
DISSERTATION

PARAMETERIZED AND MULTI-LEVEL TILED LOOP GENERATION

Submitted by

DaeGon Kim

Department of Computer Science

In partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2010

COLORADO STATE UNIVERSITY

April 30, 2010

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UN-

DER OUR SUPERVISION BY DAEGON KIM ENTITLED PARAMETERIZED AND

MULTI-LEVEL TILED LOOP GENERATION BE ACCEPTED AS FULFILLING IN

PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

Committee on Graduate Work

Committee Member : Wim Böhm

Committee Member : Edwin K. P. Chong

Committee Member : Michelle Strout

Advisor : Sanjay Rajopadhye

Department Chair : Darrell Whitley

ii

ABSTRACT OF DISSERTATION

PARAMETERIZED AND MULTI-LEVEL TILED LOOP GENERATION

Tiling is a loop transformation that decomposes computations into a set of smaller com-

putation blocks. The transformation has been proven to be useful for many high-level

program optimizations, such as data locality optimization and exploiting coarse-grained

parallelism, and crucial for architecture with limited resources, such as embedded sys-

tems, GPUs, and the Cell architecture. Data locality and parallelism will continue to

serve as major vehicles for achieving high performance on modern architecture in multi-

core era. In parameterized tiling the size of blocks is not fixed at compile time but

remains a symbolic constant so that it can be selected/changed even at runtime. Pa-

rameterized tiled loops facilitate iterative and runtime optimizations, such as iterative

compilation, auto-tuning and dynamic program adaption. In this dissertation we present

a collection of techniques for generating parameterized and multi-level tiled loops from

affine control loops and their parallelization.

The tiled loop generation problem even for perfectly nested loops has been be-

lieved to have an exponential time complexity due to the heavy machinery like

Fourier–Motzkin elimination. Disproving this decade-long belief, we provide a sim-

ple technique for generating tiled loop nests even from imperfectly nested loops. Our

technique for perfectly nested loops consists of only syntactic processing that is applied

only once and independently to each loop bound. Our approach to imperfectly nested

iii

loops is composed of a direct extension of the tiled code generation technique for per-

fectly nested loops and three simple optimizations on the resulting parameterized tiled

loops. The generation as well as the optimizations are achieved only with purely syn-

tactic processing, hence loop generation time remains negligible. We also present three

schemes for multi-level tiling where tiling is applied more than once. All the schemes

are scalable with respect to the number of tiling levels and can be combined to achieve

better performance.

To facilitate parallelization of parameterized tiled loops, we generate outermost tile-

loops that are perfectly nested. We also provide a technique for statically restructur-

ing parameterized tiled loops to the wavefront scheduling on shared memory system.

Because the formulation of parameterized tiling does not fit into the well established

polyhedral framework, such static restructuring has been a great challenge. However,

we achieve this limited restructuring through a syntactic processing without any sophis-

ticated machinery.

DaeGon Kim
Department of Computer Science
Colorado State University
Fort Collins, CO 80523
Summer 2010

iv

ACKNOWLEDGMENTS

My journey to academia and research was not planned, and I was not prepared.

However, when I look back, the journey has been joyful and my heart becomes thankful.

Throughout and in the center of this journey there has always been a lighthouse provid-

ing everything I need to finish this journey. I am thankful to my advisor, Dr. Sanjay

Rajopadhye, for not only providing invaluable teaching, directions, and encouragement

but also being such a great role model. Without him, I would have been shipwrecked

during this journey and been lost deep under the formidable sea of academia.

I would like to thank Dr. Michelle Strout for interesting discussions and timely

feedback. I would like to thank Dr. Wim Böhm for his questions. They always remind

me the importance of honesty and basics. I have been privileged to take classes from

Dr. Robert Liebler. Thanks to him for teaching and inspiring me to see things in many

different ways. I would like to thank Dr. Edwin Chong for his wondeful teaching on

nonlinear optimization and agreeing to serve on my graduate committee at short notice.

I would like to thank to the group of Albert Cohen at INRIA in France and the

group of Kevin O’Brien at the IBM TJ Watson Research Center at Yorktown Heights

for memorable and vaulable experience both personally and professionally.

I have been lucky to work with Gautam Gupta and Lakshminarayanan Renga-

narayanan. They have been not only great colleagues but also good friends. Whenever

I had “looking-good but not-working” ideas, Gautam gave me a counter example in a

v

few minutes. At those moments, I was not sure whether I truly liked him. Lakshmi

gave me a good start on the research in this dissertation, and he also literally created

an opportunity to work at IBM research lab for the lazy internship seeker. I would like

to thank all the members of the MELANGE group at CSU and all the students in HPC

student room.

I want to thank National Science Foundation for financial support. I would like to

thank Sharon Van Gorder and Caroll Calliham for gladly helping me go through all the

administrative process.

I would like to thank my parents for their love and support. They have been giving

me something I will never be able to pay back, and I will remember it. I would like

to thank my brother and my sister. They have been so nice to their younger brother. I

would like to thank Jerry Hager for giving such a wonderful experience in this foreign

country. He is the most surprising gift that I have in my homesick life.

Finally, I would like to express my appreciation to YoonHee just for being my wife.

She always believes in me and supports me. I also would like to thank Eunsoo and

Eunbee for being my daughters. Although these two little girls are supposed to have

zero interests in serving me, they have provided me great energy in a nontraditional

way. They are the very three persons that make me want to be a better man. I dedicate

this dissertation to them.

vi

TABLE OF CONTENTS

1 Introduction 1

2 Related Work 4

2.1 Background . 5

2.2 Related Work . 9

2.2.1 Tiled Loop Generation with Fixed Tile Sizes 9

2.2.2 Tiled Loop Generation with Parameterized Tile Sizes 11

2.2.3 Multi-level Tiled Loop Generation . 13

2.3 Putting Our Work into Context . 13

3 Parameterized Tiled Loop Generation for Perfectly Nested Loops 15

3.1 Background . 15

3.2 Efficient Construction of Approximate Outset 18

3.3 D-tiling . 19

3.3.1 Intuition . 19

3.3.2 Generation of Tile-loops . 20

3.3.3 Generation of Point-loops . 22

3.3.4 Generation of Parameterized Tiled Loops 23

3.3.5 Correctness Proof . 24

3.4 Experimental Results . 25

4 Parameterized Tiled Loop Generation for Imperfectly Nested Loops 29

4.1 Input Programs . 29

vii

4.2 Tile-loop Generation . 31

4.3 Point-loop Generation . 32

4.4 Parameterized Tiled Loop Generation . 33

4.4.1 Correctness . 34

4.5 Optimizations . 34

4.5.1 Removing Statements from Point-Loops 35

4.5.2 Splitting Full Tiles . 36

4.5.3 Selecting Iteration Space . 36

4.6 Structure of Parameterized Tiled Loops 37

4.7 Experimental Results . 37

4.7.1 Experimental Setup . 38

4.7.2 Results . 38

4.8 On the Embedding Process . 42

4.8.1 Dependence Abstraction . 43

4.8.2 Embedding of Two Fully Permutable Loops 43

4.8.3 Discussion . 45

5 Multi-level Tiled Loop Generation: Successive Tiling 47

5.1 Successive Tiling . 47

5.1.1 Multi-level Tiling for Fixed Tile Sizes 48

5.1.2 Multi-level tiling using the outset . 49

5.2 Separating partial & full tiles . 52

5.2.1 Algorithm for Computing Inset . 53

5.2.2 Distinguish full and partial tiles using Inset 54

5.3 Splitting Partial & Full Tiles . 55

5.4 Loop Generation Algorithm . 57

5.4.1 Complexity & scalability of the algorithm 59

viii

5.5 Experimental Validation . 60

5.5.1 Generation efficiency . 62

5.5.2 Cost of parameterization . 64

5.5.3 Effect of separation level . 68

6 Multi-level Tiled Loop Generation: Multiple Tiling 73

6.1 Motivation . 73

6.2 Multiple Tiling . 74

6.3 Separation of Full tiles . 75

6.4 Implementation and Experiments . 76

6.4.1 Evaluation . 76

7 Multi-level Tiled Loop Generation for Imperfectly Nest Loops 80

7.1 Successive/Multiple Tiling on Tile-loops 80

7.2 Imperfectly Nested Loop Tiling on Point-loops 81

7.3 Mixture of various approach . 81

8 Parallel Execution of Parameterized Tiles 82

8.1 Basic Ideas Illustrated . 84

8.2 Generation Algorithm . 85

8.3 Algorithm Walk-through . 87

8.4 Experimental Results . 88

9 Conclusions and Future Work 92

ix

LIST OF FIGURES

2.1 Stencil computation on one dimensional array 5

2.2 Original iteration space of the stencil computation in Figure 2.1 and its

transformed iteration space by (t, i→ t, t+ i) to make rectangular tiling

legal . 6

2.3 Transformed tilable (fully permutable) loops of the stencil computation in

Figure 2.1 . 6

2.4 Tiled (transformed) iteration space of the stencil computation in Figure 2.1 . 8

3.1 Triangular iteration space: the body of the loop is represented with the

macro S1 for brevity . 16

3.2 (Left) An iteration space when N = 9 and its 3× 3 tiling, (Right) An outset

of triangular iteration space when N = 9 (left) and its 3× 3 tiling . . . 16

3.3 Tiled loops from the example in Figure 3.1 from HiTLOG 19

3.4 Algorithm for generating tile-loops . 21

3.5 Algorithm for generating point-loops . 23

3.6 Tile loops obtained from the example in Figure 3.1 using dimension-by-

dimension tiling . 23

3.7 Total execution time of two tiled version of DSYRK using D-tiling and TLOG 27

3.8 Total execution time of two tiled version of triangular matrix product using

D-tiling and TLOG . 27

3.9 Total execution time of two tiled version of Gauss-Siedel stencil computa-

tion on 2D data using D-tiling and TLOG 28

x

4.1 A solver for lower triangular linear systems written in these styles: a simple

imperfectly nested loop, a perfectly nested loop with affine-guards, and

an embedded imperfectly nested loop 30

4.2 Iteration space of the solver for lower triangular linear systems 31

4.3 Algorithm to derive perfectly nested loops from embedded imperfectly

nested loops . 32

4.4 Two point-loops for the solver for lower triangular linear system: from em-

bedded imperfectly nested loops and from perfectly nested with affine

guards . 33

4.5 Final structure of parameterized tiled loops from triangular solver; after op-

timization. For the general point-loops for both statements, see Figure

4.4 . 37

4.6 Total execution time of cache tiling on MultiTriSolver with cubic tile size . 40

4.7 Total execution time of cache tiling on LU with cubic tile size 40

4.8 Total execution time of cache tiling on Cholesky with cubic tile size 41

4.9 Total execution time of cache tiling on FDTD with tile size along time di-

mension fixed as 4 . 42

4.10 A solver for lower triangular linear systems for which code sinking does not

work . 45

5.1 Multi-level tiling as repeatedly tiling each tile on a triangular iteration space 50

5.2 A loop nest corresponding to the multi-level tiling in Figure 5.1 51

5.3 Structure of multi-level tiled loops generated with the outset method when

partial and full tiles are not separated. 52

5.4 Structure of multi-level tiled loops generated with the outset method when

the partial and full tiles are separated at some tiling level k. 56

5.5 A multi-level tiled loop for the 2D Stencil. The body of the loop is by S1. . 59

xi

5.6 Generation time for multi-level tiling of 2D Stencil. 61

5.7 Generation time for multi-level tiling of LU decomposition. 62

5.8 Generation time for multi-level tiling of symmetric rank k update (SSYRK). 63

5.9 Generation time for multi-level tiling of 3D Stencil. 64

5.10 Generation time for multi-level tiling of triangular matrix multiplication

(STRMM). 65

5.11 Generation time for multi-level tiling of classic method. The x-axis of the

graph is the number of loops in the tiled loop nest. The y-axis is the

code generation time in seconds. 65

5.12 Total execution time for 2D Stencil on a data array of size 65536. The x-

axis shows the inner (cache) cubic tile sizes. The outer (TLB) tile size

is fixed at 512. 66

5.13 Total execution time for LU decomposition on a matrix of size 2048×2048.

The x-axis shows the inner (cache) cubic tile sizes. The outer (TLB) tile

size is fixed at 512. 66

5.14 Total execution time for symmetric rank k update (SSYRK) for matrix of

size 2048 × 2048. The x-axis shows the inner (cache) cubic tile sizes.

The outer (TLB) tile size is fixed at 512. 67

5.15 Total execution time for 3D Stencil for a data array of size 2048×2048 over

2048 time steps. The x-axis shows the inner (cache) cubic tile sizes. The

outer (TLB) tile size is fixed at 512. 68

5.16 Total execution time for LU decomposition for matrices of size 2048×2048.

Two levels of tiling for cache and registers is used. The x-axis shows the

cubic cache-tile sizes. The graph on the left is for a register-tile size of

2× 2× 2 and the one on the right is for 3× 3× 3. 69

xii

5.17 Total execution time for symmetric rank k update (SSYRK) for matrices of

size 2048 × 2048. Two levels of tiling for cache and registers is used.

The x-axis shows the cubic cache-tile sizes. The graph on the left is for

a register-tile size of 2× 2× 2 and the one on the right is for 3× 3× 3. 70

5.18 Total execution time for triangular matrix multiplication (STRMM) for ma-

trices of size 2048 × 2048. Two levels of tiling for cache and registers

is used. The x-axis shows the cubic cache-tile sizes. The graph on the

left is for a register-tile size of 2 × 2 × 2 and the one on the right is for

3× 3× 3. 70

5.19 Total execution time for 3D Stencil for a data array of size 2048×2048 over

3000 time steps. Two levels of tiling for cache and registers is used. The

x-axis shows the cubic cache-tile sizes. The graph on the left is for a

register-tile size of 2× 2× 2 and the one on the right is for 3× 3× 3. . 71

6.1 Loop structure of multi-level tiling as successive tiling (left) and multiple

tiling(right) . 74

6.2 Algorithm for deriving the test for full tiles. Shift_down and Shift_up are

defined in Chapter 3 . 75

6.3 Total execution time for DTRMM with two levels of tiling, one for cache

and one for registers, and compiled with gcc. The register tile size are

fixed at 3× 3× 3. 77

6.4 Total execution time for DTRMM with two levels of tiling, one for cache

and one for registers, and compiled with gcc. The register tile size are

fixed at 3× 3× 3. 78

6.5 Total execution time for Seidel with separating full tiles, compiled with gcc 78

6.6 Total execution time for Seidel with separating full tiles, compiled with icc . 79

xiii

8.1 Tile space and its transformed space; each tile is denoted by its origin coor-

dinate; note that even in the transformed space tiles are denoted by their

origin coordinates in the original space 83

8.2 Generation algorithm for wave-front scheduling of parameterized tiled loops 86

8.3 A simplified parameterized tiled loop for the example in Figure 8.1; the

actual loop body is replaced by a macro for brevity; the loop body is

irrelevant to the generation algorithm 87

8.4 Transformed loop nest for wave-front scheduling from the parameterized

tiled loops in Figure 8.3 . 88

8.5 Loop overhead comparison between before/after loop restructuring 89

8.6 Total execution time of Multiple triangular solver and Gauss-Seidel stencil

computation. All the loops in fixed tile size code are tiled with 16×16×
16. ParWave is parameterized tiled code without splitting full tiles, and

ParWave(Split) with splitting full tiles 90

8.7 Total execution time of Cholesky and LU. All the loops in fixed tile size

code are tiled with 48 × 48 × 48. ParWave is parameterized tiled code

without splitting full tiles, and ParWave(Split) with splitting full tiles . . 91

xiv

Chapter 1

Introduction

Achieving high performance on modern architectures is a demanding challenge. As

the trend of multiple cores on a single chip continues and the number of cores keeps

increasing to fulfill the performance improvement implied by Moore’s law, this becomes

even more complex, requiring parallelism in applications being exposed, and the parallel

machines to be exploited, while enhancing data locality.

Many compute- and data-intensive applications spend most time on executing loops.

An important class of such kernels is affine control loops. Tiling is a very useful loop

transformations for high level optimization. The tiling transformation decomposes com-

putation into a set of smaller blocks. Over the past few decades of research and practical

use in high performance implementations, it has been proven to be effective for improv-

ing data locality and exposing coarse grained parallelism [28, 37, 57].

The blocks of computation, called tiles, are mapped to one of the resources in sys-

tems. The resources can be memory hierarchy, registers, functional units or cores/pro-

cessors. The size of blocks is chosen to make data and/or computation fit into a

certain resource, but also to provide a fine control on the ratio between computa-

tion and communication. Hence, the tile sizes have a great impact on performance,

and a lot of research has addressed the problem of finding good and optimal tile

sizes [1, 7, 15, 27, 50, 37, 55].

1

To fully exploit computation/communication/memory resources for high perfor-

mance, optimizing compilers must choose optimal tile sizes based on an accurate model

of target architectures. However, obtaining such models is difficult because of the com-

plexity and diversity of modern architectures and dynamic changes in execution envi-

ronment, as in cloud and mobile computing. Due to this, empirical search for optimal

parameters has gained intensive research interest in recent years [13, 55, 35, 17, 54]. In

this context, it is highly desirable to employ parameterized tiling where the tile sizes are

not fixed at compile time, and remain symbolic constants. Although tile size selection

has received a lot of attention, tiled code generation has not until recently.

In parameterized tiling tile sizes can be chosen and changed at runtime and even

during a single run. Parameterization of tile sizes is quite useful for any empirical tun-

ing/search in auto-tuners (ATLAS [55], PHiPAC [13] and SPIRAL [48]) and iterative com-

pilers, runtime feedback systems [42, 44] and dynamic program adaption [35, 36].

High performance implementations often use multiple levels of tiling to harness the

full potential of modern architectures. For example, the highly tuned matrix operation

libraries generated by ATLAS [55] or PHiPAC [13] use two levels of tiling: one for caches

and another for registers and instruction-level parallelism. High performance implemen-

tations for solving partial differential equations [51] use at least two levels of tiling: one

for parallelism and one for caches. With advent of multi-core processors, multi-level

tiling has become a design pattern for high performance implementations [12, 18].

In this dissertation we present a collection of techniques for multi-level, parameter-

ized tiled loop generation and their parallelization. The most distinctive nature of our

approach is that none of our techniques require any sophisticated machinery, such as

Fourier–Motzkin elimination and projection. Rather, we only use purely syntactic pro-

cessing of input loop nests, even to restructure parameterized tiled loops for wave-front

scheduling. The theoretical complexity of generating tiled loop including parameter-

2

ized ones is reduced from the exponential complexity of FME, down to be linear in the

number of loop bounds in the original loop nest. Furthermore, our approach provides

multi-level parameterized tiled loops at almost the same cost of generating tiled loops

for a single level of tiling. Providing three schemes and their combination, our approach

provides various tiled loop structures, which can be selected depending on optimization

aimed to given levels.

The remainder of this dissertation is broadly separated into three parts. Chapter 2

provides an overview of tiled loop generation problem and its related work. Chapter 3-8

provide detailed explanation of our approach. Chapter 9 concludes the discussion and

presents direction of future research.

3

Chapter 2

Related Work

Applying tiling transformation as a complete optimization requires a dependence anal-

ysis, pre-processing loops for tiling legality, and tiled loop generation together with ap-

propriate statement generation. The tiling transformation is an iteration (computation)

reordering transformation. In general, such reordering is not always legal, i.e., does not

preserve semantics of original programs. The role of data dependence analysis in the

tiling optimization process is providing the constraints to be respected. Validation of

the legality of tiling as well as required pre-processing of loops to ensure the legality is

based on this constraint. Once the legality issue is resolved, tiled loops will be generated

to realize the new ordering given by tiling transformation. Tiling as a transformation is

a vehicle for other optimizations, such as data locality optimizations and coarse-grained

parallelization. A specific optimization may require more than just the reordering of

computation. Hence, in general appropriate statement generation is required. For ex-

ample, parallelization for distributed memory systems requires an additional piece of

code for communication among the processors, and data locality optimization aimed for

registers requires loop unrolling with scalar promotion of array access.

