
Santa Clara University
Scholar Commons

Engineering Ph.D. Theses Student Scholarship

3-21-2017

Supernode Transformation On Parallel Systems
With Distributed Memory – An Analytical
Approach
Yong Chen
Santa Clara University

Follow this and additional works at: http://scholarcommons.scu.edu/eng_phd_theses

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Student Scholarship at Scholar Commons. It has been accepted for inclusion in
Engineering Ph.D. Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Chen, Yong, "Supernode Transformation On Parallel Systems With Distributed Memory – An Analytical Approach" (2017).
Engineering Ph.D. Theses. 8.
http://scholarcommons.scu.edu/eng_phd_theses/8

http://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/student_scholar?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_phd_theses/8?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Supernode Transformation On Parallel Systems With
Distributed Memory

 – An Analytical Approach

By

Yong Chen

Dissertation

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Engineering
in the School of Engineering at
Santa Clara University, 2017

Santa Clara, California

 ii

Acknowledgements

This dissertation, and my entire Ph.D. study, could have not been completed without the

tremendous support from my family. The continued encouragement from my wife and my

parents made the completion of my study possible.

Dr. Shang, my advisor, has been patiently providing suggestions, direction and guidance for my study.

Countless discussions, reviews ensured the progress of my study and the publication of the papers.

My doctoral committee members, Dr. Amer, Dr. Fang, Dr. Figueira, Dr. Tran, provided invaluable

feedback that helped improve my study greatly.

 iii

Supernode Transformation On Parallel Systems With
Distributed Memory

– An Analytical Approach

Yong Chen

Department of Computer Engineering

Santa Clara University
Santa Clara, California

2017

ABSTRACT

 Supernode transformation, or tiling, is a technique that partitions algorithms to

improve data locality and parallelism by balancing computation and inter-processor

communication costs to achieve shortest execution or running time. It groups multiple

iterations of nested loops into supernodes to be assigned to processors for processing in

parallel. A supernode transformation can be described by supernode size and shape. This

research focuses on supernode transformation on multi-processor architectures with

distributed memory, including computer cluster systems and General Purpose Graphic

Processing Units (GPGPUs). The research involves supernode scheduling, supernode

mapping to processors, and the finding of the optimal supernode size, for achieving the

 iv

shortest total running time. The algorithms considered are two nested loops with regular

data dependencies. The Longest Common Subsequence problem is used as an illustration.

A novel mathematical model for the total running time is established as a function of the

supernode size, algorithm parameters such as the problem size and the data dependence,

the computation time of each loop iteration, architecture parameters such as the number

of processors, and the communication cost. The optimal supernode size is derived from

this closed form model. The model and the optimal supernode size provide better results

than previous researches and are verified by simulations on multi-processor systems

including computer cluster systems and GPGPUs.

