subsea navigation due to

strong thermoclines.
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The main two motivations for this thesis are thus:

1. The ambient magnetic field carries more information than we currently make

use of, as indicated by animal magnetotaxis.

2. Since the ambient magnetic field is unaffected by a lot of effects that restrict

commonly deployed localization sensors, magnetometers can play a crucial role

both as an additional sensor modality for increased performance in mobile robot

navigation as well as a complementary sensor to increase localization robust-

ness in case of complete signal dropouts of the other deployed sensor modalities.

1.2 Thesis Structure

However, in order to fully exploit the benefits of the almost omnipresent magnetic

field for mobile robot navigation, several questions arise:

• What are the general features of the Earth magnetic field with regard to robot

localization?

• How do local ambient magnetic fields look like in different application scenarios

for robots (vector field structure)? Is there exploitable information with regard

to robot localization and are the signals strong enough (vector field key param-

eters)? Are they static enough in time for our purpose?

• Do robots themselves distort the ambient magnetic field and to what extent?

Can we identify typical sources of self-induced magnetic distortions for different

classes of mobile robots?

• How can we compensate those disturbances? Can they be analytically modeled

based on the physical principles or can they be learned?

• Finally, can we enhance the localization of very compact or complex robots using

ambient magnetic fields?

The thesis is structured alongside these questions (see figure 1.3). Chapters 2 and

3 provide the foundations for this thesis, describing magnetism, the Earth magnetic

field and magnetic distortion types as well as the current state of the art. Chapters

4 and 5 then assess the magnetic field characteristics of different application envi-

ronments and for different types of mobile robotic systems. The technical core con-

tributions are described in Chapters 6 – 8: Chapter 6 describes a distributed mag-

netometer array approach and related algorithms based on vonMisesFisher (vMF)

distributions, Chapter 7 discusses the application of machine learning techniques
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for magnetic field distortion compensation on complex mobile robotic systems and

Chapter 8 addresses the localization of robotic systems in magnetic fields. Finally,

Chapter 9 concludes the work of this thesis and gives an outlook on future work in

the area of magnetic field navigation.
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Figure 1.3: Structure of this thesis





Chapter 2

Foundations

2.1 Magnetism and Magnetic Fields

Figure 2.1: A magnetic lodestone attracting iron paper clips

Magnetism describes a set of physical phenomena mediated by magnetic fields. Mag-

netism is one of the four fundamental forces in physics, and magnetic fields are in-

fluencing and are being influenced by magnets and magnetized objects as well as

electrical currents. The attraction of iron to basalt magnetite minerals (Fe3O4) called

’lodestones’ is known to mankind since centuries and was first described in ancient

China. Later, in his pursuit of trying to explain natural objects and phenomena by

theories and hypotheses instead of resorting to mythology, the earliest debate with

scientific character on magnetism is attributed to Thales of Miletus (624-546 BC).

The scientific philosopher and mathematician is counted as one of the Seven Sages of

Ancient Greece, otherwise best known for his mathematical theorems on elementary

geometry. The first experimental research on magnetism was done in the middle ages

by the scholar Petrus Peregrinus with his work “Epistola de Magnete”, published in

7
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Figure 2.2: The magnetic field surrounding a permanent dipole magnet made visible

by iron filings

1269. Peregrinus discovered the dipolarity of magnets: having created a sphere from

a huge lodestone, he evaluated the alignment of an iron needle on this sphere to-

wards the poles, although he still attributed the magnetic properties to the celestial

dome instead to the Earth. After the discovery of the influence of electric currents

on magnet fields by Hans Christian Øersted in 1819 and further research by Ampere,

Faraday and Henry in the 19th century, the work by James C. Maxwell finally lead

to a set of partial differential equations that found the basis for the new combined

field of electromagnetism [Maxwell, 1865]. Because of his unifying work we know to-

day, that the forces mediated by a magnetic field are just one manifestation of this

underlying physical phenomenon.

A magnetic field is a vector field allocating a three-dimensional vector to every point

in a subspace, describing the effect of the magnetic force (direction, intensity) at that

location. Unlike the electric field component, the magnetic field component has no

dedicated sources, it is source-free, but is generated by moving electric charges or

time-varying electrical fields. This also holds true for fields originating from mag-

netic material, since they are caused by lined up magnetic moments of free electron

pairs [Barnert et al., 2000]. The magnetic field can be expressed by two physical

quantities, the magnetic field strength H⃗ with SI unit ampere per meter (A m−1) or

the magnetic flux density B⃗ with derived SI unit tesla (T). Both are often just called

’magnetic field’, their absolute value ’magnetic strength’ or ’magnetic field strength’,

with B⃗ and H⃗ being closely related and proportional to each other in vacuum by the

magnetic constant, the vacuum permeability µ⃗0:

B⃗ = µ0H⃗ (2.1)
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In the following, this work is referring to B⃗ and the corresponding unit tesla, when

talking about the magnetic field. Also, magnetic flux density and magnetic field

strength are used interchangeably, both describing the length of a magnetic field vec-

tor b⃗ = (bx, by, bz)⊺ at a certain point in the field B⃗ by their Euclidean norm (a.k.a. L
2

norm):

∥⃗b∥2 =
√

bx
2 + by

2 + bz
2 (2.2)

When not in a vacuum, the magnetic permeability µ describes the ability of a material

to support the formation of a magnetic field inside it in the presence of an external

magnetic field. For low-frequency fields like the geomagnetic field, µ can be consid-

ered a material-dependent scalar value and µr describes the relative permeability

with respect to the magnetic constant µ0 (the permeability in a vacuum):

µr =
µ

µ0
(2.3)

The magnetic permeability plays an important role for robot navigation in magnetic

fields, because it defines the reaction of a certain material (material in the local envi-

ronment or material, the robot is built from) in the presence of the geomagnetic field.

Depending on their permeability, materials are usually classified as diamagnetic,

paramagnetic and ferromagnetic. Apart from strong diamagnetic superconductors

with µr close to zero, most diamagnetic material shows a permeability slightly less

than vacuum, examples are lead, copper or water (µr ≈ 1− 9 × 10−6). Plastic material

like polyethylene is considered completely neutral, while paramagnetic material like

air or metals like aluminum, titanium or platin have a relative permeability also close

to one, but slightly larger. The effects of both diamagnetic and paramagnetic common

materials on the geomagnetic field are so small that they are neglectable with respect

to the purpose of this work. In contrast to diamagnetic and paramagnetic material,

that assumption doesn’t hold for the third class of material with respect to their per-

meability, the ferromagnetic material (see schematic diagram 2.3). They have a very

high relative permeability, with µr ranging from 300 to 300000, depending on the

material at hand. Such materials like iron, cobalt or nickel show strong internal

alignment parallel to the applied external field with a non-linear amplifying effect.

Such material is quite common in robotic systems, since they are the core component

for electromagnetic coils and motors.

Another key parameter of ferromagnetic material is the magnetic remanence, mean-

ing the tendency to keep an internal magnetization, once the externally applied field
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B

H

d

p 0

f

Figure 2.3: Schematic diagram of different classes of magnetic permeability in ma-

terial. While diamagnetic and paramagnetic material (µd, µp) show a

proportional relationship and are close to the permeability in vacuum

(µ0), ferromagnetic material (µf ) reacts with a much higher internal flux

density B, when exposed to an external magnetic field H.

is removed. The amount of magnetic remanence is dependent on the material-specific

hysteresis curve, and a distinct hysteresis effect is desired for e.g. permanent mag-

nets. This characteristic is also called hard iron effect, as opposed to the soft iron

effect, where the material quickly loses the remnant internal magnetization, once

the external magnetic field is removed. Pure non-alloyed iron, for example, shows

strong soft iron characteristics, while alnico alloys or neodymium magnets composed

of neodymium, iron and boron (Nd2Fe14B) show very strong hard iron effects.

Concerning electromagnetism, a magnetic field B⃗ exerts a force (the Lorentz force) F⃗L

on a moving electrical charge q, proportional to the velocity v⃗ of the charge:

F⃗L = qv⃗ × B⃗ (2.4)

This correlates with the inverse effect when electric charges are flowing through a

conductor, e.g. a wire: The current I is generating a magnetic field concentric to the

axial direction of the current flow (see figure 2.4). If the wire is forming an ideal coil

with n windings of length l, the magnetic flux density B is then given by

B = µ0 · µr · I · n

l
(2.5)

with µr being the relative permeability constant for the material enclosed by the coil

and µ0 the magnetic constant (permeability in a vacuum).
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Figure 2.4: Electric current I flowing through a wire, generating a magnetic field B

concentric to the technical flow direction

Figure 2.5: Principle of a sensor exploiting the Hall effect

The same principles are governing the Hall effect, which can be used for directional

magnetometer sensors. The charge carriers of a current-carrying semiconductor ex-

posed to an external magnetic field experience a force perpendicular to the plane

established by the current direction and the magnetic field vector. The correspond-

ing charge surplus in the opposite sites of the conductor is creating an electrical field

compensating the Lorenz forces. The difference in charge is called the Hall voltage

UH , which then can be measured and is proportional to the magnetic field strength

(see figure 2.5). Combining lateral and vertical Hall elements on a chip, the full

3D-vector of the magnetic flux density can be measured.
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2.2 Magnetic Field Distortion Types

In direct response to the aforementioned hard- and soft iron characteristics of specific

materials as well as the magnetic fields induced by electric current flowing through

a wire (section 2.1), the typical distortions of local magnetic fields can be grouped in

two classes, in so-called soft iron distortion and hard iron distortion [Caruso, 2000].

In the case of soft iron material, where the strong internal magnetization is in the

same direction as the external field the material is exposed to, the material basically

provides a path of lower impedance for the external field. Thus, the external field

is just diverted, depending on the alignment of the material in the external field:

a solid pure iron rod oriented in parallel to the external field has no effect on the

direction of the external field vectors since the path of lower impedance is in the

same direction. The same holds true for an arrangement of the iron rod directly

perpendicular to the external field since a deflection to either side of the rod then has

equally low impedance. Imagining a full 360° circle of the rod in a static external field,

starting parallel to the magnetic field lines, there is no deviation at 0° (parallel), 90°

(perpendicular), 180° (parallel) and 270° (perpendicular), but significant deflections

in between. The deflections are different when going from perpendicular to parallel,

then they are when going from parallel to a perpendicular alignment, but the same

after a 180° turn, since the enclosing acute-angle between the rod longitudinal axis

and the field is the same. A plot of the deviation in 2D would thus show a point-

symmetric tilted ellipse with its center in the origin (see figure 2.6). Such deviation

properties are called two-cycle characteristics.

Figure 2.6: Soft iron distortion provides a path of lower impedance for the external

field, thus diverting it. The deviation has a two-cycle characteristic.

Opposed to that is the second class of magnetic field distortions, the hard iron effect,

for example from permanent magnets, as well as electromagnetically induced mag-

netic fields. Here, an individual magnetic field exists with its own different direction
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Figure 2.7: Hard iron distortion superimposes an additional own magnetic field on

the external field, thus creating a constant offset depending on alignment.

The deviation for a full turn has a one-cycle characteristic, resulting in

an off-centered sphere.

and strength, which consequently superimposes the external field. The magnetic

field vectors at the same point in space are combined via vector addition. In the case

of the hard iron effect, the magnetic remanence in such material generates this mag-

netic field, in the electromagnetic case, it is caused by the electrical charges flowing

through a wire.

Again imagining a full 360° circle in a static uniform external field, but this time

with a rod with hard iron characteristics: when in parallel with the external field,

the hard iron-induced magnetic field will not change the external field’s direction,

but contribute fully to the strength component, depending if it points to the same

direction or the direct opposite. When not in parallel, both direction and strength

components are affected, again as expected from vector addition. In this case, a plot of

the deviation in 2D would show an undistorted sphere with a constant offset from the

origin (see figure 2.7). Such deviation properties are called one-cycle characteristics.

Distortion Type Summary

In summary, depending on the alignment of the material in the magnetic field, the

results of both distortions types are quite different and this difference in the devia-

tion characteristics will be crucial when modeling or trying to learn the deviations of

deflecting and superimposing magnetic fields. It also has to be noted, that both the

soft iron as well as the hard iron effect usually don’t exist in isolation, but so-called

hard iron material also shows to some extent the soft iron effect and vice versa.
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2.3 The Earth Magnetic Field

The Earth, like most other planets of our solar system apart from Venus and Mars,

is equipped with a magnetosphere, which in case of the Earth extends several tens

of thousands of kilometers into space from the ionosphere. Our magnetosphere is

critical not only to mankind but the whole flora and fauna, since it deflects charged

particles of the solar wind and protects, for example, our ozone layer from being

stripped away by cosmic radiation.

Figure 2.8: The geomagentic field can be first-order approximated as a magnetic

dipole sitting in the center of the Earth and tilted from the Earth’s ro-

tational axis by 9.6°

Although magnetism was already known in ancient times (see section 2.1), the first

description of the use of the geomagnetic field for navigational purposes by utilizing

a magnetized needle is attributed to Shen Kuo, a Chinese scientist of the 11th cen-

tury [Kuo, 1088]. However, the idea that the earth itself has some magnetic proper-

ties was not brought up before the year 1600, when the English physician and scien-

tist William Gilbert published his work "De Magnete" (figure 2.9), the first systematic

description of the geomagnetic field as the cause for the reproducible orientation of

magnetized objects [Gilbert, 1600]. Gilbert’s findings were based on rigorous experi-
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Figure 2.9: Title page of William Gilbert’s De Magnete - edition from 1628

ments with a terella, a small magnetized model ball representing the Earth. Gilbert

rejected the ancient theories of magnetism and was the first to argue correctly, that

the Earth’s center must be made of iron. Although Gilbert was profoundly convinced

that electricity and magnetism were different things, which was later disproved by

Hans Christian Oersted and James Clerk Maxwell as being two aspects of electro-

magnetism, he is regarded as one of the fathers of electricity and magnetism.

The work to systematically measure the geomagnetic field also led to the foundation

of the "Magnetischer Verein" by Carl Friedrich Gauß and Wilhelm Weber with sup-

port by Alexander von Humboldt in 1834, which is considered to be one of the first

truly international scientific endeavours with more than 50 participating observato-

ries in Europe, Asia, Africa, North America and the South Seas. It was established

to systematically describe the geomagnetic field and its observed dynamic fluctua-

tions, providing magnetic maps for the whole terrestrial globe, and also proved that

the main and static contribution to the geomagnetic field originates from the Earth

core. Gauß also constructed the first magnetometer to be able to measure an absolute

value of the Earth’s magnetic field, the unit for the magnetic flux density in the CGS

system is named in the honor of his work, superseded later by the unit tesla, with

1 G = 1 × 10−4 T.

The geomagnetic field can be first-order approximated as a magnetic dipole sitting in
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Geographic North

Geographic East

Down

Intensity

Inclination
Declination

Magnetic North

Figure 2.10: Geomagnetic field coordinate system with declination, inclination and

intensity nominators

the center of the Earth and tilted from the Earth’s rotational axis by 9.6° as shown in

figure 2.8, with the geomagnetic north pole being technically a magnetic south pole

and vice versa [McElhinny and McFadden, 1998].

Due to this shape of the geomagnetic field, the magnetic field lines are oriented in

parallel to the surface at the equator and become more and more dipped towards the

poles, eventually becoming vertical. The amount of dip is defined as the inclination.

Due to the fact, that geomagnetic and geographic north are not identical, there is an

offset between the magnetically observed north direction and true north, called decli-

nation, depending on the location on the Earth’s surface. Furthermore, the intensity

of the the geomagnetic field is increasing towards the poles, since the magnetic field

lines are becoming more dense, resulting in higher magnetic flux density. The mag-

netic flux density at the equator is roughly 30 µT compared to 60 µT at the poles. In

Bremen, Germany it amounts to 49.53 µT with a declination of 2°30′9′′ east and incli-

nation of 68°5′14′′ down for June 2018. Figure 2.10 gives a visual description of the

common nomenclature.

Observations have shown the limitation of the dipole approximation and therefore,

apart from complex numerical models of the geodynamo [Christensen et al., 1998,

Glatzmaier and Roberts, 1995], two analytical mathematical models are widely in

use today, that describe the geomagnetic field much more accurately using 12-13th

order spherical harmonic representations: the International Geomagnetic Refer-

ence Field (IGRF) introduced by the Internation Association of Geomagnetism and

Aeronomy (IAGA) [Finlay et al., 2010] and the World Magnetic Model (WMM) of Na-

tional Oceanic and Atmospheric Administration (NOAA), which is used for exam-
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Figure 2.11: WMM2150.0 main field declination map, mercator projection, contour

interval: 2 degrees, red contours positive (east), blue negative (west) by
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ple as the standard model by the U.S. Department of Defense, the NATO and the

International Hydrographic Organization (IHO) [Chulliat et al., 2015]. Both mod-

els continuously incorporate measurements from satellites monitoring the geomag-

netic field and update their models every 5 years, with IGRF-12 and WMM2015.0

being the latest releases. The rolling releases of these models are incorporating more

or better observations for example by the geomagnetic field observation satellites

CHAMP or SWARM to increase the accuracy of the model, since the geomagnetic

field is subject to continuous changes both on larger and smaller timescales, that

affect every technique, that is using the Earth’s magnetic field for navigational pur-

poses [Maus et al., 2002, Sabaka et al., 2018].
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Geomagnetic Field Main Contributors

The geomagnetic field has three main contributors, a) the outer Earth core, b) the

Earth crust and c) activities in the magnetosphere.

Earth Core

By far the most significant contribution to the geomagnetic field is due to convection

of electrically conducting fluids in the liquid outer Earth core, mainly consisting of

molten iron and nickel heated up by the inner core. The planetary rotation generates

a Coriolis force, which is forming the convection flows into rolls and thus establishing

the main shape and intensity of the geomagnetic field (see figure 2.14). This mech-

anism is called the geodynamo. In average, the geodynamo contributes about 95 %

to the shape and total intensity of the geomagnetic field. Due to the large contribu-

tion of the geodynamo, changes of this effect have a huge influence on the current

manifestation of the geomagnetic field.

This rather strong, but slow change (compared to the changes in the magnetosphere,

see below) are called secular variation and are happening in the order of years, rather

than hours. Their influence is drastically, though, leading to a decrease of the overall

dipole moment of 6.3 % over the last century and a drift of the geomagnetic north

pole by ≈30 km per year, leading in Bremen, Germany to change in the declination of

0°8′26′′ east per year. Since these changes are well understood, the secular variation

is already incorporated in the analytical WMM and IGRF models, so that declination,

inclination and total intensity of the geomagnetic field can be derived for any latitude

and longitude on the surface of the Earth for any point in time, at least for the validity

period of these models of five years.

However, paleomagnetic research of strongly remanent magnetic material like mag-

netite showed, that there were times in the past, where the geomagnetic field was not

at all predictable or well-structured, which is a prerequisite for the named models to

work properly. These materials show clearly distinguishable periods of different in-

tensity and polarity of the geomagnetic field in the past, which is also used to date

sediments (Magnetostratigraphy). The average time period between total field re-

versals is roughly 450000 years, with an average polarity transition phase between

1000 and 10000 years. Yet such phases may be much shorter for a particular event:

the duration of the last total field reversal approx. 780000 years ago (known as the

Matuyama-Brunhes reversal) is assumed to have taken no longer than an average

human lifetime [Sagnotti et al., 2014]. In such a transition phase, the geomagnetic

field is not vanishing completely, but might be very unstructured, with multiple mag-
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Figure 2.14: Illustration of the geodynamo effect from convection flux in the liquid

outer core of the Earth

netic north and south poles, with changes up to 6° per day as shown by extensive

simulations of the complex numerical models [Glatzmaier and Roberts, 1995]. Al-

though the increasing drift of the magnetic north pole suggests that we may be at the

verge of such a field reversal phase, we can assume the geomagnetic field to be stable

enough and thus predictable by the WMM or IGRF model at least for the next few

decades.

Earth Crust

The second most important contributor to the total geomagnetic field is remanent

magnetization of the upper layer of the Earth crust, especially in ferrous minerals

like ore deposits or iron-bearing volcanic basalt, which is, for example, quite common

on the ocean floor. The temporal variation is quasi-static, varying only over geolog-

ical timescales, but the spatial variation is significant, although minor in respect to

the influence of the geodynamo effect. As depicted in figure 2.15, the most extreme

anomalies arising from Earth crust remanent magnetization range from −700 nT to

1200 nT in Germany, but are usually much smaller: Bremen, Germany for example

has an Earth crust anomaly of ≈ − 30 nT [Gabriel et al., 2010]. Compared to the to-

tal field intensity at that location of 49 530 nT, the contribution of the Earth crust

amounts to less than 0.1 %.
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Figure 2.15: Illustration of the static anomalies of the geomagnetic field due to rema-

nent magnetization of the Earth crust in Germany [Gabriel et al., 2010]
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Magnetosphere and Ionosphere

Temporal variations over shorter time scales mostly arise from the third contributor

to the geomagnetic field: currents in the ionosphere and magnetosphere mostly due

to magnetized plasma of the solar wind (figure 2.16). During normal activity of the

sun (solar-quiet variation (sq)), the variation shows a periodic characteristic over 24

hours, with its peak intensity at noon, when the solar wind hits the magnetosphere

at the steepest angle. At this time of the day, the maximum sq-variation typically

amounts to ±19 nT which is approximately 0.04 % of the total intensity in Germany.

Figure 2.16: The Magnetosphere of the Earth

While mild geomagnetic storms may just lead to phenomena like aurora bore-

alis, it must be noted that severe geomagnetic storms in the order of the Car-

rington Event from 1859 (the biggest ever recorded magnetic storm) can have

catastrophic effects on electronic devices and electricity infrastructure. Although

such an event could potentially lead to critical blackouts and financial damage in

the trillion-dollar range due to geologically induced currents (GICs) in the shock

phase [National Research Council, 2008], the overall effect on the geomagnetic field

is rather small. Even in times of massive solar activity causing geomagnetic storms,

for example due to a co-rotating interaction region (CIR) or a strong coronar mass

ejection (CME), the effects on the direction and intensity of the geomagnetic field are

orders of magnitudes smaller than the geodynamo effect: 44 % of geomagnetic storms

are categorized as weak, with a change in the intensity of the horizontal component of
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the magnetic field between 30 nT and 50 nT (≈0.2 % of the horizontal intensity at Bre-

men, Germany) and even storms categorized as severe, which make up 4 % of the total

amount of storms are in a range 200 nT to 350 nT [Loewe and Prölss, 1997], which is

about 1 % of the horizontal intensity at Bremen, Germany.

Geomagnetic Field Summary

To summarize, although there are shorter minor temporal variations due to activity

in the magnetosphere and minor spatial variations due to remanent magnetization

of parts of the Earth crust, the predominant contribution to the geomagnetic field by

orders of magnitude is the geodynamo effect. This effect is changing only on large

timescales and is analytically predictable by models like WMM or IGRF mentioned

above, thus the Earth magnetic field can be considered sufficiently stable in the tem-

poral domain for the purpose of this work.
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State of the Art

Navigation usually consists of the three major iterative parts: 1) localization, 2) find-

ing an optimal path or trajectory to the goal and 3) trajectory following, includ-

ing obstacle avoidance and compensating for external interferences. Especially lo-

calization has been a prominent research topic in robotics for decades and has

been called the most fundamental challenge for autonomy in mobile robotic sys-

tems [Cox, 1991, Thrun et al., 2005].