This dissertation focuses on parameterized, multi-level sequential and parallel tiled

loop generation from tilable affine control loops with hyper-rectangular shaped tiles

and their parallelization. We assume that tiling is legal and do not address legality of

4

f o r (t = 1 ; t <= TMAX; t ++)
f o r (i = 1 ; i <= N−2; i ++)

A[i] = (A[i −1]+A[i]+A[i + 1]) / 3 . 0 ;

Figure 2.1: Stencil computation on one dimensional array

tiling. Affine control loops are loop nests where loop bounds are affine expressions of

outer iterators and program size parameters that are loop invariant variables. Strictly

speaking, affine control loops have another restriction on statements, namely that they

access array or scalar variables using affine functions of surrounding indices. However,

since tiled loop generation does not change statements but only loops, it is not relevant

in the context of tiled loop generation problem where tiling is assumed to be legal. The

hyper-rectangular tile is the most widely used in the literature and practice. Although

some loop programs do not allow rectangular tiling, any computations that can be tiled

with parallelogram shape can be tiled after skewing transformation.

2.1 Background

Consider the simple, perfectly nested and doubly nested loop nest in Figure 2.1. We will

apply the tiling transformation to this. The iteration space of this computation is shown

in Figure 2.2. Although there is a very efficient method for tiling rectangular iteration

space with rectangular tiles, the loop nest is not tilable with rectangular tile shape.

Note that the loops are not fully permutable. To make rectangular tiling legal, we

apply a skewing transformation to the original iteration space by (t, i → t, t + i). The

transformed iteration space is also shown in Figure 2.2 and its corresponding loops are

given in Figure 2.3. The transformed iteration space is no longer rectangular and we

denote it as

Piter = {t, i | 1 ≤ t ≤ Tmax ∧ t+ 1 ≤ i ≤ t+N − 2}

Now, we apply the tiling transformation to this transformed iteration space. The

5

t

i

N-2

Tmax Tmax

N-1

(a) Original iteration space (b) Transformed iteration space

(1,1)
(Tmax,1)

(1,N-2) (Tmax,N-2)

(1,2)

(1,N-1)
(Tmax,Tmax+1)

(Tmax,Tmax+N-2)

Figure 2.2: Original iteration space of the stencil computation in Figure 2.1 and its
transformed iteration space by (t, i→ t, t+ i) to make rectangular tiling legal

f o r (t = 1 ; t <= TMAX; t ++)
f o r (i = t +1 ; i <= t +N−2; i ++)

A[t−i] = (A[t−i −1]+A[t−i]+A[t−i + 1]) / 3 . 0 ;

Figure 2.3: Transformed tilable (fully permutable) loops of the stencil computation in
Figure 2.1

6

tiling transformation decomposes the transformed iteration space into a set of smaller

blocks as shown in Figure 2.4. Tiles are represented as dotted-line rectangles, and the

lexicographically smallest points in the tiles are called tile origins. There are three

kinds of tiles: empty tiles, partial tiles and full tiles. This classification of tiles is based

on which points inside a tile belong to iteration space. When all the points belong to

iteration space, a tile is called a full tile. When none of points belongs to iteration space,

it is an empty tile. The tile that is neither full or empty is a partial tile. In the tiled loop

nest, tiles are enumerated with a doubly nested loop, whose body is itself a loop that

visits all the iteration points inside the tile. So, the structure of tiled loops are two outer

loops enumerating tile origins and two inner loops enumerating all the points for a given

iteration of the outer two loops. The loops that enumerate tiles are called tile-loops and

the loops that enumerate iteration points in a tile are called point-loops.

Since there are no iteration points in empty tiles, we need to enumerate only full and

partial tiles. The ideal case is that no empty tiles are enumerated. One also might want

to distinguish full tiles from the others so that optimizations requiring the loop bounds

to be fixed or known, such as loop unrolling, register tiling and vectorization, can be

applied in later stages. When the sizes of tiles, i.e., its width and height, are (fixed)

integer constants in the tiled loop nest, such tiling is called fixed tiling. In parameterized

tiling, the tile sizes are not determined at compile time, but remain symbolic runtime

parameters.

The space that describes the iteration space of tiled loop nest can be formulated in

two ways. The first formulation is

{Tt, T i, t, i | t− St < St× Tt ≤ t ∧ i− Si < Si× Ti ≤ i ∧ (t, i) ∈ Piter}

where St and Si are tile sizes. We call this expanded four dimensional space as tiled

space. Since the first two dimensions of the tiled space describes the space of tiles, they

are called tile space.

7

Tmax

N-1

Empty tile

Full tile

Partial tile

Tile origion

Figure 2.4: Tiled (transformed) iteration space of the stencil computation in Figure 2.1

When the tile sizes are integer constants, the tiled space is a polyhedron. For exam-

ple, when St = 3 and Si = 2, it becomes

{Tt, T i, t, i | t− 3 < 3× Tt ≤ t ∧ i− 2 < 2× Ti ≤ i ∧ (t, i) ∈ Piter}

and all the constraints are linear inequalities. The tile space can be viewed as the image

of this tiled space by the projection function (Tt, T i, i, j → Tt, T i) and can be easily

computed using standard polyhedral library like Omega [47], PolyLib [45] and Parma

Library[8]. In this formation, tile space is a convex (dense) set.

Another formulation is that tile origins are on a single (fixed constant or parame-

terized) integral lattice. Let us denote the set of all the points on this lattice as L. For

example, for St = 3 and Si = 2 all the tile origins can be expressed as (3× e1, 2× e2)
for some integer e1 and e2. The tile space in this formulation cannot be expressed as

L ∩ Piter

8

because not all the origins of necessary tiles belong to Piter. This can be easily seen in

Figure 2.4. When a set contains all the necessary tile origins, i.e., the origins of all full

and partial tiles, we call such set as an outset Pout of Piter [52]. Now, the tile space can

be expressed as

L ∩ Pout

Note that Pout is based on not only Piter but also tile sizes.

The space of points inside a tile can be expressed as

tile(p) ∩ Piter

where p is the tile origin (Tt, T i) and tile(p) is {t, i | Tt ≤ t < Tt + St ∧ Ti ≤ i <

T i+ Si}.
When tile sizes are fixed, this space can be viewed as a polyhedron parameterized

by tile origin and the program size parameters.

2.2 Related Work

A considerable amount of research has been done for tiled loop generation problem.

First, a significant work has addressed the case where loops are perfectly nested and

tile sizes are fixed, and then there have been many advances. Roughly speaking, these

advances are towards handling imperfectly nested loops, separation of full tiles, gener-

ating parameterized tiled loops, wave-front scheduling of tiled program and generating

multi-level tiled loops.

2.2.1 Tiled Loop Generation with Fixed Tile Sizes

The problem of generating tiled loops has been closely related to that of generating

scanning loops from polyhedra. Thanks to Irigoin and Triolet’s proof that tiled iteration

space is a polyhedron if tile sizes are integer constants [29], the techniques for generating

9

loops that scan polyhedra can be directly used when tile sizes are fixed. Ancourt and

Irigoin [6] proposed a technique for scanning a single polyhedron, based on Fourier-

Motzkin elimination over inequality constraints. Le Verge et al. [39, 38] proposed an

algorithm that exploits the dual representation of polyhedra with vertices and rays in

addition to constraints. The general code generation problem for affine control loops

requires scanning unions of polyhedra. Kelly et al. [32] solved this by extending the

Ancourt-Irigoin technique, and together with a number of sophisticated optimizations,

developed the widely distributed Omega library [47]. The SUIF [56] tool includes a

similar algorithm. Quilleré et al. proposed a dual representation algorithm [49] for

scanning the union of polyhedra, and this algorithm is implemented in the CLooG code

generator [10] and its derivative Wloog is used in the WRaP-IT project [11]. Recently,

CLooG is used in gcc Graphite project [46].

Goumas et al. [22] show situations where the generation of tiled loops may become

expensive given the doubly exponential complexity of FME and propose an approach

where the tiled loop generation problem is decomposed into two sub-problems: gen-

erating tile-loops and generating point-loops. Through this decomposition, tiled loop

generation for loop nest of depth d is done by scanning two d-dimensional polyhedra

instead of a single 2d-dimensional polyhedron, reducing the worst-case generation time

significantly.

Broadly speaking, there are two approaches for tiling imperfectly nested loops. The

first approach is based on splitting iteration space into two regions based on legality

of tiling and tiling can be applied only to the region where tiling is legal [16]. The

second approach that is widely accepted is embedding [2, 41, 14]. In this approach, all

the iteration spaces are embedded into a common space. Amhed et al. [2] proposed an

embedding method based on product space, the Cartesian product of all the iteration

spaces. They construct product space, apply techniques developed for perfectly nested

10

loops to obtain a legal locality-optimized loop nest while reducing the dimensionality

of this space. Note that the number of dimension can be reduced up to the maximum

depth of loops. Lim et al. [41] proposed a technique for the case that computation

can be decomposed into a set of independent threads. They provided an algorithm for

extracting the maximum number of fully permutable loops using their affine partitioning

framework [40]. Bondhugula et al. [14] proposed an approach based on a formulation

for relaxed pipeline scheduling and formulated an integer linear optimization problem

to minimize the distance between production and consumption. The focus is not code

generation, but a pre-processing for legality of tiling. Standard techniques for generating

loops in polyhedral model can be directly used for tiled loop generation because tile

sizes are fixed.

2.2.2 Tiled Loop Generation with Parameterized Tile Sizes

When tile sizes are not constants, but symbolic parameters, the above techniques are not

directly applicable. Amarasinghe and Lam [4, 5] implemented, in the SUIF tool set, a

version of FME that can deal with a limited class of symbolic coefficients (parameters

and/or block sizes), but the full details have not been made available. Größlinger et

al. [23] proposed an extension to the polyhedral model, in which they allow arbitrary ra-

tional polynomials as coefficients in the linear constraints that define the iteration space.

Their generality comes at the price of requiring computationally expensive machinery

like quantifier elimination in polynomials over the real algebra, to simplify constraints

that arise during loop generations. Due to this their method does not scale with the

number of dimensions and the number of non-linear parameters.

Jiménez et al. [30] developed code generation techniques for register tiling of non-

rectangular iteration spaces. They generate code that traverses the bounding box of the

iteration space to enable parameterized tile sizes. The focus of their paper is applying

index-set splitting to tiled code to traverse parts of the tile space that include only full

11

tiles. Their approach involves less overhead in the loop nest that visits the full tiles;

however, the resulting code experiences significant code expansion.

Hartono et al. [24] presented a technique for generating parameterized tiled loops

from imperfectly nested loops. They do not rely on complex polyhedral operation but

use syntactic manipulation after they obtained embedded original (non-tiled) loop nest

and implemented a tool call PrimeTile. However, their tiling is different from the con-

ventional tiling in the literature where all the tile origins are on a (either fixed constant

or parameterized) single lattice. For each loop, PrimeTile splits it into three loops: pro-

logue, main and epilogue. The main loop enumerates full tile coordinates and the other

loops enumerate partial tile coordinates. This process repeats until the innermost loop.

The algorithm itself distinguishes full tiles from the others, but results in substantial

increase in the code size. Therefore, their resulting code is complex and difficult to par-

allelize except computations that have already synchronization-free parallelism. Their

method allows non-affine loop bounds at the price of checking all the loop iteration to

extract tiled loop bounds during runtime. They focus on extracting full tiles from affine

control loops, and some part of iteration space may not be tiled. They achieved great

reduction of a loop overhead even for very small tile sizes.

Hartono et al. [25] proposed a solution to parallelization of parameterized tiled code

based on inspector/executor. The inspector computes the range of the time steps for

a given schedule and the tiles being executed at given a time step by the schedule.

The executor iterates over doubly nested lists. However, they abandon their previous

approach [24] for tiling on sequential machines. Rather, they use convex hull of all it-

eration spaces to obtain a simple tiled loops suitable parallel execution, similar to the

solution proposed here.

Recently, Baskaran et al. [9] proposed an approach for parallelization of parameter-

ized tiled loop. To extract the bounds for the outermost time loop, they used parametric

12

integer linear programming [20]. However, given that either constraints or wave-front

scheduling is not affine function of loop iterators and program parameters, it is not clear

how such tools can be directly used. The exact formulation of parametric integer pro-

gramming problem has not been given. They also proposed a relaxed symbolic Fourier

Motzkin Elimination to optimize tile-loops, but provide neither the explanation of the

effectiveness in tightening loop bounds nor experimental result for its impact on execu-

tion time.

2.2.3 Multi-level Tiled Loop Generation

For simple rectangular iteration spaces, multi-level tiled loop generation is straightfor-

ward and has been used by several tools. Jiménez et al. [31] proposed a technique for

arbitrary polyhedral iteration spaces but for the fixed tile sizes case. Their technique is

based on the strip-mine and interchange view of tiling. Their technique has an exponen-

tial complexity that grows with the number of levels of tiling.

Hartono et al. [24, 25] extended their technique for single level tiling to multi-level

tiling. Baskaran et al. [9] proposed a technique for multi-level tiling based on relaxed

symbolic Fourier Motzkin Elimination.

Others [53] have also looked at multi-level tiling (e.g., Mitchell et al. [43]) without

addressing code generation.

2.3 Putting Our Work into Context

The unique nature of our technique is that it consists of only syntactic processing of

original loop nests for all the generations and tiled loop restructuring for parallelization.

Although PrimeTile [24] also uses only syntactic manipulation of the original loop nests,

it does not maintain all the tile origins on a single lattice. This is different from the

conventional tiling. The other difference is that their tiled loop structure are complex

13

and difficult to transform by repeatedly splitting loops into prologue, main and epilogue.

Consequently, they do not support tiled loop structuring for wave-front scheduling of

tiles.

In our approach, tiled loop generation problem is decomposed into two sub-problems

similar to that of Goumas et al. [22]. The major difference is, while their technique can

generate tiled loop nest with parallelogram tile shape and fixed tile sizes, our technique

can produce parameterized tiled loops with hyper-rectangular shape. Their tile space is

not an outset, but an image of an outset by the tiling transformation function that maps

lattice points into a dense set. This results in ceilings and floor operations in loop bounds

of tile-loops.

The scope of our work is the same as that of Baskaran et al. [9], parameterized multi-

level tiled loop generation and their parallelization. They use the outset construction

method in our work [52], but their tile space is a dense set similar to that of Goumas

et al. [22]. Consequently, their tiled loop bounds have ceiling and floor operations.

Another major difference is that they use a relaxed projection and symbolic Fourier

Motzkin Elimination for multi-level tiled loop generation and parallelization. Also, they

use an parametric integer linear programming to derive the bounds for outer most time

loop in parallelized tiled loops. In contrast, we do not rely on such heavy machinery.

Finally, the focus of optimization in our work is on point-loops, but their focus is on

tile-loops.

14

Chapter 3

Parameterized Tiled Loop Generation
for Perfectly Nested Loops

This chapter presents D-tiling, an approach for generating (parameterized) tiled loops di-

mension by dimension. The approach consists of simple syntactic processing that is ap-

plied independently and only once to each loop. For an arbitrarily polyhedral shaped it-

eration space, the tiled loop generation problem has been long believed to require heavy

machinery like Fourier-Motzkin elimination and projection, and hence to have an expo-

nential complexity. Avoiding any polyhedral operations, this solution makes the com-

plexity of tiled loop generation problem linear in the number of loop bounds. Despite

its simplicity, we retain several advantages of recent tiled code generation schemes—

unified generation for fixed, parameterized and hybrid tiled loops, and scalability for

multi-level tiled loop generation. We also provide a correctness proof of our genera-

tion algorithm. Later, this correctness proof provides a foundation of the correctness of

our algorithm for generating parameterized tiled loop generation for imperfectly nested

loops.

3.1 Background

The tiling transformation takes a d-depth (perfectly) nested loop and produces a loop

nest of depth (at most) 2d. The main idea is a decomposition of the iteration space into

15

f o r (i = 1 ; i <= N ; i ++)
f o r (j = 1 ; j <= i ; j ++)

S1 (i , j) ;

Figure 3.1: Triangular iteration space: the body of the loop is represented with the macro
S1 for brevity

1

Iteration space

9

(9,9)

i

j
{i, j | 1 ≤ j; j ≤ i; i ≤ N}

Empty tile

Partial tile Full tile

1

Iteration space

9

(9,9)

i

j

{i, j | 1 ≤ j; j ≤ i; i ≤ N}

{i, j | 2 − sj ≤ j; j ≤ i + si − 1; i ≤ N}
Outset

2 − sj ≤ j

i ≤ N

j ≤ i + si − 1

Figure 3.2: (Left) An iteration space when N = 9 and its 3× 3 tiling, (Right) An outset
of triangular iteration space when N = 9 (left) and its 3× 3 tiling

tiles.

In the rest of this chapter we assume that rectangular tiling is legal. Also, the input

program is a perfectly nested affine control loop, and tile shapes are hyper-rectangular.

Affine control loops are loops where the bounds are affine functions of program param-

eters (loop invariant variables) and outer indices.

The iteration spaces of such loops can be expressed as a polyhedron, i.e., a set whose

constraints are linear inequalities. Consider the loop nest in Figure 3.1. Its iteration

space Pex can be written as

Pex = {i, j | i ≤ N ; 1 ≤ j ≤ i}

Note that there are only three inequalities that define the iteration space because 1 ≤ i

is redundant. A geometric representation of this iteration space is shown in Figure 3.2.

Figure 3.2 also shows a 3 × 3 rectangular tiling of this iteration space. Depending

on the intersection of a tile and the iteration space, there are three kinds of tiles—empty

16

tiles whose intersection with the iteration space is empty, full tiles whose intersection is

the tile itself, and partial tiles that are neither empty nor full tiles. The lexicographically

smallest point of a tile is called the tile origin.

In general, we can express an iteration space of perfectly nested loops as

Piter = {~z|Q~z ≥ (~q +B~p)}

where ~z is the iteration vector of size d,Q is am×dmatrix, ~q is a constantm-vector, ~p is

an n-vector containing symbolic parameters for the iteration space, and B is a constant

m× n matrix.

Whenever there is no ambiguity we use z in the place of ~z. We denote the k-th

component of z as zk and a tile size vector as s. We also denote s − ~1 as s′. There

are two important operations on polyhedra that will be used later in this chapter. The

first operation is a projection of a polyhedron P onto first k dimensions, denoted by

Proj(P , k).

Proj(P , k) = {(z1, . . . , zk) | ∃z′ ∈ P ,∀i = 1, . . . , k, z′i = zi}

For example, Proj(Pex, 1) is {i | 1 ≤ i ≤ N} and Proj(Pex, 2) is {i, j | i ≤ N ; 1 ≤
j ≤ i}, Pex itself. Note that k is smaller than d, the number of dimensions in P .

The other operation is an extension of P to k dimensions, denoted as Ext(P , k):

Ext(P , k) = {(z1, . . . , zk) | (z1, . . . , zd) ∈ P}

Here, k is greater than d.

Now, consider Ext(Proj(Pex, 1), 2). Since Proj(Pex, 1) is {i | 1 ≤ i ≤ N}, it is

{i, j | 1 ≤ i ≤ N}. There are no constraints on j, so it is different from Pex. More

significantly, it is a superset of Pex.

The essence of tiled loop generation is constructing two sets of loops—tile-loops that

enumerate all the tiles (all the tile origins) and point-loops that enumerate all the points

17

within a tile. When tile-loops and point-loops are separately generated [22, 52, 34], the

heart of the problem is to construct a tile space and generate tile-loops. The difficulty

arises from the fact that not all the tile origins are in the iteration space.

3.2 Efficient Construction of Approximate Outset

In this section we present an important construction method for a superset of the outset.

This technique is developed in collaboration with Lakshminarayanan Renganarayanan

and Michelle Mills Strout [52].

We defined an outset (denoted by outset(P)) as a set containing all the full/partial

tiles. An outset is precise if it does not contain any empty tile origins. The precise outset

Pout of P is defined as

Pout = {z | tile(z) ∩ P 6= ∅}

where tile(z) is a set of points in the tile whose origin is z.

We formulate an approximation of the outset that can be constructed efficiently. The

construction method is based on constraint shifting. Formally, it is written as

{z|Qz ≥ (q +Bp)−Q+s′}

where

Q+
ij =

{
Qij, if Qij ≥ 0
0, if Qij < 0

The term Q+s′ can be interpreted as shift of a hyperplane. The outset of the iteration

space for the example in Figure 3.1 is shown in Figure 3.2. When a hyperplane is a

lower bound of the k-th dimension, it will be shifted “out” by sk. So, j ≥ 1 becomes

j ≥ 1−(sj−1) and i−j ≥ 0 becomes i−j ≥ −(si−1). Since the constructed outset is a

polyhedron, albeit parameterized by the tile sizes (d extra parameters), well established

techniques and existing tools like CLooG can be used for generating code that visits all

18

/ / t i l e −l o o p s
f o r (ti = up(−si−sj +3 ,si) ; ti <= N ; ti+=si)

f o r (tj = up(−sj +2 ,sj) ; tj <= ti+si−1; tj +=sj)
/ / p o i n t−l o o p s
f o r (i = MAX(1 , ti) ; i <= MIN(N , ti+si−1); i ++)

f o r (j = MAX(1 , tj) ; j <= MIN(i , tj+sj −1); j ++)
S1 (i , j) ;

Figure 3.3: Tiled loops from the example in Figure 3.1 from HiTLOG

the points in the outset. Then the generated loops are further processed—lower bounds

are adjusted and strides are set to tile sizes—to visit only the tile origins.

