22 research outputs found

    Parametric Multi-Level Tiling of Imperfectly Nested Loops

    Get PDF
    International audienceTiling is a crucial loop transformation for generating high perfor- mance code on modern architectures. Efficient generation of multi- level tiled code is essential for maximizing data reuse in systems with deep memory hierarchies. Tiled loops with parametric tile sizes (not compile-time constants) facilitate runtime feedback and dynamic optimizations used in iterative compilation and automatic tuning. Previous parametric multi-level tiling approaches have been restricted to perfectly nested loops, where all assignment state- ments are contained inside the innermost loop of a loop nest. Pre- vious solutions to tiling for imperfect loop nests have only handled fixed tile sizes. In this paper, we present an approach to paramet- ric multi-level tiling of imperfectly nested loops. The tiling tech- nique generates loops that iterate over full rectangular tiles, making them amenable to compiler optimizations such as register tiling. Experimental results using a number of computational benchmarks demonstrate the effectiveness of the developed tiling approach

    Search-based Model-driven Loop Optimizations for Tensor Contractions

    Get PDF
    Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. The Tensor Contraction Engine (TCE) is a high-level program synthesis system that facilitates the generation of high-performance parallel programs from tensor contraction equations. We are developing a new software infrastructure for the TCE that is designed to allow experimentation with optimization algorithms for modern computing platforms, including for heterogeneous architectures employing general-purpose graphics processing units (GPGPUs). In this dissertation, we present improvements and extensions to the loop fusion optimization algorithm, which can be used with cost models, e.g., for minimizing memory usage or for minimizing data movement costs under a memory constraint. We show that our data structure and pruning improvements to the loop fusion algorithm result in significant performance improvements that enable complex cost models being use for large input equations. We also present an algorithm for optimizing the fused loop structure of handwritten code. It determines the regions in handwritten code that are safe to be optimized and then runs the loop fusion algorithm on the dependency graph of the code. Finally, we develop an optimization framework for generating GPGPU code consisting of loop fusion optimization with a novel cost model, tiling optimization, and layout optimization. Depending on the memory available on the GPGPU and the sizes of the tensors, our framework decides which processor (CPU or GPGPU) should perform an operation and where the result should be moved. We present extensive measurements for tuning the loop fusion algorithm, for validating our optimization framework, and for measuring the performance characteristics of GPGPUs. Our measurements demonstrate that our optimization framework outperforms existing general-purpose optimization approaches both on multi-core CPUs and on GPGPUs

    Model-driven search-based loop fusion optimization for handwritten code

    Get PDF
    The Tensor Contraction Engine (TCE) is a compiler that translates high-level, mathematical tensor contraction expressions into efficient, parallel Fortran code. A pair of optimizations in the TCE, the fusion and tiling optimizations, have proven successful for minimizing disk-to-memory traffic for dense tensor computations. While other optimizations are specific to tensor contraction expressions, these two model-driven search-based optimization algorithms could also be useful for optimizing handwritten dense array computations to minimize disk to memory traffic. In this thesis, we show how to apply the loop fusion algorithm to handwritten code in a procedural language. While in the TCE the loop fusion algorithm operated on high-level expression trees, in a standard compiler it needs to operate on abstract syntax trees. For simplicity, we use the fusion algorithm only for memory minimization instead of for minimizing disk-to-memory traffic. Also, we limit ourselves to handwritten, dense array computations in which loop bounds expressions are constant, subscript expressions are simple loop variables, and there are no common subexpressions. After type-checking, we canonicalize the abstract syntax tree to move side effects and loop-invariant code out of larger expressions. Using dataflow analysis, we then compute reaching definitions and add use-def chains to the abstract syntax tree. After undoing any partial loop fusion, a generalized loop fusion algorithm traverses the abstract syntax tree together with the use-def chains. Finally, the abstract syntax tree is rewritten to reflect the loop structure found by the loop fusion algorithm. We outline how the constraints on loop bounds expressions and array index expressions could be removed in the future using an algebraic cost model and an analysis of the iteration space using a polyhedral model