3.1 General Localization and SLAM

The capability of mobile robotic systems to get from point A to point B efficiently, and

also to know when the goal is reached, goes hand in hand with the availability of a

model of the current environment (a map).

Both localization in a known map as well as mapping the environment with a known

pose have their own challenges, but the most difficult and quite common case is,

that both pose and map are unknown and have to be established at the same time.

This problem is the well-known problem of Simultaneous Localization and Map-

ping (SLAM), first coined that way by [Durrant-Whyte et al., 1996]. A wide range

of research has been conducted in that area, especially fusing odometry and Iner-

tial Measurement Units (IMUs) with vision or lidar-based sensory input, like Fast-

SLAM [Montemerlo et al., 2002, Montemerlo and Thrun, 2007], 6D SLAM for large

outdoor environments [Nüchter et al., 2007] or RGBDSlam [Endres et al., 2012], of-

ten based on probabilistic approaches like Extended Kalman Filters, Particle Fil-

ters or a mixture of both, like the Rao-Blackwellized Particle Filters (RBPFs) in-

troduced by [Doucet et al., 2000]. A promising approach to overcome the shortcom-

25
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ings of having to rely on sensory input in the visual spectrum from cameras or li-

dars was presented in [Schwendner et al., 2014a], using data relating to the body

of a robot, at the border of internal and external data (EmbodiedSLAM). In recent

years, graph-based approaches to solving the SLAM problem have gained a more and

more prominent role. Approaches like GraphSLAM [Thrun et al., 2005, Chpt. 11],

GMapping [Grisetti et al., 2007] or g2o [Kümmerle and Grisetti, 2011] represent all

poses and measurements of the past as vertices in a graph, which are connected by

probabilistic pose constraints. Consecutive poses are constrained by the probabilistic

motion model of the robot, whereas different measurements of the environment are

constrained by their respective measurement models. At specific times, the graph is

optimized to relax the constrained connections, thus producing a globally consistent

map and robot pose history.

Figure 3.1: General principle of graph-based SLAM approaches. All states x0 . . . xn

(blue triangles) and measurements z0 . . . zn (red stars) are kept in the

graph and constrained by their respective probabilistic models. Relax-

ation of the graph then produces the most globally consistent pose history

and map

Independent of the SLAM backend, that performs the more generic probabilistic op-

timizations, all of the mentioned approaches have to apply specific pre-processing of

the sensory input, since the position of a robot usually cannot be directly observed,

but has to be inferred from noisy or fragmentary sensor data. [Oehmcke et al., 2017]

are describing an approach using Recurrent Neural Networks (RNNs) to handle such

data loss in the case of marine sensor failures in harsh environmental conditions.

Apart from the focus on visual perception, nearly all currently established robot lo-

calization techniques are heavily relying on IMUs, consisting mainly of gyroscopes

and accelerometers to determine orientation. But as discussed in the motivational

chapter 1.1 of this work, visual sensors may fail in demanding environments and
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magnetometers measuring the geomagnetic field are currently only used to correct

heading drift IMUs, if used at all.

3.2 Magnetic Field Localization

To overcome the problems of drift in odometry based localization of cars,

[Xu et al., 2006] propose the usage of discrete magnetic markers deployed in the

roads in conjunction with a so-called ’magnetic ruler’ consisting of 13 anisotropic

magnetoresistance (AMR) sensors mounted to the front bumper of their car (see fig-

ure 3.2). For the authors, the weather independent nature of the magnetic field is

the main advantage of using magnetometers in their scenario. They also elaborate

and present data on the main drawback using magnetic artificial markers: Although

they use one of the strongest permanent magnet materials available commercially

(Neodymium Iron and Boron (NdFeB)) with a field strength of nearly 10 000 G near

the surface, the strength drastically drops with the distance to less than 6 G at dis-

tances over 180 mm. The authors present a simple magnetic dipole model that they

integrate with a nonlinear measurement model to be used in an Extended Kalman

filter (EKF). Their filter then estimates the lateral offset of the vehicle in relation to a

prerecorded trajectory. The authors show the general applicability of their approach

up to a sensor - magnet distance of 180 mm, but they also describe problems with ex-

ternal and internal magnetic field disturbances, that would need to be dealt with in

the future.

Figure 3.2: ’Magnetic Ruler’ from [Xu et al., 2006] attached to a test vehicle for lat-

eral trajectory offset estimation using artificial magnetic markers

[Cole, 2005] describes the idea of using magnetic fields for mobile robot navigation

in the sense of a reactive turn left/turn right homing behavior in the presence of an
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artificial alternating electromagnetic field. The field is created by a device that ra-

diates an alternating electromagnetic field with constant amplitude and frequency

of 8.8 Hz. The robot then contains three orthogonal loop antennas and due to Fara-

day and Lenz’s laws, the changing electromagnetic field induces currents in the loop

antennas proportional to the field strength in the respective axis. Depending on the

measured strength in the two orthogonal axes in the plane where the robot moves,

the robot corrects its path either to the left or the right, finally homing towards the

device that emits the electromagnetic field (see figure 3.3). The author describes his

system as a simple remote control direction device, the robot has no localization ca-

pabilities and is subject to local electromagnetic noise distortions.

Figure 3.3: Homing system from [Cole, 2005] using a mobile robot with orthogonal

loop antennas and a transmitter generating an alternating electromag-

netic field

Figure 3.4: Simple homing behavior of a mobile robot in the presence of a generated

and known electromagnetic field [Cole, 2005]

One of the first to describe the idea of explicitly using the ambient magnetic field
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for localization purposes apart from ordinary compass/heading applications were

[Vissière et al., 2007]. In their conceptual work, they describe the idea to use mag-

netic field distortions (figure 3.5) in order to reduce drift in low-cost IMU-based local-

ization estimation for military operations in urban areas, where GPS will most likely

be not available and also vision-based approaches may fail due to dust or smoke. The

work stresses the relevance of using magnetic field disturbances to improve position

estimation in future works, but also presents preliminary results of drift elimination

in a rail-based (1D) setup using an Extended Kalman filter. The work relies on some

strong assumptions on the nature of the magnetic field though, like constant field

strength changes and a totally stationary field with negligible other disturbances.

Figure 3.5: Heading variations of (projected) magnetic field during 2.4 m horizontal

displacement in a business building from [Vissière et al., 2007]

[Vallivaara et al., 2010] propose a SLAM method utilizing local magnetic field

anomalies in office environments to enhance low-cost robotic vacuum cleaners to al-

low for more sophisticated navigation to avoid overcleaning. They present a proof of

concept for 2D map building (figure 3.6) in a simple one-room laboratory environment

with an area of 5 × 5 m using magnetic field strength readings and odometry infor-

mation combined in a particle filter to overcome the cumulative error of standalone

odometry. Their work is based on random movement on the robot and the strong

assumption, that the magnetic field in the unvisited vicinity of single measurements

can be modeled independently by Gaussian processes for each of the three orthogo-

nal components of the magnetic field. They give no qualitative or quantitative result

analysis, but claim that they were able to produce geometrically consistent maps in

19 cases out of 20. The magnetic field is considered static in time and disturbances

introduced by the robot are neglected.
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Figure 3.6: Magnetic maps generated in an appartment by [Vallivaara et al., 2010].

x, y and z component RGB map (bottom middle) and magnetic field norm

map (bottom right) showing significant features near steel radiators.

[Rahok et al., 2010] describe a method to utilize the magnetic field of three pre-

recorded trajectories to reactively follow the middle trajectory in subsequent runs

with a robot (see figure 3.7). This virtual follow-the-wire method avoids the deploy-

ment of infrastructure, e.g. digging trenches for electromagnetic guidance wires for

repetitive path-following applications. The authors report problems of not being able

to return to the desired trajectory once the mobile robot has diverged too far from

the pre-recorded magnetic field in their database due to magnetic noise coming from

their mobile robot, which they don’t model nor are able to compensate for by mount-

ing the sensor far away from the robot due to security restrictions while driving in

areas heavily frequented by pedestrians.

Figure 3.7: Illustration of the reactive magnetic field based steering behavior

by [Rahok et al., 2010]. The pre-recorded magnetic field values are used

to keep the robot on the target path in the middle.
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During the work of the author of this thesis on ballast water tank inspection robots

between 2009 and 2012, it became clear, that the commonly used sensors for robot lo-

calization are not feasible in such extreme conditions. No satellite navigation signals

are available in the confined spaces of ballast water tanks, and mud and biological

processes (e.g. algae) were rendering sensors like lidar and time-of-flight cameras

useless due to absorption issues. Otherwise distinct geometrical features are chang-

ing fast in such conditions and were impeding the application of marker or feature-

based localization techniques. In the light of the problems in such conditions of the

commonly used sensors together with a poor odometry performance on a slippery

rail, a magnetic field-based concept using probabilistic particle filter localization was

developed and introduced [Christensen et al., 2011a], and preliminary results pre-

sented in [Christensen et al., 2011b], achieving a localization accuracy in the range

of centimeters (see figure 3.8, 3.9), but limited to one dimension because of the robotic

concept using a rail-based setup.

Figure 3.8: Magnetic field based localization in a rail-based ballast water tank

setup [Christensen et al., 2011a]. The magnetic field vectors are projected

to 1D (right).

Figure 3.9: Subsequent particle filter posterior estimation of the robot’s position on a

rail in a ballast water tank inspection setup.

In 2012, parallel to the work carried out by the author of this thesis,

[Grand and Thrun, 2012] also proposed the use of magnetic field disturbances as a

signal rather than noise for localization purposes. In their preliminary work using

the build-in magnetometers of smartphones, the authors demonstrated, that con-

siderable improvements in positional accuracy compared to WiFi-based localization
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methods can be achieved. They, too, are applying a particle filter to estimate the po-

sition given an a priori magnetic field map. As visible in the results, the authors are

not applying proper error-models to the used low-cost magnetometers in the hand-

held devices, which leads to strong discontinuities in the maps, depending on the

direction of movement during the recording of the magnetic field strength component

(see figure 3.10). The authors name the necessity of accurate a priori magnetic field

maps the main limitation of the approach. Also, due to the limited sensor quality in

handheld devices, the authors rely only on the rotation-invariant strength component

of the magnetic field.

Figure 3.10: Discontinuities in the generated magnetic field intensity maps of the x-

and y-component using low-cost magnetometers with limited calibra-

tion and no error models [Grand and Thrun, 2012]

[Robertson et al., 2013] are also proposing the usage of local magnetic field distor-

tions, in their case to enhance pedestrian localization in indoor environments. The

authors are adding magnetic field intensity measurements to their previously intro-

duced FootSLAM approach based on human odometry (step measurements). In order

to weigh the particles based on magnetic field strength measurements from mag-

netometers in the pedestrians shoes, they adopt a hierarchical map representation

composed of uniformly sized hexagonal bins (see figure 3.11) and model the magnetic

field strength in each bin as a Gaussian distribution, assuming that neighboring cells

carry no information for the current cell. The authors propose their approach also for

robots, but are assuming noise-free measurements and are using uncalibrated mag-

netometer data. Since humans in general don’t distort the ambient magnetic field,

this assumption holds true to a certain point in their setup of pedestrian localization,

achieving a 2D localization error on the order of 10 cm to 20 cm. The authors propose

the usage of the full 3D vector for further work and not only the intensity, although

that would mean that the magnetic field measurements are not rotation-invariant

any more.
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Figure 3.11: FootSLAM map of a large office building annotated with hi-

erarchical magnetic field intensity measurements in hexagonal

bins [Robertson et al., 2013]

[Akai and Ozaki, 2015] also base their localization method on a pre-collected mag-

netic field intensity map, which they gather in advance using a LIDAR-based RBPF-

SLAM on a mobile wheeled robot. Similar to the work by [Robertson et al., 2013],

they are dividing the magnetic field into grid cells and use a particle filter for localiza-

tion (see figure 3.12). Rather than solving the full SLAM problem, the work focuses on

efficient magnetic intensity map building for large scale indoor environments model-

ing the magnetic field intensity for each cell as a Gaussian process (figure 3.13). The

authors make a strong simplification though, by assuming the intensity of each axis

to be independent and learning a model for each one individually, basically losing the

rotation-invariant property of the magnetic flux density, but neglecting the meaning

of direction inherent to the magnetic vector field. The authors describe an error ac-

cumulation problem in their experiments, but since a similar trajectory for collecting

the magnetic field map and the localization evaluation is driven, the method still

works, with a reported estimation error of approximately 1 m.

[Jung et al., 2015] describe in their work a method of solving the indoor SLAM prob-

lem using a pose graph optimization approach, utilizing the local magnetic field.

They propose to add two types of constraints based on 3D magnetometer measure-

ments, one for local heading correction and one for loop closures. The first uses the

property, that the magnetic field vector represented in a global frame should remain

stable when the robot is turning without translating (magnetic pivoting constraint).

For the loop-closing constraint, the authors are using a sequence of magnetic field

measurements and apply sequence-based matching techniques to overcome spatial

similarities of the magnetic field. During evaluation with a wheel based robot, the

authors relied on these sequences being recorded while the robot is moving strictly

linear, since they experienced magnetic field inconsistencies (they call magnetic fluc-

tuations) while turning with the robot, most likely due to distortions of the local
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Figure 3.12: Discrete magnetic intensity grid cell by [Akai and Ozaki, 2015], with

recording points only in the yellow and red region contributing to the

learned gaussian process for the red area

Figure 3.13: Separately learned distributions using gaussian processes for each

intensity component of the magnetic field by [Akai and Ozaki, 2015],

showing respective mean and variance of an indoor office environment
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magnetic field caused by the robotic system itself (see chapter 4 and 5 on system-

immanent distortions). This further implies that the robot has to drive in the same

direction (or the direct opposite) on a similar trajectory for loop closures to work. The

authors comment, that they therefore recommend to augment their magnetic con-

straints with further sensor systems like laser range finders or cameras in the pose

graph SLAM approach, but that under the mentioned restrictions in the application

scenario, they were able to achieve a mean absolute trajectory error of (0.28 ± 0.19) m

against a reference path. Like [Akai and Ozaki, 2015], they are not using the di-

rection component of the magnetic field directly, although they briefly mention the

possibility to use a cosine similarity metric when comparing 3D magnetic field mea-

surements, but eventually choose to use a Euclidian distance metric.

Figure 3.14: Magnetic field intensity sequence constraint for pose graph SLAM ap-

proach by [Jung et al., 2015] for each magnetic field component sepa-

rately





Chapter 4

Ambient Magnetic Fields

In order to use the local distortions of the geomagnetic field for mobile robot local-

ization purposes as intended in this work, the ambient magnetic field has to exhibit

characteristics, that provide a sufficient amount of information for a specific applica-

tion scenario. What may be considered sufficient in this sense will be dependent on

the concrete task at hand, the spatial extent and the expected localization accuracy.

Previous works in this area are strongly focussed on humans in office indoor envi-

ronments, and the applicability for mobile robot localization in other environments

remained vague as discussed in Chapter 3. It seems reasonable to postulate, that

a certain amount of variation per volume from a uniformly distributed field will be

required, along with a particular non-periodicity to avoid ambiguity, again depending

on the robotic task requirements. Therefore, this chapter will describe some exem-

plary robot application scenarios that have been assessed with respect to the encoun-

tered magnetic field characteristics and reason on the applicability of a magnetic field

distortion localization approach in these scenarios.

4.1 Ballast Water Tanks

Ballast water is used to stabilize partially loaded or empty ships on the open sea.

When needed, ocean or port water is pumped into special ballast water tanks (BWTs)

to increase the mass of a ship. Because ocean water is typically contaminated with

algae, plankton and other organisms, and due to the aggressive nature of salt-water,

BWTs are often subject to serious bio-fouling and corrosion. The ballast tanks rep-

resent more than 40 % of the entire coated area on a vessel. They therefore need

frequent inspection, cleaning, and repair. Until now, the maintenance of BWTs can-

not be performed under operating conditions. Consequently, ship owners are forced

37
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to send their ships to dock inspection frequently, causing high costs in labor and ship

downtime. On cruise vessels, BWTs are typically built in those spaces of a ship that

cannot be used for other purposes. As a consequence, they are narrow, irregularly

shaped, and badly ventilated. They are designed to be accessible to human workers,

but are a dirty, unhealthy, and unpleasant workplace (see figures 4.1 and 4.2).

Figure 4.1: Double bottom ballast water tank of a cruise liner at Meyer Werft Ship-

yard during construction phase

Figure 4.2: Possible ballast water tank environments for robotic inspection and

maintenance

Manual work in a BWT is a tedious task that carries potential short- and long-term

health risks for the workers involved. Nevertheless, coating, cleaning, inspection and

repair of ballast water tanks are still done manually. Automation of these processes

is not feasible so far due to the complexity and the variability of current tank designs,

as well as the limited flexibility of the currently available robotic systems. If robots
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were to take over the inspection, cleaning, coating, and repair of ballast water and

other tanks and narrow spaces, this would greatly speed up the process and reduce

the health risks for workers and ship crews. Using robots, shipbuilders, ship owners

and class societies alike would also be able to considerably reduce the cost for inspec-

tion and maintenance. For an extended overview on BWT- or ship inspection and on

possible robotic concepts see [Christensen et al., 2011a].

Figure 4.3: PMD camera point cloud looking through a BWT manhole with extinc-

tion artifacts on sharp edges (left) and directly looking at flat surfaces

(right)

Since the narrow and contorted design is effectively preventing any remote-controlled

robotic applications, any feasible robotic application scenario will have to feature au-

tonomous behavior, at least to a certain degree. This inherently requires the capa-

bility of localization based on sensors that can perform properly in such conditions

as encountered in ballast water tank environments. Apart from the obvious non-

functionality of GPS-based localization in these environments due to the massive

steel barrier, [Christensen et al., 2011b] further describe the problems of typical ex-

teroceptive sensors used for robot localization in these environments, like erroneous

measurements near the sharp edges of so-called manholes or extinction and strong

multi-path reflection artifacts on flat coated surfaces with cameras based on Time of

Flight (ToF) or Photonic Mixing Device (PMD) sensors and laser scanners (figure 4.3).

These problems are in most cases combined with a bad odometry of the robot, mostly

due to slippage caused by moisture or dirt residue from the last floodings. Using

magnetic field distortions for localization as described in this work may help counter

some if not all of these problems, given that the magnetic field exhibits the required
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features like measurable variations of the flux density and temporal stability.

Multiple assessments of the magnetic field were carried out in a BWT testbed of

16.7 m3 with an installed plastic rail for rail-guided robotic inspection of 22 m over

a period of two years. The construction is made of standard shipbuilding steel of

5 mm thickness with strong ferromagnetic soft iron properties and has 27 separate

compartments on two floors connected with manholes. First measurements of the

magnetic field were done manually by moving an IMU with a built-in 3 axis mag-

netometer on a non-magnetic slider by hand over the rail, to avoid any magnetic

field distortions from the robot. Measurements were taken every 5 cm (figure 4.4).

Later, to evaluate the temporal stability of the ambient magnetic field, multiple mea-

surement runs were also carried out with the robot Artis, always with the same setup

and static calibration of the magnetometer, but no noticeable changes of the magnetic

field inside the test tank occurred.

Figure 4.4: Collecting magnetic field readings for the generation of a magnetic field

map for localization purposes in a BWT testbed. The plot on the right

shows the mangetic flux density vectors of the rail trajectory straightened

out.

Figure 4.5 shows the variations of the magnetic field during a straight run on a rail

through a BWT. The huge amount of soft iron steel leads to strong deviations of the

geomagnetic field in every axis of the magnetometer, especially when passing through

manholes or crossing sections, where the rail was attached to the BWT by means steel

fasteners.

When looking at the combined magnetic field flux density (the length of the magnetic

field vectors or strength, see Section 2.1) across the rail segment in figure 4.6, the

change in strength is also significant, ranging from a minimum of 13.65 µT to a max-

imum of 38.37 µT, with a mean value of 23.82 µT. The low mean value (less than half

of the expected geomagnetic field in Bremen, Germany) indicates a strong shielding

effect of the surrounding steel container, but is still in the same order. Looking at the

distribution of the strength readings, there is no prominent singular mode around
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Figure 4.5: Magnetic field variations per 3D component during a straight run on a

rail through a ballast water tank

which the magnetic field strength deviates.

Although it is possible to have strong changes in the strength component without a

change of the field direction, in this case figure 4.7 shows, that the direction of the

magnetic field is also changing dramatically during the same run on a rail through

the BWT. To visualize just the change in direction, the measured magnetic field vec-

tors are normalized to unit length and projected onto the unit sphere, each rooted in

the origin of the sphere. No change in the direction of the field measurements would

thus lead to just one fixed point on the unit sphere, whereas continuous changes in

the direction would lead to a defined path on the unit sphere, as it is the case with

the BWTs.

Given the significant changes of the magnetic field both in strength as well as the

direction with distinct features, such structured artificial environments consisting of

a huge amount of soft iron material like shipbuilding steel seems very well suited to

provide enough information for magnetic field-based localization.
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Figure 4.6: Combined magnetic field strength variations during a straight run on a

rail through a ballast water tank and the corresponding field strength

distribution
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Figure 4.7: Magnetic field direction change during ballast water tank rail run
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4.2 Office Environment

Because of their typically easy-to-access nature, office environments are one of the

most common test scenarios for small robots. For magnetic field localization, though,

there are more reasons why office environments are not only convenient, but an ap-

propriate test scenario: localization in buildings is challenging, because of the limited

or mostly non-availability of global navigation satellite systems (GNSSs) like Global

Positioning System (GPS), GLONASS or Beidou, the de-facto standard for most out-

door localization applications. Furthermore, most common multi-floor office building

architectures depend on long massive steel girders in the walls and reinforced ferro-

concrete for the floors. Such construction material can be expected to exhibit strong

static deviations of the earth magnetic field.

Figure 4.8: Magnetic field sampling in typical office environment

For the purpose of this work, data of an office environment was gathered using a

special setup avoiding ferromagnetic material, that may hamper with the ambient

magnetic field measurement procedure. A lightweight small plastic sled carrying an

IMU containing a calibrated 3 axis magnetometer was set up, which was attached to

a supporting rope and pulled in a uniform motion by a plastic fishing line on a mo-

torized reel (see figure 4.9). The required power-supply battery was mounted ≈20 cm

away from the sensor and the whole sled sensor setup was statically calibrated (for

static calibration procedures see Section 6.2).

The isolated components of the magnetic field bx, by and bz are showing again signifi-

cant changes of up to 30 µT (figure 4.10). This is also reflected in the variation of the
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(a) Measurement sled (b) Reel for steady pulling

Figure 4.9: The office environment magnetic field measurement setup avoiding ferro-

magnetic material to prevent disturbances during data aquisition
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Figure 4.10: Component-wise magnetic field variations of an office floor environment

(straight run RH5, no. 1)
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absolute magnetic field strength along the office floor, but looking at the distribution

over the strength range, one can see an accumulation around 47 µT (figure 4.11), re-

flected also in the median value of that dataset of 46.28 µT. While the median value is

therefore quite close to the expected geomagnetic field strength of 49.46 µT in Bremen

on that day, the distribution shows a longer tail to the left with a significant amount

of samples with lesser strength values 43.03 µT.
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Figure 4.11: Combined magnetic field strength variations during a straigth run

through an office floor environment (straight run RH5, no. 1) and the

corresponding field strength distribution
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A noticeable element of the office environment at hand were two strong pillars of

reinforced concrete encapsulating a steel girder. When overlayed with the floorplan

of the environment, the significant dents in the intensity correlate with the respective

positions of the pillars (figure 4.12). This is a typical sign of the soft iron effect, that

is expected from such material (see Section 2.2): the iron material provides a path

of lower impedance for the magnetic field with increased magnetic flux density in

the material, but corresponding lower flux density or strength in the vicinity of that

object. A similar effect but to a lesser extend than with the steel girders is noticable

in figure 4.12 when passing the steel door frames.