Figure 3.3 shows the generated code using the open source tool HiTLOG [26]. The

macro up(t, s) in the loop lower bound gives an integer p such that p = dt/se × s. It

adjusts the lower bounds so that the loops visit tile origins correctly.

3.3 D-tiling

In this section we first present the key intuition behind D-tiling: namely that the out-

sets for the projection of an iteration space are supersets of its precise outset. Then,

we present an algorithm to generate parameterized tiled loops. Finally, we provide a

mathematical proof of its correctness.

3.3.1 Intuition

Our main idea is that we consider a loop nest as successive projections of an iteration

space on the first (outermost) few (say k) dimensions. For example, consider the itera-

tion space Pex in Figure 3.2. Proj(Pex, 1) is {i | 1 ≤ i ≤ N}. If we tile this with tile

size of 3, the tile space T is {ti | −1 ≤ ti ≤ N}. Now, we compare Ext(T , 2) and the

precise outset of Pex. Suppose that z /∈ Ext(T , 2) and z ∈ Pout. Since z ∈ Pout, there

exists z′ ∈ Pex such that z′ ∈ tile(z). But since z /∈ Ext(T , 2), z1 > N or z1 < −1.

When z1 > N , it implies z′1 > N . The other case implies z′1 < 1. This contradicts

z′ ∈ Pex. So, Pout ⊆ Ext(T , 2). Hence, Ext(T , 2) is a superset of the tile space of Pex.

19

In general, for an iteration space Piter of d dimensions and for all k = 1, . . . , d,

Outset(Piter) ⊆ Ext(Outset(Proj(Piter, k)), d)

Now, consider Proj(Piter, k), the projection of Piter onto the first k dimensions.

This information is already present in the loop nest. For instance, when a loop nest

scanning Piter is generated, Proj(Piter, k) is used for generating the loop at depth k.

In this case, the iteration space of the first k loops is the same as Proj(Piter, k). For

the case of hand-written loops, it might be different from Proj(Piter, k), but always a

superset of Proj(Piter, k).

This intuition also comes from the loop generation algorithm from a polyhe-

dron. The loop at depth k is directly derived from the projection of a d-dimensional

polyhedron P into the first k dimensional space. Hence, this relation of P ⊆
Ext(Proj(P, k), d) holds for any polyhedron. Furthermore, from this loop genera-

tion process we can deduce that loop nests can be viewed as successive projections and

therefore all the projections are presented in original loop nests.

3.3.2 Generation of Tile-loops

Using this insight, we now present an algorithm for generating tile-loops from a per-

fectly nested affine control loop of depth d. In such a loop, a lower bound is either an

affine expression of program parameters and outer indices or the max of finitely many

such expressions. Similarly, an upper bound is either an affine expression or the min

of such expressions. For the sake of simplicity in our explanation, we assume that the

lower bound lbk and upper bound ubk of the k-th loop consist of just one affine expres-

sion. For the same reason, we also use tiling where the origin is a tile origin. Both of

these are only for the sake of explanation and can be easily relaxed. When a bound has

multiple affine expressions, we treat each independently and combine with the appropri-

ate operator, max/min for lower/upper bounds. When ~0 is not a tile origin, the generated

20

Input: AST - perfectly nested loops, t - a tile index name vector, s - a tile size
vector

1: for each k-loop in AST do
2: index← tk
3: replace index names in lbk/ubk by tile index names
4: lbk ← up(shift_down(lbk)), sk)
5: ubk ← shift_up(ubk)
6: stepk ← sk

7: end for

PROCEDURE shift_down
Input: af - an affine expression

1: temp← af
2: for each outer index i in af

whose coeffient ci is negative
do

3: temp← temp+ci×(si−1)
4: end for
5: temp← temp− (sk − 1)
6: return temp

PROCEDURE shift_up
Input: af - an affine expression

1: temp← af
2: for each outer index i in af

whose coeffient ci is positive
do

3: temp← temp+ci×(si−1)
4: end for
5: return temp

Figure 3.4: Algorithm for generating tile-loops

loop can be easily post-processed to add an appropriate offset.

Figure 3.4 shows the algorithm for generating tile-loops. The index name and pa-

rameter names are inputs. A loop has four components: an iterator, lower and upper

bound expressions, and a step size. Our algorithm consists of four rules to derive the

corresponding components for tile-loops. The rules for updating index name and step

size are trivial (lines 3 and 6). A lower and upper bounds of the tile-loop at depth k are

derived from those of the original loop at depth k. Each bound can be written as

lb =
∑
ci<0

cizi +
∑
cj>0

cjzj +
∑
h

bhph + c

where the c’s are the coefficient of outer indices and b’s are the coefficients of the param-

eters. The terms on outer indices are split into two based on signs of their coefficients.

To derive the modified lower bound, we apply the procedure called shift_down that

adds for each negative term ci its product with s′i (the tile size minus 1 of that level)

21

and subtracts s′k (the tile size at the given level minus 1). That is, the new bound can be

written as

shift_down(lb) = lb+

∑
ci<0

ci(si − 1)

− (sk − 1)

It can also be written as

∑
ci<0

ci(zi + si − 1) +
∑
cj>0

cjzj +
∑
h

bhph + c− (sk − 1)

For instance, the lower bound of i loop in the figure is 1. Since there are no outer

indices, we just subtract si − 1 and get 1 − (si − 1). Then, we obtain the lower bound

as up(2− si, si).

To derive a upper bound, we apply the procedure called shift_up that simply adds

the product of positive coefficients of the outer index term and the corresponding tile

size minus one.

shift_up(ub) = ub+
∑
cj>0

cj(sj − 1)

or ∑
ci<0

cizi +
∑
cj>0

cj(zj + sj − 1) +
∑
h

bhph + c

The upper bound of i in Figure 3.2 is N . Since N is a parameter name, not an outer

index, the upper bound of ti remains unchanged. However, the upper bound of the j loop

is i, which is an outer index. Hence, the upper bound of tj loop becomes ti + (si − 1).

The final generated tile loops are shown in Figure 3.6.

3.3.3 Generation of Point-loops

A point-loop is a loop nest that enumerates the iteration points within a tile. Concep-

tually, it visits the intersection of the iteration space and the tile with origin t. In the

decomposition approach, point-loop generation is straightforward. We simply take the

original loop nest and combine its lower and upper bounds with tile (box) bounds. The

algorithm is given in Figure 3.5. The index name and step size are not changed.

22

Input: AST - perfectly nested loops, t - a tile index name vector, s - a tile size
vector

1: for each k-loop in AST do
2: lbk ←MAX(tk, lbk)
3: ubk ←MIN(tk + sk − 1, ubk)
4: end for

Figure 3.5: Algorithm for generating point-loops

/ / t i l e −l o o p s
f o r (ti = up(2−si ,si) ; ti <= N ; ti+=si)

f o r (tj = up(2−sj ,sj) ; tj <= ti+si−1; tj +=sj)
/ / p o i n t−l o o p s

Figure 3.6: Tile loops obtained from the example in Figure 3.1 using dimension-by-
dimension tiling

For example, in order to generate point-loops from the example in Figure 3.1,

we replace the lower and upper bounds in the outermost loops with MAX(1, ti) and

MIN(N, ti + si − 1), respectively. Similarly, the bounds of innermost point-loop are

MAX(1, tj) and MIN(i, tj + sj − 1).

3.3.4 Generation of Parameterized Tiled Loops

Tiled loops are simply a composition of tile-loops and point-loops. Again, consider the

doubly nested loop in Figure 3.1 for which we just derived tile-loops and point-loops.

The complete tiled loop is simply the tile loop whose body is replaced by the point-

loops. The main difference between this tile-loop and the one in Figure 3.3 which was

generated with the previous approach of HiTLOG is that there is no sj in the lower

bound on i. Although our lower bound is tighter, it still visits all the necessary tile

origins.

Another difference is that our tile-loops visit fewer tile origins. In other words, the

outset we implicitly construct is smaller than that the outset presented in Section 3.2. In

this example, we do not have any empty tile origins. The tile-loops in Figure 3.3 scan an

empty tile origin. However, our tile-loops may also visit empty tiles since the algorithm

23

construct an approximation of the precise outset.

3.3.5 Correctness Proof

The main idea behind our tile-loop construction is that the tile space for a projection

of a polyhedron is big enough to include all the full/partial tile origins. This makes it

unnecessary to use polyhedral operations of exponential complexity that have been used

in all the existing techniques. We simply rely on the fact that projections onto the outer

dimensions are already present in the syntactic structure of the original loop nest.

The proof is by induction on dimension d, the depth of loops. We show that a non-

empty tile origin is a valid iterator in tile-loops. We denote the original iteration space

as Piter and the iteration space of tile-loops as Titer.

Base case: d = 1. This is when there is only one loop. Piter = {z | lb1 ≤ z1 ≤ ub1}
is a line segment (parameterized by program parameters). Let y1 be a non-empty tile

origin. Then there exists x1 ∈ Piter such that y1 = x1− δ and 0 ≤ δ ≤ s1− 1. Now, the

loop scans lb1−(s1−1) ≤ t1 ≤ ub1. So, lb1 ≤ y1+δ ≤ ub1. So, lb1−δ ≤ y1 ≤ ub1−δ.
So, y1 ≤ ub1 − δ ≤ ub1 and lb1 − (s1 − 1) ≤ lb1 − δ ≤ y1. Hence, y1 ∈ Titer. When

a bound is the max/min of more than one affine expression, we can apply this reasoning

to each affine expression. We get y1 ∈ Titer.

Inductive step: Suppose that this tiling scheme works for loops of depth l − 1, and

consider Piter, an l-dimensional iteration polyhedron for loops of depth l. Let y be a non-

empty tile origin in l-dimensional space. By the hypothesis, the outer l − 1 loops are

correctly tiled, which means that the tile-loops of depth l−1 visit the point (y1, . . . , yl−1).

Now, unless the innermost loop prevents y from being scanned, y will be visited by the

tile-loops of depth l. Since y is a non-empty tile origin, there exists x ∈ Piter such that

y+δ = x and 0 ≤ δk ≤ sk−1. Notice that δ, x and y are an l-dimensional vectors here.

24

Since x ∈ Piter and xk = yk + δk for all k,

∑
ci<0

ci(yi + δi) +
∑
cj>0

cj(yj + δj) +
∑
h

bhph + c ≤ yl + δl

So, we can rewrite this as

lbl +
∑
ci<0

ciδi +
∑
cj>0

cjδj − δl ≤ yl

Since
∑

cj>0 cjδj is non-negative, we drop the term and get

lbl +
∑
ci<0

ciδi − δl ≤ yl

Now, we add
(∑

ci<0 ci(si − 1)
)
− (sl − 1) and subtract it from the left-hand side and

obtain

shift_down(lbl) +

∑
ci<0

ci(δi − (si − 1))

+ (sl − 1)− δl ≤ yl

Since ci ≤ 0 and δi ≤ si − 1, the term is non-negative. Similarly, (sl − 1)− δl ≥ 0. So,

we finally obtain

shift_down(lbl) ≤ yl

Using similar algebra, we can obtain

yl ≤ shift_up(ubl)

Therefore, y is a valid iteration of the tile-loops we constructed, and the tile-loops

visit all the non-empty tile origins.

3.4 Experimental Results

We compare the code efficiency of the loops generated by D-tiling with TLOG (or HiT-

LOG). When the number of tiling levels is one, the loops generated by HiTLOG are the

same as TLOG. The structures of loops are very similar to each other. The loops gen-

erated by D-tiling may visit fewer empty tiles than those by TLOG. We expect similar

results from both method.

25

Description Program
Parameters

Exec. time -
gcc/icc (sec.)

DSYRK Symmetric Rank k Update N=3000 142.85 /
142.14

TriMatProduct Triangular matrix multiplication N=3000 93.08 / 92.65
2D3D Seidel Gauss-Seidel Style 3D stencil

computation
TMAX=2000,

N=1000
51.32 / 51.67

Table 3.1: Benchmarks for evaluation of D-tiling, parameterized tiled loop generation
technique for perfectly nested loops. The last column shows the execution time of orig-
inal (i.e., non-tiled) program with gcc and icc.

We performed efficiency evaluation on three widely used benchmarks in Table 3.1.

We compiled all the code with gcc 4.4 and Intel icc 11.1 and ran all experiments for

generated code efficiency evaluation on an Intel Core 2 Duo running 2.2 GHz with 2MB

L2 Cache and 1GB memory. The execution time of non-tiled version for the benchmarks

is also presented with the size of program parameters.

Figure 3.7, 3.8 and 3.9 show the total execution time of the three benchmarks with

two tiled versions using gcc and icc. The first tiled version is generated by HiTLOG

and the second one by D-tiling. Execution time is similar except when tile sizes are

very small, from 2 to 4. When tile sizes are small and icc compiler is used, the code

generated by TLOG performs better that by D-tiling. In the other hand, the code by

D-tiling performs better than the other when the code is compiled by gcc. The two

techniques deliver comparable code quality.

26

Cache Tiling on DSYRK

Tile Sizes

To
ta

l E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
20

40
60

80
10

0
12

0
14

0 HiTLOG(gcc)
D−tilng(gcc)
HiTLOG(icc)
D−tiling(icc)

Figure 3.7: Total execution time of two tiled version of DSYRK using D-tiling and
TLOG

Cache Tiling on TriMatProduct

Tile Sizes

To
ta

l E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
20

40
60

80
10

0
12

0 HiTLOG(gcc)
D−tilng(gcc)
HiTLOG(icc)
D−tiling(icc)

Figure 3.8: Total execution time of two tiled version of triangular matrix product using
D-tiling and TLOG

27

Cache Tiling on 2D3D Seidel

Tile Sizes

To
ta

l E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
20

40
60

80

HiTLOG(gcc)
D−tilng(gcc)
HiTLOG(icc)
D−tiling(icc)

Figure 3.9: Total execution time of two tiled version of Gauss-Siedel stencil computation
on 2D data using D-tiling and TLOG

28

Chapter 4

Parameterized Tiled Loop Generation
for Imperfectly Nested Loops

In this chapter we extend the D-tiling of Chapter 3 to generate tiled loops from imper-

fectly nested loops. We generate parameterized tiled loops from embedded imperfectly

nested loops using the combination of the direct extension of perfectly nested loop tiling

and subsequent optimizations. The whole generation together with the optimizations is

achieved by purely syntactic processing.

We first describe our input program specification and then provide algorithms for

generating parameterized tiled loops for embedded imperfectly nested loops. Through-

out this section, we will use, as a running example, a program for solving a lower trian-

gular linear systems in Figure 4.1.

4.1 Input Programs

We assume that our imperfectly nested loops are embedded, i.e., where each assignment

statement is surrounded by the same number of loops and these iteration spaces are

pair-wise disjoint. The input is either perfectly nested loops with a sequence of affine-

guarded statement blocks or embedded imperfectly nested loops . The iteration space of

a guarded block must be disjoint from that of the others.

Such specifications can be obtained by embedding all the iteration spaces into a

29

f o r (i = 0 ; i < N ; i ++)
f o r (j = 0 ; j < i ; j ++)

x (i) −= L (i , j)∗ x (j) ; / / S1
x (i) /= L (i , i) ; / / S2

f o r (i = 0 ; i < N ; i ++)
f o r (j = 0 ; j <= i ; j ++)

i f (j < i)
x (i) −= L (i , j)∗ x (j) ;

i f (j == i)
x (i) /= L (i , i) ;

f o r (i = 0 ; i < N ; i ++)
f o r (j = 0 ; j < i ; j ++)

x (i) −= L (i , j)∗ x (j) ;
f o r (j = i ; j <= i ; j ++)

x (i) /= L (i , i) ;

Figure 4.1: A solver for lower triangular linear systems written in these styles: a simple
imperfectly nested loop, a perfectly nested loop with affine-guards, and an embedded
imperfectly nested loop

common space. Figure 4.2 shows the iteration spaces of our example. Notice that the

two embedded loops in Figure 4.1 have the same iteration space. Embedded imperfectly

nested loops can be obtained by generating loops from a union of polyhedra in a com-

mon space. In such loop nests, loops at the same depth have distinct loop counter ranges.

For example, the ranges of the two loops in Figure 4.1, {j | 0 ≤ j < i} and {j | j = i},
are disjoint. Also, the values taken by loop counters at the same depth is in the in-

creasing order. In our context we expect to apply the tiling to the code automatically

generated by a tool like CLooG [10] or Omega [47]. Hence this requirement, embedded

imperfectly nested loops, is not too restrictive. Other tiled loop generation tools based

on the polyhedral model such as PrimeTile [24] makes the same assumptions.

In the following discussion, we assume that a statement appears only once in the

input program. If the same textual statement appears more than once, we treat them as

different statements. If more than one textual statements appear in the same loop, we

treat them as one statement. So, the iteration spaces of statements are disjoint from each

other.

30

{i, j | 0 ≤ i < N ∧ i = j}

{i, j | 0 ≤ i < N ∧ j < i}
Iteration space of S1 (white dot)

Iteration space of S2 (black dots)

Figure 4.2: Iteration space of the solver for lower triangular linear systems

4.2 Tile-loop Generation

Generation of tile-loops for input programs with guards is the same as that for perfectly

nested loops. We apply D-tiling to each loop and obtain tile-loops. That is, we treat

the sequence of guarded statements as a single statement. Although treating the whole

sequence as a single statement in point-loops might cause inefficiency, the overhead in

tile-loops is not significant because the iteration spaces of statements are most likely to

be “close together”, especially given the fact that input loop programs are embedded

into a common space. For example, the iteration space of the first statement in our

example is not and cannot be far away from that of the second statement. Even when

such separation is allowed, it is unlikely that programmers will write such programs; and

automatic approaches for embedding based on linear programming will usually bring all

the iteration spaces “close” to each other.

For embedded input programs, we take at each loop depth the lower bound of the

first loop and the upper bound of the last loop. Figure 4.3 shows a simple algorithm

to derive perfectly nested loops from embedded imperfectly nested loops for the tile

loop generation. Note that loop counters at the same depth are in increasing order. The

iteration space of the derived perfectly nested loops contains the iteration space of each

statement. Then we apply D-tiling to the perfectly nested loops.

Now, we show how to apply this algorithm to our running example. Consider the

last loop nest in Figure 4.1. There is one loop at depth 1, and its lower and upper bounds

31

Input: AST - an embedded loop nest
1: for each depth k in AST do
2: lbk ← lower bound of the first loop at depth k
3: ubk ← upper bound of the last loop at depth k
4: end for

Figure 4.3: Algorithm to derive perfectly nested loops from embedded imperfectly
nested loops

are 0 and N − 1. Since there is only one loop, taking the lower bound of the first loop

and the upper bound of the last loop is the same as taking the loop itself. There are two

loops at depth 2. By taking the lower bound of the first loop and the upper bound of

the last loops, we obtain a loop whose lower and upper bounds are 0 and i respectively.

This gives us a doubly nested loop, to which we apply D-tiling and obtain tile-loops.

4.3 Point-loop Generation

The basic idea for generating point-loops remains the same. In the original loop pro-

gram, replace every lower bound lbi that occurs at level i by max(lbi, Ti) and every

upper bound ubi by min(ubi, Ti + Si − 1). The loops visit the intersection of the orig-

inal iteration points and points within a given tile. For example, consider the statement

S2 in our running example. Its iteration points are {i, j | 0 ≤ i < N∧j = i}. The corre-

sponding loop is the last loop nest in Figure 4.1, ignoring the first j loop. So, we obtain

loops where the outer loop counter i iterates from max(Ti, 0) to min(Ti + Si − 1, N),

and the inner loop counter j from max(Tj, i) to min(Tj + Sj − 1, i). Similarly, we

can obtain the point-loops for the first statement. Since the common loop of these two

statements are identical, so are the common loops of the derived point-loops. Therefore,

we can merge these two loops textually and finally obtain the loop for both statements

shown in Figure 4.4 (above).