    Parameterized and multi-level tiled loop generation

    Get PDF
    Department Head: L. Darrell Whitley.2010 Summer.Includes bibliographical references.Tiling is a loop transformation that decomposes computations into a set of smaller computation blocks. The transformation has been proven to be useful for many high-level program optimizations, such as data locality optimization and exploiting coarse-grained parallelism, and crucial for architecture with limited resources, such as embedded systems, GPUs, and the Cell architecture. Data locality and parallelism will continue to serve as major vehicles for achieving high performance on modern architecture in multi-core era. In parameterized tiling the size of blocks is not fixed at compile time but remains a symbolic constant so that it can be selected/changed even at runtime. Parameterized tiled loops facilitate iterative and runtime optimizations, such as iterative compilation, auto-tuning and dynamic program adaption. In this dissertation we present a collection of techniques for generating parameterized and multi-level tiled loops from affine control loops and their parallelization. The tiled loop generation problem even for perfectly nested loops has been believed to have an exponential time complexity due to the heavy machinery like Fourier-Motzkin elimination. Disproving this decade-long belief, we provide a simple technique for generating tiled loop nests even from imperfectly nested loops. Our technique for perfectly nested loops consists of only syntactic processing that is applied only once and independently to each loop bound. Our approach to imperfectly nested loops is composed of a direct extension of the tiled code generation technique for perfectly nested loops and three simple optimizations on the resulting parameterized tiled loops. The generation as well as the optimizations are achieved only with purely syntactic processing, hence loop generation time remains negligible. We also present three schemes for multi-level tiling where tiling is applied more than once. All the schemes are scalable with respect to the number of tiling levels and can be combined to achieve better performance. To facilitate parallelization of parameterized tiled loops, we generate outermost tile-loops that are perfectly nested. We also provide a technique for statically restructuring parameterized tiled loops to the wavefront scheduling on shared memory system. Because the formulation of parameterized tiling does not fit into the well established polyhedral framework, such static restructuring has been a great challenge. However, we achieve this limited restructuring through a syntactic processing without any sophisticated machinery

    Supernode Transformation On Parallel Systems With Distributed Memory – An Analytical Approach

    Get PDF
    Supernode transformation, or tiling, is a technique that partitions algorithms to improve data locality and parallelism by balancing computation and inter-processor communication costs to achieve shortest execution or running time. It groups multiple iterations of nested loops into supernodes to be assigned to processors for processing in parallel. A supernode transformation can be described by supernode size and shape. This research focuses on supernode transformation on multi-processor architectures with distributed memory, including computer cluster systems and General Purpose Graphic Processing Units (GPGPUs). The research involves supernode scheduling, supernode mapping to processors, and the finding of the optimal supernode size, for achieving the shortest total running time. The algorithms considered are two nested loops with regular data dependencies. The Longest Common Subsequence problem is used as an illustration. A novel mathematical model for the total running time is established as a function of the supernode size, algorithm parameters such as the problem size and the data dependence, the computation time of each loop iteration, architecture parameters such as the number of processors, and the communication cost. The optimal supernode size is derived from this closed form model. The model and the optimal supernode size provide better results than previous researches and are verified by simulations on multi-processor systems including computer cluster systems and GPGPUs

    Master of Science

    Get PDF
    thesisThe advent of the era of cheap and pervasive many-core and multicore parallel sys-tems has highlighted the disparity of the performance achieved between novice and expert developers targeting parallel architectures. This disparity is most notiable with software for running general purpose computations on grachics processing units (GPGPU programs). Current methods for implementing GPGPU programs require an expert level understanding of the memory hierarchy and execution model of the hardware to reach peak performance. Even for experts, rewriting a program to exploit these hardware features can be tedious and error prone. Compilers and their ability to make code transformations can assist in the implementation of GPGPU programs, handling many of the target specic details. This thesis presents CUDA-CHiLL, a source to source compiler transformation and code generation framework for the parallelization and optimization of computations expressed in sequential loop nests for running on many-core GPUs. This system uniquely uses a complete scripting language to describe composable compiler transformations that can be written, shared and reused by nonexpert application and library developers. CUDA-CHiLL is built on the polyhedral program transformation and code generation framework CHiLL, which is capable of robust composition of transformations while preserving the correctness of the program at each step. Through its use of powerful abstractions and a scripting interface, CUDA-CHiLL allows for a developer to focus on optimization strategies and ignore the error prone details and low level constructs of GPGPU programming. The high level framework can be used inside an orthogonal auto-tuning system that can quickly evaluate the space of possible implementations. Although specicl to CUDA at the moment, many of the abstractions would hold for any GPGPU framework, particularly Open CL. The contributions of this thesis include a programming language approach to providing transformation abstraction and composition, a unifying framework for general and GPU specicl transformations, and demonstration of the framework on standard benchmarks that show it capable of matching or outperforming hand-tuned GPU kernels