Figure 4.12: Magnetic field X component variations overlaid on top of office floor plan

(straigth runs RH5 no. 1-3)

Concerning the deviations of the direction of the magnetic field in such an environ-

ment, the directions are much less spread out than for example in the ballast water

tank scenario (figure 4.13). While having a strong effect on the strength, the direction

of the field shows noticeable, but weaker deviations in the vicinity of the pillars along

the path (figure 4.14).
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Figure 4.13: Magnetic field direction change during straight office floor environment

run (straight run RH5, no. 1)

Figure 4.14: 3D rendering of magnetic field direction and strength variations along

the office environment sampling trajectory
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4.3 Outdoor Cattle Grid

When testing robot navigation at the outdoor test track of the German Research

Center for Artificial Intelligence - Robotics Innovation Center (DFKI RIC), a spe-

cial challenge is to overcome a small canyon or trench by means of a cattle grid. A

cattle grid can be quite easily crossed by wheeled vehicles like cars, but effectively

prevent livestock from passing due to a traverse grid of tubes running across (fig-

ure 4.15). Planned mainly as a challenge for legged walking robots, it was quickly

realized during testing of new navigational approaches, that often the localization

solution degraded, just when trying to navigate over that difficult structure, due to

IMUs providing bad pose estimates.

Figure 4.15: A cattle grid on the outdoor testtrack at DFKI RIC

Saturation of the accelerometers inside the IMU could be one problem, since cross-

ing the cattle grid can lead to strong shaking motions of the robot and correlating

vibration of the IMU. However, the main cause for localization degradation is antici-

pated to be strong magnetic field distortions at that area due to the steel construction.

Therefore, data of the magnetic field across the cattle grid was gathered in the same

way as in the office environment.

In terms of the single components of the magnetic field in the case of the cattle grid,
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one can directly see the magnetic flux density rising and falling quickly during the

crossing, with strong amplitudes of up to 90 µT (figure 4.16) in a single component.
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Figure 4.16: Component-wise magnetic field variations during a run over a cattle

grid at the DFKI RIC outdoor test track

Examining the variations of the total magnetic flux density of the field, the changes

are similar to the single-component values, but with an even bigger range of 94.10 µT

and a maximum strength of 104.87 at the end of the cattle grid (figure 4.17). This is

more than twice the amount of the expected undistorted geomagnetic field strength,

though the mean of the ambient distorted total field strength is still close to the

expected mean with a value of 44.49 µT. The distribution of the total field strength

is mostly centered around the median of 41.17 µT, with some outliers grouped at the

high values of around 100 µT.

The magnetic field is not only distorted in the strength of the field, but the vector

directions are also strongly diverting as depicted in figure 4.18, which could result in

heading deviations of more than 90° in the worst case, which would very well explain

the encountered difficulties of the IMU-based navigation.
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Figure 4.17: Combined magnetic field strength variations during a run over a cattle

grid at the DFKI RIC outdoor test track and the corresponding field

strength distribution
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Figure 4.18: Magnetic field direction change during a run over a cattle grid at the

DFKI RIC outdoor test track
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4.4 Space Hall Testbed

Designed to test robotic systems for space applications, the space exploration testbed

at DFKI RIC covers an area of 288 m2, with a maximum height of 10 m. The testbed

is equipped with several technical installations for the aspired goal, most notably a

9 m wide crater test area modelled after a lunar crater near the south pole of the

moon and a cable-robot based on a SpiderCam-System to simulate (in conjunction

with a 6 degrees of freedom (DoF) robotic arm) new methods for the approach or

docking of two spacecraft or satellites (see [Girault et al., 2013]). The cable-robot

has an extended working range of 16 × 7 × 5.5 m. Also installed is an infrared-based

marker pose tracking system, covering a volume of 770 m3.

Figure 4.19: Space crater environment for robotic testing at DFKI RIC

Although it is known that the moon has no significant magnetic field in compari-

son with the Earth, with mainly planetary crust related field strength in the order

of nT [Purucker, 2008], a distinct magnetic field is expected in this testbed environ-

ment, although the steel frame and sheet metal used in the building may have a

shielding effect due to soft iron deflection.

To assess the magnetic field in the volume above and in front of the crater area, an

IMU with an integrated 3-axis magnetometer was equipped to the cable-robot via

an aluminum profile to prevent magnetic distortions from the fastener. In addition,

only the electronic components for communication using a glass fiber to submit the
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magnetometer signals were activated on the cable-robot rig. To exactly track the

magnetometer position, the IMU was equipped with an infrared marker for the VI-

CON tracking system, the magnetometer- and tracking data was later fused using

pre-coordinated timestamps. The setup is depicted in figure 4.20.

Figure 4.20: Spidercam system to move the magnetometer through the volume of the

space testbed

The cable-robot then followed a horizontal meandering back-and-forth motion, before

moving on to the next lower level, subsequently down the crater rim to the floor of

the space testbed, as shown in figure 4.21. For security reasons, the magnetometer

mounted to the cable-robot maintained a distance to the crater surface of ∼0.5 m.

The characteristics of the plot of the isolated bx, by and bz components of the magnetic

field (figure 4.22) reflect the movement pattern chosen to cover the volume inside the

spacehall above the crater slope, for example the distinct 4-cycle in the by component

is due to the left-right motions across the volume, horizontally approaching the side

of the volume with lesser magnetic field strength on one one height level and then

withdrawing again on the next.

The 3D plot of the volume with annotated magnetic field strength is depicted in fig-

ure 4.23. The difference in magnetic flux density between the sides of the volume

is apparent, although the absolute strength variations are rather small compared to

the environments discussed before, ranging from 36.92 µT to 45.15 µT, with a mean

value of 40.08 µT and similar median of 40.12 µT.
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Figure 4.21: 3D rendering of magnetic field vectors (direction and strength) varia-

tions in the space crater testbed environment
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Figure 4.22: Component-wise magnetic field variations of the volume inside the

DFKI RIC space testbed
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Figure 4.23: 3D volumetric rendering of interpolated magnetic field strength varia-

tions in the space crater testbed environment

Looking at the total field strength, a much more centered distribution can be seen,

with a standard deviation of 1.32 µT (figure 4.24), which is also reflected in the low

variations of the magnetic field direction, as can be seen in figure 4.25.

On first thought, one would expect stronger deviations of the magnetic field, simi-

lar to the distortions experienced in the office environment, due to the material of the

main construction frame of the building, which consists of steel girders equipped with

a metal sheet roof and side panels. However, with the measured magnetic field in the

working space of the cable-robot above and in front of the lunar crater setup being

several meters away from the sidewalls and the roof, the soft iron effect of the steel

frame construction could cause only minor interference with the assessed magnetic

field. The lower overall magnetic field strength of the covered volume in compari-

son with the geomagnetic field at that place indicates a considerable shielding effect

caused by the building construction.
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Figure 4.24: Combined magnetic field strength variations of the volume inside the

DFKI RIC space testbed and the corresponding field strength distribu-

tion
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Figure 4.25: Magnetic field direction change in the volume inside the DFKI RIC

space testbed
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4.5 Assessment Comparison

Figure 4.26 sets the total magnetic field strength variations of the environments as-

sessed in the previous sections in relation to each other using boxplots. The line in

the middle of each individual box represents the median of the data set, whereas the

lower bound of each box indicates the lower quartile (Q1, 25th percentile) and the

upper bound accordingly the upper quartile (Q3, 75th percentile). The distance be-

tween the lower and upper quartile defines the interquartile range (IQR), a measure

of statistical dispersion, estimating the spread/variability of the distribution. The

’whiskers’ are indicating the limits of Q1 − 1.5IQR and Q3 + 1.5IQR, commonly de-

noting the outlier boundaries. The dots above and below those boundaries indicate

the samples outside of these boundaries.
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Figure 4.26: Boxplots of the total magnetic field strength distortion distributions for

several robotic application environments

All evaluated environments are displaying a considerable amount of spread due to

ambient features of the environment, with the space environment testbed having the

smallest interquartile range and the cattle grid environment the largest. Summa-

rizing, most of the exemplary environments for possible robot application scenarios

have an ambient magnetic field that shows significant features in comparison to the

locally uniform geomagnetic field, which could be exploitable for navigation purposes.

This holds true especially for environments like artificial structures with material of

high magnetic permeability, even though also large scale outdoor environments with
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natural formations of magnetic susceptible material like magnetite on the seafloor

may lend themselves to exploit the magnetic field features for navigation purposes,

depending on the distribution of the features and the scale of the navigation task.

Figure 4.27: SLAM generated map of larger indoor environment at DFKI RIC RH1

integrating magnetic field readings. Changes of the sphere color indi-

cate significant changes of the magnetic flux density in such environ-

ment, whereas the blue pin is indicating the magnetic field direction.

Depending on the position in the magnetic field of the local environment, the dis-

tinct deviations occur more in the strength component or are more significant in the

directional component. Figure 4.27 shows a SLAM generated map of the DFKI RIC

RH1 building, incorporating both the strength and directional components of the local

magnetic field variations. Considering the temporal domain, the ambient magnetic

fields could be considered quasi-static, remaining stable over time, just changing with

the secular variations of the geomagnetic field itself.
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Given that one either wants to use the undisturbed geomagnetic field at a certain

time and place (see Section 2.3) or exploit the more sophisticated features of ambient

magnetic fields (see Chapter 4) for navigating mobile robots, there is a major obstacle

for that in either way: the physical embodiment of the robot itself. While some ap-

proaches to robot localization like EmbodiedSLAM [Schwendner and Kirchner, 2010,

Schwendner et al., 2014a] are making use of just that property, it provides a major

hurdle when trying to measure the ambient magnetic field without self-induced dis-

tortions. A lot of the material used in robotic systems show strong soft- or hard iron

effects, like iron, cobalt or nickel and alloys like AlNiCo or permalloy (Nd2Fe14B).

Nowadays, in the search for lightweight or robust materials for robotic applications,

material like fiber-reinforced plastics (e.g. fiberglass, carbon, aramid), stainless steel

or titanium are often used. These materials show a quasi-neutral behavior due to

their relative magnetic permeability coefficient close to one (see Section 2.1), however,

some of the fundamental components of robots like motors or hard drives are virtually

depending on strong ferromagnetic materials, which exhibit unwanted hard- or soft

iron distortion effects (see Section 2.2).

In addition to that, considerable electric currents may flow through supply lines, mo-

tor windings and other conductors of internal or external equipment and payloads of

a robotic system. To further complicate the usage of magnetometers in often confined

mobile robots, the robots may be able to change their posture or configuration, for

example robots with arms and legs showing a high number of DoF or modular robots

with changing payloads or configurations. To get an overview of the amount of distor-

tion caused by the systems, several mobile robots of different classes were evaluated
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in the course of this work, which are discussed in the following subsections.

5.1 Rigid Body AUV - DAGON

The autonomous underwater vehicle (AUV) DAGON is specifically designed as a sci-

entific AUV for visual mapping and localization with stable hovering capabilities.

Its high-quality stereo camera system usually acts as the main sensor system and

is supplemented by an internal IMU and a pressure sensor. Using visual odome-

try and SLAM approaches, a map of the seafloor and the vehicle’s trajectory can be

generated [Hildebrandt and Hilljegerdes, 2010]. In addition to the visual main sen-

sory system, the AUV is equipped with additional navigational instruments like an

Acoustic Long Baseline Navigation System (LBL), a Doppler Velocity Log (DVL) and

a Fibre Optic Gyroscope (FOG), usually used to establish a ground truth to evaluate

novel underwater localization techniques. The AUV has a lithium-ion battery with a

capacity of 1.6 kWh, resulting in a corresponding nominal operating time of six hours,

which may vary with the type of mission. DAGON can either be used as a completely

autonomous vehicle, with the only communication available being the low-bandwidth

acoustic modem, or connected to a fiber-optic cable for telemetry. Using this cable, a

hybrid-ROV mode is also possible, where the vehicle is controlled by a human opera-

tor or a control station onshore [Hildebrandt et al., 2012].

Figure 5.1: Scientific AUV DAGON, a representative of a rigid-body robotic system

For the purpose of evaluating magnetic fields generated by different types of mobile

robotic systems, the AUV DAGON represents a more static type of robot, with a rigid
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body and thus a limited amount of DoF of its posture. While other AUVs like gliders

have internal moving parts like dive-cells or movable battery packs to change the

buoyancy or the center of gravity, DAGON’s configuration is completely fixed during

a dive. In such a setup, the only persistent distortion one would expect could be due

to electromagnetic effects of the changing motor currents. Data sets with DAGON

were recorded while decreasing the PWM signal from 100 to 0 % over a period of

10 s, then increased again back to 100 % in the same period of time. This was done

for every thruster subsequently. The internal magnetometer of the IMU residing in

the main pressure compartment was used as data source for the 3D magnetic field

measurements. The AUV’s position was fixed during the whole recording process, to

isolate the distortions induced by the motor currents.

Figure 5.2 depicts the singular magnetic field components bx, by and bz for one in-

crease/decrease PWM cycle of 20 s of the vertical front heave thruster. As can be seen,

all singular components of the magnetic field show no drift, but significant noise and

3 distinct peaks in the magnetic flux density.
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Figure 5.2: Singular components of magnetic field variations on AUV DAGON, 20 s

sequence of decreasing (10 s) and increasing (10 s) heave thruster PWM

values from 100 to 0 % and back

Compared to the total strength variations depicted in figure 5.3, the peaks are show-

ing up too, although to a lesser extent. Zooming in, the amplitude of the high-

frequency noise seems to be correlated to the decreasing and then again increasing
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PWM signal.
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Figure 5.3: Combined magnetic field strength variations on AUV DAGON, 20 s se-

quence of decreasing (10 s) and increasing (10 s) heave thruster PWM

values from 100 to 0 % and back. Zooming in (right), the plot indicates a

correlation between the PWM value and the noise amplitude.

The distribution of the total magnetic field strength for the DAGON data set (fig-

ure 5.4) is closely centered around the median of 40.73 µT with a lower quartile of

40.60 µT and an upper quartile of 40.85 µT, with a minor mode around 39 µT due to

the peaks in magnetic flux density noticed before.
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Figure 5.4: Distribution of the total magnetic field strength variations on AUV

DAGON

Despite the noticeable peaks in the magnetic flux density, the directional component

of the magnetic field during the change in thruster PWM of AUV DAGON remains a

narrow cluster with very small deviation (see figure 5.5).
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Figure 5.5: Magnetic field direction change while changing thruster PWM of AUV

DAGON



66 Chapter 5. Magnetic Fields of Mobile Robots

5.2 Agile Wheeled Rover - ASGUARD

This subsection discusses a robot having a lightly raised body complexity with an

additional DoF compared to the robot discussed before. The micro rover ASGUARD

II, designed for agile locomotion in harsh outdoor environments, features a rear body

part, that can rotate via a passive rotary joint (see figure 5.6).

Figure 5.6: Agile micro rover ASGUARD II, featuring a free rotating rear axle

The robot’s rear body part structure is made of carbon fiber and aluminum, both non-

ferromagnetic materials. But since there are DC-motors equipped at either end of

the axle, both incorporating strong ferromagnetic material, the rotation of the rear

body part of the robot may distort the magnetic field measured at the magnetometer

sensor integrated into the IMU of ASGUARD, which is located in the front main body

housing.

To assess the amount of distortion emanating from the specific locomotion feature

of ASGUARD, the 3D magnetometer data was recorded while deliberately turning

the rear body part to its rotary limits with an otherwise fixed pose of the robot. The

singular components bx, by and bz of the measured magnetic field overlayed with the

turning angle θ in rad of the rotary joint is depicted in figure 5.7. While minuscule

variations in the components are visible, the magnetic flux density levels remain level
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throughout the turning sequence.

0 2000 4000 6000 8000 10000 12000 14000
Sample #

−40

−30

−20

−10

0

10

20

30

M
ag

ne
tic

 fl
ux

 d
en

si
ty

 (µ
T) bx

by
bz

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
ea

r b
od

y 
jo

in
t a

ng
le

 (r
ad

)

θ

Figure 5.7: Magnetic field singular component variations on rover ASGUARD II dur-

ing rotation of the rear body part from limit to limit

The same holds true for the total magnetic field strength, as can be seen in figure 5.8.

The distribution is centered around the median at 53.82 with very close lower and up-

per quartile of 53.67 µT and 54.01 µT, respectively. The significant three peak modes

of the distribution are likely corresponding to the three main held turning angles:

left limit, neutral and right limit of the rotary rear body joint.

The interesting multi-mode distribution of the strength is however not reflected in

the direction component of the magnetic field during the rear joint turning motion,

which remains centered at its original direction (figure 5.9).
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Figure 5.8: Total magnetic field strength variations on rover ASGUARD II during

rotation of the rear body part from limit to limit and the according mag-

netic flux density distribution
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Figure 5.9: 3d scatter plot of magnetic field directions while rotating the rear body of

ASGUARD II
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5.3 Passive Suspension Rover - ARTEMIS

A rigid body robotic system with additional DoF compared to ASGUARD is the ter-

restrial rover ARTEMIS [Schwendner et al., 2014b], which was designed and built to

compete in the SpaceBot competition of the DLR. This rover has a weight of 75 kg,

a size of 120 cm × 80 cm × 107 cm and can drive at a maximum speed of 0.5 m s−1. It

was chosen in this work due to the triple bogie suspension system for extra mobility

in rough terrain, which is expected to exhibit deviation effects on the local magnetic

field due to the moving ferromagnetic parts in the attached motors. One bogie carry-

ing the front axle is oriented perpendicular to the vehicle’s longitudinal axis, whereas

the left and right bogies carrying the other four wheels in a twin setup, can passively

turn around the lateral axis of the robot (see figure 5.10). For the purpose of this

work, the attached manipulator was deactivated and its posture fixed.

Figure 5.10: The ARTEMIS rover with triple bogie suspension system and manipu-

lator designed for the DLR SpaceBot competition (left) and marked IMU

placement (right)

To assess only the influences of the system itself with its triple bogie system on the

local magnetic field, the rigid body pose of ARTEMIS was again fixed during the data

recording. This ensures that no local variations of the ambient magnetic field due to

position changes of the robot interferes with the assessment of the system-inherent

distortions. As with ASGUARD, the magnetometer used to record the magnetic field

changes was the internal sensor of the vehicle’s IMU attached to the top of its sensor

pole with a distance to the bogie joints of approximately 60 cm.

Figure 5.11 depicts the magnetic flux density variations in the individual bx, by and

bz components of the local magnetic field measured at the IMU’s position mentioned
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above, while the suspension bogies of ARTEMIS were rotated 50° from limit to limit

separately and in combination in this data set. The bogie angles are integrated with

a separate axis on the right side into the same plot.
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Figure 5.11: Magnetic flux density variations in each axis of the magnetometer while

the suspension bogies of ARTEMIS were rotated from limit to limit

The first impression on the whole dataset is, that the general level in each individual

component remains quite stable during turning of the bogies, where one would have

expected stronger deviations due to the ferromagnetic material inside the motors

mounted to the bogies. This impression is relativized, when looking more closely at

a subset of the sequence in figure 5.12: A significant correlation between the bogie

joint angles and the magnetic field flux density becomes visible, with variations up to

2 µT in parallel with the joint rotations.

The total field strength is again reflecting this correlation, with an overall distribu-

tion around the median of 42.89 µT, narrowly concentrated with a lower quartile of

42.72 µT and upper quartile of 43.04 µT (figure 5.13).
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Figure 5.12: Magnetic flux density variations in each axis of the magnetometer while

the suspension bogies of ARTEMIS were rotated from limit to limit,

zoomed-in subset
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Figure 5.13: Total magnetic field strength variations on rover ARTEMIS during ro-

tation of the bogies from limit to limit (left) and the according magnetic

flux density distribution (right)
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Zooming deeper into a subset from sample 47500 to the end of the data set at sample

63710, a shape similar to that of the ASGUARD rover can be identified, with two

noticeable modes to the left and right side of the median, correlating to the magnetic

field strength peaks at the bogie joint limits (figure 5.14).
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Figure 5.14: Total magnetic field strength variations on rover ARTEMIS during ro-

tation of the bogies from limit to limit (left) and the according magnetic

flux density distribution (right), zoomed-in subset

Considering absolute numbers, the amount of magnetic flux density deviation is

ranging from 41.46 to 43.90 µT. This span of only 2.44 µT is rather small in compari-

son with the total field strength of 49.46 µT in Bremen. The direction of the magnetic

field thus remains very stable despite the deviation effect of the turning suspension

bogies, as depicted in figure 5.15.
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Figure 5.15: 3D scatter plot of magnetic field direction changes while rotating the

suspension bogies of the robot ARTEMIS
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5.4 Legged Walking Robot - CHARLIE

Again increasing the number of degrees of freedom and thus the expected amount

of system-induced magnetic field distortions, the system evaluated in this section is

the robot CHARLIE. The bioinspired hominid robot features an active artificial spine

of 6 DoF and a sophisticated lower limb system with two legs of 7 DoF each and

two multi-contact feet. In addition to that, the head can be actuated with 6 DoF

and the two arms both with 5 DoF. The robot was designed, among other things,

to study the possible transition from four-legged walking to upright bipedal walking

behaviors and is equipped with a huge amount of sensors integrated over the whole

robot structure [Kühn, 2016]. In the context of this work, CHARLIE stands for a

class of legged walking robots featuring a massive amount of DoF.

Figure 5.16: The four-legged robot CHARLIE with sophisticated lower limb system

for increased mobility in unstructured terrain. The red circle indicates

the mounting position of the IMU on the lower spine.

To assess the amount of local magnetic field distortions for the robot CHARLIE, data

from the IMU mounted at the end of the lower spine was recorded, while the robot

was executing a straight walking pattern with four subsequent lift- and stance phases

for each leg, with a duration of one full cycle of 4.8 s (see figure 5.17).

As depicted in figure 5.18, the magnetic field flux density components show a very

strong correlation with the rear legs lift- and stance phases and also with the currents

of the spine motors at that point in the cycle of the straight walking pattern.