For input programs with guards, we can treat the whole sequence of guarded blocks

as a single statement. In other words, the point-loops are derived from the perfectly

32

f o r (i = max (Ti , 0) ; i < min (Ti+Si ,N) ; i ++)
f o r (j = max (Tj , 0) ; j < min (Tj+Sj , i) ; j ++)

x (i) −= L (i , j)∗ x (j) ;
f o r (j = max (Tj , i) ; j <=min (Tj+Sj−1, i) ; j ++)

x (i) /= L (i , i) ;

f o r (i = max (Ti , 0) ; i < min (Ti+Si ,N) ; i ++)
f o r (j = max (Tj , 0) ; j <=min (Tj+Sj−1, i) ; j ++)

i f (j < i)
x (i) −= L (i , j)∗ x (j) ;

i f (j == i)
x (i) /= L (i , i) ;

Figure 4.4: Two point-loops for the solver for lower triangular linear system: from
embedded imperfectly nested loops and from perfectly nested with affine guards

nested loop rather than the iteration space of each block. By this process, we will obtain

the point-loops in Figure 4.4 (below). One may convert the condition for each guard

into loop bounds to derive the other kind of point-loops. For example, we can convert

j = i into j ≥ i and j ≤ i. We can obtain the same point-loops as that in Figure 4.4

(upper).

4.4 Parameterized Tiled Loop Generation

The final parameterized tiled loops are a simple insertion of the point-loops as the body

of the tile-loops. The approach that we take in Section 4.2 and 4.3 is the most direct

extension of tiled loop generation for perfectly nested loops to imperfectly nested loops.

The tiled loop nests produced by this approach have been believed to be inefficient.

Nevertheless, there are a several reasons for choosing this as a starting point. First,

with parameterized tile sizes and multiple iteration spaces, there is a risk of code size

explosion.

When tile sizes are fixed, generated code inefficiency is resolved by splitting tile-

loops into many different regions based on the sets of statements being executed, ei-

ther through standard loop generation algorithms or techniques for eliminating guards.

Where to split is statically known for fixed tile sizes.

33

For parametric tile sizes, this separation is much more complex than that for fixed

tile sizes. In this situation it is possible for all the statements to be executed in a single

tile for some values of tile sizes, while in extreme cases a tile may have only a statement.

Furthermore, all the combinations of statements may be executed in a tile. Splitting all

the cases might cause exponential growth in terms of the generation time and code size.

Second, imperfectly nested tile loops are complicated to transform. Even for perfectly

nested parameterized tile loops, a simple transformation like skewing for parallel execu-

tion of tiles is an open problem that has not yet been solved. Third, all the computations

are tiled unlike in PrimeTime [24]. This makes the approach suitable to parallelization

for machines where computing units have limited resources, like STI Cell architecture.

4.4.1 Correctness

The correctness of this direct approach is straightforward. It follows directly from the

correctness of the algorithm for perfectly nested loops presented in Chapter 3. The cor-

rectness of each optimization technique to be presented later comes from the properties

of the sets being used, and those properties are formally proved in Chapter 6.

4.5 Optimizations

Now we propose three optimization techniques on the generated parameterized tiled

loops. At the heart of these, as well as most techniques for optimizing tiled loop nests

is promotion of conditions for distinguishing the combination of statements from point-

loops to tile-loops. The first optimization provides a condition for a particular set of

statements to be executed. The second optimization exploits a condition for a tile to be

full for given a statement. The last provides a guideline for which sets of statements are

separated from the others to effectively improve the performance. The goal is construct-

ing specialized point-loops and safely executing them to improve performance.

34

4.5.1 Removing Statements from Point-Loops

Consider our running example. There are two statements. For most tiles, only the first

statement will be executed. We want to execute such tiles without checking for the

second statement. For this we need to know which tiles execute only the first statement

and construct point-loops for first statement only. The second task, namely constructing

the point-loops, is straightforward, so we focus here on the condition for such point-

loops to be executed. The condition is nothing but the condition for the second statement

to not be executed. We can extract the condition for the second statement to be executed

from tile-loops of the second statement when tiling is applied only to it. Then we use

negation of this condition for an appropriate guard for the specialized point-loops.

To illustrate this, let us apply D-tiling to the original loop after the first statement

is removed. Since the first statement is removed, loops are perfectly nested and we can

directly apply D-tiling. Then, we get Ti ≥ −Si + 1 and Ti ≤ N at the first depth and

Tj ≥ Ti − Sj + 1 and Tj ≤ Ti + Si − 1 at the second as tile-loop bounds. Here, we

do not adjust the lower bounds to be aligned with a tile origin because these will not be

used for loop bounds. These bounds can be viewed as a condition for a tile to include an

iteration point of the second statement. Hence, if a tile origin satisfies these inequalities,

the tile may have include an iteration of the second statement, otherwise it does not

contain any iterations of the second statement. We can also simplify this condition to

Tj ≥ Ti − Sj + 1. An inequality can be omitted if it appear the tile-loops generated

in Section 4.2. The point-loop for only the first statements can be safely placed in the

guard whose condition is Tj < Ti − Sj + 1.

In general, we construct point-loops that execute only a given subset of statements

from the general point-loops, and derive the condition for such point-loops. The con-

dition is negation of the condition for the remaining statements to be executed. The

condition for a statement to be executed is extracted from the tile-loops by applying

35

tiling to the statement independently, i.e., by first removing all the statements except

one being considered as well as any unnecessary loops for the given statement.

4.5.2 Splitting Full Tiles

Like the first optimization, this optimization separates a set of tiles from the other tiles.

We define an inset of an iteration space to be a set containing all of full tiles origins but

none of empty and partial tiles. A construction algorithm and the correctness proof is

presented in Chapter 6. We may further specialize point-loops by identifying the inset of

a statement. In other words, we construct a guard whose condition is the inset condition

and whose body is box loops containing the given statement. Note that iteration spaces

of statements are disjoint from each other. A tile that belongs to the inset of a statement

does not contain any other statements. Therefore, the other statements need not to be

checked.

4.5.3 Selecting Iteration Space

The previous techniques provides a mechanism to distinguish particular tiles from others

to specialize point-loops. However, for a program with l statements, there are 2l − 1

combinations of statements. The optimizations themselves do not provide information

about which subset of statements leads to performance improvement. What we propose

here is a guideline for selecting a set of statements and splitting full tiles for statements.

First, all statements that have equalities in their surrounding loops will be excluded,

and only the other statements are candidates to be selected. Tiles for these statements

are unlikely to be executed many times and be full tiles. For our running example, we

will generate an additional point loop for only the first statement, but not for the second

statement only.

36

f o r (Ti= s h i f t _ u p (−1∗Si +1 ,Si) ; Ti<N ; Ti+=Si) {
f o r (Tj= s h i f t _ u p (−1∗Sj +1 ,Sj) ; Tj <=Si+Ti−1 ; Tj +=Sj) {

/ / For f u l l t i l e s o f [S1] .
i f (Ti >=0 && Tj >=0 && Ti<=−1∗Si+N && Tj<=−1∗Sj+Ti) {

/ / Box−l o o p s f o r [S1]
f o r (i =Ti ; i <Si+Ti ; i +=1) {

f o r (j =Tj ; j <Sj+Tj ; j +=1) {
S1 (i , j) ;

}
}

/ / For t i l e s t h a t do n o t be lo ng t o t h e o u t s e t o f [S2]
} e l s e i f (! (Tj>=−1∗Sj+Ti +1)) {

/ / Po in t−l o o p s f o r [S1] o n l y }
f o r (i =max (0 ,Ti) ; i <min (N, Si+Ti) ; i +=1) {

f o r (j =max (0 ,Tj) ; j <min (i , Sj+Tj) ; j +=1) {
S1 (i , j) ;

}
}
/ / For any t i l e s i n c l u d i n g empty t i l e s
} e l s e {

/ / Po in t−l o o p s f o r [S1] and [S2]
. . .

}
}

}

Figure 4.5: Final structure of parameterized tiled loops from triangular solver; after
optimization. For the general point-loops for both statements, see Figure 4.4

4.6 Structure of Parameterized Tiled Loops

The structure of a generated tiled loop nest consists of (i) perfectly nested tile-loops,

and (ii) a sequence of if/else if/else statements where the final else clause has the most

general point-loops from Section 4.3. The other conditional clauses are specialized

point-loops guarded by appropriate conditions. The final structure of parameterized

tiled loops for our running example is presented in Figure 4.5.

4.7 Experimental Results

We implemented the technique described in this chapter and evaluated the efficiency of

our approach on four common benchmarks. We compared our technique with that of

PrimeTile on generated code efficiency.

37

4.7.1 Experimental Setup

The four benchmarks are listed in Table 4.1. We compiled all the code with gcc 4.4

and Intel icc 11.1 and ran all experiments for generated code efficiency evaluation on

an Intel Core 2 Duo running 2.2 GHz with 2MB L2 Cache and 1GB memory. The

execution time of the non-tiled version for the benchmarks is also presented together

with the size of program parameters.

We generated six different versions of parameterized tiled loops. First, we generated

a version of using the direct extension of parameterized tiled loop generation without

any optimizations. There are two kinds of point-loops: (i) perfectly nested loops with

a sequence of guards and (ii) an embedded imperfectly loop nest. The first case is

labelled as naive and the second naive-e. Then we construct specialized point-loops for

the statements that do not have equality constraints. When this optimization is applied

to naive, it becomes opt. Similarly, we have opt-e version. Then we further optimize this

optimized code by splitting full tiles from the other tiles. They are represented by split

and split-e. Finally, we have six versions: naive, naive-e, opt, opt-e, split, and split-e. In

order to provide a comparison with a existing solution, we also generated parameterized

tiled loops using PrimeTile [24].

4.7.2 Results

There are four charts that show the total execution time for each benchmark. The x-

axis always represents tile sizes. For each tile size, there are 14 data points: 7 points

using gcc and 7 points using icc. Among each set of seven data points, the first three

pairs show the impact of using two different point-loops. For example, the first two data

points show the execution time of naive extension with two different point-loops. The

first odd/even data points (like 1st, 3rd, and 5th points) show the impact of optimizations.

In the tiled loops from PrimeTile, full tiles are split from the other computation together

38

Description loop
depth/

statements

Program
Parameters

Exec.
time -
gcc/icc
(sec.)

MultiTriSolver Multiple triangular linear
systems solver

3/2 M=2000,N=1000 6.73 /
6.79

LU LU decomposition without
pivoting

3/2 N=2000 12.16 /
12.42

Cholesky Cholesky decomposition 3/2 N=2000 10.01 /
9.97

FDTD Finite difference time domain
on 2D data

3/4(6)∗ TMAX=512,
NX,NY=2000

146.34 /
130.96

Table 4.1: Benchmarks for evaluation of parameterized tiled loop generation technique
for imperfectly nested loops. ∗There are four distinct statements in FDTD benchmark.
Their iteration space can be divided into six disjoint regions. In our generation, the
number of those regions is treated as the number of statements. The last column shows
the execution time of original (i.e., non-tiled) program with gcc and icc.

with optimized point-loops. So, split-e is the most similar to prime in characteristics

although the computation other than that captured by full tiles in prime may not be tiled

at all.

Figures 4.6, 4.7 and 4.8 show the total execution time for cache tiling on three matrix

operation kernels. For very small tile sizes (2 to 4), prime performs better than our

proposed method. For bigger tiles (64 to 512), our optimized code performs better. For

intermediate tile sizes, the difference is almost negligible. This is the general trend for

the first three kernels which have few statements.

Not all optimizations lead to performance improvement. The first optimization al-

ways improves performance. However, the split optimization does not reduce the execu-

tion time in all the cases. Sometimes it even significantly decreases the running time, but

for some cases like LU compiled by icc with tile size 8× 8× 8 it also increases the ex-

ecution time. Also, embedded imperfectly nested point-loops do not always outperform

point-loops with guards.

39

2 4 8 16 32 64 128 256 512

Total Execution for Cache Tiling on MultiTriSolver

Tile Sizes

To
ta

l E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
2

4
6

8
10

12
14 naive−gcc

navie−e−gcc
opt−gcc
opt−e−gcc
split−gcc
split−e−gcc
prime−gcc

naive−icc
naive−e−icc
opt−icc
opt−e−icc
split−icc
split−e−icc
prime−icc

Figure 4.6: Total execution time of cache tiling on MultiTriSolver with cubic tile size

2 4 8 16 32 64 128 256 512

Total Execution for Cache Tiling on LU

Tile Sizes

To
ta

l E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
5

10
15

20

naive−gcc
navie−e−gcc
opt−gcc
opt−e−gcc
split−gcc
split−e−gcc
prime−gcc

naive−icc
naive−e−icc
opt−icc
opt−e−icc
split−icc
split−e−icc
prime−icc

Figure 4.7: Total execution time of cache tiling on LU with cubic tile size

40

2 4 8 16 32 64 128 256 512

Total Execution for Cache Tiling on Cholesky

Tile Sizes

To
ta

l E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
5

10
15

naive−gcc
navie−e−gcc
opt−gcc
opt−e−gcc
split−gcc
split−e−gcc
prime−gcc

naive−icc
naive−e−icc
opt−icc
opt−e−icc
split−icc
split−e−icc
prime−icc

Figure 4.8: Total execution time of cache tiling on Cholesky with cubic tile size

Figure 4.9 shows the total execution time of FDTD kernel for various tile sizes.

Unlike the other kernels, non-cubic tile sizes are used. The data from this kernel is a

quite different from the others. The main difference in program characteristics is that

there are six statements. Note that the other kernels have at most three statements.

Although there are only four different textual statements, the four iteration spaces of

these statements in the original program must be decomposed into six disjoint regions

for generating parameterized tiled loops. So, in terms of our input program specification,

there are six statements. Our optimized code outperforms that from PrimeTile even for

minimum tile sizes 2× 2× 2.

In summary, our technique generates code with performance comparable to the ex-

isting solution for the kernels when tile sizes is not very small (for cache tiling) for

smaller kernels. For kernels with more statements, the code generated by our method

outperforms the existing solution. Also, we were able to generate an efficient parame-

41

2 4 8 16 32 64 128 256 512

Total Execution for Cache Tiling on FDTD

Tile Sizes

To
ta

l E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
20

40
60

80
10

0
12

0
14

0 naive−gcc
navie−e−gcc
opt−gcc
opt−e−gcc
split−gcc
split−e−gcc
prime−gcc

naive−icc
naive−e−icc
opt−icc
opt−e−icc
split−icc
split−e−icc
prime−icc

Figure 4.9: Total execution time of cache tiling on FDTD with tile size along time
dimension fixed as 4

terized tiled loops from a simple loops with guards.

4.8 On the Embedding Process

One goal of embedding is to make tiling legal. A well known condition for tiling legality

is full permutability of loops. Any techniques that convert imperfectly nested loops to

fully permutable loops can be used as an embedding technique [41]. In the formulation

based on linear algebra, the condition that is equivalent to fully permutability of loops

becomes that all dependences are component-wise non-negative. This makes scheduling

techniques applicable and leads to the formulation of tiling hyperplanes in Pluto [14].

Both cases (implicitly) assume that the iteration space of each statement is required to

have the same number of dimensions. In other words, each statement is surrounded

by the same number of loops. Existing embedding processes [2, 41, 14] uses heavy

42

machinery, such as projection and integer linear programming solvers. On the other

hand, simple code sinking [3] works well as an embedding process for some cases.

For example, the code sinking serves as embedding for the imperfectly nested loops in

Figure 4.1 so that tiling is legal.

In this section we provide the precise condition when code sinking works and present

an insight that may lead to development of simpler embedding process.

4.8.1 Dependence Abstraction

Since the loops are not perfectly nested, we use a more general dependence abstraction,

rather than just affine functions. So, a dependence for imperfectly nested loops is a

function from a pair consisting of a statement and its iteration point to another pair. We

denote the depth of common surrounding loops of two statements S and T as ncl(S, T).

Consider our example in Figure 4.1. There are three dependences as can be deter-

mined with an exact data-flow analysis [19].

dep1 : (S1, (i, j))→ (S1, (i, j − 1))

dep2 : (S1, (i, j))→ (S2, (j))

dep3 : (S2, (i))→ (S1, (i, i− 1))

and ncl(S1, S2) is 1.

In our presentation we focus on flow dependence. However, our reasoning can nat-

urally extended to memory-based dependence by assuming all dependences are flow

dependence.

4.8.2 Embedding of Two Fully Permutable Loops

We here focus on the case where there are two statements and each statement is sur-

rounded by fully permutable loops. In other words, any self dependence is component-

wise non-negative. With this assumption, each statement can be tiled if we remove the

43

other statement. For this case, the dependence can be expressed as just an affine func-

tion. For example, if we remove S2 in our example in Figure 4.1, the remaining loop is

perfectly nested and tilable. Similarly, S2 itself can be tiled with the same assumption.

The focus is how each iteration space is “aligned” into a common space. The key

intuition is embedding along dependences. We first illustrate this idea on our running

example. There are two cross-statement dependences in our example. First we take the

last dependence dep3. We embed the i iteration of S2 into (i, i − 1). We directly take

the dependence function as an embedding function. Since S1 textually precedes S2, we

can directly use (i, i−1). Otherwise, we need to use (i, i), instead of (i, i−1) by adding

(0, 1), the lexicographically minimum positive unit-vector. Now, let us take a look at the

other dependence dep2. Now, we replace (j) by (j, j − 1) according to our embedding

function. Then, the dependence becomes S1, (i, j) → S2, (j, j − 1). By this, we know

that the second component of the dependence is non-negative. Furthermore, it also says

that in order for tiling to be legal, i must be greater than or equal to j in the iteration

space of S1. Since we can deduce this requirement from the iteration space of S1, tiling

is legal after this embedding. We call this embedding along dependence the natural

embedding.

Now, we apply this key intuition to the general case of two statements where each

statement by itself can be tiled. Assume that there are two statements, S1 and S2.

Without loss of generality, let us assume that the depth of S1 is no less than that of S2.

The set of dependences from S2 to S1 is denoted as

{depk : (S2, (z))→ (S1, fk(z))}

where f is an affine function of z.

Then, the embedding function is the addition of the component-wise maximum of

fk(z) over all k and the lexicographically minimum unit-vector in the space in which

the iteration space of S1 lies.

44

f o r (i = 1 ; i < N ; i ++)
x (i −1) /= L (i −1, i −1);
f o r (j = 0 ; j < i ; j ++)

x (i) −= L (i , j)∗ x (j) ;
x (N−1) /= L (N−1,N−1);

Figure 4.10: A solver for lower triangular linear systems for which code sinking does
not work

On the other hand, all dependences from S1 to S2 are used to verify whether this

embedding is valid. After applying the embedding function, we can verify the non-

negativity of each element in the dependence. Some condition may be deduced from

the iteration space of S1. This validation is required to ensure all the dependences to be

respected. Note that not all loops are tilable. This validation may fail.

4.8.3 Discussion

The reason why simple code sinking works well is because of the fact that code sinking

realizes this natural embedding. However, although it works well for some cases, its

applicability is highly dependent on the structure of original loops. For example, the

program shown in Figure 4.10 is the same computation as our running example, but

code sinking does not work for this loop program. However, we get the same natural

embedding as that from our running example. Note that the embedding itself does not

change as long as dependences do not change. This natural embedding works regardless

of how the loops are written. It is because although there are many ways to write loops

for the same computation, dependence relation remains same.

This intuition and technique has emerged from our work [33] where we showed how

some limited class of imperfectly nested loops can be tiled without embedding. The

primary focus of the work is still tiled loop generation, not the legality condition nor

embedding process. In order for this intuition to be useful in the context of optimizing

compilers, it must be extended to handle self dependences, more than two statements

and memory based dependence.

45

Another important extension of the natural embedding presented is scheduling.

The natural embedding minimizes the distance between production and consumption

while trying to satisfy tiling legality. If we take lexicographically maximum instead of

component-wise maximum, we may be able to obtain a schedule of a statement while

minimizing the total execution time and the distance between production and consump-

tion. Since the lexicographically maximum represent the scheduling constraints.

46

Chapter 5

Multi-level Tiled Loop Generation:
Successive Tiling

In this chapter we propose an approach for generating parameterized multi-level tiled

loops from perfectly nested loops. Multi-level tiled loops are loop nests where tiling is

applied more than once. When tiling is applied again, we choose tiles in the previous

level as its original iteration space. We refer this approach as successive tiling. This

leads to a simple and efficient technique that provides multi-level tiled loop generation

at no more cost than that for single level tiled loop generation. We also propose a

method for separating full tiles for the other tiles at any levels. We have implemented

code generation techniques and the tool is available as an open source software [26].

The work presented in this chapter was done in collaboration with Lakshminaraya

Renganarayana, Dave Rostron and Michelle Mills Strout, and it was presented in [34].