 1

TABLE OF CONTENTS

1.	
 INTRODUCTION	
 ..	
 4	

2.	
 RELATED	
 WORK	
 ...	
 7	

2.1	
 SUPERNODE	
 SCHEDULING,	
 SIZE	
 AND	
 SHAPE	
 ...	
 8	

2.2	
 THE	
 POLYHEDRAL	
 MODEL	
 AND	
 AFFINE	
 TRANSFORMATION	
 ...	
 10	

2.3	
 SCHEDULING	
 WITH	
 FIXED	
 PROCESSORS	
 ..	
 11	

2.4	
 FOCUS	
 OF	
 THIS	
 RESEARCH	
 ...	
 14	

3.	
 MODELS	
 AND	
 TERMINOLOGY	
 ...	
 15	

3.1	
 ALGORITHM	
 MODEL	
 ..	
 15	

3.2	
 ARCHITECTURE	
 MODELS	
 ..	
 17	

3.2.1	
 Computer	
 Cluster	
 Systems	
 ..	
 18	

3.2.2	
 GPGPUs	
 ..	
 18	

3.3	
 LINEAR	
 SCHEDULING	
 ..	
 20	

3.3.1	
 Example	
 of	
 the	
 LCS	
 problem	
 scheduling	
 on	
 GPGPU	
 ..	
 22	

3.4	
 SUPERNODE	
 TRANSFORMATION	
 ON	
 MULTI-­‐PROCESSOR	
 SYSTEM	
 WITH	
 	
 PROCESSORS	
 	
 22	

4.	
 TOTAL	
 EXECUTION	
 TIME	
 WITH	
 SUPERNODE	
 TRANSFORMATION	
 	
 27	

5.	
 SUPERNODE	
 TRANSFORMATION	
 ON	
 COMPUTER	
 CLUSTERS	
 	
 32	

5.1	
 LEMMAS	
 AND	
 THEOREM	
 ...	
 33	

5.1.1	
 Lemma	
 A1	
 ..	
 33	

5.1.2	
 Lemma	
 A2	
 ..	
 34	

5.1.3	
 Lemma	
 A3	
 ..	
 34	

5.1.4	
 Theorem	
 ..	
 35	

5.2	
 SIMULATION	
 ...	
 35	

6.	
 SUPERNODE	
 TRANSFORMATION	
 ON	
 GPGPUS	
 ...	
 40	

6.1	
 ANALYTICAL	
 RESULTS	
 ..	
 40	

6.2	
 LEMMAS	
 AND	
 THEOREM	
 ...	
 44	

6.2.1	
 Lemma	
 B1	
 ..	
 45	

6.2.2	
 Lemma	
 B2	
 ..	
 46	

6.2.3	
 Lemma	
 B3	
 ..	
 46	

6.2.4	
 Theorem	
 ..	
 46	

6.3	
 SIMULATION	
 RESULTS	
 ...	
 47	

6.4	
 RESULT	
 ANALYSIS	
 ...	
 51	

6.5	
 THE	
 SELECTION	
 OF	
 GPGUP	
 ARCHITECTURE	
 MODEL	
 PARAMETER	
 !P 	
 ...	
 52	

7.	
 CONCLUSION	
 ...	
 54	

8.	
 FUTURE	
 WORK	
 ..	
 55	

9.	
 APPENDIX	
 ..	
 56	

9.1	
 APPENDIX	
 A:	
 LEMMAS	
 FOR	
 SUPERNODE	
 TRANSFORMATION	
 ON	
 CLUSTER	
 SYSTEMS	
 	
 56	

9.1.1	
 Lemma	
 A1	
 ..	
 56	

9.1.2	
 Lemma	
 A2	
 ..	
 60	

9.1.3	
 Lemma	
 A3	
 ..	
 60	

9.2	
 APPENDIX	
 B:	
 LEMMAS	
 FOR	
 SUPERNODE	
 TRANSFORMATION	
 ON	
 GPGPUS	
 	
 62	

!P

 2

9.2.1	
 Lemma	
 B1	
 ..	
 62	

9.2.2	
 Lemma	
 B2	
 ..	
 65	

9.2.3	
 Lemma	
 B3	
 ..	
 66	

9.3	
 APPENDIX	
 C:	
 SOURCE	
 CODE	
 OF	
 SUPERNODE	
 TRANSFORMATION	
 ON	
 COMPUTER	
 CLUSTER	

SYSTEMS	
 ..	
 68	

9.3.1	
 Code	
 Running	
 on	
 the	
 Master	
 Computer	
 ..	
 68	

9.3.2	
 Code	
 Running	
 on	
 the	
 Computing	
 Nodes	
 ...	
 89	

9.3.3	
 Include	
 File	
 ..	
 94	

9.4	
 APPENDIX	
 D:	
 CODE	
 ON	
 GPGPUS.	
 ...	
 99	

10.	
 REFERENCES	
 ..	
 124	

 3

List of Figures

Figure 1: A Uniform Dependence Algorithm.	
 9	

Figure 2: Column-wise cyclic distribution of rectangular tiles on limited processors.	
 13	

Figure 3: A typical GPGPU memory hierarchy.	
 20	

Figure 4: The ten wavefronts of the linear schedule vector [1,1].	
 21	

Figure 5: Two dimensional uniform dependence algorithm iteration space.	
 24	

Figure 6: Iteration space after supernode transformation.	
 25	

Figure 7: Total execution times for different values of (m,n) on cluster.	
 38	

Figure 8: A LCS Supernode of size !w x h and its dependent nodes.	
 42	

Figure 9: Total execution times of the LCS problem on GPGPU.	
 49	

Figure 10: On a cluster system, the total execution time for a two-dimensional uniform

dependence algorithm !T is convex.	
 58	

 4

1. Introduction

 Supernode partitioning, or tiling, is a transformation technique that groups a number of

iterations in a nested loop in order to improve data locality and parallelism, thus

ultimately improving execution performance on multi-processor systems. This paper

addresses the problem of applying supernode transformation on multi-processor systems

with distributed memory, including computer clustering system and the General Purpose

Graphic Processing Units (GPGPUs), especially on finding the optimal supernode size to

minimize the total running time.

 In a parallel system with multiple processors, the total running time consists of two

parts: the computation time and the communication time. An algorithm can be partitioned

into supernodes or tiles where each supernode is assigned to one processor for parallel

execution. If the supernode is too small (or too large), the communication time (or

computation time) will dominate and the total running time is not minimized due to non-

optimal data locality and parallelism. Finding the optimal supernode size to achieve

optimized locality to minimize the total running time is critical in supernode

transformation.

 The algorithms considered in this paper are nested loops with regular data

dependencies or uniform dependencies [5]. Such an algorithm can be described by its

iteration index space consisting of all iteration index vectors of the loop nest, and a

dependence matrix, consisting of all uniform dependence vectors as its columns. The

Longest Common Subsequence Problem, the LCS problem [2], which has found wide

applications, such as in bioinformatics or in computer science, is used to illustrate how to

use supernode transformations to minimize the total running time.