The total magnetic field strength depicted in figure 5.19 has a level of ∼42 µT at the

start and at the end of a walking pattern cycle, followed by very strong, seemingly
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Figure 5.17: One cycle of the straight walking pattern of the robot CHARLIE with

indicated lift- and stance phases for each leg (front left(FL), front right

(FR), rear left (RL) and rear right (RR))

Figure 5.18: Spine motor currents (above) and component-wise magnetic flux density

(below) during a straight walking cycle of robot CHARLIE. Y axis of

magnetic field plot is showing normalized magnetic flux density, with 1

equal to 49.0 µT (source: Martin Zenzes, DFKI).
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erratic, peaks when the rear legs are used and a huge offset in the middle phase of

the cycle. Inspecting the strength distribution, a spread orders of magnitude larger

than in the robotic systems discussed above can be seen, with a lower quartile at

40.81 µT, an upper quartile at 84.47 µT and the median at 57.95 µT. The distribution

shows two distinct modes corresponding to the main levels at rest (start and end of a

cycle) and in the middle phase of the cycle.
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Figure 5.19: Strong variations of the total magnetic field strength during a straight

walking pattern cycle of robot CHARLIE and according spread out dis-

tribution

The changes in the magnetic field direction are equally strong, as shown in fig-

ure 5.20. The directions are spread out over the whole lower hemisphere, which

denotes a full direction reversal in the most extreme cases.
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Figure 5.20: 3D scatter plot of magnetic field direction changes during a straight

walking pattern cycle of robot CHARLIE
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5.5 Assessment Comparison

To compare the distributions of the total magnetic field strength for the individual

robots, which were selected as representatives of a certain class of robots with in-

creasing DoF, figure 5.21 shows boxplots for the systems discussed above. As de-

scribed earlier (see Chapter 4), the line in the middle of each individual box rep-

resents the median of the data set, whereas the lower bound of each box indicates

the lower quartile (Q1, 25th percentile) and the upper bound accordingly the upper

quartile (Q3, 75th percentile). The distance between the lower and upper quartile

defines the IQR, a measure of statistical dispersion, estimating the spread (variabil-

ity) of the distribution. The ’whiskers’ are indicating the limits of Q1 − 1.5IQR and

Q3 + 1.5IQR, commonly denoting the outlier boundaries. The dots above and below

those boundaries indicate the samples outside of these boundaries.
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Figure 5.21: Boxplots of the total magnetic field strength distortion distributions for

the individual systems chosen as a representative for a certain class of

robots with increasing DoF. On the right side, the distributions where

shifted to zero, for better range comparison.

When comparing the amount of variation in the systems in figure 5.21, one can see a

similar spread of the three robots DAGON, ASGUARD and ARTEMIS with slightly

increasing interquartile range, parallel to the increasing DoF of theses systems. The

marked outliers in the case of the AUV DAGON, due to the single spikes in the mag-

netic field flux density shown earlier, were due to a defect in the electronic grounding
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of the system, as later identified during robot maintenance. When including the ho-

minid robot CHARLIE in the comparison (figure 5.22), the huge amount of increased

variation of the magnetic field strength again reflects the drastic rise in DoF of such

a mobile walking system. Despite the great variability in some systems, the distur-

bances that occur are not of a magnitude that makes the underlying magnetic field

indeterminable, but rather of a magnitude similar to the features of the ambient

magnetic fields evaluated in Section 4.
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Figure 5.22: Boxplots of the total magnetic field strength distortion distributions,

here including the hominid walking robot CHARLIE with its increased

number of DoF and significantly larger spread of the distribution.

Apart from the assessed robot magnetic fields described here, further robotic systems

like underwater crawlers and other types of AUVs have been evaluated in this respect

during the course of this work. While the systems discussed here already give a

good overview of the range of magnetic field characteristics encountered in different

kinds of mobile robots, the additional assessed systems are not described here but

are discussed in more depth in the specific context of distortion compensation and

localization in the following chapters.



Chapter 6

Distributed Magnetometer for

Distortion Compensation

This section describes a new approach combining multiple hardware elements and a

corresponding software algorithm to deal with the dynamic distortions of the ambient

magnetic field, originating from the mobile robotic systems themselves as described

in Chapter 5. These distortions commonly lead to erroneous magnetometer measure-

ments of the ambient magnetic field and thus are the source of many problems in

orientation estimation or localization approaches (see the problems of the state of the

art in such cases as described in Chapter 3). The approach was first developed for

underwater robots [Christensen et al., 2015], especially confined unmanned under-

water vehicles, but is also valid for a broader range of mobile robotic systems, that

are spatially contrained and are used in rough environments. In such systems, the

space to mount magnetometer sensors is strictly limited and the sensors are often in

the vicinity of distortion sources like ferromagnetic material, sensor transducers or

strong electric currents flowing through nearby supply lines.

The approach to deal with these magnetic field distortions described in this sec-

tion is threefold: a) the use of multiple distributed magnetometers for robustness

b) the design of very small pressure-neutral sensor modules to get rid of mounting

restrictions inside pressure compartments and c) the development and application

of a multi-magnetometer fusion algorithm using von Mises-Fisher (vMF) distribu-

tions [Fisher, 1953] to compute undistorted pose information.

Whereas localization on the surface has found its reference technology in Global Nav-

igation Satellite Systems (GNSS, e.g. GPS), it is not applicable in the underwater

domain. This is due to the fact that higher frequency radio signals become unusable

once the sensor is submerged because of the water’s strong attenuation. System solu-
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tions to the subsea localization problem are usually more expensive and, in compari-

son, require more custom-tailoring to the specific application scenario. In addition to

this extra effort, subsea applications often require the the installation of additional

infrastructure like long baseline (LBL) positioning systems or the deployment of so-

phisticated ultra-short baseline (USBL) setups [Christensen et al., 2010].

At the base of every dead-reckoning navigation, there is commonly an IMU, usu-

ally consisting of at least accelerometers and gyroscopes to determine orientation.

Since gyroscope measurements drift over time, IMUs are often supplemented with

a magnetometer to stabilize the heading. The measured magnetic field is subject

to significant distortions (soft and hard iron effects), caused for example by nearby

ferromagnetic materials or strong electric currents, as described in section 2.2. This

specifically applies to compact autonomous underwater vehicles and robots, where

mounting options for magnetometers inside pressure housings are strictly limited.

Depending on the severity of the system-induced and dynamically changing field dis-

tortions in the vicinity of the sensor, a priori calibration techniques can correct the

measurements only to a certain point and may fail completely on systems with mov-

ing ferromagnetic parts, like underwater gliders with moving battery packs.

The main reasoning behind the approach described in the following is that the dy-

namic distortions are usually only locally distributed and most relevant in the direct

vicinity of the distortion source (e.g. near strong ferromagnetic material, turning

permanent magnets of a motor or near current supply lines, see Section 2.2). Dis-

tributing multiple magnetometers across the whole robotic system and by applying

the developed vMF-based fusion algorithm to the distributed magnetometer mea-

surements, the developed approach can isolate the main source of interference and

subsequently compensate the magnetic field distortion, as shown in the following

sections.

6.1 Distributed Magnetometer Hardware Setup

In the setup of the first version of the multi-magnetometer developed in the course

of this work, five very small and inexpensive magnetometers (ST LSM303D) and

one microcontroller (Atmel ATmega 644P) were individually molded in polyurethane

casting compound, resulting in a single cable whip (see figure 6.1) which can be easily

and freely distributed outside an underwater vehicles’ pressure housings.

Although most of the electronic parts on the microcontroller board are pressure-

resistant due to their SMD package type, special care had to be taken of the her-

metically sealed crystal oscillator providing the system’s clock-signal to avoid col-
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Figure 6.1: Molding of distributed magnetometers using polyurethane casting com-

pound

lapse under high pressure [Kampmann et al., 2012]. Since the applied polyurethane

is still quite flexible after curing (which is necessary to allow for a good and flexible

bond with the cable), it is possible that the polyurethane would exert pressure on the

crystal oscillator package. This would prevent the crystal from oscillating freely in a

high-pressure surrounding, resulting in wrong clock frequencies or even fatal damage

of the oscillator. Therefore, the package was sealed separately in epoxy resin, which is

less compressible than polyurethane. To avoid inner tension in the epoxy which could

lead to cracks in the material, micro balloons (hollow glass microspheres) were added

to the epoxy casting compound, preventing the exertion of pressure on the oscillator

housing during the curing process. The cast microcontroller module was integrated

directly into the cable to avoid the necessity of another housing (see figure 6.2).

Figure 6.2: Epoxy-infused crystal oscillator of microcontroller module (left), inte-

grated with industry standard underwater plug (right)

The ST LSM303D type of MEMS magnetometer that was used in this work can be

interfaced using either I2C or SPI. I2C would have been the obvious choice due to

the smaller amount of signal wires, however, since the magnetometer only allows

two different I2C slave addresses which would have required the integration of an
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additional multiplexer chip, the SPI interface was used in the first version of the

multi-magnetometer.

SPI has several restricting limitations for this application, though: since it was

primarily designed for short communication paths in embedded systems, the cable

length is recommended to be limited to a few centimeters. However, in the first ver-

sion of the multi-magnetometer, a maximum cable length of 1.5 m was possible with

an SPI clock at 921.6 kHz, but a longer cable whip led to dropout rates up to 100%,

even when significantly reducing the bus clock. Furthermore, since SPI is a full-

duplex system with a single master - multiple slave configuration, every additional

magnetometer requires a separate slave select wire in the cable whip in addition to

the power and communication wires. This was significantly restricting the number

of magnetometers for a sensor array, in the first version to 5 sensors.

To overcome these restrictions and to be able to equip more magnetometers to

the systems, a second version of the multi-magnetometer was developed, this time

with a specific electronic design of the magnetometer modules to counter the expe-

rienced restrictions. The new sensor modules feature a dedicated microcontroller

and RS485 communication chip on each module together with a voltage regulator

allowing for a wider input voltage range from 3.6 V to 16 V to accommodate the

heterogeneous voltage levels of different robotic systems (figure 6.3). The inter-

chip communication between the microcontroller and magnetometer on each mod-

ule is still SPI, and the communication of the modules with the robot on the RS485

bus at 921 600 bit s−1 is triggered by the endpoint, polling the sensors sequentially

for their data packages processed in parallel in the meantime. In addition to

cyclic redundancy checking using CCITT-CRC16, Consistent Overhead Byte Stuffing

(COBS) [Cheshire and Baker, 1999] was used to filter fixed start byte sequences in

the sensor data.

Figure 6.3: Developed magnetometer sensor module (version 2) for the multi-

magnetometer cable-whip setup

The transition from SPI to the differential multipoint RS485 communication stan-

dard, with maximum specified data rates up to 10 Mbit s−1 and distances up to 1200 m

at lower speeds [Telecommunications Industry Association et al., 2003], effectively
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removed the restriction on cable length and on the number of sensors of the first ver-

sion and also made the extra microcontroller module obsolete. At the same time, the

reduced size of the sensor modules of 12 × 22.5 mm, allowed for lower-profile molded

units, further easing the installation on heterogeneous robotic systems. Figure 6.4

shows the multi-magnetometer setup produced for the robot SherpaUW with 8 mag-

netometers integrated into the cable-whip.

Figure 6.4: Multi-magnetometer (v2) setup with 8 magnetometers integrated in the

cable-whip tailored for and installed on the robot SherpaUW

The developed distributed magnetometer setup was first deployed to the land-based

robotic system ARTEMIS (see Section 5.3) and later to the following terrestrial robots

and Unmanned Underwater Vehicles (UUVs) during the course of this work:

1. Rover ARTEMIS

2. Pioneer AT rover

3. Underwater hybrid rover SherpaUW

4. AUV DAGON

5. AUV Flatfish

6. AUV Leng
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7. Underwater crawler Wally

A selection of these systems equipped with the developed multi-magnetometer sys-

tem is displayed in figure 6.5.

Figure 6.5: Selection of robotic systems, that have been equipped with the developed

multi-mangetometer throughout this work

6.2 Static calibration

A compass application for heading estimation depends on measuring the horizontal

components of the geomagnetic field to determine the direction towards the mag-

netic north pole. Although the pole’s location is changing slowly over time and the

magnetic field is significantly distorted locally depending on latitude and longitude

of the observer, the declination from magnetic to true north can be computed using

analytical models as described in Section 2.3.

Apart from the distortions of the geomagnetic field, the system-immanent distortions

created by the vehicle itself must be taken into account, as discussed in sections 2.2

and 5. To recall: hard-iron effects occur due to the magnetic remanence of nearby ma-

terial (permanent magnets in motors, magnetized iron or steel) and show a constant

offset in every field component measured at the sensor position. Without distortions,

plotting directions on a S2 sphere in R
3 would result in measurements of arbitrary

direction having the same distance to the origin. In contrast, hard-iron distortions

lead to a shift of the center of the sphere from the origin (see figure 6.6) and can be
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Figure 6.6: Hard-iron distortion and sensor misalignment on robotic crawler Wally,

magnetometer readings projected onto the xy-plane leading to off-center

effects of different strength depending on mounting position on the ve-

hicle. Ideally (without distortions), all measurements would result in

perfect circles centered at the origin.

modeled as a 3-component bias vector bhi (one-cycle error):

bhi =
(

xhi yhi zhi

)T
(6.1)

Please note, that strong currents flowing through wires near the magnetometers also

lead to hard-iron effects, but are usually non-static. How to deal with these dynamic

distortions is described in Section 6.3 and in Chapter 7.

Soft-iron effects distort the magnetic field by providing a path of lower impedance

while an external field is applied to the ferromagnetic compound. This induces mag-

netism depending on the orientation of the material with respect to the applied (ge-

omagnetic) field (two-cycle error). As such, soft-iron effects lead to a deformation of

the sphere to a 3D ellipsoid, but retaining the origin. The soft-iron effects can be

described by a 3 × 3 matrix Msi:

Msi =

∏

ˆ

ˆ

∐

m11 m12 m13

m21 m22 m23

m31 m32 m33

∫

ˆ

ˆ

ˆ

(6.2)

Before the application of the proposed vMF-based filter to compensate dynamic dis-

tortions of the measured magnetic flux density field, one has to account for the static
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vehicle hard- and soft-iron distortions. In order to get calibrated sensor readings

b̂x, b̂y, b̂z from raw sensor readings bx, by, bz, the following equation is applied:

∏

ˆ

ˆ

∐

b̂x

b̂y

b̂z

∫

ˆ

ˆ

ˆ

= Malign ·

∏

ˆ

ˆ

∐

scx 0 0

0 scy 0

0 0 scz

∫

ˆ

ˆ

ˆ

· Msi ·

∏

ˆ

ˆ

∐

∏

ˆ

ˆ

∐

bx

by

bz

∫

ˆ

ˆ

ˆ

− bhi

∫

ˆ

ˆ

ˆ

(6.3)

with the misalignment matrix Malign, a diagonal scale matrix SC, soft-iron distor-

tion matrix Msi and offset vector bhi, which incorporates hard-iron distortions as

well as sensor-immanent ADC offset errors. As stated previously, undistorted or per-

fectly compensated magnetic field flux density readings would cover the surface of an

origin-centered sphere, while hard- and soft-iron distortions, as well as sensor errors,

lead to an off-centered ellipsoid, which can be modeled as a second-order algebraic

surface.

Not taking cross-axis effects into account, this ellipsoid can therefore be described as:

(bx − xhi)
2

a2
+

(by − yhi)
2

b2
+

(bz − zhi)
2

c2
= R2 (6.4)

In order to apply least-squares ellipsoid fitting methods to discover the correction

parameters for hard- and soft-iron distortions, sensor bias and scaling, Equation 6.4

is rewritten to

(

bx by bz −b2
y −b2

z 1
)

· X = b2
x (6.5)

with

X =

∏

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

∐

2xhi

a2

b2 2yhi

a2

c2 2zhi

a2

b2

a2

c2

a2R2 − x2
hi − a2

b2 y2
hi − a2

c2 z2
hi

∫

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

(6.6)

which is the linear equation system

H · X = w = x2 (6.7)

which can be solved by a least-squares solver.
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A set of uncalibrated values of bx, by and bz would ideally be sampled from every sen-

sor in the multi-magnetometer array in a distortion-free magnetic field environment

and evenly cover the full space of 3D directions. Unfortunately, full-circle turns in

every vehicle axis (roll, pitch and yaw) usually cannot be performed, since this would

involve either sophisticated and huge gimbals for the systems in air and underwater,

or vehicles with the possibility to turn around all their axes by themselves, if pos-

sible at all (e.g. not possible for stable AUVs or crawlers). Also, this would induce

non-static distortions to the static calibration process. However, since the distortion

model is already restricted to a quadratic ellipsoid surface, a sparse sampling with

a full 360° yaw circle, but only involving roll and pitch movement from -20° to +20°,

is sufficient to recover the ellipsoid from the uncalibrated data (see figure 6.7). The

turn-and-wiggle motion in case of the static calibration procedure for the crawler

Wally was conducted as far away from any steel structure as possible while being

attached to a crane on a 6m polyester hoisting sling.

Figure 6.7: Scatter plot of uncalibrated ADC magnetometer readings on robotic

crawler Wally during static calibration procedure
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After solving for the combined scale matrix SC and soft-iron distortion matrix Msi,

as well as the combined sensor bias and hard-iron offset vector bhi, only the mis-

alignment matrix Malign has to be established. To achieve this, several flat turns

around the respective vehicle’s yaw axis were carried out, avoiding any roll and pitch

movements and taking care to do so in the most uniform magnetic field environment

available.

Apart from small non-orthogonalities in the sensors themselves, the misalignment

matrix is basically a rotation matrix that turns the sensor frame to the fixed body

frame of the vehicle. Note, that this step in the calibration process allows to freely

distribute the sensors from the multi-magnetometer across the system, without the

need for an exactly known position or pose, as long as the sensors are rigidly fixed to

the vehicle body. Since a rotation can be described with a minimum of 3 degrees of

freedom, direct least-squares solving for all 9 values of the 3×3 rotation matrix would

not guarantee a pure rotation matrix, thus Rodriguez’ rotation formula is used:

vrot = v cos θ + (k × v) sin θ + k(k · v)(1 − cos θ) (6.8)

which rotates a vector v around a unit vector rotation axis k by an angle of θ resulting

in vrot and least-squares solve for k and θ with v being the distortion-compensated

sample from the flat turn around the vehicle’s z-axis and vrot =
(

0 0 −1
)T

.

From that, the misalignment matrix Malign can be computed as:

Malign = I + (sin θ)K + (1 − cos θ)K2 (6.9)

with

K =

⋃

⎢

⎢

⨄

0 −k3 k2

k3 0 −k1

−k2 k1 0

⋂

∑

∑

⎦

(6.10)

Putting everything together, figure 6.8 and figure 6.9 show the compensated and

aligned magnetometer readings on the crawler Wally.
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Figure 6.8: Scatter plot of compensated but still unaligned readings of the magne-

tometers distributed on crawler Wally during the static calibration pro-

cedure (flat turns around yaw axis
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Figure 6.9: Scatter plot of compensated and aligned readings of the magnetometers

distributed on crawler Wally during the static calibration procedure (flat

turns around yaw axis
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The described a priori calibration procedure thus demonstrates the ability to ac-

count for local static distortions of a vehicle as well as the misalignment errors and

unknown orientations of the multi-magnetometer sensors distributed over a robot.

This drastically reduces the effort and time needed to integrate the developed multi-

magnetometer system on a vehicle, compared to finding an appropriate installation

location for conventional single-device compasses.

Figure 6.10 shows a zoomed in part of a SLAM generated magnetic map of a large

indoor environment inside the RH1 building of the DFKI RIC. The map was gen-

erated using the proposed multi-magnetometer system and the described calibrated

procedure on the robot ARTEMIS. It can be seen, that the magnetic field readings of

all magnetometers in the array are still coherent with earlier measurements when

revisiting previous locations, even when the robot was oriented in the opposite direc-

tion.

Figure 6.10: SLAM generated map of larger indoor environment inside building RH1

of the DFKI RIC using the proposed multi-magnetometer setup on robot

ARTEMIS. Please note the coherent readings when revisiting previous

locations, even when oriented in the opposite direction
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6.3 vMF Consensus Filter Algorithm

Apart from static distortions local to the vehicle, which can be accounted for by an

a priori calibration procedure (see Section 6.2 above), the local dynamic distortions

have to be compensated online.

In the approach described in this section, the idea is to filter these dynamic effects

by means of multiple small sensors freely distributable on the vehicle. This makes it

not only possible to mount the sensors farther away from the distortion source than

a single large high-precision IMU, but since the dynamic distortions of the magnetic

field are usually locally distributed and show up only in a subset of the sensors, this

setup is suitable for the application of statistical filtering.

vMF Distribution

Since the magnetic field is a vector field, dynamic distortions have an effect both on

the magnetic flux density (strength component) as well as on its direction. Sometimes

even strong distortions only result in a variation of the field strength (maintaining

the direction), while other distortions don’t change the magnetic field strength, but

result in large direction deviations. This characteristic due to the inherent physics

suggests to use a spherical representation with individual direction and strength

component, rather than the 3 isolated components of a cartesian representation.

Thus, to determine the extent to which one sensor in the array is disturbed with re-

spect to the rest of the magnetometer sensors on the vehicle, the probabilistic density

functions of two different 3-dimensional multivariate probabilistic distributions are

used, one for the strength and one for the directional component. Interested in the

probability of a measurement xi of sensor i given a set of measurements of the rest

of the sensors, we model the strength component as a Gaussian distribution of the

L2-norm with mean µst and standard deviation σ. The probability density function

for the strength component is therefore defined as

p(xi♣µst, σ) =
1

σ
√

2π
e

−
(x−µst)2

2σ2 (6.11)

To model the three-dimensional direction component, this work makes use of the

vMF distribution [Fisher, 1953], originating from directional statistics and commonly

used in paleomagnetics, analog to circular wrap-around distributions in the one-

dimensional case. The vMF distribution is defined on the Sp−1-dimensional sphere in
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Figure 6.11: Samples from three different vMF-distributions on S2 with different

mean and κ = 1 (red), κ = 50 (green) and κ = 500 (blue)

R
p. The probability density function of a vMF distribution on S2 is given by

p(xi♣µdir, κ) =
κ

4π sinh κ
exp(κµT

dirxi) (6.12)

with mean direction µdir and concentration parameter κ for a unit direction vector x.

In case of κ = 0, the distribution is uniform while it is more concentrated with higher

κ (see figure 6.11).

µdir can be approximated as

µ̂dir =
r

∥r∥ =

∑n
i=1 xi

∥∑n
i=1 xi∥

(6.13)

and κ according to [Banerjee et al., 2005] and as proposed for small dimensions by

[Sra, 2012] as

κ̂ =
r̄p − r̄3

1 − r̄2
(6.14)
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with
∥r∥
n

= r̄ (6.15)

Combining both strength and direction components, the probability of a measure-

ment xi of sensor i given the current Gaussian distribution of the strength (magnetic

field flux density) and the actual vMF distribution of the direction can then be com-

puted as:

p(xi♣µst, σ) · p(xi♣µdir, κ) =
1

σ
√

2π
e

−
(x−µst)2

2σ2 · κ

4π sinh κ
exp(κµT

dirxi) (6.16)

Equation 6.16 is representing the general probabilistic measurement model for mag-

netic field measurements used not only for the following compensation algorithm, but

for all probabilistic estimators and localization filters in this work.

Filter Implementation

Now that the probability of the current measurement xi of sensor i in the sensor

array of size n can be computed, every measurement xi is given a weight wi accord-

ing to its probability, so that measurements strongly deviating from the rest of the

measurements influence the result less.