5.1 Successive Tiling

Tiling rectangular iteration space with hyper-rectangular tile shape is trivial and does not

require any polyhedral operations that have exponential complexity. Treating tiles in the

previous level as the entire iteration space for multi-level tiling allows us to exploit this

simple technique for tiling all the levels, except the first level of tiling. In the first level,

there are “tiles” to exploit in the previous level.

47

Our inputs are perfectly nested loops of depth d and their iteration space Piter is

represented by

{~z | Q~z ≥ (~q +B~p)}

where ~z is a loop iterator vector of size d, Q is a m× d matrix, ~q is a constant vector of

size m, B is a m× n matrix, and ~p is a program size parameter vector of size n.

We first extend the classical formulation of (one-level) tiling for fixed tile sizes to

multiple levels. With standard loop generation techniques, we may obtain highly opti-

mized loop nest based on this formulation. However, the number of dimensions (or loop

depth) increases linearly with the level of tiling, and the loop generation time grows

exponentially with respect to the loop depth. Then we present our method using outset

formulation based on our key observation. Our technique not only provides scalability

with respect to levels of tiling, but also enables tile sizes to be symbolic parameters.

5.1.1 Multi-level Tiling for Fixed Tile Sizes

We start with the classic definition of single-level rectangular tiling [57]. Given an

iteration space Piter and a vector ~s of fixed tile sizes , the tiled iteration space is given

by

P 1
tiled = {(~t, ~z) | ~s ◦ ~t ≤ ~z − ~o ≤ ~s ◦ ~t+ ~s−~1, ~z ∈ Piter}

where ~o is an offset and the operator ◦ denotes component wise multiplication of vectors.

The tiles are enumerated by ~t and the points within a tile are represented by ~z. The tiled

iteration space denoted by P 1
tiled is a polyhedron (as the tile sizes are fixed). Generating

the tiled loop nest is now reduced to generating loops that scan the polyhedron P 1
tiled.

There are standard tools such as OMEGA [32] and CLooG [10] which can be used for to

generate such loops. Note that P 1
tiled is a polyhedron only when the tile sizes are fixed

and hence the approach is not applicable when the tile sizes are symbolic parameters.

We can extend the definition to multiple levels of tiling as follows. Given an iteration

48

space Piter and a list of tile size vector ~s1, . . . , ~sm, a multi-level tiling can be described

in a similar way.

Pm
tiled = {(~t1, . . . , ~tm, ~z) | ∀i = 1, . . . ,m− 1 : (5.1)

~si ◦ ~ti ≤ ~ti+1 − ~oi+1 ≤ ~si ◦ ~ti + ~si −~1,

~sm ◦ ~tm ≤ ~z − ~om ≤ ~sm ◦ ~tm + ~sm −~1, ~z ∈ Piter}

where each oi is an offset at the i-th level. All tile sizes are integer constants. Also, note

that actual tile sizes are a product of all inner tile sizes because tiling at level k is a tiling

on the (k + 1) tiled space, not the original iteration space. Although this formulation is

a direct extension of Xue’s definition of single level tiling [57], to the best of our knowl-

edge, this is the first formalization and presentation of it—other formulations [31] of

multi-level tiling are based on the strip-mine and interchange view of tiling. Now given

the fact that this set Pm
tiled is a polyhedron, the scanning loops can be easily generated

by existing tools, such as OMEGA test and CLooG. Our generator for this method uses

CLooG.

5.1.2 Multi-level tiling using the outset

Another view of tiled loop generation is based on the outset formulation, where the

coordinates of the tile origins are obtained by intersecting the outset Pout with a pa-

rameterized lattice Lattice(~s). This method does not require the tile sizes to be fixed.

Multi-level tiling in this method can be viewed geometrically as shown in Figure 5.1.

We start with the first level of tiling of the iteration space and each one of the first level

tiles is further tiled to achieve the second level of tiling. In Figure 5.1, the first level of

tiling uses 4× 4 tiles and the second level uses 2× 2 tiles. The geometric view not only

aids visualization but also gives a mathematical view of the multi-level tiling: the tile

origins at a given level k of tiling can be viewed as the intersection of the tiles at the

previous (k − 1) level and the lattice parameterized by the tile sizes of level k.

49

i

j

Iteration space

Iteration points

Non-iteration points

Tile origins at level 1and 2

Tile origins at level 2

Figure 5.1: Multi-level tiling as repeatedly tiling each tile on a triangular iteration space

To exploit the geometric view for tiled loop generation we need to handle one im-

portant issue. Consider the outer level of tiling shown in Figure 5.1. There are three

partial outer-tiles and one full outer-tile. When we apply another inner-level of tiling

the outer-tiles become the iteration space for them, and we need to able to handle the

different shapes of the partial outer-tiles. We handle this by (over) approximating the

partial outer-tiles by full tiles. Such an approximation allows a uniform treatment of the

further levels of tiling. The 2-level tiled loop nest generated using this method for the

example is shown in Figure 5.2. Note that the tile-loops at the second level treat partial

tiles as full tiles. The general structure of the multi-level tiled loops generated using

this method is shown in Figure 5.3. The outermost tile-loops are generated using the

outset and all inner-level tile-loops are generated using the bounds of a full-tile, referred

as box-tile-loops. At the innermost level, we have the point-loops which have both the

tile bounds and the iteration space bounds. We expect that the execution time overhead

due to the approximation of inner-level partial tiles by full tiles to be insignificant. Our

expectation is confirmed by our experimental results, and is discussed in Section 5.5.2.

Multi-level tiling based on outset can be formalized as follows. Given an iteration

50

// Outermost tile loops that scan the outset
for (t1i =1; t1i <= 8 ; t1i += 4)

for (t1j=1; t1j <= min(t1i +4,8) ; t1j += 4)

// Tile loops that scans 4× 4 tiles by 2× 2 tiles
for (t2i =t1i ; t2i <= t1i + 3 ; t2i += 2)
for (t2j=t1j; t2j <= t1j + 3 ; t2j += 2)

// Point loops that scans the intersection of
// a 2× 2 tile and iteration space
for (i=max(1,t2i); i <= min(t2i +1,8); i++)
for (j=max(1, t2j); j <= min(t2j+1,i+1,8); j++)

S(i,j);

Figure 5.2: A loop nest corresponding to the multi-level tiling in Figure 5.1

space Piter and a list of tile size vector ~s1, . . . , ~sm, the tiled iteration space can be ex-

pressed as follows:

Pm
tiled = {(~t1, . . . , ~tm, ~z) | ∀i = 2, . . . ,m :

~t1 ∈ Pout ∩ Lattice(~s1, ~o),

~z ∈ Piter ∩ tile(~t1, ~s1) ∩ . . . ∩ tile(~tm, ~sm),

~ti ∈ tile(~t1, ~s1) ∩ . . . ∩ tile(~ti−1, ~si−1) ∩

Lattice(~si, ~ti−1)} (5.2)

where Lattice(~si, ~ti−1) is the set of points generated by ~si◦~x+ ~ti−1 for any integer vector

~x, and ~si is a vector of either symbolic tile size parameters, constants, or mixture of both.

Note that the offset of the lattice depends on the origin of each tile at the previous level.

Given a tile, tile(ti, si), the first tile at level (i+1) that is contained in tile(ti, si) must be

tile(ti, si+1) because ti is still the lexicographical minimum of (ti, si). Otherwise, some

points in the iteration space will not be scanned. Correctness of this formulation follows

directly from the fact that Pout contains origins of the tiles whose union is super-set

of Piter. Further, by including the constraints of Piter in the formulation, we guarantee

that only valid iteration points are enumerated. Also note that the formulation does not

impose the restriction that outer tile sizes are multiples of inner tile sizes.

In most practical cases, tile sizes ~si are component-wise multiples of ~si+1 for all

51

tile-loops scanning outset
Box-tile loops
...
Box-tile loops

Point-loops

Figure 5.3: Structure of multi-level tiled loops generated with the outset method when
partial and full tiles are not separated.

i = 1, . . .m− 1. The constraints of the tiled iteration space in (5.2) for this case can be

simplified to:

Pm
tiled = {(~t1, . . . , ~tm, ~z) | ∀i = 2, . . . ,m :

~t1 ∈ Pout ∩ Lattice(~s1, ~o), ~z ∈ Piter ∩ tile(~tm, ~sm),

~ti ∈ tile(~ti−1, ~si−1) ∩ Lattice(~si, ~ti−1)} (5.3)

Note that the constraints from all the previous level tilings become redundant with this

assumption on tile sizes. From now on for ease of description, we assume that the tile

sizes at an outer level are component-wise multiples of all the inner level tile sizes.

However, our method does not impose this restriction.

5.2 Separating partial & full tiles

One possible source of loop overhead occurs within the loop bounds for each tile, which

contain the bounds for the original iteration space as well as the tile so that no iterations

outside of the original iteration space are executed. Ancourt and Irigoin [6] suggest that

tiled code may be optimized by generating different code for full tiles versus partial

tiles. Jiménez et al. [30] uses index set splitting to break the iteration space into full and

partial tiles so that iteration bounds can be removed from the bounds for the full tiles.

Goumas et al. [22] indicates that they differentiate between full and partial tiles, but

details are not provided. Since distinguishing between full and partial tiles is important

for register tiling and possibly hierarchical tiling, we present two possible approaches

52

for separating full tiles. Both approaches are based on constructing the inset polyhedron

such that any tile origins within the inset polyhedron Pin are tile origins for full tiles.

Distinguishing between full and partial tiles is applicable to any of the tiled code gen-

eration techniques discussed in this dissertation. The inset can be computed as quickly

as the outset. Once the inset has been computed, it is possible to leverage existing code

generators to generate the tile loops that traverse the inset executing only full tiles and

the outset minus the inset executing partial/empty tiles.

5.2.1 Algorithm for Computing Inset

As in Section 5.1, the original loop in question is represented as a set of inequalities

Piter = {~z | Q~z ≥ (~q +B~p)},

where ~z is the iteration vector of size d,Q is am×dmatrix, ~q is a constant vector of size

m, ~p is a vector of size n containing symbolic parameters for the iteration space, and B

is a m× n matrix. The vector ~s specifies the (hyper) rectangle tiling, with si indicating

the tile size for the i-th dimension of the iteration space.

We define the inset polyhedron Pin such that any tile origins that lie within the inset

polyhedron are tile origins for full tiles. All the points in a tile satisfy an inequality

constraint if and only if the extreme points for the tile satisfy the constraint. The extreme

points of a (hyper) rectangle tile can be calculated as follows. Let S ′ = diag(~s − ~1).

Then S ′ times any binary vector of size d is an extreme point of the tile. Formally, the

inset is

Pin = {~z | ∀~b ∈ {0, 1}d, Q(~z + S ′~b) ≥ (~q +B~p)},

It is possible to compute the inset directly from the definition, but that would result

inm∗2d constraints, with many of them being redundant. Instead, we calculate a matrix

Q− from the Q matrix in the constraints for the original iteration space, such that

Q−ij =

{
Qij, if Qij < 0
0, if Qij ≥ 0

.

53

The algorithm for computing Q− is O(md) and results in m constraints for the inset,

P̂in = {~z | Q~z ≥ (~q +B~p)−Q−(~s−~1)},

where ~s is the size d vector of tile sizes and ~1 is a size d vector containing all ones.

Now, we prove that P̂in = Pin.

Proof: The proof proceeds by construction. First, we write each bound for Pin on a

separate line. Q11S
′
11b1 ... Q1dS

′
ddbd

...
Qm1S

′
11b1 ... QmdS

′
ddbd

 ≥ (~q +B~p)−Q~z

Note that the above inequality holds for all binary vectors ~b. Each row represents 2d

constraints: one for each possible value of the binary vector~b. Since all of the entries in

the S ′ matrix are non-negative, it is possible to select a particular binary vector for each

row that results in the least possible value for each entry and therefore provides a tight

bound for all the constraints represented by that row. Specifically that binary vector has

entry bj equal to one if and only if Qij is negative. Selecting the binary vector for each

row, which results in the tightest bound is equivalent to calculating the matrix Q−.

For all binary vectors~b, the following is true: Q11S
′
11b1 ... Q1dS

′
ddbd

...
Qm1S

′
11b1 ... QmdS

′
ddbd

 ≥ Q−~s′ ≥ (~q +B~p)−Q~z,

where ~s′ = ~s−~1. Therefore, P̂in is Pin with all redundant bounds removed.

5.2.2 Distinguish full and partial tiles using Inset

One property of an inset Pin is that tile(z) ∩ Piter = tile(z) for all z ∈ Pin. In other

words, constraints on the iteration space are redundant for any tile whose origin is in the

inset. By removing these unnecessary loop bounds in the point loops, we can reduce the

loop overhead further.

54

One may perform this optimization by checking whether a tile origin belongs to the

inset before executing point loops or by splitting the inset from the outset. To use the

check approach, code must be generated that determines if a particular tile origin lies

within the inset.

The other approach is to split the inset from the outset. Consider the fact that Pin ⊆
Pout. We associate a statement X1 with Pin and a statement X2 with Pout and feed both

polyhedra to a code generator. Now, if a loop nest scans both Pout and Pin without

guards, then loops that scan the inset must include both statements. Now, we know that

iteration constraints are redundant whenever there are two statements in the loop since

Pin ⊆ Pout. Therefore, we replace the loop bodies with statements X1 and X2 with the

tile loops for full tiles, and we replace the loop bodies with statement X2 only with tile

loops for partial tiles.

This splitting scheme based on the union of inset and outset provides another way to

enable a full versus partial tile optimization. Also, it is easy to incorporate this scheme

using existing code generators. Note that many code generators have been designed

and developed to remove guards by splitting the iteration space into disjoint regions

associated to different sets of statements.

For register tiling, it would seem that checking each tile to determine if it is full

introduces higher overhead. However, splitting can result in significant blowup in code

size, which can cause instruction cache problems.

5.3 Splitting Partial & Full Tiles

As discussed earlier, separation of partial and full tiles has several applications. In this

section, we discuss how the inset is used for separation. Separation at any level k implies

that the further tilings (for levels k+ 1 . . .m) are performed only on full tiles of level k.

The partial tiles of level k are not further tiled. Consider the number of full and partial

55

tile-loops scanning outset
Box tile-loops-L1
...
Box tile-loops-Lk
if (FULL(Lk-tile)) {

...
Box-tile loops-Lm
point-loops with tile bounds only

} else { // partial-tile-Lk
Point-loops

}

Figure 5.4: Structure of multi-level tiled loops generated with the outset method when
the partial and full tiles are separated at some tiling level k.

outer-tiles in Figure 5.1. There is one full outer-tile and three partial outer-tiles. If we

separate full tiles from partial tiles at the outer level of tiling, then there are only four

full inner-tiles, since only the full outer-tiles are tiled further. However, we can see that

there are 10 full inner-level tiles in the iteration space. By separating the partial and

full tiles at the inner-level (and not at the outer-level) we can actually recognize all the

10 inner-level tiles as full. However, separation at the inner-level leads to more inner-

level full tiles but also results in enumeration of more empty inner-tiles. Hence, there

is a trade-off between more inner-level tiles versus enumeration of empty tile origins.

Further, we can also apply splitting multiple times if needed.

The general structure of such a multi-level tiled loop nest with separation of partial

and full tiles at an arbitrary level k is shown on Figure 5.4. Note that the partial tiles

at level k are not further tiled and they execute the standard point-loops. On the other

hand, the full tiles of level k are further tiled and their body contain a special form of

point-loops called box-point-loops. These box-point-loops are the loops in which the

iteration space bounds are omitted.

To recall, the inset Pin represents the set which contains all the full-tile origins. Let

us denote by Pin(~sk) the inset computed using the tile sizes of level k and the iteration

space Piter. Now we can check at any level l whether a tile origin represents a full tile

or not by checking whether it belongs to Pin(~sl) or not. This is the key idea underlying

56

our separation algorithm. For any user specified level k of separation we generate the

outset Pin(~sk) and use it to test whether a tile is full or partial. This test corresponds to

the FULL(Lk-tile) test in Figure 5.4.

When the separation happens at level k, the set of points in the full tiles at level k

can be described as follows:

Pk
full = {(~t1, . . . , ~tm,~tm+1) | ∀i = 2, . . . ,m+ 1 :

~t1 ∈ Pout ∩ Lattice(~s1, ~o), ~tk ∈ P k
in,

~ti ∈ tile(~ti−1, ~si−1) ∩ Lattice(~si,~ti−1)}

where ~sm+1 is ~1. The set of points in the partial tiles can be described as follows:

Pk
partial = {(~t1, . . . , ~tk, ~z) | ∀i = 2, . . . , k :

~t1 ∈ Pout ∩ Lattice(~s1, ~o), ~tk /∈ P k
in,

~z ∈ Piter ∩ tile(~tk, ~sk),

~ti ∈ tile(~ti−1, ~si−1) ∩ Lattice(~si,~ti−1)}.

Different levels of separation may be preferred, based on the context in which sepa-

ration is used. For example, for a 2-level tiling in the context of caches and registers an

inner-level of tiling might be preferred. An example of this is shown in our experiments

on cache and register tiling.

5.4 Loop Generation Algorithm

Now we present our algorithm for generating multi-level tiled loop nests with parame-

terized, fixed, or mixed tile sizes. It is given in Algorithm 1 and its input is the original

iteration space, number of levels of tiling, whether the loops are to be split for partial vs.

full tile separation, and if so, what is the level at which this split needs to be performed.

The output of the algorithm is the multi-level tiled loop nest.

57

We illustrate the steps of the algorithm on the 2D Stencil example. We seek to

generate a 2-level tiled loop nest where full and partial tiles are split at the first level. We

first compute an outset of the iteration space with the outer-tile sizes. Then, we generate

the point loops whose bounds consist of iteration space bounds and the surrounding tile

bounds. The split level determines the tile bounds used in the point-loops generation

as shown in lines 2-5 of the algorithm. These loops are generated by a call to CLooG.

Next, as shown in lines 6-7 we compute the inset of iteration space with respect to the

tile sizes and indices of the desired split level (here, first). The bounds of the inset are

shown below.

Pin = {(tk, ti) | 1 ≤ tk; tk + sk − 1 ≤ Nk; (5.4)

tk + sk ≤ ti; ti + si − 1 ≤ tk +Ni}

where sk and si are symbolic tile size parameters along k and i dimensions, respectively.

The guard for splitting partial and full tiles is obtained directly from the inset. The

complete multi-level tiled loop nest for the 2D Stencil example with separation at the

first level is shown in Figure 5.5. At line 9 we see that the guard is a direct translation

from the inset in (5.4).

Once the point-loops and inset based on a split level are generated we can generate

all the loops. The construction of the inner-level tile-loops, the guards and the box-

tile-loops can be done through a simple pretty printing using the appropriate bounds.

Combing these with the already generated the point-loops (as shown in line 8) we get

all the loops except the outer-most tile-loops. This is generated by a call to CLooG to

generate loops that scan the outset and post-processing it to add lower bound shifts and

strides. The resulting tile-loops are shown in lines 2-5 of Figure 5.5. Finally we compose

these outermost tile-loops to obtain the complete tiled loop nest with separation of partial

and full tiles.

58

1 // Outermost tile loops that scan the outset
2 T1kLB = -S1k+2; T1kLB = LB_SHIFT(T1kLB,S1k);
3 for (T1k = T1kLB; T1k <= Nk; T1k += S1k) {
4 T1iLB = T1k-S1i+2; T1iLB = LB_SHIFT(T1iLB,S1i);
5 for (T1i = T1iLB; T1i <= T1k+Ni+S1k-1; T1i += S1i) {
6 // Is (T1k,T1i) a full tile at level 1?
7 if (T1k-1 >= 0 \&\& -T1k+Nk-S1k+1 >= 0 \&\&
8 -T1k+T1i-S1k >= 0 \&\& T1k-T1i+Ni-S1i+1 >= 0){
9 // Box-loops scanning origins of level 2 tiles.

10 for (T2k = T1k ; T2k<=T1k+S1k-1 ; T2k += S2k)
11 for (T2i = T1i ; T2i<=T1i+S1i-1 ; T2i += S2i)
12 // Box-loops scanning points in level 2 tiles.
13 for (k = T2k ; k<=T2k+S2k-1 ; k++)
14 for (i = T2i ; i<=T2i+S2i-1 ; i++)
15 S1 ;
16 } else { // (T1k,T1i) is a partial tile at level 1
17 // Point loops scanning partial tiles at 1st level.
18 for (k= max(T1k,1);k<=min(T1k+S1k-1,Nk);k++)
19 for (i= max(T1i,k+1);i<=min(T1i+S1i-1,k+Ni);i++)
20 S1 ;
21 }
22 }
23 }

Figure 5.5: A multi-level tiled loop for the 2D Stencil. The body of the loop is by S1.