    IEGen: semi-automatic generation of inspectors and executors

    Get PDF
    Department Head: L. Darrell Whitley.Includes bibliographical references (pages 74-76).Software that simulates real-world phenomena such as heat transfer over surfaces and molecular interaction is often based on irregular computational kernels. Indirect array accesses such as A[B[i]] that are found in irregular computations often exhibit a memory access pattern that does not make efficient use of the memory hierarchy, reducing performance. Additionally, indirect array accesses hinder our ability to apply loop optimizations to improve data locality or introduce parallelism at compile time. One approach to solving this problem, an inspector/executor strategy, inspects the index arrays (B) at runtime to determine the order of accesses to the data arrays (A), reorders the data and index arrays, and executes a transformed computation that accesses the data arrays in a more efficient manner. For the most part, the application of inspector/executor strategies to irregular computations has been done manually or with limited generality. This thesis presents the Inspector/Executor Generator (IEGen). This tool accepts an irregular computation specification and sequence of run-time reordering transformations to apply to that computation as input. IEGen then generates serial inspector and executor code that implements the transformed computation. We contribute an inspector intermediate representation (IR) called an Inspector Dependence Graph (IDG), a method for code generation of inspectors based on an IDG, a method for code generation of executors, and techniques for manipulating affine constraints with uninterpreted function symbol (UFS) expressions to enable code generation. We evaluate our techniques against an existing library that supports limited UFS expressions and additionally show that generalized generation of inspectors and executors that implement composed run-time reordering transformations is possible

    Beyond shared memory loop parallelism in the polyhedral model

    Get PDF
    2013 Spring.Includes bibliographical references.With the introduction of multi-core processors, motivated by power and energy concerns, parallel processing has become main-stream. Parallel programming is much more difficult due to its non-deterministic nature, and because of parallel programming bugs that arise from non-determinacy. One solution is automatic parallelization, where it is entirely up to the compiler to efficiently parallelize sequential programs. However, automatic parallelization is very difficult, and only a handful of successful techniques are available, even after decades of research. Automatic parallelization for distributed memory architectures is even more problematic in that it requires explicit handling of data partitioning and communication. Since data must be partitioned among multiple nodes that do not share memory, the original memory allocation of sequential programs cannot be directly used. One of the main contributions of this dissertation is the development of techniques for generating distributed memory parallel code with parametric tiling. Our approach builds on important contributions to the polyhedral model, a mathematical framework for reasoning about program transformations. We show that many affine control programs can be uniformized only with simple techniques. Being able to assume uniform dependences significantly simplifies distributed memory code generation, and also enables parametric tiling. Our approach implemented in the AlphaZ system, a system for prototyping analyses, transformations, and code generators in the polyhedral model. The key features of AlphaZ are memory re-allocation, and explicit representation of reductions. We evaluate our approach on a collection of polyhedral kernels from the PolyBench suite, and show that our approach scales as well as PLuTo, a state-of-the-art shared memory automatic parallelizer using the polyhedral model. Automatic parallelization is only one approach to dealing with the non-deterministic nature of parallel programming that leaves the difficulty entirely to the compiler. Another approach is to develop novel parallel programming languages. These languages, such as X10, aim to provide highly productive parallel programming environment by including parallelism into the language design. However, even in these languages, parallel bugs remain to be an important issue that hinders programmer productivity. Another contribution of this dissertation is to extend the array dataflow analysis to handle a subset of X10 programs. We apply the result of dataflow analysis to statically guarantee determinism. Providing static guarantees can significantly increase programmer productivity by catching questionable implementations at compile-time, or even while programming
    corecore