1: function VMF_CONSENSUS_FILTER

2: for i ← 1 to n do

3: xi ← readout_magnetometer(i)

4: end for

5: µst, σ ← mean and std of strength (L2 norm)

6: µdir, κ ← mean and concentration parameter of vMF distribution

7: wi ← p(xi♣µst, σ)p(xi♣µdir, κ)

8: return normalized weighted sum of x

9: end function

The result can either be used standalone as the normalized weighted sum or each

sensor can be integrated as a single measurement in a higher level sensor fusion al-

gorithm (see section 3.1) with per-sensor confidence values according to the computed

weight.
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6.4 Results

Experiments to validate the multi-magnetometer approach were conducted on the

unmanned underwater crawler Wally and the hybrid AUVs Dagon and FlatFish at

the DFKI underwater robot test facilities. Several data acquisition runs were carried

out, amongst them static setups, straight driving, circling and wall following.

Figure 6.12 shows the calculated heading of the first 5 sensors after static calibra-

tion during a manually steered straight run with DAGON in the DFKI underwater

test basin of 1.5 minutes duration. Also plotted is the heading calculation of a high-

precision FOG as reference. As can be seen, strong dynamic distortions occur in

sensor number 0, due to the mounting position near a sonar transducer with strong

current peaks during active acustic pulses. Please note that the proposed hardware

setup of the multi-magnetometer system (with the availability of several sensors at

different positions outside the pressure hull and farther away from possible distur-

bance sources) already allows for much less distorted magnetometer readings of other

sensors (here sensors 1-4).
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Figure 6.12: Calculated heading of single sensors after static calibration during

Dagon straight run in the DFKI underwater test basin

Figure 6.13 shows the performance of the proposed method in the presence of local

dynamic distortions as they are expected to appear on confined UUVs, in this case on
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the AUV Dagon. As can be seen, the proposed dynamic filter using vMF-distributions

performed better as an averaging-filter due to the algorithmic design, which in this

case assigns a low weight to the deviating sensor 0 with respect to the confidence from

similarity of rest of the sensors (1-4), although there still is a divergence between the

reference high-precision FOG-heading and the filtered solution using MEMS sensors

of drastically lower costs.
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Figure 6.13: Comparison of averaged and proposed dynamical filtering of the mag-

netometer array readings during Dagon straight run in the DFKI un-

derwater test basin

6.5 Conclusion

In this section, a new approach to deal with dynamic distortions of the ambient mag-

netic field often leading to errors in orientation estimation in confined UUVs was

described. A small distributed and pressure-neutral sensor array design to remove

mounting restrictions was proposed and was successfully interfaced with several dif-

ferent robotic underwater systems and was evaluated at the DFKI RIC underwater

test facility. To improve the robustness of magnetometer/compass readings, a new

multi-magnetometer fusion algorithm using von Mises-Fisher (vMF) distributions

was applied and showed its performance in the presence of strong local vehicle dis-
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tortions. In addition to the development of the algorithm, a python software library

to handle vMF distributions has been developed and is currently in the process of

being made available as open-source.

Considering the performance, one has to keep in mind, that the hardware-based

multi-magnetometer approach allows dealing with dynamic distortions, even without

access to the internal data of the vehicle. Although the machine learning approach

discussed in the next chapter is showing a better overall performance in specific se-

tups (Chapter 7), the ML-approach is strictly dependent on the availability of real-

time data of the internal robot state like posture, motor currents, etc. In comparison,

the multi-magnetometer system described here can be deployed without much effort

as a standalone add-on system, in the simplest case just acting as a pressure-tolerant

strap-down compass with enhanced robustness against system distortions.





Chapter 7

Magnetic Field Distortion

Learning

This chapter describes the use and evaluation of machine learning techniques like

neural networks and support vector regression to learn a model of magnetic field dis-

tortions often induced in inertial measurement units using magnetometers by chang-

ing currents, postures or configurations of a robotic system as shown in Chapter 5.

Such a model is needed in order to compensate the local dynamic distortions, es-

pecially for complex and confined robotic systems, and to achieve more robust and

accurate ambient magnetic field measurements. This is crucial for a wide variety

of autonomous navigation purposes from simple heading estimation over standard

SLAM approaches to the more specific magnetic field-based localization techniques

addressed in this work. The approach was evaluated both in a laboratory setup and

with a complex robotic system in an outdoor environment.

As discussed in the chapters before, in order to fully exploit the benefits of an almost

omnipresent geomagnetic field (Section 2.3), or the more specific features of the lo-

cal ambient magnetic field (Chapter 4), one has to properly deal with the problem

of significant dynamic magnetic field distortions (Section 2.2) caused by ferromag-

netic materials or strong electric currents near the magnetometer originating from

the robotic system itself (Chapter 5). This specifically applies to systems with re-

stricted sensor mounting options far away from distortion sources, for example on

very compact robots or autonomous underwater vehicles with pressure housings, but

also on complex systems with a lot of moving parts or reconfiguration options like

the hominid walking robot CHARLIE. As shown in Section 5.4, the magnetic field

readings on such a system can be significantly distorted, both in the strength and

in the direction component, in the worst cases (depending on the walking pattern)

101
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up to complete direction reversals. A single IMU with an integrated magnetometer

mounted near a source of such distortions would render any pose estimation based

on that information useless.

One approach to tackle such disturbances is the use of a multi-magnetometer sensor

array with according filter algorithms as discussed in Chapter 6. However, especially

for systems where there is realtime access to the proprioceptive data or embodied in-

formation (for terminology see [Schwendner and Kirchner, 2010, Schwendner, 2013]),

for example the limb positions and motor currents, this extra information should

be used. For this purpose, a solution using machine learning techniques to learn

a model of magnetic field distortions was proposed by the author of this work

in [Christensen et al., 2017] and is described in more detail in the following sections.

7.1 Hybrid Legged-Wheeled Intervention Rover Sher-

paTT

Figure 7.1: The hybrid legged wheeled robot SherpaTT with a high amount of de-

grees of freedom and therefore high amount of magnetic field distortion

sources during field trials in the desert of Utah, US

To evaluate the machine learning approach to compensate dynamic distortions based

on embodied data, the hybrid legged-wheeled intervention rover SherpaTT was used

(figure 7.1). SherpaTT is a hybrid walking and driving rover with 4 active suspension

units with 5 DoF each, casted from aluminium (the "legs" of the system) and a 6 DoF

manipulator on equipped on the top. SherpaTT was developed for high mobility in ir-

regular terrain, and can adapt its posture and execute walking patterns to overcome
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Figure 7.2: Total field strength variations (left) and according distribution (right) on

rover SherpaTT during magnetic field distortion data set gathering in

the desert of Utah, US

obstacles [Cordes and Babu, 2016, Cordes et al., 2018]. The rover also features mul-

tiple electro-mechanical interfaces, where modular payloads can be docked to. The

rover was chosen in this work because of this flexible configurations, different kinds

of locomotion and the massive amount of DoF, all of which can substantially distort

the local magnetic field.

Figure 7.2 shows the variations of the total magnetic field strength, with SherpaTT

executing changes of its stance (for details on the experiments see section 7.3 below).

Although the distribution, in comparison with the walking robot CHARLIE (see Sec-

tion 5.4), is not significantly spread out with a lower quartile of 49.87 µT and an upper

quartile of 51.02 µT around the median of 50.39 µT, the changes in the direction are

severe, as depicted in figure 7.3.
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Figure 7.3: 3D scatter plot of dynamically distorted directions on SherpaTT while

changing the stance posture
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7.2 Dynamic Distortion Model Learning

System-immanent dynamic disturbances are a strong contributor to distortions of the

otherwise evenly distributed ambient magnetic field, especially in complex and con-

fined robotic systems, as just shown for the rover SherpaTT and discussed in general

in Section 2.2. To be able to use the ambient magnetic field for orientation or local-

ization purposes in the first place, the dynamic distortions have to be compensated

for.

The rationale behind the chosen approach is, that in most recent robotic systems

there is a huge amount of proprioceptive sensor data available at runtime that can

help to deduct the magnetic field distortions emanating from the system. For exam-

ple, one often has means to measure the actual currents flowing through wires or

torques applied to the motors. Apart from full reflex-driven robots, most of the time

there is quite accurate data on the relative position of extremities and appendages

of the robotic system (e.g. in legged robots) as well as current state information (e.g.

attached payloads or robot configuration) in reconfigurable robots. While it is possi-

ble to facilitate some simplifications and model certain distortions as bar magnets,

the sheer amount of contributing and intertwined magnetic field distortion sources

in the systems in consideration almost always renders the formulation of an analyt-

ical solution impossible. The approach here is therefore to learn a function f of the

resulting and superimposed distortions at the point of the magnetometer sensor from

the proprioceptive sensor data of a robotic system (figure 7.4).

Confi-

guration

Posture

Motor

Currents

f

∏

ˆ

ˆ

ˆ

∐

b̂x

b̂y

b̂z

∫

ˆ

ˆ

ˆ

ˆ

Figure 7.4: Multi-target function regression approach with robot posture, motor cur-

rents and present configuration (e.g. attached payloads, etc. in case of

reconfigurable robots)
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The target to be learned is in our case a 3D offset vector of the magnetic field,

combining hard- and soft-iron distortions. The problem falls therefore in the

class of multi-target function regression. To evaluate the approach with dif-

ferent regression techniques and meta-parameter optimization, the scikit-learn

framework [Pedregosa et al., 2011] in combination with the robotic framework

Rock [Rock, 2013] was used.

In this approach, two different popular regression methods, a) Support Vector Re-

gression (SVR) and b) Multilayer Perceptron Regression (MLP) were chosen. The

SVR primarily due to the limited number of hyperparameters that have to be tuned

and their guaranteed global optimum, and the MLP due to their flexibility and capa-

bility to directly train multi-target regressors.

Support Vector Regressor

The basic concept of SVR is similar to the more commonly known approach of Support

Vector Classification (SVC). With SVC, a linear function to separate the features

is searched for, in nonlinear cases by projection into higher dimensions. An SVR

attemps to approximate a function by finding the narrowest ϵ-tube centered around

the data, i.e. the distances between the learned function and the given values in

the training data should be less than epsilon [Vapnik, 2000], while minimizing the

prediction error (see figure 7.5).

Figure 7.5: Principle of non linear support vector regression (SVR), trying to find the

narrowest ϵ-tube around the training data while minimizing the predic-

tion error [Sayad, 2019]

Larger errors are linearly penalized. Furthermore, a regularization term is prefer-
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ring smooth functions with small weights. The weighting between error (loss) and

regularization (small weights) is done with a regularization constant C. For modeling

complex functions, the so-called kernel trick is applied [Smola and Schölkopf, 2004,

Chang and Lin, 2011], using a Radial Basis Function (RBF) kernel with an additional

hyperparameter γ, that defines the influence of a single training example:

e(−γ·∥xi−xj∥2) (7.1)

With the standard SVR approach being single-target, one has to train one support

vector machine for each of the three dimensions of the target offset vector, which

somewhat neglects the fact, that these 3 components are inherently coupled, be-

cause they describe a magnetic flux density vector, incorporating field orientation

and strength.

Multilayer Perceptron Regressor

A neural network in the form of a multilayer perceptron regressor (MLP) can innately

represent coupling between components and directly be trained for multi-target re-

gression in contrast to an SVR. In our case, the input layer represents the differ-

ent commands and sensor inputs that can influence the magnetic field measurement

and the output is a representation of the different deflected components of the mag-

netic field like directions and strength. The core components of an MLP are percep-

trons that linearly weight the different inputs and apply a gating/activation func-

tion afterward [Hinton, 1989]. Each layer of an MLP consists of several perceptrons

that are not connected to each other but to all perceptrons in the preceding and the

follow-up layer. For learning the weights of the single perceptrons, numerous opti-

mization strategies can be used that are often able to handle huge amounts of data

[Glorot and Bengio, 2010].
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7.3 Experiments

In order to evaluate the overall compensation performance of the chosen approach,

e.g. how well the learned model can keep the directional component of the magne-

tometer measurements stable in the presence of local dynamic magnetic field dis-

tortions, experiments with an artificial distortion turntable setup as well as with

the hybrid wheeled-legged robot SherpaTT were conducted. The tests were per-

formed in a very noise-free environment in the Mars-like desert of Utah, US, as

part of an extended field trial period with a team of heterogeneous robotic sys-

tems [Sonsalla et al., 2015, Sonsalla et al., 2017, Cordes et al., 2018].

As introduced in Chapter 6, two different probabilistic distributions for strength and

direction are used, this time to compare the compensation performance.

To recall, the strength component is modeled as a Gaussian distribution of the L2-

norm with mean µst and standard deviation σ, with the corresponding probability

density function defined as

p(xi♣µst, σ) =
1

σ
√

2π
e

−
(x−µst)2

2σ2 (7.2)

To model the direction component, the von Mises Fisher (vMF) distribution is used as

explained in Section 6.3 and defined on the Sp−1-dimensional sphere in R
p with the

probability density function of a vMF distribution on S2 by

p(xi♣µdir, κ) =
κ

4π sinh κ
(7.3)

with mean direction µdir and concentration parameter κ for a unit direction vector x.

κ = 0 means uniform distribution, while it is more concentrated with higher κ (see

figure 6.11), in our application, higher kappa means better directional compensation.

Magnetic Field Distortion Turntable

In order to test the approach with very defined and separable distortion sources, an

artificial turntable setup as shown in figure 7.6 was developed.

To resemble hard-iron distortions a neodymium magnet was mounted to a lever-arm

(denoted ’1’ in figure 7.6), moving 90° arc-wise towards the magnetometer mounted

in the center of the turntable. To emulate soft-iron distortions, a 1 kg 99.9 % pure iron

block (2) was moved 6 cm linearly towards and away from the sensor. And finally, to
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Figure 7.6: Magnetic distortion turntable setup with individually engageable distor-

tion sources: arcwise movable neodymium magnet for hard-iron effects

(1), linearly displaceable pure iron block for soft-iron effects (2) and a

copper conductor wire (3) for electromagnetic effects. (4) indicates the

position of the mangetometer.
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simulate electromagnetic distortions from motor supply currents, a 6 mm2 wire (3)

was fixated close to the sensor (4). The material of the setup was chosen in order

to minimize magnetic distortion sources different from those named above. Further-

more, every piece of equipment brought to the experimental site was validated to not

interfere with the experimental setup (figure 7.7).

Figure 7.7: Magnetic distortion turntable experiment setup in the nearly magnetic

noise-free desert of Utah, US

During data recording, every distortion source activity was activated individually

and then simultaneously. In each trial, the hard iron source lever was moved 90°

twice in an arc towards the sensor. The soft iron source was moved once towards

the sensor and then back, while the current was raised from 0 A to 20 A and back to

0 A to simulate electromagnetic disturbances from supply lines. After each trial, the

turntable was rotated by 20° to eventually achieve a full circle. Whereas the hard iron

source, as expected, had the strongest impact on the magnetic field when coming near

to the sensor, all other distortion sources were clearly also superimposing the ambient

magnetic field (see figure 7.8). Before testing the different Machine Learning (ML)

techniques, a second-order Butterworth filter depending on the Nyquist frequency to

filter out high-frequency noise was applied (7.9).

For evaluation, the turntable dataset was randomly split into a training set (60 %)

and a test set (40 %). Afterward, a k-fold cross-validation grid search with 5 splits

on the training set to prevent leakage of knowledge about the test set into the model

during hyperparameter tuning was applied. The search grid for the hyperparameters

had the following ranges: 1 × 10−3 to 1 × 10−7 for α, number of hidden layers between
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Figure 7.8: Magnetometer z component plotted against the superimposing distortion

source activities (turntable trials, heading 80°)
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1 to 3 with 5 to 100 perceptrons per layer, solvers Adam [Kingma and Ba, 2014] and

LBFGS [Liu and Nocedal, 1989], and activation functions logistic, ReLU, and tanh.

Training the MLP regressor with 4 inputs (3 distortion sources plus heading) and 3

outputs, the best performance was achieved using 2 hidden layers of size 10 (first)

and 20 (second), an α value of 1 × 10−4, relu as activation function and LBFGS as a

solver. The prediction and compensation quality on the turntable data set is shown

in figure 7.10.
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Figure 7.10: Component-wise MLP prediction (left) and compensation (right) of mag-

netic field distortions (turntable trials, heading 80°)

The MLP Regressor with the parameters presented above achieved an R2-

score [Anderson-Sprecher, 1994] of 0.986. Finally, using the MLP Regressor to pre-



7.3. Experiments 113

dict the magnetic field distortions at the point of the magnetometer sensor given only

the values of the activity for the various distortion sources, a significant reduction of

the deviation due to dynamic distortions in the direction component was achieved,

reflected in an increase in the κ concentration parameter from 0.86 to 618.2. See fig-

ure 7.10 for a component-wise comparison and figure 7.11 for a 3D directional scatter

plot. However, randomly sampling from continuous measurements for the training

set will, in general, give a preference of the model for accurate interpolating than for

extrapolating (generalizing). Therefore it is best to include as many possible states

of the robot as possible in the training data.
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Figure 7.11: 3D scatter plot of dynamically distorted vs. MLP compensated direc-

tions (turntable trials, heading 80°). Every dot represents the direction

of a magnetic field direction measurement. Undistorted measurements

would stay on the same spot on the sphere’s surface.
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SherpaTT dataset and evaluation

Apart from the turntable experiment, the approach was also evaluated by a series of

experiments with the complex hybrid wheeled legged robot SherpaTT, to analyze to

what extent it is transferable to real robotic systems. The idea, as in the turntable

setup, was to try to keep the orientation of the magnetometer stable in the ambient

magnetic field and then activate as many measurable distortion sources as possible,

both solitary and in combination, and record the induced vector field deviation from

the sensor baseline. This was done by repeating a sequence of leg movements of the

robot, first trying to cover most of the robot’s DOF workspace, and second varying

the single joint ranges while maintaining the central body pose. Furthermore, strong

changes in the supply current were generated by defined movements of the robot.

Since soft-iron types of distortion are depending on the orientation in the ambient

magnetic field, the data set was recorded in 45° steps, covering a full 360° spot turn

circle. Extra care was taken to prevent external disturbances during the data gath-

ering.

Figure 7.12: SherpaTT during magnetic field distortion data set gathering in the

desert of Utah, US

Whereas there were few distinct and strong distortion sources in the turntable ex-

periment (7.3), a multitude of permanent magnets moving around in each actuated

robotic leg joint and the manipulator as well as multiple power supply lines in vary-

ing distance from the sensor and the robotic arm were influencing the magnetic field

in the experimental setup using the robot SherpaTT.

Considering the absolute values, the observed deviations of the magnetic field mea-

surements were orders of magnitude smaller than the deviations that occurred dur-

ing the turntable experiment. This was expected since the magnetometer was po-

sitioned further away from possible distortion sources inside the robot’s main body

housing than in the turntable experimental setup, where the distortion sources were
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intentionally moved or placed very close to the sensor.

In addition to the MLP regressor, an SVR with two different kernels (linear and

RBF) was trained for comparison using this more complex dataset. The MLP had

an input layer of size 25 (5 joint positions and one supply line per leg plus heading)

and again 3 outputs representing the deflected magnetic field offset vector. To obtain

the best parameters for the SVR and MLP, a grid search was again applied, over the

same ranges as in the turntable experiment for MLP and from 0.1 to 25 for the SVR

penalty parameter C and 0.01 to 0.8 for the SVR epsilon tube.

The SVR γ parameter was determined with

γ =
1

n ∗ V AR(X)
(7.4)

with n the number of features and V AR(X) the variance in the input data.

As with the turntable data set, the SherpaTT deviation dataset was randomly split

into a training set using 60 % and a test set of 40 %. A k-fold with 5 splits on the train-

ing set was applied for hyperparameter tuning. The best performance was achieved

using the following hyperparameters: 3 hidden layers with 100, 50 and 25 units re-

spectively, an α value of 1 × 10−4, tanh as activation function and again LBFGS as a

solver (which is common for small training datasets) for MLP and C = 1.5 for SVR

with an RBF kernel.

The resulting predictions on the test data are shown in figure 7.13 for the SVR and

in figure 7.14 for the MLP.
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Figure 7.13: Component-wise SVR prediction of magnetic field distortions with lin-

ear (left) and RBF (right) kernel (SherpaTT trials, heading 180°)
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Figure 7.14: Component-wise MLP prediction of magnetic field distortions (Sher-

paTT trials, heading 180°)
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The multi-target MLP model with its optimized meta parameters was able to achieve

a significantly better fit on the test data set with R2 training scores of 0.96 compared

to the single component SVR models with 0.60, 0.84, 0.46 (X, Y, Z linear kernel) and

0.63, 0.91, 0.80 (X, Y, Z RBF kernel). This is also reflected in the compensation quality

of the directional component of the magnetic field: the SVR based compensation (fig-

ure 7.15) was not able to stabilize the direction to the same extent as the MLP based

compensation (figure 7.16), with the respective compensation parameters κ = 8.21 for

SVR with linear kernel, κ = 15.91 for SVR with RBF kernel and κ = 114.50 for MLP

compared to the distorted directions with concentration parameter κ = 3.64.
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Figure 7.15: 3D scatter plot of dynamically distorted and SVR compensated direc-

tions (SherpaTT trials, heading 180°)
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Figure 7.16: 3D scatter plot of dynamically distorted and MLP compensated direc-

tions (SherpaTT trials, heading 180°)
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7.4 Conclusion

This chapter presented and discussed several machine learning approaches to model

magnetic field distortions often induced in inertial measurement units using mag-

netometers by changing currents, postures or configurations of a robotic system as

shown in Chapter 5. Such models are needed in order to compensate the local dy-

namic distortions, especially for complex and confined robotic systems, and to achieve

more robust and accurate ambient magnetic field measurements.

The evaluation showed, that MLP regressors with LBFGS solvers are especially capa-

ble of predicting the magnetometer deviations, and results of direction compensation

based on such an approach were shown not only in a laboratory setup, but also for a

complex real robot like SherpaTT. The results indicate, that for modeling the mag-

netic field, simple interpolation approaches like SVR with linear kernels and even

with RBF kernels are insufficient and more complex functions like those represented

by a 3-layer MLP are required.



Chapter 8

Localization in Magnetic Fields

After having shown that significant features of the ambient magnetic field are avail-

able in a lot of robotic application environments (Chapter 4), Chapter 6 and Chapter 7

then introduced approaches to compensate for magnetic field distortions caused by

activity and structure of the robots themselves. Such proper calibration and dynamic

compensation provided, this chapter discusses the actual exploitation of magnetic

field distortions for localization purposes.

8.1 Visual-Magnetic Close Range Navigation

Multiple tasks require a very precise close-range vehicle localization when ap-

proaching structures or other vehicles, for example during handing over probes in

sample-and-return missions with a team of cooperative robots [Sonsalla et al., 2014,

Sonsalla et al., 2017]. Typical examples in maritime applications are docking with a

submerged asset infrastructure or with another vehicle, maintenance or georeferenc-

ing.