5.4.1 Complexity & scalability of the algorithm

Let us first consider the case where no full vs. partial tile separation is performed.

At the high level, the key steps are computing the outset to generate the outermost

tile-loops and constructing all the box-tile-loops and constructing the point-loops. The

construction of the outset can be done in time linear on the number of bounds on the

original loop nest. Further, the construction of the box-tile loops is a simple pretty-

printing using the tile indices and sizes. The construction of the point-loops and the

tile-loops using the outset are done via CLooG. The complexity of each of these calls

to CLooG is exponential in the number of bounds of the original loop nest and not the

number of bounds in the tiled loop nest. Hence, the entire multi-level tiled loop nest

construction involves two calls to an exponential function and a couple of functions that

are linear on the number of bounds on the original loop nest and the number levels of

tiling. The key point to note is that the number of calls to the exponential function

do not depend on the number of levels. In fact, for any arbitrary number of levels of

59

tiling exactly two calls are made to the exponential-time function. Now, if we consider

separation of partial and full tiles, all that is required is the computation of the inset

(which can be done in linear time) and the pretty printing of it as a guard. On the whole,

the time complexity of our algorithm is determined by the time taken by the two calls to

CLooG, and is constant with respect to the number of levels of tiling. The experimental

results in Section 5.5.1 confirm this, and validate our claim that we can generate multi-

level tiled loops at the cost of a single-level tiled loops.

In contrast the time for the classic method depends on the number m of levels in

multi-level tiling. For an original loop nest of depth d, the number of dimensions and

constraints increase by d and 2d, respectively, as the level of tiling increase (assuming all

the dimensions are tiled). This results in an exponential space/time complexity which

grows with the number of levels of tiling. The experimental results in Section 5.5.1

show how this exponential growth with respect to number of levels renders the technique

inapplicable beyond two levels of tiling. In the multi-level tiled loop generation method

proposed by Jiménez et al. [31] its generation time grows linearly with the number of

levels. In other words, the complexity of their method is exponential for a single level,

and it spends the same cost for each level.

5.5 Experimental Validation

We implement three different multi-level tiled loop generators. The first generator is

for the case when the tile sizes are fixed, and uses the classic tiling method discussed

in Section 5.1.1. The second generator is capable of generating tiled code with tile

sizes that are fixed or parameterized or mixed and is based on the method discussed

in Section 5.1.2. The third generator implements the additional feature of splitting (or

separating) partial and full tiles at some user specified level. The generators are im-

plemented in C++. The CLooG [10] loop generator is used internally to generate the

60

0 2 4 6 8 10

0
10

20
30

40
50

60
70

2D Stencil − Tiled loop generation time

Number of levels of tiling

G
en

er
at

io
n

tim
es

 (
m

ill
is

ec
on

ds
)

+ + + + + + + +

+

+

0 2 4 6 8 10

0
10

20
30

40
50

60
70

2D Stencil − Tiled loop generation time

Number of levels of tiling

G
en

er
at

io
n

tim
es

 (
m

ill
is

ec
on

ds
)

X
X

X X
X

X
X

X

X

X

0 2 4 6 8 10

0
10

20
30

40
50

60
70

2D Stencil − Tiled loop generation time

Number of levels of tiling

G
en

er
at

io
n

tim
es

 (
m

ill
is

ec
on

ds
)

o
+
X

No Split
SplitLevel=1
SplitLevel=Innermost

Figure 5.6: Generation time for multi-level tiling of 2D Stencil.

point-loops and the loops that scan the outset. Our technique is independent of the in-

ternal code generator and for example, we could use OMEGA [32] instead of CLooG.

We chose CLooG for its robustness across several benchmarks and its code generation

speed (up to 4×faster than OMEGA [10]).

To evaluate the generation efficiency and the quality of the generated code we con-

duct three sets of experiments. The benchmarks used for the experiments are given in

Table 5.1. The benchmarks 2D Stencil and 3D Stencil correspond to a Gauss-Seidel

style stencil where a 1D array (or 2D array resp.) is updated over a time step loop. For

these two benchmarks, we first applied skewing to make rectangular tiling valid and

then used the skewed iteration space as input to our generator. The skewing makes the

iteration space non-rectangular. The benchmark LUD is LU decomposition computa-

tion without pivoting. The benchmarks SSYRK and STRMM are routines from BLAS3

and correspond to symmetric rank k update and the triangular matrix product computa-

tions, respectively. The loop nest depth of the benchmarks is shown in the third column

of Table 5.1 and for the experiments, all the loops are tiled at all the levels for all the

benchmarks. The three sets of experiments we conduct are aimed at evaluating the (i)

the generation efficiency of loop generators, (ii) the cost of parameterization, i.e., the

61

Description
Loop
depth

2D Stencil Gauss-Seidel Style 2D stencil computation 2
LUD LU decomposition of a matrix without pivoting 3
SSYRK Symmetric Rank k Update 3
STRMM Triangular matrix multiplication 3
3D Stencil Gauss-Seidel Style 3D stencil computation 3

Table 5.1: Benchmarks used for evaluating generation efficiency and code quality.

0 2 4 6 8 10

0
10

20
30

40
50

60
70

LUD − Tiled loop generation time

Number of levels of tiling

G
en

er
at

io
n

tim
es

 (
m

ill
is

ec
on

ds
)

+

+
+ +

+

+
+ + +

+

0 2 4 6 8 10

0
10

20
30

40
50

60
70

LUD − Tiled loop generation time

Number of levels of tiling

G
en

er
at

io
n

tim
es

 (
m

ill
is

ec
on

ds
)

X
X X

X
X

X
X

X X
X

0 2 4 6 8 10

0
10

20
30

40
50

60
70

LUD − Tiled loop generation time

Number of levels of tiling

G
en

er
at

io
n

tim
es

 (
m

ill
is

ec
on

ds
)

o
+
X

No Split
SplitLevel=1
SplitLevel=Innermost

Figure 5.7: Generation time for multi-level tiling of LU decomposition.

execution time cost for not fixing the tile sizes and leaving them as parameters, and (iii)

the effect of the level at which partial and full tiles are separated. The following sections

discuss each of these experiments.

5.5.1 Generation efficiency

We evaluate two aspects of the generation efficiency. First, we evaluate how our method

scales with respect to the number of levels of tiling. Second, we compare the generation

times for the parameterized and the fixed method. The second comparison also evalu-

ates the overhead due to the over-approximation of the inner-level partial tiles by full

tiles (cf. Section 5.1.2). All the generation efficiency experiments were run on an Intel

Core2 Duo processor running at 1.86 GHz with an L2 cache of size 2MB. We used g++

62

0 2 4 6 8 10

0
10

20
30

40
50

60
70

SSYRK − Tiled loop generation time

Number of levels of tiling

G
en

er
at

io
n

tim
es

 (
m

ill
is

ec
on

ds
)

+
+ +

+

+

+ + + +
+

0 2 4 6 8 10

0
10

20
30

40
50

60
70

SSYRK − Tiled loop generation time

Number of levels of tiling

G
en

er
at

io
n

tim
es

 (
m

ill
is

ec
on

ds
)

X
X

X X

X
X X

X X X

0 2 4 6 8 10

0
10

20
30

40
50

60
70

SSYRK − Tiled loop generation time

Number of levels of tiling

G
en

er
at

io
n

tim
es

 (
m

ill
is

ec
on

ds
)

o
+
X

No Split
SplitLevel=1
SplitLevel=Innermost

Figure 5.8: Generation time for multi-level tiling of symmetric rank k update (SSYRK).

4.1.1. with -O3 optimization level to compile our loop generators. The timings use

gettimeofday(). Our code generator supports arbitrary (hyper-)rectangular tiles.

For ease of experimentation we have used square tile sizes.

The generation times for the five benchmarks, 2D Stencil, LUD, SSYRK, 3D Sten-

cil, and STRMM are shown in Figures 5.6,5.7, 5.8,5.9, and 5.10. The x-axis represents

the number of levels of tiling and the y-axis represents the generation time (includ-

ing file IO) in milliseconds. The generation time labeled No Split refers to the case

where there is no-splitting of partial and full tiles and the other two – SplitLevel=1 and

SplitLevel=Innermost – represent the generation where the splitting is done at level 1

(outermost) and at the innermost level, respectively. Note that the case of a single level

of tiling with no splitting corresponds to the experiments from our previous work [52] on

parameterized single level tiled loop generation. The main observation from the graphs

is that the generation time is fairly flat as the number of tiling levels increase. Almost all

the generation times are within the range of 40 to 60 milliseconds. This experimentally

confirms our claim that our technique provides a method that can generate multi-level

tiled loops at the price of a single-level tiled loop nest. Further, the graphs also show

63

0 2 4 6 8 10

0
10

20
30

40
50

60
70

3D Stencil − Tiled loop generation time

Number of levels of tiling

G
en

er
at

io
n

tim
es

 (
m

ill
is

ec
on

ds
)

+ +
+ +

+ +

+
+

+ +

0 2 4 6 8 10

0
10

20
30

40
50

60
70

3D Stencil − Tiled loop generation time

Number of levels of tiling

G
en

er
at

io
n

tim
es

 (
m

ill
is

ec
on

ds
) X X X X

X
X X X X

X

0 2 4 6 8 10

0
10

20
30

40
50

60
70

3D Stencil − Tiled loop generation time

Number of levels of tiling

G
en

er
at

io
n

tim
es

 (
m

ill
is

ec
on

ds
)

o
+
X

No Split
SplitLevel=1
SplitLevel=Innermost

Figure 5.9: Generation time for multi-level tiling of 3D Stencil.

that splitting does not introduce any additional cost.

The generation times for the classic method for fixed tile sizes is shown in Fig-

ure 5.11. Note that the x-axis shows the number of loops in the tiled loop nest and not

the number of levels tiled. For example, when a 3D loop nest is tiled two levels we will

have 9 loops on the tiled loop nest. We show the number of loops in the tiled loop nest,

because it is a finer granularity than the number of levels of tiling and shows clearly the

exponential (w.r.t. the number of loops) nature of the method. The graph clearly shows

that the generation time grows exponentially when the number of loops is 9 or higher.

Hence, we could not obtain the generation times beyond two levels of tiling for this

method. Although, it is not clear in the graph, the generation time grows exponentially

even with smaller number of loops, but the difference of generation time among them is

negligible.

5.5.2 Cost of parameterization

We evaluate the cost of parameterization by comparing the execution time of tiled code

with fixed tile sizes and parameterized tile sizes. We use two levels of tiling one for

the TLB and another for cache. This choice is motivated by our goal to compare two-

64

0 2 4 6 8 10

0
10

20
30

40
50

60
70

STRMM − Tiled loop generation time

Number of levels of tiling

G
en

er
at

io
n

tim
es

 (
m

ill
is

ec
on

ds
)

+
+

+
+ +

+ +
+ + +

0 2 4 6 8 10

0
10

20
30

40
50

60
70

STRMM − Tiled loop generation time

Number of levels of tiling

G
en

er
at

io
n

tim
es

 (
m

ill
is

ec
on

ds
)

X

X

X
X X

X X X
X X

0 2 4 6 8 10

0
10

20
30

40
50

60
70

STRMM − Tiled loop generation time

Number of levels of tiling

G
en

er
at

io
n

tim
es

 (
m

ill
is

ec
on

ds
)

o
+
X

No Split
SplitLevel=1
SplitLevel=Innermost

Figure 5.10: Generation time for multi-level tiling of triangular matrix multiplication
(STRMM).

3 4 5 6 7 8 9 10

0
50

10
0

15
0

20
0

Tiled loop generation time using Classic method

Depth of loop nests in tiled code

G
en

er
at

io
n

tim
es

 (
se

co
nd

s)

+ + + + + +

+

3 4 5 6 7 8 9 10

0
50

10
0

15
0

20
0

Tiled loop generation time using Classic method

Depth of loop nests in tiled code

G
en

er
at

io
n

tim
es

 (
se

co
nd

s)

X X X X X X

X

3 4 5 6 7 8 9 10

0
50

10
0

15
0

20
0

Tiled loop generation time using Classic method

Depth of loop nests in tiled code

G
en

er
at

io
n

tim
es

 (
se

co
nd

s)

& & & & & &

&

3 4 5 6 7 8 9 10

0
50

10
0

15
0

20
0

Tiled loop generation time using Classic method

Depth of loop nests in tiled code

G
en

er
at

io
n

tim
es

 (
se

co
nd

s)

% % % % % %

%

3 4 5 6 7 8 9 10

0
50

10
0

15
0

20
0

Tiled loop generation time using Classic method

Depth of loop nests in tiled code

G
en

er
at

io
n

tim
es

 (
se

co
nd

s)

o
+
X
&
%

2D Stencil
LUD
SSYRK
STRMM
3D Stencil

Figure 5.11: Generation time for multi-level tiling of classic method. The x-axis of the
graph is the number of loops in the tiled loop nest. The y-axis is the code generation
time in seconds.

65

2 4 8 16 32 64 128 256 512

2D Stencil − Exe. Times of 2 Level Tiled Code

Inner Level Square Cache Tile Sizes

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

0
50

10
0

15
0

Fixed
Parameterized

Figure 5.12: Total execution time for 2D Stencil on a data array of size 65536. The
x-axis shows the inner (cache) cubic tile sizes. The outer (TLB) tile size is fixed at 512.

2 4 8 16 32 64 128 256 512

LUD − Exe. Times of 2 Level Tiled Code

Inner Level Cubic Cache Tile Sizes

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

0
20

40
60

80
10

0
12

0 Fixed
Parameterized

Figure 5.13: Total execution time for LU decomposition on a matrix of size 2048×2048.
The x-axis shows the inner (cache) cubic tile sizes. The outer (TLB) tile size is fixed at
512.

66

2 4 8 16 32 64 128 256 512

SSYRK − Exe. Times of 2 Level Tiled Code

Inner Level Cubic Cache Tile Sizes.

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

0
20

40
60

80
10

0
12

0
14

0

Fixed
Parameterized

Figure 5.14: Total execution time for symmetric rank k update (SSYRK) for matrix of
size 2048× 2048. The x-axis shows the inner (cache) cubic tile sizes. The outer (TLB)
tile size is fixed at 512.

level fixed and parameterized tiled codes where the differences due to the loop bounds

computation can be easily quantified. Other choices for two level tiling such as tiling

for parallelism and caches or tiling for caches and registers introduce many factors that

influence the execution time and hence measuring the execution time difference due

to the loop bounds computation becomes hard. The experiments are done on an Intel

Pentium 4 at 3.2 GHz a 512 K L2 Cache and a TLB with 64 entries and pages of size

4K. We used g++ 4.1.1. compiler with -O3 optimization.

Figures 5.12, 5.13, 5.14 and 5.15 show the execution times of the two-level tiled

loops for the 2D Stencil, LU decomposition, SSYRK and 3D Stencil benchmarks, re-

spectively. For the results shown in the graphs, first the inner (cache) tile sizes were

varied from 2 to 512 and the outer (TLB) tile size is fixed at 512. We also experimented

with other outer (TLB) tile sizes and the results (omitted for brevity) are similar to the

ones presented here. We can observe that for small tile sizes the parameterized tiled

loops are better and the for larger tile sizes they are comparable to the fixed tiled loops.

67

2 4 8 16 32 64 128 256 512

3D Stencil − Exe. Times of 2 Level Tiled Code

Inner Level Cubic Cache Tile Sizes.

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

0
20

0
40

0
60

0
80

0
10

00
12

00 Fixed
Parameterized

Figure 5.15: Total execution time for 3D Stencil for a data array of size 2048 × 2048
over 2048 time steps. The x-axis shows the inner (cache) cubic tile sizes. The outer
(TLB) tile size is fixed at 512.

At smaller tile sizes the ceil() and floor() functions used in the classic method induce

higher overhead and hence result in slower execution time. Overall, the cost of parame-

terization seems to be negligible and hence we conclude that parameterized tiled codes

should be the preferred choice.

5.5.3 Effect of separation level

We evaluate the effect of separating partial and full tiles at different levels tiling on the

benchmarks. We tiled them two levels: one for cache and another for registers. The

register tiles were fully unrolled and the array references were replaced by scalars to

facilitate register promotion. The running times for two different cubic register tile sizes

(2 × 2 × 2 and 3 × 3 × 3) are shown in Figure 5.16-5.19. Also shown is the running

time for one level of tiling for caches. There is no clear indication on “better splitting

level” across all the benchmarks. It depends on the benchmarks as well as the sizes of

tiling. For example, in Figure 5.16 there is 159% difference in execution time depending

68

6 12 18 24 48 96 180 270 360 432 516

LUD − Comparison of Different Levels of Tiling

Cubic Cache−Tile Sizes

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

0
10

20
30

40
50

60
70

Cache only
Cache+Registers SplitLevel1
Cache+Registers SplitLevel2

6 12 18 24 48 96 180 270 360 432 516

LUD − Comparison of Different Levels of Tiling

Cubic Cache−Tile Sizes

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

0
10

20
30

40
50

60
70

Cache only
Cache+Registers SplitLevel1
Cache+Registers SplitLevel2

Figure 5.16: Total execution time for LU decomposition for matrices of size 2048 ×
2048. Two levels of tiling for cache and registers is used. The x-axis shows the cubic
cache-tile sizes. The graph on the left is for a register-tile size of 2× 2× 2 and the one
on the right is for 3× 3× 3.

on splitting levels when cache tile sizes are 516 × 516 × 516 and register tile sizes are

3×3×3. On the other hands, there is only 0.6% difference when cache tile sizes become

18× 18× 18. When we look only at the best tile sizes for each benchmark, there is up

to 2-33% difference between the best points of different splitting levels. Overall, the

results clearly show that splitting level has impact on performance.

69

6 12 18 24 48 96 180 270 360 432 516

SSYRK − Comparison of Different Levels of Tiling

Cubic Cache−Tile Sizes

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

0
10

20
30

40
50

Cache only
Cache+Registers SplitLevel1
Cache+Registers SplitLevel2

6 12 18 24 48 96 180 270 360 432 516

SSYRK − Comparison of Different Levels of Tiling

Cubic Cache−Tile Sizes

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

0
10

20
30

40
50

Cache only
Cache+Registers SplitLevel1
Cache+Registers SplitLevel2

Figure 5.17: Total execution time for symmetric rank k update (SSYRK) for matrices of
size 2048× 2048. Two levels of tiling for cache and registers is used. The x-axis shows
the cubic cache-tile sizes. The graph on the left is for a register-tile size of 2× 2× 2 and
the one on the right is for 3× 3× 3.

6 12 18 24 48 96 180 270 360 432 516

STRMM − Comparison of Different Levels of Tiling

Cubic Cache−Tile Sizes

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

0
5

10
15

20
25

30
35

Cache only
Cache+Registers SplitLevel1
Cache+Registers SplitLevel2

6 12 18 24 48 96 180 270 360 432 516

STRMM − Comparison of Different Levels of Tiling

Cubic Cache−Tile Sizes

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

0
5

10
15

20
25

30
35

Cache only
Cache+Registers SplitLevel1
Cache+Registers SplitLevel2

Figure 5.18: Total execution time for triangular matrix multiplication (STRMM) for
matrices of size 2048 × 2048. Two levels of tiling for cache and registers is used. The
x-axis shows the cubic cache-tile sizes. The graph on the left is for a register-tile size of
2× 2× 2 and the one on the right is for 3× 3× 3.

70

6 12 18 24 48 96 180 270 360 432 516

3D Stencil − Comparison of Different Levels of Tiling

Cubic Cache−Tile Sizes

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

0
10

0
20

0
30

0
40

0
50

0

Cache only
Cache+Registers SplitLevel1
Cache+Registers SplitLevel2

6 12 18 24 48 96 180 270 360 432 516

3D Stencil − Comparison of Different Levels of Tiling

Cubic Cache−Tile Sizes

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

0
10

0
20

0
30

0
40

0
50

0

Cache only
Cache+Registers SplitLevel1
Cache+Registers SplitLevel2

Figure 5.19: Total execution time for 3D Stencil for a data array of size 2048×2048 over
3000 time steps. Two levels of tiling for cache and registers is used. The x-axis shows
the cubic cache-tile sizes. The graph on the left is for a register-tile size of 2× 2× 2 and
the one on the right is for 3× 3× 3.