While a number of different sensors have been used for this purpose in the

past, the approach developed in this work features a bimodal system fusing

magnetic data of 3-axis-magnetometers and visual camera data, first published

in [Hildebrandt and Christensen, 2017]. The deployment of fundamentally differ-

ent modalities for data acquisition is intended to significantly increase the fault-

tolerance, since the disturbance of one source of information is unlikely to affect the

other. For example, poor visual conditions might hinder only the camera, while non-

modeled dynamic external magnetic fields like moving metallic structures might just

interfere with the magnetic sensors.
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There are a number of different docking systems for AUVs, which can be roughly

categorized by the vehicle’s approach strategy: AUVs which rely on forward-motion

for depth-keeping (dynamic diving AUVs) usually feature a rather large passive

guidance funnel, which serves both as guidance mechanism and breaking sys-

tem [Hobson et al., 2007]. Docking stations for hovering-enabled AUVs have a

higher degree of diversity, ranging from garage-type stations [Albiez et al., 2015]

[Brighenti et al., 1998], stations resembling a cradle [Wirtz et al., 2012] to minia-

ture docking stations [Hildebrandt et al., 2013]. Typical approach strategies in-

clude acoustic homing [Eustice et al., 2007] and visual approaches [Kim, 2007]

[Murarka et al., 2009]. Due to the high positioning accuracy of vision-based sensors,

they usually are the preferred method for the final docking approach. Magnetometers

on AUVs up to now have mostly been used as strap-down compasses (see discussion

in Chapter 1).

8.2 Visual-Magnetic Docking

The developed close-range navigation system for subsea docking consists of sensors

mounted on the robotic vehicle as well as markers attached to the docking station.

The sensors on the robotic vehicle are a monocular camera and a multi-magnetometer

array as described in 6, this time with the amount of four 3-axis magnetometers. The

docking station is equipped with a visual marker as well as a strong NdFeB magnet,

to resemble the expected larger steel structures in a real scenario for the scaled-

down laboratory setup. The basic idea of the approach is to track the visual marker

with the monocular camera as well as to detect the magnetic field of the rare-earth

magnet using the magnetometers. The basic setup is depicted in figure 8.2. The

position estimates of both sensor modalities are fused, resulting in a single estimate

of relative position which can be used for navigation, although both methods can also

provide an independent estimate of the position.

Extracting relative position data with a camera-marker setup is relatively simple

and has been used numerously for similar purposes (for an overview see for ex-

ample [dos Santos Cesar et al., 2015]). Given the utilization of robust markers such

as April-Tags [Olson, 2011], Aruco-Markers [Garrido-Jurado et al., 2014] or similarly

encoded 2-d visual markers, a calibrated monocular camera can extract the marker’s

3d position and orientation if the size of the marker is known. The limiting fac-

tors of this approach are usually image and processing rate on the one hand and

precision with respect to the field of view, distance and resolution of the camera

on the other hand. Typical cameras run with approximately 30 Hz, which is suffi-
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Figure 8.1: Experimental setup with multi-magnetometer (version 1) attached to the

pressure housing of a subsea camera

cient for most navigation purposes. Processing complexity is directly proportional

to the camera’s resolution, but it has been shown that even with moderate pro-

cessing hardware and typical cameras, processing rates of 30 Hz are well achiev-

able [dos Santos Cesar et al., 2015]. Precision is more complex, as it depends on three

factors: the camera’s field of view, resolution of the camera and distance or size of the

marker. For the case of close-range navigation of interest in our application, sub-

centimeter accuracy can be achieved.

While marker-tracking and other vision-based approaches tend to have high accu-

racy in position estimation in proper visibility conditions, they lack robustness and

are prone to errors in demanding environments, especially in turbid waters (e.g. river

deltas, harbor basins, subsea production/mining fields, etc.). Another sensor modal-

ity often used on AUVs are therefore acoustic approaches to complement the optical

methods. But acoustic systems usually don’t have the accuracy of the optical sys-

tems and also have to struggle with changing sound propagation characteristics due

to varying salinity, conductivity and temperature in the water column.

Opposed to that, the earth magnetic field is not disturbed by these effects. As dis-

cussed in Section 2.1, the pole’s location is changing over time and the magnetic

field is locally distorted depending on latitude and longitude of the observer, but the

declination from magnetic to true north can be computed using analytical models

like the WMM [Chulliat et al., 2015]. Apart from this variation coming from the

main magnetic field density contributors (the earth core with its geodynamo effect
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Figure 8.2: Basic setup of the navigation system: base station (1), 1.1: visual marker,

1.2: rare-earth magnet; sensors on robotic vehicle (2), 2.1: monocular

camera, 2.2: 3-axis magnetometers; working-areas of sensors (3), 3.1:

magnet detection radius, 3.2: visual marker detection area.
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and the earth crust), the earth magnetic field can be considered sufficiently stable

in the temporal domain for the purpose of close-range navigation (see Section 2.3

and [Christensen et al., 2017]). System-induced local magnetic field distortions may

occur due to the magnetic remanence of the vehicle’s material or strong electrical cur-

rents, but Section 6 and Section 7 of this thesis presented calibration and compen-

sation approaches to counter both static and dynamic vehicle-immanent distortions

(see also [Christensen et al., 2015, Christensen et al., 2017, Renaudin et al., 2010]).

The remaining distortions of the ambient magnetic field caused by the docking struc-

ture carry the information, that is utilized in the proposed method of relative vehi-

cle position estimation here. The proposed method again utilizes machine learning

techniques, exploiting the fact that with the cameras, there is at least a temporar-

ily available modality for direct measurements of the relative vehicle position to the

docking structure. This enables the dataset collection of magnetometer data in the

navigation workspace while in parallel recording position data from the cameras if

the turbidity in the water column allows doing so. This dataset is used to train an

Support Vector Machine (SVM) for function regression (SVR) or an Artificial Neural

Network (ANN), in this case a multilayer perceptron regressor network (MLP, for

details see Section 7). After function regression, the trained SVR or MLP regressor

is used in realtime to estimate the position of the docking structure relative to the

magnetometers.

Limiting factors for this modality apart from proper a priori calibration are the dis-

tance between the ferromagnetic structure and the magnetometers, the strength of

the rare-earth magnet in the laboratory setup and the dynamic range of the mag-

netometers. Since all three are dependent, it is important to select the strength of

the magnet and the dynamic range of the magnetometers according to the size of the

work-space in order to achieve maximum precision. In addition, workspace coverage

and marker tracking accuracy will have a huge effect on the usability of the training

data, as shown in the following.

8.3 Experiments

All experiments were performed with the following sensor setup: an Allied Vision

Prosilica GC 1380h digital camera with a 1280 × 1024 resolution using an 87° op-

tical lens in a waterproof pressure housing and four ST LSM303D 3-axis magne-

tometers in a circular arrangement around the camera lens, using the proposed

multi-magnetometer setup described in Section 6.1. The base station consisted of

a 10 × 10 cm Aruco-type marker and a neodymium magnet cube with 1 cm edges and
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high magnetic remanence of 1.45 T and an approximated maximum energy product

of 400 kJ m−3 (grade N52). The experiment system setup in one of the test basins at

DFKI RIC is shown in figure 8.3. Figure 8.4 depicts the computer vision extraction

of the used Aruco-type markers during data aquisition.

Figure 8.3: Setup of the test-system consisting of the docking-station mounted on the

z-axis of the gantry crane (1), the camera (2) and magnetometer sensors

(3) as proposed in Section 6.1

Figure 8.4: Camera images of the marker and its extracted position during the test

trajectory

Positioning Accuracy of Camera/Marker Tracking with Gantry Crane

In order to estimate the accuracy of the camera-based marker tracking, an ex-

periment was conducted, where the base station was fixed and the test-setup

moved externally by a 3-axis gantry crane. The resulting dataset is used to
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characterize the optical tracking system (following the principles described in

[Hildebrandt et al., 2014]), since the marker tracking is used later to gather train-

ing data for the magnetometer-based localization. The gantry crane has a position-

ing accuracy of < 0.2mm [Christensen et al., 2009], its position is considered as the

ground-truth with minimal uncertainty for the purpose of the data set generation.

The workspace for the camera test setup of 0.4 × 0.4 × 0.2 m was discretized into a

5 cm grid, a camera image was taken at every of the resulting 256 cell positions with

a corresponding automated trajectory of the gantry crane (see figure 8.5).

Figure 8.5: Trajectory of the gantry crane to sample the navigation workspace

While the marker tracking accuracy for the x- and y-axis remains stable apart from

marker tracking drop-outs at the edges of the camera image (figure 8.6), the tracking

accuracy standard deviation for the z-axis improves with reduced distance, ranging

from a standard deviation of 1.23 cm at a distance of 0.35 m to a standard deviation

of 0.54 cm at a distance of 0.15 m (figure 8.7). This is in accordance with the expected

tendency, since the effective resolution for size estimation of the marker improves at

close distances.

The docking adapter was designed for an accuracy of > 1cm, and the results pre-

sented in Section 8.3 meet that requirement. The fact, that z-axis accuracy improves



128 Chapter 8. Localization in Magnetic Fields

(a) Gantry-X vs Marker-X (b) Gantry-Y vs Marker-Y

Figure 8.6: The Graph shows the position of the gantry crane in x and y direction

and the extracted marker positions. Note the drop-outs at the edges of the

image.

Figure 8.7: Results of the camera/marker tracking experiment. The graph shows the

gantry crane z-axis position relative to the camera over time as well as

the extracted marker position.
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when the marker was closer to the camera fits a docking scenario in the sense, that

higher precision is needed when the vehicle closes in towards the docking station.

Machine Learning Positions from Magnetic Field Data

The data set to evaluate the ML-based magnetic field localization approach, was

gathered with the same setup as described above, and consists of 442 samples with

4 × 3 = 12 magnetometer readings and 3 position components from the camera-based

marker detection each. The magnetometers where sampling at 100 Hz and the esti-

mation frequency of the camera-based marker tracker was 0.72 Hz. All magnetometer

readings except those occurring when a marker pose was estimated where discarded.

In order to filter out high-frequency noise, a second-order Butterworth filter depend-

ing on the sampling Nyquist frequency was applied (figure 8.8).
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Figure 8.8: Second order Butterworth filter applied to magnetometer raw measure-

ments

The lowpass-filtered magnetometer values, the input for the models to be trained,

were standardized to have zero mean and unit variance. In order to prevent over-

fitting, the data was split using random permutation into a training data set of 60%

and a test data set of 40%. Before training the SVR and MLPR, grid search was

applied, using the training data set to find the optimal meta parameters. The grid

search resulted in a C-value of 1.0 and an ϵ-value of 0.1 for the SVR (see Section 7 for

an explanation of the hyperparameters). With the SVR approach being single-target,

one support vector machine for each of the three dimensions of the target position

had to be trained (figure 8.9).
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Figure 8.9: Single target function regression approach with n magnetometer sensor

readings as input and single position component output

For comparison, also a linear kernel was applied with the SVR aside from the more

capable radial basis function (RBF) kernel. Initial parameters for the MLPR after an

exhaustive grid search over the hyperparameters space were an α-value of 0.01 and

3 hidden layers of size 40, 30 and 20 neurons. The grid search also favored LBFGS

over Adam as a solver and the rectified linear unit function over the logistic sigmoid

and hyperbolic tan functions for activation. For a detailed description of these hy-

perparameters, see [Vapnik, 2000, Smola and Schölkopf, 2004, Chang and Lin, 2011,

Hinton, 1989, Glorot and Bengio, 2010].

After training with these meta parameters, the single component SVR models

achieved a R2-score [Anderson-Sprecher, 1994] of 0.33, 0.73, 0.93 (X, Y, Z linear ker-

nel) and 0.65, 0.97, 0.97 (X, Y, Z RBF kernel), reflected in the fitting curves depicted

in figure 8.10. As expected, in the case of the support vector regressor, the linear

kernel is not able to fit the data to the extent of the RBF kernel, due to the inherent

non-linearity of the magnetic field measurements.
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Figure 8.10: Component-wise Support Vector Regression on evaluation part of the

data set with linear kernel (left) and RBF kernel (right)
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Better than the trained SVR with RBF kernel was the performance of the artificial

neural network in form of an MLP, which is capable of multi-target learning, thus

training all three position dimensions in one go (8.11). The MLP Regressor with the

parameters presented above achieved an overall R2-score of 0.97, which is reflected

in the predicted values closely following the measured values in the test set depicted

in figure 8.12 and figure 8.13.
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Figure 8.11: Multi target function regression approach with n magnetometer sensor

readings as input and combined position output
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Figure 8.12: Prediction of the x component on the evaluation part of the data set

using multi-target MLP regression, LBFGS solver
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Figure 8.13: Prediction of the y and z component on the evaluation part of the data

set using multi-target MLP regression, LBFGS solver
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To further evaluate these trained models and check for overfitting, a completely dif-

ferent path than the training and evaluation data sets presented above was driven:

a straight through the navigation workspace was executed, while trying to predict

the position just using the magnetometer readings from the ambient magnetic field.

As shown in figure 8.14 and figure 8.15, both the trained SVR RBF and the MLPR

were able to estimate the position given just the magnetometer readings. Although

the MLPR had a better R2-score during fitting, it seems that the SVR RBF has bet-

ter capabilities to generalize or interpolate at regions with no training data, as it

shows smaller errors at the beginning of the trajectory. As expected, both SVR and

MLPR predictions are getting significantly better, the closer the distance between the

magnet and magnetometer gets.
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Figure 8.14: Position prediction for the x and y component from magnetic field mea-

surements during straight evaluation run, based on trained SVR-RBF

(left) and MLPR (right) models



8.3. Experiments 135

0 5 10 15 20 25 30
Sample Count

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
Po

si
tio

n 
(m

)

Measured Z
Predicted Z - SVR RBF

0 5 10 15 20 25 30
Sample Count

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Po
si

tio
n 

(m
)

Measured Z
Predicted Z - MLPR

Figure 8.15: Position prediction of the z component from magnetic field measure-

ments during straight evaluation run, based on trained SVR-RBF (left)

and MLPR (right) models

AUV Docking Scenario

After the laboratory evaluation, the visual-magnetic approach for docking was trans-

ferred to the AUV Leng to further verify the feasibility of the approach. After a

preliminary setup with the first version of the multi-magnetometer attached to the

front of the AUV, a new front body part with directly integrated magnetometers was

manufactured (see figure 8.16).

Figure 8.16: AUV Leng with preliminary attached multi-magnetometer (v1) (left)

and multi-magnetometer (v2) with 3d-printed sensorring (right)

The experimental setup is shown in figure 8.17. The docking station fitted with both

visual marker and magnet was placed in front of the AUV Leng, with a distance

of 40 cm. It was then manually moved 10 times towards the camera, until the end

docking position was reached to train a support vector machine regressor with an

RBF kernel, which was identified to be the preffered machine learning approach in
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Figure 8.17: Camera view of AUV Leng during dry docking experiment

the laboratory experiment described before.

The ability to predict a position only using the magnetometers deployed at the nose

of the AUV as a close-range localization solution is demonstrated in figure 8.18, com-

paring the standalone SVR-RBF predictions with the camera-based marker tracking.

As can be seen, the difference in the magnetometer-predicted path stays below 10 cm

and is getting smaller while the AUV approaches the docking station, down to a cen-

timeter range.
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Figure 8.18: Trajectory of the docking-approach during the AUV docking scenario as

estimated by marker tracking (red) and magnetometer tracking (blue)

8.4 Conclusion

After having shown that significant features of the ambient magnetic field are avail-

able in a lot of robotic application environments in Chapter 4 and introducing ap-

proaches to compensate for magnetic field distortions caused by activity and struc-

ture of the robots themselves in Chapter 6 and Chapter 7, this chapter discussed

the actual exploitation of magnetic field distortions for localization purposes. An in-

tegrated visual-magnetic localization system utilizing machine learning for subsea

docking applications has been described, that was first thoroughly tested in a labo-

ratory environment and then transferred to a real AUV. Reflecting on the outcomes,

it can be concluded that the magnetic field can be used both in combination and as a

standalone source for localization in a close-proximity scenario, where turbidity may

prevent the usage of visual sensors like cameras. While the experiments with the

AUV Leng only allows for episodic insight due to the limited availability of the robot,

the docking experiment with the AUV is in line with the findings of the laboratory ex-

periment described earlier and with prior work of the author on magnetic field based
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localization using particle filters as described in Chapter 3, further supporting the

feasibility of a general magnetic field based localization approach.



Chapter 9

Conclusions and Outlook

9.1 Thesis Summary

Present-day society envisions the help of AI systems in the near future in a variety of

areas, ranging from daily tasks like packet delivery, public transport and healthcare

to search-and-rescue missions or planetary exploration, to name just a few. Apart

from pure artificial intelligence software systems, which are already taking an in-

creasingly prominent role in day-to-day scenarios, more and more embodied intelli-

gent systems, robots, are leaving the development labs and scientific office environ-

ments, and then have to cope with unstructured terrain and changing environmental

conditions. Since robots cannot sense their environment directly, but have to infer

information about it from noisy sensor information, it is crucial, that they do not

depend on a narrow subset of possible sensor modalities, like visual information.

The underlying thought of this work was to deliberately steer away from the classical

sensing modalities of robots towards an underutilized physical phenomenon for robot

perception, the ambient magnetic field.

Two main assumptions were thus stated at the beginning of this work: a) The ambi-

ent magnetic field carries more information than we currently make use of, as indi-

cated by animal magnetotaxis, and b) Since the ambient magnetic field is unaffected

by a lot of effects that restrict commonly deployed localization sensors, magnetome-

ters can play a crucial role both as an additional sensor modality for increased per-

formance as well as robustness in mobile robot navigation

To substantiate these assumptions, this work first outlined the general principles of

magnetism as well as types of magnetic distortions and then discussed the specific

characteristics of the Earth’s magnetic field and its main contributors with regard to

139
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robot localization. It was clarified, that temporal disturbances of the Earth’s mag-

netosphere caused by solar storms, even though they may have a severe effect on

electronics because of geomagnetically induced currents, are multiple orders of mag-

nitude weaker than the geomagnetic field. Although the field is not entirely uniform

and also not completely stable, this work presented several existing models for the

spatial distribution and secular variations, so that for the purpose of robot naviga-

tion, the information on how the geomagnetic field should look like can be extracted

for a given position and point in time.

After laying out the state of the art in robot localization, especially in relation to

magnetic fields, this work then discussed the question, if and to what extent there

is exploitable information in the individual features of local ambient magnetic fields.

Therefore multiple possible robot application environments were assessed. Special

care was taken to not only measure the strength component, as commonly done in

the state of the art due to the convenient rotation-invariant property, but to use the

full information content of vector field structures. Therefore, the directional com-

ponent was coherently recorded in each assessed environment and the relationship

between strength and direction in such magnetic fields was discussed. All evaluated

environments were showing significant features in comparison to the locally uniform

geomagnetic field due to ambient features of the environment, especially in environ-

ments with artificial structures and material of high magnetic permeability. But also

more evenly distributed fields lend themselves to exploit the magnetic field features

for navigation purposes, depending on the distribution of the features with respect to

the scale of the navigation task, as long as the field is not uniform.

Given that there is exploitable information in ambient magnetic fields, this thesis

then addressed the question, to what extent robot systems themselves distort the

ambient magnetic field, and if typical sources of self-induced magnetic distortions for

different classes of mobile robots can be identified. It became clear, that there are

huge differences in the amount of the variations, typically increasing with the de-

grees of freedom of the robots and strongly influenced by the material choice of the

systems and sensor placement. But despite this great variability over the range of as-

sessed systems, the disturbances that occur were not of a magnitude that makes the

underlying magnetic field indeterminable, but rather similar in scale to the features

of the ambient magnetic fields evaluated before.

Nonetheless it became clear, that self-induced dynamic distortion is one of the main

obstacles for magnetic field-based navigation, especially in confined mobile robots

and thus one of the reasons for the alleged unreliability of magnetometers, even for

simple compassing applications.
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Hence, two possible approaches to compensate these effects have been introduced in

this thesis: The first presented and evaluated approach combines specially devel-

oped hardware with a statistical approach based on von Mises-Fisher distributions.

Alongside with the development of the algorithm, two versions of waterproof and

pressure-tolerant multi-magnetometer sensor arrays and a software library to han-

dle vMF distributions were developed and put to use in the course of this work.

As a second approach to compensate self-induced dynamic distortions, this thesis de-

scribes the use and evaluation of machine learning techniques like neural networks

and support vector machine regression to learn a model of the magnetic field distor-

tions in case there is embodied data available. The approach was evaluated both in a

laboratory setup with separable distortion sources and with the complex robotic sys-

tem SherpaTT in an outdoor environment. It was shown, that using proprioceptive

information on the motor currents, body posture and current configuration, the devi-

ations even of complex systems can be predicted by a trained MLP regressor, which

is crucial for a wide variety of autonomous navigation purposes from simple heading

estimation over standard SLAM approaches using IMUs to more specific magnetic

field-based localization techniques.

Finally, this work presented and evaluated a method for close-proximity localization

in a subsea docking scenario using the ambient magnetic field. It was shown, that

the magnetic field can provide sufficient information for localization even in the case

when magnetometers are the only sensory input left available to a robotic system.

9.2 Lessons Learned and Future Work

Although recent scientific evidence has made it into the news lately, that a geomag-

netic field reversal is about to start or has already begun, this process will have no

immediate impact on us or the next generations to come. The geomagnetic field is a

fascinating phenomenon, which has huge influences on Life on Earth. This said, it

is all the more astonishing that we humans only use the earth’s magnetic field to a

very small extent. Probably because humans, unlike some animal species, don’t have

the ability to perceive the surrounding magnetic field, lacking the senses needed for

magnetoreception.

Although invisible, the magnetic field surrounding us provides valuable information

for localization purposes. However, depending on the scale of the localization and

precision requirements, not all environments are equally well suited for that pur-

pose. For example, a busy steel trading warehouse would not be the first choice to

enhance localization solutions with magnetometers, due to the expected significant
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changes of the magnetic field originating from the frequent movement of material

with strong soft iron characteristics. At the other end of the spectrum are very large

and nearly uniform ambient magnetic fields like the seafloor or a desert, that would

not be suitable for close-range navigation in the centimeter range. Since the mag-

netic field cannot be sensed over a distance, robot navigation using magnetometers

will be primarily useful in applications, where a robot passes through the same areas

more than once, for example when setting up or sustaining a logistic chain, rather

than during an exploring mission.

It also has become clear, that system distortion compensation is crucial and maybe

one of the reasons, why magnetometers have not played a prominent role until now.

After the years working with complex robots in magnetic fields, it is the author’s

firm conviction that machine learning methods are the most appropriate way to han-

dle the complex intertwined magnetic fields of real-world scenarios, although the

ML-approaches should be combined with clever hardware design to have the most

benefit. In that sense, some of the more complex robots will require substantial ef-

fort to be eligible for the proposed approaches utilizing the magnetic field. IMU and

magnetometer placement should be integrated into the design process of a robot, not

only the determination of the actual placement, but also the consideration of the sur-

rounding materials. Still, robots like the hominide robot CHARLIE will be less suited

for magnetic field navigation than more rigid-bodied systems.

To further enhance the robustness of magnetometer readings on confined robotic sys-

tems in the future, it seems promising to use Fisher-Bingham-distribution instead

of the vMF distribution in order to better account for per-axis dispersion on the unit

sphere. In addition, as with deep learning in general and especially with artificial

neural networks, future work on machine learning for magnetic field models should

focus on getting more insight into the trained solutions, especially with respect to

generalization as well as inter- and extrapolation capabilities. Nonetheless, an ML-

based tool to establish magnetic field distortion models as presented in this work

may become relevant in a lot of upcoming real-world scenarios in robotics, since it

widens the usability of magnetometers as one of the core sensors in many navigation

applications.

While the magnetic field can yield additional useful information for navigation, it

cannot be sensed remotely, only directly at the point of the magnetometer. Further-

more, there is no direct mapping between the surrounding geometry and the expected

magnetic field readings. While approaches like EmbodiedSLAM may be able to map

things or geometry seen earlier in the sensory input to later experienced propriocep-

tive data, e.g. from tactile sensing, there is no direct mapping from pure geometry
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Figure 9.1: The AUV Leng docking to the ice-shuttle Teredo and the subsea crawler

SherpaUW

to the magnetic field. Even if much more semantic information on the surroundings

would be available, for example the expected material and the inner rigid structure

of certain objects, there are no realtime analytical or numerical solutions currently

available to deduct the surrounding magnetic field from that. The same holds true

for the other way round: deducting shapes or objects in the surrounding only from

magnetometer readings cannot be done at the moment, but may be worth looking

into in the future.

Regarding the multi-magnetometer system, larger quantities of the developed mag-

netometer boards are currently in production and are planned to be permanently

integrated for example in sensory platforms at the bottom of the North Sea and in

current robot developments like a dual-arm intervention AUV. With the robot Sher-

paUW and the AUV Leng being already equipped with the proposed magnetometer

array, the next steps here are to improve the robustness of the docking process de-

picted in figure 9.1 with the approach presented in this work. Another goal to be ad-

dressed in the near future concerning the multi-magnetometer system is to increase

its usability also for applications outside robotics science.





Bibliography

[Akai and Ozaki, 2015] Akai, N. and Ozaki, K. (2015). Gaussian processes for

magnetic map-based localization in large-scale indoor environments. In 2015

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

Hamburg.

[Albiez et al., 2015] Albiez, J., Joyeux, S., Gaudig, C., Hilljegerdes, J., Kroffke, S.,

Schoo, C., Arnold, S., Mimoso, G., Alcantara, P., Saback, R., et al. (2015). Flatfish-a

compact subsea-resident inspection auv. In OCEANS’15 MTS/IEEE Washington,

pages 1–8. IEEE.

[Anderson-Sprecher, 1994] Anderson-Sprecher, R. (1994). Model comparisons and

R2. The American Statistician, 48(2):113–117.

[Banerjee et al., 2005] Banerjee, A., Dhillon, I. S., Ghosh, J., and Sra, S. (2005). Clus-

tering on the unit hypersphere using von Mises-Fisher distributions. In Journal

of Machine Learning Research, pages 1345–1382.

[Barnert et al., 2000] Barnert, S., Delbrück, M., Eis, R., Fischer, N., Greulich, W.,

Heinisch, C., Nagel, S., Radons, G., Schilling-Benz, L., and Schüller, J. (2000). Mag-

netisches Feld. In Greulich, W., editor, Lexikon der Physik. Spektrum Akademis-

cher Verlag Heidelberg.

[Brighenti et al., 1998] Brighenti, A., Zugno, L., Mattiuzzo, F., and Sperandio, A.

(1998). EURODOCKER-A universal docking-downloading-recharging system for

AUVs: Conceptual design results. In in Proc. Oceans 98, Oct, page 1463.

[Caruso, 2000] Caruso, M. (2000). Applications of magnetic sensors for low cost com-

pass systems. In Position Location and Navigation Symposium, IEEE 2000, pages

177–184.

[Chang and Lin, 2011] Chang, C.-C. and Lin, C.-J. (2011). LIBSVM. ACM Transac-

tions on Intelligent Systems and Technology, 2(3):1–27.

145



146 Bibliography

[Cheshire and Baker, 1999] Cheshire, S. and Baker, M. (1999). Consistent overhead

byte stuffing. IEEE/ACM Transactions on networking, 7(2):159–172.

[Christensen et al., 2011a] Christensen, L., Fischer, N., Kroffke, S., Lemburg, J., and

Ahlers, R. (2011a). Cost-effective autonomous robots for ballast water tank inspec-

tion. Journal of Ship Production and Design, 27(3):127–136.

[Christensen et al., 2010] Christensen, L., Fritsche, M., Albiez, J., and Kirchner,

F. (2010). USBL pose estimation using multiple responders. In Proceedings of

OCEANS 10 IEEE Sydney, Showcasing Advances in Marine Science and Engi-

neering. Sydney, Australia.

[Christensen et al., 2015] Christensen, L., Gaudig, C., and Kirchner, F. (2015).

Distortion-Robust Distributed Magnetometer for Underwater Pose Estimation in

Confined UUVs. In Proceedings of MTS IEEE OCEANS ’15, pages 1–8, Washing-

ton DC, USA. IEEE.

[Christensen et al., 2009] Christensen, L., Kampmann, P., Hildebrandt, M., Albiez,

J., and Kirchner, F. (2009). Hardware rov simulation facility for the evaluation

of novel underwater manipulation techniques. In OCEANS 2009-EUROPE, pages

1–8. IEEE.

[Christensen et al., 2017] Christensen, L., Krell, M., and Kirchner, F. (2017). Learn-

ing magnetic field distortion compensation for robotic systems. In Intelligent

Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on, pages

1–6, Vancouver, Canada.

[Christensen et al., 2011b] Christensen, L., Lemburg, J., Vögele, T., Kirchner, F., Fis-

cher, N., Ahlers, R., Psarros, G., and Etzold, L.-E. (2011b). Tank inspection by cost

effective rail based robots. In Proceedings of the 15th International Conference on

Computer Applications in Shipbuilding, (ICCAS-11), Trieste.

[Christensen et al., 1998] Christensen, U., Olson, P., and Glatzmaier, G. A. (1998).

A dynamo model interpretation of geomagnetic field structures. Geophysical Re-

search Letters, 25(10):1565–1568.

[Chulliat et al., 2015] Chulliat, A., Macmillan, S., Alken, P., Beggan, C., Nair, M.,

Hamilton, B., Woods, A., Ridley, V., Maus, S., and Thomson, A. (2015). The US/UK

world magnetic model for 2015-2020. Technical report, NOAA National Geophysi-

cal Data Center, Boulder, CO.

[Cole, 2005] Cole, S. B. (2005). Magnetic field-based navigation of a mobile robot.

Master’s thesis, Oklahoma State University.



Bibliography 147

[Cordes and Babu, 2016] Cordes, F. and Babu, A. (2016). SherpaTT: A versatile hy-

brid wheeled-leg rover. In Proceedings of the 13th International Symposium on

Artificial Intelligence, Robotics and Automation in Space (iSAIRAS 2016).

[Cordes et al., 2018] Cordes, F., Kirchner, F., and Babu, A. (2018). Design and field

testing of a rover with an actively articulated suspension system in a mars analog

terrain. Journal of Field Robotics, 35(7):1149–1181.

[Cox, 1991] Cox, I. J. (1991). Blanche-an experiment in guidance and navigation

of an autonomous robot vehicle. IEEE Transactions on robotics and automation,

7(2):193–204.

[dos Santos Cesar et al., 2015] dos Santos Cesar, D. B., Gaudig, C., Fritsche, M., dos

Reis, M. A., and Kirchner, F. (2015). An evaluation of artificial fiducial markers in

underwater environments. In OCEANS 2015-Genova, pages 1–6. IEEE.

[Doucet et al., 2000] Doucet, A., De Freitas, N., Murphy, K., and Russell, S. (2000).

Rao-blackwellised particle filtering for dynamic bayesian networks. In Proceedings

of the Sixteenth conference on Uncertainty in artificial intelligence, pages 176–183.

Morgan Kaufmann Publishers Inc.

[Durrant-Whyte et al., 1996] Durrant-Whyte, H., Rye, D., and Nebot, E. (1996). Lo-

calization of autonomous guided vehicles. In Robotics Research, pages 613–625.

Springer.

[Endres et al., 2012] Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., and

Burgard, W. (2012). An evaluation of the rgb-d slam system. In Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA), St. Paul -

Minnesota, US.

[Eustice et al., 2007] Eustice, R. M., Whitcomb, L. L., Singh, H., and Grund, M.

(2007). Experimental Results in Synchronous-Clock One-Way-Travel-Time Acous-

tic Navigation for Autonomous Underwater Vehicles. Proceedings 2007 IEEE In-

ternational Conference on Robotics and Automation, pages 4257–4264.

[Finlay et al., 2010] Finlay et al., C. C. (2010). International geomagnetic reference

field: the eleventh generation. Geophysical Journal International, 183:1216–1230.

[Fisher, 1953] Fisher, R. A. (1953). Dispersion on a sphere. In Proc. Roy. Soc. London,

volume 217 of A, pages 295–305.

[Gabriel et al., 2010] Gabriel, G., Vogel, D., Wonik, T., Pucher, R., Krawczyk, C.,

Scheibe, R., and Lindner, H. (2010). Anomalien des erdmagnetischen totalfeldes

der bundesrepublik deutschland. In Jahrestagung der Deutschen Geophysikalis-



148 Bibliography

chen Gesellschaft (DGG) 2010, Bochum. Leibniz-Institut für Angewandte Geo-

physik, Hannover.

[Garcia-Soto et al., 2017] Garcia-Soto, C., van der Meeren, G., Busch, J., Delany, J.,

Domegan, C., Dubsky, K., Fauville, G., Gorsky, G., Juterzenka K., v., Malfatti, F.,

G, M., Mchugh, P., Monestiez, P., J, S., Weslawski, J., and Zielinski, O. (2017).

Advancing citizen science for coastal and ocean research. Position Paper 23 of the

European Marine Board, Ostend, Belgium, V., Kellett, P., Delany, J., McDonough,

N. [Eds.], ISBN: 978-94-92043-30-6, page 112pp.

[Garrido-Jurado et al., 2014] Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-

Cuevas, F., and Marín-Jiménez, M. (2014). Automatic generation and detection of

highly reliable fiducial markers under occlusion. Pattern Recognition, 47(6):2280 –

2292.

[Gilbert, 1600] Gilbert, W. (1600). De Magnete, Magneticisque Corporibus, et de

Magno Magnete Tellure. Peter Short, London.

[Girault et al., 2013] Girault, B., Bartsch, S., and Kirchner, F. (2013). Multifunc-

tional robot test facility for on-orbit and extraterrestrial surface exploration. In

Proceedings of Ground-based Space facilities symposium, (GBSF-2013), Paris.

[Glatzmaier and Roberts, 1995] Glatzmaier, G. A. and Roberts, P. H. (1995). A three-

dimensional self-consistent computer simulation of a geomagnetic field reversal.

Nature, 377(6546):203–209.

[Glorot and Bengio, 2010] Glorot, X. and Bengio, Y. (2010). Understanding the dif-

ficulty of training deep feedforward neural networks. In Aistats, volume 9, pages

249–256.

[Grand and Thrun, 2012] Grand, E. L. and Thrun, S. (2012). 3-axis magnetic field

mapping and fusion for indoor localization. In Multisensor Fusion and Integration

for Intelligent Systems, Hamburg.

[Grisetti et al., 2007] Grisetti, G., Stachniss, C., and Burgard, W. (2007). Improved

Techniques for Grid Mapping with Rao-Blackwellized Particle Filters. IEEE Trans-

actions on Robotics, 23:34–46.

[Hildebrandt et al., 2013] Hildebrandt, M., Albiez, J., Wirtz, M., Kloss, P., Hill-

jegerdes, J., and Kirchner, F. (2013). Design of an Autonomous Under-Ice Explo-

ration System. In In MTS/IEEE Oceans 2013 San Diego, (OCEANS-2013), pages

1–6. IEEE.

[Hildebrandt and Christensen, 2017] Hildebrandt, M. and Christensen, L. (2017).

Combining cameras, magnetometers and machine-learning into a close-range lo-



Bibliography 149

calization system for docking and homing. In OCEANS 2017-Anchorage, pages

1–6. IEEE.

[Hildebrandt et al., 2014] Hildebrandt, M., Gaudig, C., Christensen, L., Natarajan,

S., Carrio, J. H., Paranhos, P. M., and Kirchner, F. (2014). A validation process for

underwater localization algorithms. International Journal of Advanced Robotic

Systems, 11.

[Hildebrandt et al., 2012] Hildebrandt, M., Gaudig, C., Christensen, L., Natarajan,

S., Paranhos, P. M., and Albiez, J. (2012). Two years of experiments with the AUV

Dagon - a versatile vehicle for high precision visual mapping and algorithm evalu-

ation. In Proceedings of IEEE/OES Autonomous Underwater Vehicles. Southamp-

ton, United Kingdom.

[Hildebrandt and Hilljegerdes, 2010] Hildebrandt, M. and Hilljegerdes, J. (2010).

Design of a versatile AUV for high precision visual mapping and algorithm evalu-

ation. In 2010 IEEE/OES Autonomous Underwater Vehicles (AUV). Monterey, CA,

USA. IEEE/OES, IEEE.

[Hinton, 1989] Hinton, G. E. (1989). Connectionist learning procedures. Artificial

Intelligence, 40(1-3):185–234.

[Hiscock et al., 2017] Hiscock, H. G., Mouritsen, H., Manolopoulos, D. E., and Hore,

P. J. (2017). Disruption of Magnetic Compass Orientation in Migratory Birds by

Radiofrequency Electromagnetic Fields. Biophys. J., 113(7):1475–1484.

[Hobson et al., 2007] Hobson, B. W., McEwen, R. S., Erickson, J., Hoover, T., McBride,

L., Shane, F., and Bellingham, J. G. (2007). The development and ocean testing of

an auv docking station for a 21" auv. In OCEANS 2007, pages 1–6. IEEE.

[Johnsen and Lohmann, 2008] Johnsen, S. and Lohmann, K. (2008). Magnetorecep-

tion in animals. Physics Today - PHYS TODAY, 61.

[Jung et al., 2015] Jung, J., Oh, T., and Myung, H. (2015). Magnetic field con-

straints and sequence-based matching for indoor pose graph slam. Robotics and

Autonomous Systems, 70:92–105.

[Kampmann et al., 2012] Kampmann, P., Lemburg, J., Hanff, H., and Kirchner, F.

(2012). Hybrid pressure-tolerant electronics. In Proceedings of the Oceans 2012

MTS/IEEE Hampton Roads Conference & Exhibition. Hampton Roads, Virginia,

USA.

[Kim, 2007] Kim, J. (2007). Dual Control Approach for Automatic Docking using

Monocular Vision. Phd dissertation, Stanford University.



150 Bibliography

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochas-

tic optimization. CoRR, abs/1412.6980.

[Kirschvink et al., 2001] Kirschvink, J. L., Walker, M. M., and Diebel, C. E. (2001).

Magnetite-based magnetoreception. Current Opinion in Neurobiology, 11(4):462 –

467.

[Kühn, 2016] Kühn, D. (2016). Design and Development of a Hominid Robot with Lo-

cal Control in Its Adaptable Feet to Enhance Locomotion Capabilities. PhD thesis,

Universität Bremen.

[Kümmerle and Grisetti, 2011] Kümmerle, R. and Grisetti, G. (2011). g2o: A general

framework for graph optimization. In IEEE International Conference on Robotics

and Automation (ICRA).

[Kuo, 1088] Kuo, S. (1088). Dream Pool Essays. Diederichs Verlag Munich. Reprinted

1997 as Pinsel-Unterhaltungen am Traumbach. Das Gesamte Wissen des Alten

China.

[Lee et al., 2013] Lee, C., Yoon, G., and Han, D. (2013). A probabilistic place extrac-

tion algorithm based on a superstate model. Mobile Computing, IEEE Transac-

tions on, 12:945–956.

[Liu and Nocedal, 1989] Liu, D. C. and Nocedal, J. (1989). On the limited mem-

ory BFGS method for large scale optimization. Mathematical programming,

45(1):503–528.

[Loewe and Prölss, 1997] Loewe, C. A. and Prölss, G. W. (1997). Classification

and mean behavior of magnetic storms. Journal of Geophysical Research,

102(A7):14209–14213.

[Maus et al., 2002] Maus, S., Rother, M., Holme, R., Lühr, H., Olsen, N., and Haak,

V. (2002). First scalar magnetic anomaly map from champ satellite data indicates

weak lithospheric field. Geophysical Research Letters, 29(14):45–1–47–4.

[Maxwell, 1865] Maxwell, J. C. (1865). Viii. a dynamical theory of the electromag-

netic field. Philosophical Transactions of the Royal Society of London, 155:459–

512.

[McElhinny and McFadden, 1998] McElhinny, M. and McFadden, P. L. (1998). The

magnetic field of the earth: paleomagnetism, the core, and the deep mantle, vol-

ume 63. Academic Press.



Bibliography 151

[Montemerlo and Thrun, 2007] Montemerlo, M. and Thrun, S. (2007). Fastslam 2.0.

FastSLAM: A scalable method for the simultaneous localization and mapping prob-

lem in robotics, pages 63–90.

[Montemerlo et al., 2002] Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., et al.

(2002). Fastslam: A factored solution to the simultaneous localization and mapping

problem. Aaai/iaai, 593598.

[Murarka et al., 2009] Murarka, A., Kuhlmann, G., Gulati, S., Flesher, C., Sridha-

ran, M., and Stone, W. C. (2009). Vision-based frozen surface egress: A docking

algorithm for the ENDURANCE AUV. In Proceedings UUST09, Conference on

Un-manned, Un-tethered Submersible Technology, pages 22–25.

[National Research Council, 2008] National Research Council (2008). Severe Space

Weather Events: Understanding Societal and Economic Impacts: A Workshop Re-

port. The National Academies Press, Washington, DC.

[Nüchter et al., 2007] Nüchter, A., Lingemann, K., Hertzberg, J., and Surmann, H.

(2007). 6d slam—3d mapping outdoor environments. Journal of Field Robotics,

24(8-9):699–722.

[Oehmcke et al., 2017] Oehmcke, S., Zielinski, O., and Kramer, O. (2017). Recurrent

neural networks and exponential paa for virtual marine sensors. In 2017 Interna-

tional Joint Conference on Neural Networks (IJCNN), pages 4459–4466. IEEE.

[Olson, 2011] Olson, E. (2011). Apriltag: A robust and flexible visual fiducial system.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages

3400–3407. IEEE.

[Pedregosa et al., 2011] Pedregosa et al., F. (2011). Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 12:2825–2830.

[Purucker, 2008] Purucker, M. E. (2008). A global model of the internal magnetic

field of the moon based on lunar prospector magnetometer observations. Icarus,

197(1):19–23.

[Rahok et al., 2010] Rahok, S. A., Shikanai, Y., and Ozaki, K. (2010). Trajec-

tory tracking using environmental magnetic field for outdoor autonomous mobile

robots. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, pages 1402–1407.

[Renaudin et al., 2010] Renaudin, V., Afzal, M. H., and Lachapelle, G. (2010). Com-

plete triaxis magnetometer calibration in the magnetic domain. Journal of sensors,

2010.



152 Bibliography

[Robertson et al., 2013] Robertson, P., Frassl, M., Angermann, M., Doniec, M., Ju-

lian, B. J., Puyol, M. G., Khider, M., Lichtenstern, M., and Bruno, L. (2013). Si-

multaneous localization and mapping for pedestrians using distortions of the local

magnetic field intensity in large indoor environments. In International Conference

on Indoor Positioning and Indoor Navigation.

[Rock, 2013] Rock (2013). ROCK, the Robot Construction Kit. http://www.rock-

robotics.org. Accessed: 2019-07-08.

[Sabaka et al., 2018] Sabaka, T. J., Tøffner-Clausen, L., Olsen, N., and Finlay, C. C.

(2018). A comprehensive model of earth’s magnetic field determined from 4 years

of swarm satellite observations. Earth, Planets and Space, 70(1):130.

[Sagnotti et al., 2014] Sagnotti, L., Scardia, G., Giaccio, B., Liddicoat, J. C., Nomade,

S., Renne, P. R., and Sprain, C. J. (2014). Extremely rapid directional change

during Matuyama-Brunhes geomagnetic polarity reversal. Geophysical Journal

International, 199:1110–1124.

[Sayad, 2019] Sayad, S. (2019). An introductin to data science. https://

www.saedsayad.com/support_vector_machine_reg.htm. Accessed: 2019-07-

08.

[Schwendner, 2013] Schwendner, J. (2013). Embodied Localisation and Mapping.

PhD thesis, University of Bremen.

[Schwendner et al., 2014a] Schwendner, J., Joyeux, S., and Kirchner, F. (2014a).

Using embodied data for localization and mapping. Journal of Field Robotics,

31(2):263–295.

[Schwendner and Kirchner, 2010] Schwendner, J. and Kirchner, F. (2010). eS-

LAM—Self Localisation and Mapping Using Embodied Data. KI - Künstliche In-

telligenz, 24.

[Schwendner et al., 2014b] Schwendner, J., Roehr, T. M., Haase, S., Wirkus, M.,

Manz, M., Arnold, S., and Machowinski, J. (2014b). The artemis rover as an ex-

ample for model based engineering in space robotics. In Workshop Proceedings of

the IEEE International Conference on Robotics and Automation 2014. Hong Kong,

China. IEEE.

[Siegwart et al., 2017] Siegwart, R., Chli, M., and Rufli, M. (2017). Autonomous Mo-

bile Robots - Perception I: Sensors.

[Smola and Schölkopf, 2004] Smola, A. J. and Schölkopf, B. (2004). A tutorial on

support vector regression. Statistics and Computing, 14(3):199–222.

https://www.saedsayad.com/support_vector_machine_reg.htm
https://www.saedsayad.com/support_vector_machine_reg.htm


Bibliography 153

[Sonsalla et al., 2017] Sonsalla, R., Cordes, F., Christensen, L., Roehr, T. M., Stark,

T., Planthaber, S., Maurus, M., Mallwitz, M., and Kirchner, E. A. (2017). Field

testing of a cooperative multi-robot sample return mission in mars analogue envi-

ronment. In Proceedings of the 14th Symposium on Advanced Space Technologies

in Robotics and Automation (ASTRA).

[Sonsalla et al., 2015] Sonsalla, R. U., Akpo, J. B., and Kirchner, F. (2015). Coyote

III: Development of a modular and highly mobile micro rover. In Proceedings of

the 13th Symposium on Advanced Space Technologies in Robotics and Automation

(ASTRA-2015), Noordwijk, The Netherlands.

[Sonsalla et al., 2014] Sonsalla, R. U., Cordes, F., Christensen, L., Planthaber, S.,

Albiez, J., Scholz, I., and Kirchner, F. (2014). Towards a heterogeneous modular

robotic team in a logistics chain for extended extraterrestial exploration. In Pro-

ceedings of the 12th International Symposium on Artificial Intelligence, Robotics

and Automation in Space-i-Sairas.

[Sra, 2012] Sra, S. (2012). A short note on parameter approximation for von Mises-

Fisher distributions: and a fast implementation of Is(x). Computational Statistics,

27(1):177–190.

[Telecommunications Industry Association et al., 2003] Telecommunications Indus-

try Association et al. (2003). Tia-485-a, electrical characteristics of generators

and receivers for use in balanced digital multipoint systems (ansi/tia/eia-485-a-

98)(r2003).

[Thrun et al., 2005] Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic

Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press.

[Vallivaara et al., 2010] Vallivaara, I., Haverinen, J., Kemppainen, A., and Röning,

J. (2010). Simultaneous localization and mapping using ambient magnetic field.

In Multisensor Fusion and Integration for Intelligent Systems (MFI), 2010 IEEE

Conference on, pages 14–19. IEEE.

[Vapnik, 2000] Vapnik, V. (2000). The nature of statistical learning theory. Springer.