71

Algorithm 1 An algorithm for generating multi-level tiled loops based on outset ap-
proach
INPUT : Piter : Iteration space matrix,

tileSizes[1...m] : tile size (integer or symbolic
parameter) vector,

tileIndexes[1...m] : tile index name vector,
split : a boolean value whether full and partial

tiles are split
splitLevel : level at which full and partial

tiles are split

BEGIN
Matrix outset, inset;
VectorOfString pLoops, comLoops;

// Compute Pout

1: outset = computeOutset(Piter, tileSizes[1],
tileIndexes[1]);

// Scan Piter, add tile bounds with appropriate level
2: If (split == true)
3: pLoops = generatePointLoops(Piter, tileSizes[m],

tileIndexes[m]);
4: else
5: pLoops = generatePointLoops(Piter,

tileSizes[splitLevel],
tileIndexes[splitLevel]);

// Compute Pin when split is greater than 0
6: If (split == true)
7: inset = computeInset(Piter, tileSizes[splitLevel],

tileIndexes[splitLevel]);

// Combine point-loop, box-loop and guard for split
8: comLoops = combine(pLoops, tileSizes[1...m],

tileIndexes[1...m], splitLevel, inset);

// Generate loops that scans outset while printing
// comLoops instead of point-loop

9: printScanningLoops(outset, comLoops);
END

72

Chapter 6

Multi-level Tiled Loop Generation:
Multiple Tiling

In this chapter we provide another approach for parameterized multi-level tiling for

perfectly nested loops. In this approach we always take the original iteration space as

“iteration space” for a given level. We refer this as multiple multi-level tiling. In the

successive tiling, the approach of Chapter 5, we take tiles in the previous level as the

iteration space in the current level. We provide the detailed explanation on the difference

between these two approach and how these approach can be combined to achieve better

performance. We also provide an technique for syntactically extracting the condition for

a tile to be full from the original loop nest. Finally, we provide experimental results on

these two approaches as well as their combinations.

6.1 Motivation

In successive tiling, we take tiles in the previous level as the iteration space for a given

level and use the bounding box approach. Although this simplifies the tiled loop gen-

eration process, there is possibility that the generated tiled loops suffer from poor code

quality. This comes from the combination of the well-known inefficiency of the bound-

ing box approach and tiles being used as the iteration space. First, the bounding box

strategy may result in poor code quality because many empty tiles will be visited and

73

/ / t i l e −l o o p s
/ / box−l o o p s

. . .
/ / box−l o o p s

/ / p o i n t−l o o p s
/ / S t a t e m e n t s

/ / t i l e −l o o p s
/ / t i l e −l o o p s + box−l o o p s

. . .
/ / t i l e −l o o p s + box−l o o p s

/ / p o i n t−l o o p s
/ / S t a t e m e n t s

Figure 6.1: Loop structure of multi-level tiling as successive tiling (left) and multiple
tiling(right)

the emptiness will not be determined until loop bounds of the innermost loop are tested.

Second, there are three kinds of tiles: full, partial and empty tiles. When an empty or

partial tile is used for an iteration space for the next level tiling, many empty tiles at

the next level of tiling will be enumerated. Although tiled loops produced by our tech-

nique do not enumerate many empty tiles, a single empty tile leads to enumerating many

empty tiles at the next level. For example, when a cubic empty tile of size 64× 64× 64

is tiled with 2 × 2 × 2 tiles in the next level, it results in enumerating 215 empty tiles.

Similarly, partial tiles can lead to a significant number of empty tiles in the next level.

6.2 Multiple Tiling

In multiple tiling, we consider the original iteration space as well as tiles at the previous

level. In other words, we take the intersection of the iteration space and tiles in the

previous level. Although this seems a complex process involving polyhedral operations,

it is achieved with just simple syntactic processing. Like successive tiling, we obtain the

bounds for tiles in the previous tiles using the bounding box approach, which consists of

only tile indices and tile size parameters. For the original iteration space, we apply D-

tiling directly to the original loops with different tile size parameters. Then we combine

these two sets of loop bounds appropriately. The structure of tiled loop nest in the

multiple multi-level tiling is shown in 6.1 together with that produced by successive

tiling. Although it may reduce enumerating empty tiles, tiled loops generated by this

method have more complex loop bounds.

74

Input: AST - perfectly nested loops, t - a tile index name vector, s - a tile size
vector

1: INSET ← ∅
2: for each k-loop in AST do
3: replace index names in lbk and ubk with tile index names
4: lbcon← shift_up(lbk)
5: ubcon← shift_down(ubk)
6: add lbcon and ubcon to INSET
7: end for

Figure 6.2: Algorithm for deriving the test for full tiles. Shift_down and Shift_up are
defined in Chapter 3

6.3 Separation of Full tiles

Separating full tiles from the other tiles is an important optimization for register tiling

and vectorization. Successive tiling of full tiles is trivial and multi-level tiled loops

can be efficiently generated. This enables us to exploit vectorization that most current

architectures support.

An algorithm for deriving the condition for testing whether a tile is full is given in

Figure 6.2. One may split each loop or have one guard at the end of the tile-loops. We

provide a correctness proof below. It parallels the proof and correctness of D-tiling.

It suffices to show that if z ∈ INSET and 0 ≤ δ ≤ s′, then z + δ ∈ Piter. Suppose

z ∈ INSET . Then, for l = 1, . . . d

shift_up(lbl) ≤ zl

We can write this as

lbl +
∑
cj>0

cj(sk − 1) ≤ zl

Let x = z + δ. Now, we replace z with x− δ, i.e., zk with xk − δk. We obtain

lbl −
∑
ci<0

ciδi +
∑
cj>0

cj(sj − 1− δj) + δl ≤ xl

Note that −∑ci<0 ciδi ,
∑

cj>0 cj(sj − 1− δj) and δl are all non negative. So, we derive

lbl ≤ xl.

75

Similarly, we can derive xl ≤ ubl from zl ≤ shift_down(ubl). Therefore, all the

points in a tile whose origin is z belong to Piter.

6.4 Implementation and Experiments

We implemented our tiled loop generation algorithms as a simple walk on a loop AST

(Abstract Syntax Tree) generated by the SableCC [21].

We evaluated the efficiency of our technique using three common benchmarks:

Gauss-Seidel stencil code (Seidel) on a two-dimensional data array, a triangular ma-

trix multiplication (DTRMM), and symmetric rank k update (DSYRK). We compared

our implementation with PrimeTile and HiTLOG on generation efficiency and generated

code efficiency. We compiled with gcc 4.4 and Intel icc 11.1 and ran all experiments

for generated code efficiency evaluation on an Intel Core 2 Duo running 2.2 GHz with

2MB L2 Cache and 1GB memory.

6.4.1 Evaluation

All three code generators reported similar generation time. Given that depths of loops in

the benchmarks are small, this was expected. Due to the fact that these code generators

are written in different languages and all the generation time are still less than 0.1 sec-

onds, we do not report these data here. The generation time of PrimeTile with boundary

tiles fully recursively tiled (represented as Prime(f)) grows faster than the others and its

code size grew exponentially with tiling levels.

Figure 6.3 and 6.4 show the execution time of eight different tiled loops for two

levels of tiling: one for cache and one for registers—unroll-jam and scalar promotion.

For bigger tile sizes, levels of splitting full tiles have more impact, but for smaller tile

sizes the tiling schemes have more impact on execution time. For most cases, mixed

tiling with splitting at the innermost level performs better than the others.

76

9 12 24 48 96 192 384

Execution time for 2 Levels of Tiling on DTRMM (gcc)

Outer Level Tile Sizes

To
ta

l E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
5

10
15

20 Prime(n)
Prime(f)
HiTLOG−sp1
HiTLOG−sp2
Successive tiling−sp1
Successive tiling−sp2
Multiple tiling−sp1
Multiple tiling−sp2
Mixed tiling−sp1
Mixed tiling−sp2

Figure 6.3: Total execution time for DTRMM with two levels of tiling, one for cache
and one for registers, and compiled with gcc. The register tile size are fixed at 3×3×3.

77

9 12 24 48 96 192 384

Execution time for 2 Levels of Tiling on DTRMM (icc)

Outer Level Tile Sizes

To
ta

l E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
5

10
15

Prime(n)
Prime(f)
HiTLOG−sp1
HiTLOG−sp2
Successive tiling−sp1
Successive tiling−sp2
Multiple tiling−sp1
Multiple tiling−sp2
Mixed tiling−sp1
Mixed tiling−sp2

Figure 6.4: Total execution time for DTRMM with two levels of tiling, one for cache
and one for registers, and compiled with gcc. The register tile size are fixed at 3×3×3.

2 4 8 16 32 64 128 256

Execution time for Tiling on 3D Gauss Seidel (gcc)

Tile Sizes

To
ta

l E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
50

10
0

15
0

20
0

25
0

30
0 PrimeTile

HiTLOG
D−tiling guard
D−tiling loop split

Figure 6.5: Total execution time for Seidel with separating full tiles, compiled with gcc

78

2 4 8 16 32 64 128 256

Execution time for Tiling on 3D Gauss Seidel (icc)

Tile Sizes

To
ta

l E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
50

10
0

15
0

20
0

25
0

PrimeTile
HiTLOG
D−tiling guard
D−tiling loop split

Figure 6.6: Total execution time for Seidel with separating full tiles, compiled with icc

Figure 6.5 and 6.6 show the total execution time of 3D Gauss Seidel computation

with one level of cache tiling with separating full tiles using various methods. Since the

condition for full tiles is also constructed dimension by dimension, we can easily split

each loop into three sections. Then, code size increases significantly like Prime(f). Note

that the best code depends on even tile size. Splitting in D-tiling is comparable to the

others. In summary, tiling schemes have an impact of generated code.

79

Chapter 7

Multi-level Tiled Loop Generation for
Imperfectly Nest Loops

We solve this problem by simply composing our techniques for generating single-level

tiled loops for imperfectly nested loops and multiple-level tiled loops for perfectly

nested loops. From the techniques presented so far, there are three ways to generate

multi-level parameterized tiled loops from imperfectly nested loops. The first method

is applying our tiling scheme for imperfectly nested loops to the point-loops produced.

The second and third are applying successive and multiple tiling to the tile-loops. Notice

that the tile-loops produced by our scheme is perfectly nested, so these two methods for

perfectly nested loops can be directly applicable. These three schemes provide various

loop structures that can be selected for various optimization and parallelization schemes.

7.1 Successive/Multiple Tiling on Tile-loops

In our scheme for imperfectly nested loops, we preserve tile-loops to be perfectly nested

for subsequent processes, such as parallelization. Another advantage of perfectly nested

tile-loops is that we can directly apply multi-level tiling methods developed for perfectly

nested loops to these perfectly nested tile-loops. We first extract perfectly nested loops

from embedded imperfectly nested loops and use them to generate all the tile loops. For

point-loops, we apply our scheme for imperfectly nested loops with the tile sizes at the

80

last level, and obtain point-loops. Finally, we insert the point-loops as the body of the

last tile-loop.

7.2 Imperfectly Nested Loop Tiling on Point-loops

For a given loop nest, we apply our scheme for imperfectly nested loops. It produces

perfectly nested tile-loops and a set of point-loops from embedded imperfectly nested

loop. Each set of point-loops is again an embedded imperfectly nested loop. While ap-

plying tiling to point loops, we have two choices: taking only tile bounds like successive

tiling and taking both iteration bounds and tile bounds like multiple tiling. In any cases,

we do not change tile bounds. We apply D-tiling only to the original loop bounds.

7.3 Mixture of various approach

The two approaches presented in Section 7.1 and 7.2 are extreme cases. The approaches

can be applied whenever it is applicable. Note that our scheme for imperfectly nested

loops generates a set of point-loops some of which are perfectly nested. We apply either

successive or multiple tiling to those point-loops. We can always apply our scheme for

imperfectly nested loops to any point-loops. We may also choose to apply tiling to only

a subset of these point-loops to achieve better performance.

Perfectly nested tile-loops are preferable for parallelization, although they might

have more loop overhead in sequential execution. Particularly, a successive tiling is

suitable for MPI parallelization because each processor will enumerate the same number

of tiles. However, a detailed discussion on how to use tiled loop generation schemes to

a particular optimization is beyond the scope of this thesis.

81

Chapter 8

Parallel Execution of Parameterized
Tiles

In this chapter we propose a technique for executing tiles in a wavefront fashion. Con-

sistent with our overall approach, this will be done syntactically by restructuring loops

so that they enumerate tiles in an order different from the original.

Traditionally, this restructuring has been realized through a skewing transformation

on tile space followed by loop generation.

Consider the iteration space I in Figure 8.1:

I = {i, j | 0 ≤ i ≤M +N ∧max(0, i−M) ≤ j ≤ min(N, i)}

Its tile space can be formulated as the canonical projection onto the first two dimen-

sions of {ti, tj, i, j | si×ti ≤ i ≤ si×ti+si−1∧sj×tj ≤ i ≤ sj×tj+sj−1∧(i, j) ∈ I}.
So, when tile sizes, si and sj , are fixed (i.e., constant integers), the tile space remains

a polyhedron. Therefore, a skewing transformation such as (ti, tj → ti + tj, tj) can be

applied. The scanning loop for this skewed space allows the tiles to be executed in a

wavefront fashion. Figure 8.1 also conceptually shows how these loops enumerate the

tiles. However, this approach works only when tile sizes are fixed and hence the tile

spaces are formulated as polyhedra.

Now, consider the tile space as an intersection of polyhedra and an integral lattice,

82

(Si,0)

(0,Sj)

(0,0)

(Si,Sj)

(2Si,2Sj)

(3Si,3Sj)(4Si,3Sj)(5Si,3Sj)

(3Si,2Sj)(4Si,2Sj)(5Si,2Sj)(Si,2Sj)

(2Si,3Sj)(Si,3Sj)

(2Si,Sj) (3Si,Sj) (4Si,Sj) (5Si,Sj)

(2Si,0) (3Si,0) (4Si,0)

Iteration Space

Ti

Tj

(Si,0)

(0,Sj)

(0,0)

(Si,Sj)

(2Si,2Sj)

(3Si,3Sj)(4Si,3Sj)(5Si,3Sj)

(3Si,2Sj)(4Si,2Sj)(5Si,2Sj)(Si,2Sj)

(2Si,3Sj)(Si,3Sj)

(2Si,Sj) (3Si,Sj) (4Si,Sj) (5Si,Sj)

(2Si,0) (3Si,0) (4Si,0)

Ti

Tj

Tile space

Transformed tile space

Figure 8.1: Tile space and its transformed space; each tile is denoted by its origin coordi-
nate; note that even in the transformed space tiles are denoted by their origin coordinates
in the original space

i.e., tile sizes are fixed. For instance, consider the integral lattice (3, 2) where all the tile

origins are a form of (ti, tj) where ti is a multiple of 3 and tj is a multiple of 2. The

precise transformation for skewing tiles is not (ti, tj → ti + tj, tj). Note that a tile (0, 2)

must be mapped to (3, 2) by the skewing transformation, not (2, 2). So, the skewing

transformation for such formulation of tile space is (ti, tj → ti + 3
2
tj, tj). Not all the

coefficients are integers.

Now, consider a tile space where tile sizes are parameterized and the space is viewed

as an intersection of polyhedra and a parameterized integer lattice. Figure 8.1 shows an

example of parameterized tiling and skewing transformation. Note that figures are not a

precise representation for parameterized tiling. The figure gives an impression that the

width of a tile is larger than its height, even though such assumption is not made. In this

case, transformation for skewing tiles is formulated as (ti, tj → ti +(si/sj)× tj, tj). To

the best of our knowledge, polyhedral framework does not support this transformation.

Hence, neither transformation nor code generation technique in the polyhedral model

83

can be applied.

We present a technique for restructuring parameterized tiled loops so that tiles will

be executed in wave-front parallel scheduling. Our technique is simple, but based on

two key intuitions that at first glance seem to be in conflict with.

8.1 Basic Ideas Illustrated

One of two main ideas behind our approach is that we know all the tiles that need to

be visited for a given time stamp. Consider that we find (Si, 2Sj) at the original tiled

space in Figure 8.1. Without transforming the tiled loops, we know that (2Si, Sj) and

(3Si, 0) tiles need to be executed with (Si, 2Sj). All valid tiles that can be written as

(Si, 2Sj) + k × (Si,−Sj) for some k need to be visited with (Si, 2Sj). In other words,

(Si, 2Sj) will be executed at time = 3 computing from (Si)/Si + (2Sj)/Sj . Any tiles

(ti, tj) where ti/Si + tk/Sj = 3 will be executed with (Si, 2Sj) at time = 3. The

wave-front schedule of parameterized tiled loops for this example can be expressed as

ti/si + tj/sj .

In general, the wave-front schedule is

time =
d∑

k=1

tk/sk

The other key idea is that we cannot change the original scanning order without a

new projection even though we know what tiles need to be visited and a set of param-

eterized spanning vectors whose linear combination can express any point in a space.

Note that this is true even with conventional loop generation algorithms. We do not

have a mechanism to compute a projection by a non-integer matrix. Therefore, we can

specify the time at which a tile needs to be executed but the schedule itself cannot be

used to transform the space.

Our approach uses the original scanning order, and computes the last tile index using

the schedule. For our running example, we use the outer loop of the original tile-loops,

84

and compute tj using tj = (time− ti/Si) ∗ Sj . The bounds of tj are used for checking

the validity of a tile. Now, the only necessary information is its time stamp. We use the

time stamp of the first tile as starting time and that of the last tile as ending time stamp.

We iterate over time and the original tile-loops with appropriate processing will visit all

the tiles that need to be executed for a given time stamp.

8.2 Generation Algorithm

The main target input to our algorithm is a set of perfectly nested parameterized tile-

loops. This is not a severe restriction and the algorithm can be be applied to any sets

of perfectly nested affine loops. A loop at depth k is denoted by an iterator tk, a lower

and upper bounds lbk and ubk, respectively, and a step size sk. The maximum depth of

the loops being considered is d. Note that we are interested only in tile-loops, not point

loops. We first compute the first tile by

t1 = lb1, t2 = lb2(t1), · · · , td = lbd(t1, . . . , td−1)

Similarly, we compute the last tile

t1 = ub1, t2 = ub2(t1), · · · , td = ubd(t1, . . . , td−1)

Now, we compute the first and last time stamp from these two tiles using the sched-

ule. We assume that the first and last tile in the original tile-loops will be executed at

the first and last time stamp, respectively. Most applications that require wave-front

scheduling, such as LU and Cholesky decomposition and stencil computations, satisfy

this assumption. Also, it is unlikely for this assumption to be violated from the fact that

the loops need to be fully permutable for parameterized tiling with hyper-rectangular

shape.

Now, we construct a loop that scans all the time stamps between the first and last

time stamps. We denote this loop as (time, start, end, 1). We directly use the input loop

85

Input: AST - perfectly nested loops up to depth d, a loop Lk at depth k consists of
iterator tk, lower bound lbk, upper bound ubk and step size sk

1: for k= 1 to d do
2: print "tk ← lbk"
3: end for
4: print "start← t1/s1 + · · ·+ td/sd"
5: for k= 1 to d do
6: print "tk ← ubk"
7: end for
8: print "end← t1/s1 + · · ·+ td/sd"
9: print loop(time, start, end, 1)

10: for k=1 to d-1 do
11: print Lk

12: end for
13: print "td = (time− (t1/s1 + · · ·+ td−1/sd−1))× sd"
14: print a guard whose condition is (lbd ≤ td) ∧ (td ≤ ubd) and whose body of Ld as

its body

Figure 8.2: Generation algorithm for wave-front scheduling of parameterized tiled loops

nest except the innermost loop. The innermost loop will be replaced by the following

assignment statement

td =

(
time−

d−1∑
k=1

tk/sk

)
× sd

and a guard whose condition is

lbd ≤ td ∧ td ≤ ubd

and where body is the loop body of the original loop nest.

The algorithm is presented in Figure 8.2. One can easily replace the scheduling

equation with a different one, if so desired.

The outermost loop in the original parameterized tiled loops can be marked as a

parallel loop given that wave-front scheduling is legal. Furthermore, any loops that are

from the original tile-loops can be marked as parallel.

86

f o r (ti = 0 ; ti ≤M + N ; ti+ = si)
f o r (tj = max(0, shift_up(ti −M − sj + 1, sj)) ; tj ≤ min(ti + si − 1, N) ; tj+ = sj)

f o r (i = max(0, ti) ; i ≤ min(M + N, ti + si − 1) ; i++)
f o r (j = max(0, i−M, tj) ; j ≤ min(i, N, tj + sj − 1) ; j++)

S1 (i , j) ;

Figure 8.3: A simplified parameterized tiled loop for the example in Figure 8.1; the
actual loop body is replaced by a macro for brevity; the loop body is irrelevant to the
generation algorithm

8.3 Algorithm Walk-through

The simplified tiled loops for the example in Figure 8.1 is given in Figure 8.3. Now, we

apply our algorithm to these loops. Note that we are interested in only tile loops, i.e., up

to depth 2 for this loop nest.