[Vissière et al., 2007] Vissière, D., Martin, A., and Petit, N. (2007). Using magnetic

disturbances to improve imu-based position estimation. In 2007 European Control

Conference (ECC), pages 2853–2858.

[Wirtz et al., 2012] Wirtz, M., Hildebrandt, M., and Gaudig, C. (2012). Design and

test of a robust docking system for hovering AUVs. In 2012 Oceans, pages 1–6.

Ieee.



154 Bibliography

[Xu et al., 2006] Xu, H. G., Wang, C. X., Yang, R. Q., and Yang, M. (2006). Extended

kalman filter based magnetic guidance for intelligent vehicles. In 2006 IEEE In-

telligent Vehicles Symposium, pages 169–175.



List of Figures

1.1 Animals with magnetic field sensing capabilities (Magnetotaxis), mi-

grating birds image by George Hodan (public domain), sea turtle image

by U.S. Fish and Wildlife Service (public domain) . . . . . . . . . . . . . . 2

1.2 Position estimation failure due to multipath GNSS signals in urban

environment from [Lee et al., 2013] . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Magnetic lodestone (CC BY-SA 2.0 by Ryan Somma) . . . . . . . . . . . . 7

2.2 Magnetic fieldlines made visible by iron filings (CC BY-NC-SA 2.0 by

daynoir) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Classes of magnetic permeability in material (public domain) . . . . . . 10

2.4 Current induced electromagnetic field (CC BY-SA 3.0 by Stannered) . . 11

2.5 Hall effect sensor principle (CC BY-SA 3.0 by Saure) . . . . . . . . . . . . 11

2.6 Soft Iron Distortion (diagram by KVH) . . . . . . . . . . . . . . . . . . . . 12

2.7 Hard Iron Distortion (diagram by KVH) . . . . . . . . . . . . . . . . . . . 13

2.8 Geomagnetic field - dipole approximation (University of Bremen, public

domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9 Title page of William Gilbert’s De Magnete - edition from 1628 . . . . . . 15

2.10 Geomagnetic field coordinate system . . . . . . . . . . . . . . . . . . . . . 16

2.11 WMM2150.0 main field declination map (NOAA/NGDC, public domain) 17

2.12 WMM2150.0 main field inclination map (NOAA/NGDC, public domain) 18

2.13 WMM2150.0 main field total intensity map (NOAA/NGDC, public do-

main) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.14 Geodynamo effect illustration (United States Geological Survey, public

domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.15 Earth crust magnetic anomalies - Germany [Gabriel et al., 2010] . . . . 21

2.16 Magnetosphere of the Earth (NASA/Goddard/Aaron Kaase, public do-

main) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

155



156 List of Figures

3.1 General principle of graph-based SLAM approaches. All states x0 . . . xn

(blue triangles) and measurements z0 . . . zn (red stars) are kept in the

graph and constrained by their respective probabilistic models. Re-

laxation of the graph then produces the most globally consistent pose

history and map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 ’Magnetic Ruler’ from [Xu et al., 2006] attached to a test vehicle for lat-

eral trajectory offset estimation using artificial magnetic markers . . . . 27

3.3 Homing system from [Cole, 2005] using a mobile robot with orthogonal

loop antennas and a transmitter generating an alternating electromag-

netic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Simple homing behavior of a mobile robot in the presence of a generated

and known electromagnetic field [Cole, 2005] . . . . . . . . . . . . . . . . 28

3.5 Heading variations of (projected) magnetic field during 2.4 m horizontal

displacement in a business building from [Vissière et al., 2007] . . . . . 29

3.6 Magnetic maps generated in an appartment

by [Vallivaara et al., 2010]. x, y and z component RGB map (bot-

tom middle) and magnetic field norm map (bottom right) showing

significant features near steel radiators. . . . . . . . . . . . . . . . . . . . 30

3.7 Illustration of the reactive magnetic field based steering behavior

by [Rahok et al., 2010]. The pre-recorded magnetic field values are

used to keep the robot on the target path in the middle. . . . . . . . . . . 30

3.8 Magnetic field based localization in a rail-based ballast water tank

setup [Christensen et al., 2011a]. The magnetic field vectors are pro-

jected to 1D (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.9 Subsequent particle filter posterior estimation of the robot’s position on

a rail in a ballast water tank inspection setup. . . . . . . . . . . . . . . . 31

3.10 Discontinuities in the generated magnetic field intensity maps of the x-

and y-component using low-cost magnetometers with limited calibra-

tion and no error models [Grand and Thrun, 2012] . . . . . . . . . . . . . 32

3.11 FootSLAM map of a large office building annotated with hi-

erarchical magnetic field intensity measurements in hexagonal

bins [Robertson et al., 2013] . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.12 Discrete magnetic intensity grid cell by [Akai and Ozaki, 2015], with

recording points only in the yellow and red region contributing to the

learned gaussian process for the red area . . . . . . . . . . . . . . . . . . 34

3.13 Separately learned distributions using gaussian processes for each

intensity component of the magnetic field by [Akai and Ozaki, 2015],

showing respective mean and variance of an indoor office environment . 34



List of Figures 157

3.14 Magnetic field intensity sequence constraint for pose graph SLAM ap-

proach by [Jung et al., 2015] for each magnetic field component sepa-

rately . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Double bottom ballast water tank of a cruise liner at Meyer Werft Ship-

yard during construction phase . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Possible ballast water tank environments for robotic inspection and

maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 PMD camera point cloud looking through a BWT manhole with extinc-

tion artifacts on sharp edges (left) and directly looking at flat surfaces

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Collecting magnetic field readings for the generation of a magnetic field

map for localization purposes in a BWT testbed. The plot on the right

shows the mangetic flux density vectors of the rail trajectory straight-

ened out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Magnetic field variations per 3D component during a straight run on a

rail through a ballast water tank . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Combined magnetic field strength variations during a straight run on a

rail through a ballast water tank and the corresponding field strength

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Magnetic field direction change during ballast water tank rail run . . . 43

4.8 Magnetic field sampling in typical office environment . . . . . . . . . . . 44

4.9 The office environment magnetic field measurement setup avoiding fer-

romagnetic material to prevent disturbances during data aquisition . . 45

4.10 Component-wise magnetic field variations of an office floor environ-

ment (straight run RH5, no. 1) . . . . . . . . . . . . . . . . . . . . . . . . 45

4.11 Combined magnetic field strength variations during a straigth run

through an office floor environment (straight run RH5, no. 1) and the

corresponding field strength distribution . . . . . . . . . . . . . . . . . . 46

4.12 Magnetic field X component variations overlaid on top of office floor

plan (straigth runs RH5 no. 1-3) . . . . . . . . . . . . . . . . . . . . . . . 47

4.13 Magnetic field direction change during straight office floor environment

run (straight run RH5, no. 1) . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.14 3D rendering of magnetic field direction and strength variations along

the office environment sampling trajectory . . . . . . . . . . . . . . . . . 48

4.15 A cattle grid on the outdoor testtrack at DFKI RIC . . . . . . . . . . . . . 49

4.16 Component-wise magnetic field variations during a run over a cattle

grid at the DFKI RIC outdoor test track . . . . . . . . . . . . . . . . . . . 50



158 List of Figures

4.17 Combined magnetic field strength variations during a run over a cattle

grid at the DFKI RIC outdoor test track and the corresponding field

strength distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.18 Magnetic field direction change during a run over a cattle grid at the

DFKI RIC outdoor test track . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.19 Space crater environment for robotic testing at DFKI RIC . . . . . . . . 53

4.20 Spidercam system to move the magnetometer through the volume of

the space testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.21 3D rendering of magnetic field vectors (direction and strength) varia-

tions in the space crater testbed environment . . . . . . . . . . . . . . . . 55

4.22 Component-wise magnetic field variations of the volume inside the

DFKI RIC space testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.23 3D volumetric rendering of interpolated magnetic field strength varia-

tions in the space crater testbed environment . . . . . . . . . . . . . . . . 56

4.24 Combined magnetic field strength variations of the volume inside the

DFKI RIC space testbed and the corresponding field strength distribution 57

4.25 Magnetic field direction change in the volume inside the DFKI RIC

space testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.26 Boxplots of the total magnetic field strength distortion distributions for

several robotic application environments . . . . . . . . . . . . . . . . . . 59

4.27 Magnetic field SLAM map - DFKI RH1 . . . . . . . . . . . . . . . . . . . 60

5.1 Scientific AUV DAGON, a representative of a rigid-body robotic system 62

5.2 Singular components of magnetic field variations on AUV DAGON, 20 s

sequence of decreasing (10 s) and increasing (10 s) heave thruster PWM

values from 100 to 0 % and back . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Combined magnetic field strength variations on AUV DAGON, 20 s se-

quence of decreasing (10 s) and increasing (10 s) heave thruster PWM

values from 100 to 0 % and back. Zooming in (right), the plot indicates

a correlation between the PWM value and the noise amplitude. . . . . . 64

5.4 Distribution of the total magnetic field strength variations on AUV

DAGON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Magnetic field direction change while changing thruster PWM of AUV

DAGON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 Agile micro rover ASGUARD II, featuring a free rotating rear axle . . . 66

5.7 Magnetic field singular component variations on rover ASGUARD II

during rotation of the rear body part from limit to limit . . . . . . . . . . 67



List of Figures 159

5.8 Total magnetic field strength variations on rover ASGUARD II during

rotation of the rear body part from limit to limit and the according mag-

netic flux density distribution . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.9 3d scatter plot of magnetic field directions while rotating the rear body

of ASGUARD II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.10 The ARTEMIS rover with triple bogie suspension system and manip-

ulator designed for the DLR SpaceBot competition (left) and marked

IMU placement (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.11 Magnetic flux density variations in each axis of the magnetometer

while the suspension bogies of ARTEMIS were rotated from limit to

limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.12 Magnetic flux density variations in each axis of the magnetometer

while the suspension bogies of ARTEMIS were rotated from limit to

limit, zoomed-in subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.13 Total magnetic field strength variations on rover ARTEMIS during ro-

tation of the bogies from limit to limit (left) and the according magnetic

flux density distribution (right) . . . . . . . . . . . . . . . . . . . . . . . . 72

5.14 Total magnetic field strength variations on rover ARTEMIS during ro-

tation of the bogies from limit to limit (left) and the according magnetic

flux density distribution (right), zoomed-in subset . . . . . . . . . . . . . 73

5.15 3D scatter plot of magnetic field direction changes while rotating the

suspension bogies of the robot ARTEMIS . . . . . . . . . . . . . . . . . . 74

5.16 The four-legged robot CHARLIE with sophisticated lower limb system

for increased mobility in unstructured terrain. The red circle indicates

the mounting position of the IMU on the lower spine. . . . . . . . . . . . 75

5.17 One cycle of the straight walking pattern of the robot CHARLIE with

indicated lift- and stance phases for each leg (front left(FL), front right

(FR), rear left (RL) and rear right (RR)) . . . . . . . . . . . . . . . . . . . 76

5.18 Spine motor currents (above) and component-wise magnetic flux den-

sity (below) during a straight walking cycle of robot CHARLIE. Y axis

of magnetic field plot is showing normalized magnetic flux density, with

1 equal to 49.0 µT (source: Martin Zenzes, DFKI). . . . . . . . . . . . . . 76

5.19 Strong variations of the total magnetic field strength during a straight

walking pattern cycle of robot CHARLIE and according spread out dis-

tribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.20 3D scatter plot of magnetic field direction changes during a straight

walking pattern cycle of robot CHARLIE . . . . . . . . . . . . . . . . . . 78



160 List of Figures

5.21 Boxplots of the total magnetic field strength distortion distributions for

the individual systems chosen as a representative for a certain class of

robots with increasing DoF. On the right side, the distributions where

shifted to zero, for better range comparison. . . . . . . . . . . . . . . . . . 79

5.22 Boxplots of the total magnetic field strength distortion distributions,

here including the hominid walking robot CHARLIE with its increased

number of DoF and significantly larger spread of the distribution. . . . . 80

6.1 Molding of distributed magnetometers using polyurethane casting com-

pound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Epoxy-infused crystal oscillator of microcontroller module (left), inte-

grated with industry standard underwater plug (right) . . . . . . . . . . 83

6.3 Developed magnetometer sensor module (version 2) for the multi-

magnetometer cable-whip setup . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Multi-magnetometer (v2) setup with 8 magnetometers integrated in

the cable-whip tailored for and installed on the robot SherpaUW . . . . 85

6.5 Selection of robotic systems, that have been equipped with the devel-

oped multi-mangetometer throughout this work . . . . . . . . . . . . . . 86

6.6 Hard-iron distortion and sensor misalignment on robotic crawler Wally,

magnetometer readings projected onto the xy-plane leading to off-

center effects of different strength depending on mounting position on

the vehicle. Ideally (without distortions), all measurements would re-

sult in perfect circles centered at the origin. . . . . . . . . . . . . . . . . . 87

6.7 Scatter plot of uncalibrated ADC magnetometer readings on robotic

crawler Wally during static calibration procedure . . . . . . . . . . . . . 89

6.8 Scatter plot of compensated but still unaligned readings of the mag-

netometers distributed on crawler Wally during the static calibration

procedure (flat turns around yaw axis . . . . . . . . . . . . . . . . . . . . 91

6.9 Scatter plot of compensated and aligned readings of the magnetome-

ters distributed on crawler Wally during the static calibration proce-

dure (flat turns around yaw axis . . . . . . . . . . . . . . . . . . . . . . . 92

6.10 SLAM generated map of larger indoor environment inside building

RH1 of the DFKI RIC using the proposed multi-magnetometer setup

on robot ARTEMIS. Please note the coherent readings when revisiting

previous locations, even when oriented in the opposite direction . . . . . 93

6.11 Samples from three different vMF-distributions on S2 with different

mean and κ = 1 (red), κ = 50 (green) and κ = 500 (blue) . . . . . . . . . . 95

6.12 Calculated heading of single sensors after static calibration during

Dagon straight run in the DFKI underwater test basin . . . . . . . . . . 97



List of Figures 161

6.13 Comparison of averaged and proposed dynamical filtering of the mag-

netometer array readings during Dagon straight run in the DFKI un-

derwater test basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1 The hybrid legged wheeled robot SherpaTT with a high amount of de-

grees of freedom and therefore high amount of magnetic field distortion

sources during field trials in the desert of Utah, US . . . . . . . . . . . . 102

7.2 Total field strength variations (left) and according distribution (right)

on rover SherpaTT during magnetic field distortion data set gathering

in the desert of Utah, US . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3 3D scatter plot of dynamically distorted directions on SherpaTT while

changing the stance posture . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4 Multi-target function regression approach with robot posture, motor

currents and present configuration (e.g. attached payloads, etc. in case

of reconfigurable robots) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.5 Principle of non linear support vector regression (SVR), trying to find

the narrowest ϵ-tube around the training data while minimizing the

prediction error [Sayad, 2019] . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.6 Magnetic distortion turntable setup with individually engageable dis-

tortion sources: arcwise movable neodymium magnet for hard-iron ef-

fects (1), linearly displaceable pure iron block for soft-iron effects (2)

and a copper conductor wire (3) for electromagnetic effects. (4) indi-

cates the position of the mangetometer. . . . . . . . . . . . . . . . . . . . 109

7.7 Magnetic distortion turntable experiment setup in the nearly magnetic

noise-free desert of Utah, US . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.8 Magnetometer z component plotted against the superimposing distor-

tion source activities (turntable trials, heading 80°) . . . . . . . . . . . . 111

7.9 Second order Butterworth filter applied to magnetometer raw readings

of turntable data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.10 Component-wise MLP prediction (left) and compensation (right) of

magnetic field distortions (turntable trials, heading 80°) . . . . . . . . . . 112

7.11 3D scatter plot of dynamically distorted vs. MLP compensated direc-

tions (turntable trials, heading 80°). Every dot represents the direction

of a magnetic field direction measurement. Undistorted measurements

would stay on the same spot on the sphere’s surface. . . . . . . . . . . . . 113

7.12 SherpaTT during magnetic field distortion data set gathering in the

desert of Utah, US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.13 Component-wise SVR prediction of magnetic field distortions with lin-

ear (left) and RBF (right) kernel (SherpaTT trials, heading 180°) . . . . 116



162 List of Figures

7.14 Component-wise MLP prediction of magnetic field distortions (Sher-

paTT trials, heading 180°) . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.15 3D scatter plot of dynamically distorted and SVR compensated direc-

tions (SherpaTT trials, heading 180°) . . . . . . . . . . . . . . . . . . . . . 118

7.16 3D scatter plot of dynamically distorted and MLP compensated direc-

tions (SherpaTT trials, heading 180°) . . . . . . . . . . . . . . . . . . . . . 119

8.1 Experimental setup with multi-magnetometer (version 1) attached to

the pressure housing of a subsea camera . . . . . . . . . . . . . . . . . . . 123

8.2 Basic setup of the navigation system: base station (1), 1.1: visual

marker, 1.2: rare-earth magnet; sensors on robotic vehicle (2), 2.1:

monocular camera, 2.2: 3-axis magnetometers; working-areas of sen-

sors (3), 3.1: magnet detection radius, 3.2: visual marker detection area. 124

8.3 Setup of the test-system consisting of the docking-station mounted on

the z-axis of the gantry crane (1), the camera (2) and magnetometer

sensors (3) as proposed in Section 6.1 . . . . . . . . . . . . . . . . . . . . . 126

8.4 Camera images of the marker and its extracted position during the test

trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.5 Trajectory of the gantry crane to sample the navigation workspace . . . 127

8.6 The Graph shows the position of the gantry crane in x and y direction

and the extracted marker positions. Note the drop-outs at the edges of

the image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.7 Results of the camera/marker tracking experiment. The graph shows

the gantry crane z-axis position relative to the camera over time as well

as the extracted marker position. . . . . . . . . . . . . . . . . . . . . . . . 128

8.8 Second order Butterworth filter applied to magnetometer raw measure-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.9 Single target function regression approach with n magnetometer sen-

sor readings as input and single position component output . . . . . . . 130

8.10 Component-wise Support Vector Regression on evaluation part of the

data set with linear kernel (left) and RBF kernel (right) . . . . . . . . . . 131

8.11 Multi target function regression approach with n magnetometer sensor

readings as input and combined position output . . . . . . . . . . . . . . 132

8.12 Prediction of the x component on the evaluation part of the data set

using multi-target MLP regression, LBFGS solver . . . . . . . . . . . . . 132

8.13 Prediction of the y and z component on the evaluation part of the data

set using multi-target MLP regression, LBFGS solver . . . . . . . . . . . 133



List of Figures 163

8.14 Position prediction for the x and y component from magnetic field mea-

surements during straight evaluation run, based on trained SVR-RBF

(left) and MLPR (right) models . . . . . . . . . . . . . . . . . . . . . . . . 134

8.15 Position prediction of the z component from magnetic field measure-

ments during straight evaluation run, based on trained SVR-RBF (left)

and MLPR (right) models . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.16 AUV Leng with preliminary attached multi-magnetometer (v1) (left)

and multi-magnetometer (v2) with 3d-printed sensorring (right) . . . . . 135

8.17 Camera view of AUV Leng during dry docking experiment . . . . . . . . 136

8.18 Trajectory of the docking-approach during the AUV docking scenario as

estimated by marker tracking (red) and magnetometer tracking (blue) . 137

9.1 The AUV Leng docking to the ice-shuttle Teredo and the subsea crawler

SherpaUW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143





Acronyms

AMR anisotropic magnetoresistance

ANN Artificial Neural Network

AUV autonomous underwater vehicle

BWT ballast water tank

CGS centimeter–gram–second system of units

CHAMP Challenging Minisatellite Payload

CIR co-rotating interaction region

CIRES Cooperative Intitute for Research in Envi-

ronmental Sciences

CME coronar mass ejection

COBS Consistent Overhead Byte Stuffing

DFKI Deutsches Forschungszentrum für Kün-

stliche Intelligenz

DLR Deutsches Zentrum für Luft- und Raum-

fahrt

DoF degrees of freedom

DVL Doppler Velocity Log

EKF Extended Kalman filter

FOG Fibre Optic Gyroscope

GIC geologically induced current

GLONASS Globalnaja nawigazionnaja sputnikowaja

sistema

GNSS global navigation satellite system

165



166 Acronyms

GPS Global Positioning System

I2C Inter-Integrated Circuit

IAGA Internation Association of Geomagnetism

and Aeronomy

IGRF International Geomagnetic Reference

Field

IHO International Hydrographic Organization

IMU Inertial Measurement Unit

IQR interquartile range

LBFGS Limited-memory Broyden-Fletcher-

Goldfarb-Shanno algorithm

LBL Acoustic Long Baseline Navigation System

LIDAR Light Detection and Ranging

MEMS microelectromechanical systems

ML Machine Learning

MLP Multilayer Perceptron Regression

NATO North Atlantic Treaty Organization

NdFeB Neodymium Iron and Boron

NGDC National Geophysics Data Center

NOAA National Oceanic and Atmospheric Admin-

istration

PMD Photonic Mixing Device

PWM pulse width modulation

RBF Radial Basis Function

RBPF Rao-Blackwellized Particle Filter

ReLU Rectified linear unit

RGB-D RGB camera with additional depth infor-

mation

RIC Robotics Innovation Center

RNN Recurrent Neural Network

SI Système international d’unités - Interna-

tional System of Units



Acronyms 167

SLAM Simultaneous Localization and Mapping

SMD Surface Mounted Device

SPI Serial Peripheral Interface

sq solar-quiet variation

SVC Support Vector Classification

SVM Support Vector Machine

SVR Support Vector Regression

ToF Time of Flight

USBL Ultra Short Baseline Navigation System

UUV Unmanned Underwater Vehicle

vMF von Mises-Fisher

WMM World Magnetic Model




	1 Introduction
	1.1 Motivation
	1.2 Thesis Structure

	2 Foundations
	2.1 Magnetism and Magnetic Fields
	2.2 Magnetic Field Distortion Types
	2.3 The Earth Magnetic Field

	3 State of the Art
	3.1 General Localization and SLAM
	3.2 Magnetic Field Localization

	4 Ambient Magnetic Fields
	4.1 Ballast Water Tanks
	4.2 Office Environment
	4.3 Outdoor Cattle Grid
	4.4 Space Hall Testbed
	4.5 Assessment Comparison

	5 Magnetic Fields of Mobile Robots
	5.1 Rigid Body AUV - DAGON
	5.2 Agile Wheeled Rover - ASGUARD
	5.3 Passive Suspension Rover - ARTEMIS
	5.4 Legged Walking Robot - CHARLIE
	5.5 Assessment Comparison

	6 Distributed Magnetometer for Distortion Compensation
	6.1 Distributed Magnetometer Hardware Setup
	6.2 Static calibration
	6.3 vMF Consensus Filter Algorithm
	6.4 Results
	6.5 Conclusion

	7 Magnetic Field Distortion Learning
	7.1 Hybrid Legged-Wheeled Intervention Rover SherpaTT
	7.2 Dynamic Distortion Model Learning
	7.3 Experiments
	7.4 Conclusion

	8 Localization in Magnetic Fields
	8.1 Visual-Magnetic Close Range Navigation
	8.2 Visual-Magnetic Docking
	8.3 Experiments
	8.4 Conclusion

	9 Conclusions and Outlook
	9.1 Thesis Summary
	9.2 Lessons Learned and Future Work

	References
	List of Figures
	Acronyms