First we compute the first tile by assigning the lower bound for each loop. So, ti = 0

and tj = max(0, shift_up(ti −M − sj + 1, sj)). For this, we construct a statement

computing the first time stamp start by ti/si + tj/sj . Note that we are generating code,

not executing code. Similarly, we generate the assignment for the last tile origin by

taking upper bounds by

ti = shift_down(M +N, si), tj = shift_down(min(ti + si − 1, N), sj)

Note that the upper bounds may not be a multiple of tile size for a given depth. Similarly,

we create a statement for assigning end by the time stamp of this last tile. These are from

line 1 to 8 in Figure 8.4.

Now, we construct a loop using a new iterator time. Its lower bound is start, and

its upper bound end. The step size is 1. This loop iterates over “time” of the wave-front

schedule. Then, we construct a loop nest that scans all the tiles for a given time. We

take the outermost loop directly, but the tj loop becomes a statement and a guard. The

scheduling equation provides an equation for tj from a given ti and time. The loop

bounds of tj in the original loop give the precise condition for the valid range of tj . The

body of tj loop will be the body of this new guarded statement.

87

ti = 0 ; tj = max(0, shift_up(ti −M − sj + 1, sj));
start = ti/si + tj/sj ;
ti = shift_down(M + N, si); tj = shift_down(min(ti + si − 1, N), sj);
end = ti/si + tj/sj ;
f o r (time = start ; time ≤ end ; time++)

f o r (ti = 0 ; ti ≤M + N ; ti+ = si)
tj = (time− ti/si)× sj

i f (max(0, shift_up(ti −M − sj + 1, sj)) ≤ tj ∧ tj ≤ min(ti + si − 1, N))
f o r (i = max(0, ti) ; i ≤ min(M + N, ti + si − 1) ; i++)

f o r (j = max(0, i−M, tj) ; j ≤ min(i, N, tj + sj − 1) ; j++)
S1 (i , j) ;

Figure 8.4: Transformed loop nest for wave-front scheduling from the parameterized
tiled loops in Figure 8.3

The final code produced by our algorithm is given in Figure 8.4.

8.4 Experimental Results

We first measure the loop overhead of the restructured tiled loops against the original

tiled loops. For this, we replace the loop body by simple counters. We do this because

the data locality aspect does not affect the loop overhead. Due to parallel execution, data

locality of the restructured program is worse than that of the original program.

Then, we evaluate the efficiency of our generated code using OpenMP on multi-core

machines. Since there are no available tools for executing parameterized tiled program

with wave-front scheduling, we compare with tiled programs with constant tile sizes.

We performed our experimentation on four well-known kernels. The characteristics

of these four kernels are given in Table 8.1. We compiled all the code with gcc 4.4.2

and ran all the code on an Intel eight-core (two Intel Xeon E5450 Quad Core) machine

running at 3.0 GHz with 6MB L2 Cache and 16GB memory.

Figure 8.5 shows the loop overhead of three kernels between before and after loop

restructuring for wave-front scheduling. The overhead due to transformations is not

significant.

Figure 8.6 shows the total execution time of MultiTriSolver and Gauss-Seidel stencil

computation. MultiTriSolver consists of independent triangular system solvers, so it has

88

Description Perfectly
nested

Program
Parameters

Wave-front
needed

MultiTriSolver Multiple triangular linear
systems solver

No M=3000,N=2000 No

LU LU decomposition without
pivoting

No N=3000 Yes

Cholesky Cholesky decomposition No N=3000 Yes
Seidel Gauss Seidel style stencil

computation on 2d data
Yes TMAX=1000,

NX/NY=2000
Yes

Table 8.1: Four benchmarks for the evaluation of the restructured parameterized tiled
loop nest for parallel execution on shared memory systems

8 16 32 64 128 256 512

Loop Overhead Comparison: Original vs. Transformed

Tile Sizes

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
1

2
3

4
5

6
7

Seidel (Orig)
Seidel (Trans)
LU (Orig)

LU (Trans)
Cholesky (Orig)
Cholesky (Trans)

Figure 8.5: Loop overhead comparison between before/after loop restructuring

89

1 2 3 4 5 6 7 8

Comparison of Execution time on MultiTriSolver

Number of Cores

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
5

10
15

20
25

30
35

Pluto
ClooG
Omega

ParWave
ParWave (Split)

1 2 3 4 5 6 7 8

Comparison of Execution time on Seidel

Number of Cores

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
20

40
60

80

Pluto
ClooG
Omega

ParWave
ParWave(Split)

Figure 8.6: Total execution time of Multiple triangular solver and Gauss-Seidel stencil
computation. All the loops in fixed tile size code are tiled with 16× 16× 16. ParWave
is parameterized tiled code without splitting full tiles, and ParWave(Split) with splitting
full tiles

synchronization-free parallelism. So this kernel does not require the wave front schedul-

ing, and therefore the original parameterized tiled loops are used without restructuring.

We generated three reference codes using Pluto [14], CLooG, Omega. We generated

code from Pluto with option -tile and -parallel, and tile sizes were fixed to 16× 16× 16.

We directly used the generated code without any modification. Note that Pluto does not

always choose wave-front scheduling for parallelization. In order to obtain code with

wave-front scheduling, we generated code using CLooG and Omega with the same tile

sizes. We used (t1, t2, t3 → t1+t2+t3, t1, t2) as a transformation on tiles, and this trans-

formation provides the most similar code to our restructured parameterized tiled code.

We generated two versions of code using our technique: one without full-tile splitting

(ParWave) and the other with splitting (Parwave(Split)). The restructuring process is

same, but the starting parameterized tiled loops are different. Our approach provides

comparable performance to the fixed size tiling with skewing transformation, but the

tile sizes remain as runtime parameters.

Figure 8.7 shows the total execution time of LU and Cholesky. We generate code

90

1 2 3 4 5 6 7 8

Comparison of Execution time on LU

Number of Cores

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
5

10
15

Pluto
Omega

ParWave
ParWave (Split)

1 2 3 4 5 6 7 8

Comparison of Execution time on Cholesky

Number of Cores

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
2

4
6

8
10

12 Pluto
Omega

ParWave
ParWave (Split)

Figure 8.7: Total execution time of Cholesky and LU. All the loops in fixed tile size
code are tiled with 48× 48× 48. ParWave is parameterized tiled code without splitting
full tiles, and ParWave(Split) with splitting full tiles

from Omega using option 2 for LU. Omega does not generate a correct code with option

3 from our specification of LU.

Overall, the wave-front scheduling of parameterized tiled code delivers comparable

performance and even better for some cases. Our technique not only enables paralleliza-

tion but also provide competitive performance.

91

Chapter 9

Conclusions and Future Work

Tiling transformation facilitates many important optimizations: data locality optimiza-

tion, coarse-grained parallelism, and vectorization. Existing solutions extract a math-

ematical representation of loops, compute either its tile space or its tiled space, and

finally regenerate loops from those space. Heavy machinery for generating tiled loop

nests and the complexity of the generated tiled loops has limited its use to optimization

experts and advanced optimizing compilers. We achieve a solution where tiled loops are

produced by processing original loop nests directly and syntactically. The techniques

presented in this thesis provide well-structured and hence human-readable parameter-

ized tiled loops with performance comparable to highly optimized complex tiled loops

without any sophisticated mathematical libraries. In addition to the ability of restruc-

turing parameterized tiled loops for wave-front scheduling, our collection of techniques

retains all the positive attributes of the simple technique that is used to generate tiled

loop nested from rectangular iteration space with hyper-rectangular tile shape: gener-

ation of parameterized, fixed and mixed—where some tile sizes are fixed and others

remain parameters—tiled loops within a single framework, generation efficiency (no

worst-case exponential complexity), scalable multi-level tiled loop generation, and sep-

aration of full tiles from the others.

Although we achieve a solution for tiled loop generation problem without any poly-

92

hedral operations, our techniques greatly benefit from many intuitions and concepts

based on the polyhedral model, specially from those in the techniques for generating

loops from polyhedra.

The problem addressed in this thesis is limited to the tiled loop generation, not the

whole aspect of tiling. One important direction of future research is generating complete

tiled code with both the tiled loops and the appropriately transformed loop body for

particular optimization, such as register tiling, vectorization and parallelization using

accelerators. Another interesting direction is developing an auto-tuning framework for

tile size selection and incorporation of this technique into iterative compilers.

93

REFERENCES

[1] Anant Agarwal, David A. Kranz, and Venkat Natarajan. Automatic partitioning
of parallel loops and data arrays for distributed shared-memory multiprocessors.
IEEE Trans. Parallel Distrib. Syst., 6(9):943–962, 1995.

[2] Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Synthesizing transforma-
tions for locality enhancement of imperfectly-nested loop nests. Int. J. Parallel
Program., 29(5):493–544, 2001.

[3] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures:
A Dependence Based Approach. Morgan Kaufman, San Francisco, 2002.

[4] S. Amarasinghe. Parallelizing Compiler Techniques Based on Linear Inequalities.
PhD thesis, Stanford University, 1997.

[5] Saman P. Amarasinghe and Monica S. Lam. Communication optimization and
code generation for distributed memory machines. In PLDI ’93: Proceedings
of the ACM SIGPLAN 1993 conference on Programming language design and
implementation, pages 126–138, New York, NY, USA, 1993. ACM Press.

[6] Corinne Ancourt and Francois Irigoin. Scanning polyhedra with DO loops. In
Proceedings of the 3rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 39–50, April 1991.

[7] Rumen Andonov, Stephan Balev, Sanjay V. Rajopadhye, and Nicola Yanev. Opti-
mal semi-oblique tiling. IEEE Trans. Parallel Distrib. Syst., 14(9):944–960, 2003.

[8] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Quaderno 457, Dipartimento di Matematica, Università di
Parma, Italy, 2006.

[9] Muthu Manikandan Baskaran, Albert Hartono, Sanket Tavarageri, Thomas Hen-
retty, J. Ramanujam, and P. Sadayappan. Parameterized tiling revisited. In
IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), April 2010.

94

[10] C. Bastoul. Code generation in the polyhedral model is easier than you think. In
PACT’13 IEEE International Conference on Parallel Architecture and Compila-
tion Techniques, pages 7–16, Juan-les-Pins, september 2004.

[11] C. Bastoul, A. Cohen, A. Girbal, S. Sharma, and O. Temam. Putting polyhedral
loop transformations to work. Technical Report 4902, INRIA Rocquencourt, 2003.

[12] Ganesh Bikshandi, Jia Guo, Daniel Hoeflinger, Gheorghe Almasi, Basilio B.
Fraguela, Maria J. Garzaran, David Padua, and Christoph von Praun. Program-
ming for parallelism and locality with hierarchically tiled arrays. In PPoPP ’06:
Proceedings of the eleventh ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 48–57, 2006.

[13] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Optimizing
matrix multiply using PHiPAC: a portable, high-performance, ANSI C coding
methodology. In Proceedings of the 11th international conference on Supercom-
puting, pages 340–347. ACM Press, 1997.

[14] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical
and fully automatic polyhedral program optimization system. In ACM SIGPLAN
PLDI, June 2008.

[15] Pierre Boulet, Alain Darte, Tanguy Risset, and Yves Robert. (pen)-ultimate tiling?
Integr. VLSI J., 17(1):33–51, 1994.

[16] Steve Carr and R. B. Lehoucq. Compiler blockability of dense matrix factoriza-
tions. ACM Trans. Math. Softw., 23(3):336–361, 1997.

[17] J. Dongarra, G. Bosilca, Z. Chen, V. Eijkhout, GE Fagg, E. Fuentes, J. Langou,
P. Luszczek, J. Pjesivac-Grbovic, K. Seymour, et al. Self-adapting numerical soft-
ware (SANS) effort. IBM Journal of Research and Development, 50(2/3):223,
2006.

[18] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem, Mike
Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken, William J. Dally,
and Pat Hanrahan. Sequoia: programming the memory hierarchy. In Proceedings
of international conference on Supercomputing SC, page 83, 2006.

[19] P. Feautrier. Dataflow analysis of array and scalar references. Int. Journal of
Parallel Programming, 20(1):23–53, 1991.

[20] Paul Feautrier. Parametric integer programming. RAIRO Recherche
Op’erationnelle, 22, 1988.

[21] Etienne Gagnon and Laurie Hendren. An object-oriented compiler framework. In
In Proceedings of TOOLS, pages 140–154, 1998.

95

[22] Georgios Goumas, Maria Athanasaki, and Nectarios Koziris. An efficient code
generation technique for tiled iteration spaces. IEEE Transactions on Parallel and
Distributed Systems, 14(10), October 2003.

[23] Armin Größlinger, Martin Griebl, and Christian Lengauer. Introducing non-linear
parameters to the polyhedron model. In Michael Gerndt and Edmond Kereku, ed-
itors, Proc. 11th Workshop on Compilers for Parallel Computers (CPC 2004), Re-
search Report Series, pages 1–12. LRR-TUM, Technische Universität München,
July 2004.

[24] Albert Hartono, Muthu Manikandan Baskaran, Cédric Bastoul, Albert Cohen, Sri-
ram Krishnamoorthy, Boyana Norris, J. Ramanujam, and P. Sadayappan. Para-
metric multi-level tiling of imperfectly nested loops. In ICS ’09: Proceedings of
the 23rd international conference on Supercomputing, pages 147–157, New York,
NY, USA, 2009. ACM.

[25] Albert Hartono, Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayap-
pan. Dyntile: Parametric tiled loop generation for effective parallel execution on
multicore processors. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS), April 2010.

[26] HiTLoG: Hierarchical Tiled Loop Generator. Available at:
http://www.cs.colostate.edu/MMAlpha/HiTLoG/.

[27] Karin Hogstedt, Larry Carter, and Jeanne Ferrante. Determining the idle time of a
tiling. In POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 160–173, New York, NY, USA,
1997. ACM Press.

[28] F. Irigoin and R. Triolet. Supernode partitioning. In POPL ’88: Proceedings
of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 319–329. ACM Press, 1988.

[29] F. Irigoin and R. Triolet. Supernode partitioning. In 15th ACM Symposium on
Principles of Programming Languages, pages 319–328. ACM, Jan 1988.

[30] Marta Jiménez, José M. Llabería, and Agustín Fernández. Register tiling in non-
rectangular iteration spaces. ACM Trans. Program. Lang. Syst., 24(4):409–453,
2002.

[31] Marta Jiménez, José M. Llabería, and Agustin Fernández. A cost-effective imple-
mentation of multilevel tiling. IEEE Trans. Parallel Distrib. Syst., 14(10):1006–
1020, 2003.

96

[32] W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. In
Frontiers ’95: The 5th Symposium on the Frontiers of Massively Parallel Compu-
tation, McLean, VA, 1995.

[33] DaeGon Kim and Sanjay Rajopadhye. Parameterized tiling for imperfectly nested
loops. Technical Report 09-101, Colorado State University, 2009.

[34] Daegon Kim, Lakshminarayanan Renganarayana, Dave Rostron, Sanjay Rajopad-
hye, and Michelle Mills Strout. Multi-level tiling: m for the price of one. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC), November 2007.

[35] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle. Combined selection of
tile sizes and unroll factors using iterative compilation. In PACT ’00: Proceedings
of the 2000 International Conference on Parallel Architectures and Compilation
Techniques, page 237, Washington, DC, USA, 2000. IEEE Computer Society.

[36] P. M. W. Knijnenburg, T. Kisuki, and M. F. P. O’Boyle. Iterative compilation.
In Embedded processor design challenges: systems, architectures, modeling, and
simulation-SAMOS, pages 171–187. Springer-Verlag New York, Inc., New York,
NY, USA, 2002.

[37] Monica S. Lam and Michael E. Wolf. A data locality optimizing algorithm (with
retrospective). In Best of PLDI, pages 442–459, 1991.

[38] H. Le Verge, V. Van Dongen, and D. Wilde. La synthèse de nids de boucles avec la
bibliothèque polyédrique. In RenPar‘6, Lyon, France, Juin 1994. English version
“Loop Nest Synthesis Using the Polyhedral Library”in IRISA TR 830, May 1994.

[39] H. Le Verge, V. Van Dongen, and D. Wilde. Loop nest synthesis using the poly-
hedral library. Technical Report PI 830, IRISA, Rennes, France, May 1994. Also
published as INRIA Research Report 2288.

[40] Amy W. Lim, Gerald I. Cheong, and Monica S. Lam. An affine partitioning al-
gorithm to maximize parallelism and minimize communication. In International
Conference on Supercomputing, pages 228–237, 1999.

[41] Amy W. Lim, Shih-Wei Liao, and Monica S. Lam. Blocking and array contraction
across arbitrarily nested loops using affine partitioning. In PPoPP ’01, pages 103–
112, New York, USA, 2001. ACM Press.

[42] David K. Lowenthal. Accurately selecting block size at runtime in pipelined par-
allel programs. Int. J. Parallel Program., 28(3):245–274, 2000.

[43] N. Mitchell, N. Hogstedt, L. Carter, and J. Ferrante. Quantifying the multi-
level nature of tiling interactions. International Journal of Parallel Programming,
26(6):641–670, 1998.

97

[44] Dimitrios S. Nikolopoulos. Dynamic tiling for effective use of shared caches on
multithreaded processors. International Journal of High Performance Computing
and Networking, pages 22 – 35, 2004.

[45] PolyLib: A library of polyhedral functions. Available at:
http://icps.u-strasbg.fr/PolyLib/.

[46] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G. A. Silber, and N. Vasilache. Graphite:
Loop optimizations based on the polyhedral model for gcc. In Proc. of the 4th
GCC Developper’s Summit, pages 179–198, June 2006.

[47] W. Pugh. Omega test: A practical algorithm for exact array dependency analysis.
Comm. of the ACM, 35(8):102, 1992.

[48] Markus Puschel, Jose M. F. Moura, Bryan Singer, Jianxin Xiong, Jeremy Johnson,
David Padua, Manuela Veloso, and Robert W. Johnson. SPRIALl: A generator for
platform-adapted libraries of signal processing algorithms. Int. J. High Perform.
Comput. Appl., 18(1):21–45, 2004.

[49] Fabien Quilleré;, Sanjay Rajopadhye, and Doran Wilde. Generation of effi-
cient nested loops from polyhedra. International Journal Parallel Programming,
28(5):469–498, 2000.

[50] J. Ramanujam and P. Sadayappan. Tiling multidimensional itertion spaces for
multicomputers. J. Parallel Distrib. Comput., 16(2):108–120, 1992.

[51] Lakshminarayanan Renganarayanan, Manjukumar Harthi-kote, Rinku Dewri, and
Sanjay Rajopadhye. Towards optimal multi-level tiling for stencil computa-
tions. In 21st IEEE International Parallel and Distributed Processing Symposium
(IPDPS) (to appear), 2007.

[52] Lakshminarayanan Renganarayanan, DaeGon Kim, Sanjay Rajopadhye, and
Michelle Mills Strout. Parameterized tiled loops for free. In PLDI ’07: ACM SIG-
PLAN Conference on Programming Language Design and Implementation, pages
405–414, New York, NY, USA, 2007. ACM Press.

[53] Gabriel Rivera and Chau-Wen Tseng. Locality optimizations for multi-level
caches. In Supercomputing ’99: Proceedings of the 1999 ACM/IEEE conference
on Supercomputing (CDROM), page 2, New York, NY, USA, 1999. ACM Press.

[54] Richard Vuduc, James W. Demmel, and Katherine A. Yelick. OSKI: A library of
automatically tuned sparse matrix kernels. In Proceedings of SciDAC 2005, Jour-
nal of Physics: Conference Series, San Francisco, CA, USA, June 2005. Institute
of Physics Publishing.

98

[55] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra soft-
ware. In Proceedings of the 1998 ACM/IEEE conference on Supercomputing
(CDROM), pages 1–27. IEEE Computer Society, 1998.

[56] R. P. Wilson, Robert S. French, Christopher S. Wilson, S. P. Amarasinghe, J. M.
Anderson, S. W. K. Tjiang, S-W. Liao, C-W. Tseng, M. W. Hall, M. S. Lam,
and J. L. Hennessy. SUIF: An infrastructure for research on parallelizing and
optimizing compilers. SIGPLAN Notices, 29(12):31–37, 1994.

[57] Jingling Xue. Loop Tiling For Parallelism. Kluwer Academic Publishers, 2000.

99