 5

 The multi-processor architectures considered in this paper are computer cluster

systems and the GPGPUs. A computer cluster consists of a set of loosely or tightly

connected computers that work together to form a single computational unit. The

computers of a cluster are usually connected to each other through fast local area

networks. The clusters are formed to improve performance and availability over that of a

single computer while still being much more cost-effective than single computers.

 Another important computer architecture considered is the GPGPU system. Inside each

GPGPU, there are multiple streaming multi-processors (SMs), each SM contains multiple

cores for concurrent operations and these cores share a cache on the same chip. Then the

SMs are connected at high level and share a global memory of a much larger size but

with a much slower access speed.

 The basic approach in this paper is as follows. Given an algorithm with two nested

loops and a multi-processor distributed memory architecture with a fixed number of

processors or GPGPU SMs, model for the total running time is established. This total

running time is expressed as a function of the supernode size, algorithm parameters, such

as the problem size and data dependence, the computation time of each loop iteration,

architecture parameters, such as the number of processors/GPGPU SMs, and the

communication cost. This estimated expression of the total running time is a convex

function with two variables. By working on the derivatives, the optimal supernode size

can be estimated.

 The contributions of this research are as follow. For algorithms with two nested loops

and regular dependences, a novel mathematical model for the total running time on multi-

processor distributed memory systems is established, the model is closed form by

 6

dividing solution space into three sub spaces. The total running time is expressed as a

function of the supernode size, algorithm parameters such as the problem size and data

dependence, the computation time of each loop iteration, architecture parameters such as

the number of the computing nodes in cluster system, or the number of GPGPU blocks,

and the communication cost. The optimal supernode size is obtained based on this model.

This optimal supernode size leads to significant performance improvement than without

using optimal supernode size, due to optimized locality, it leads to much better results

than previous research.

 The rest of this research report is organized as following. Section 2 summarizes the

related work that has been done in the area of supernode transformation. Section 3

presents the algorithm and architecture models. Section 4 shows how the mathematical

models of total running time for supernode transformation are established. Section 5

discusses how to obtain the optimal supernode size for the cluster system. Section 6

presents analytical and simulation results for the GPGPU architecture. Section 8 provides

future work direction and section 9 contains additional information as appendix.

 7

2. Related Work

 Irigoin and Troilet [4] proposed the supernode partitioning technique for

multiprocessors in 1988 as a new restructuring method. The idea was to combine multiple

loop iterations of perfectly nested DO loops in order to provide vector statements, parallel

tasks, and data reference locality. They first defined hyperplane partitioning, then

generalized it to partitioning with multiple hyperplanes. They gave conditions for valid

partitioning, and other reasonable constraints on supernodes to ensure the supernodes

were: 1) atomic, each tile is a unit of computation, all synchronization points are

beginnings and ends of tiles; 2) identical, this is to allow for automatic code generation;

3) bounded, the number of points inside a tile to be bounded by a constant independent of

the domain size. They only briefly discussed the choice of parameters of supernode

partitioning. They noted that supercomputer architectures were too intricate to derive

analytical expression for the partitioned program execution time. They listed a number of

possible optimization goals, noting that these goals were often conflicting.

 Since then, researchers have studied supernode transformation in different contexts.

The research has been mostly focused on the model of the supernode transformation and

how to use the model to construct the optimal supernode transformation. In general,

supernode transformations can be described by the size, the shape and the relative ratio of

the sides of each supernode. The communication cost can be modeled either as a constant

where the start-up time dominates or as a linear function of the message size. To

construct an optimal supernode transformation for a general algorithm with any convex

index set, any dependence structure, and a general architecture is difficult or sometimes

impossible. So researchers tried special cases. Also, the optimal solution is quite different

 8

for the case where the number of processor cores is unlimited and the case where that

number is given and fixed. Following paragraphs summarize the research development in

supernode transformation.

2.1 Supernode Scheduling, Size and Shape

 Scheduling is one of the challenging problems in the parallel computing, hence lots of

research on it. But even without supernode transformation, finding the optimal

scheduling is hard. Sinharoy and Szymanski in [9] presented efficient algorithms for

finding the optimum wavefront and for partitioning the optimum wavefront into sections

to be assigned to arbitrary large array of processors. Their algorithms can be used for one

or higher dimensional processor arrays. But these algorithms are complex even for a two-

dimension array computation.

 Shang and Fortes in [5] addressed the problem of identifying optimal linear schedules

for uniform dependence algorithms to minimize their execution time. An algorithm can

be thought of as a set of indexed computations. A uniform dependence algorithm is

defined as an algorithm whose dependence vectors are uniform, where the data

dependence vector is the difference of indexes where a variable is used and where that

variable is generated. Figure 1 shows an example of a two-dimensional uniform

dependence algorithm where each node is an indexed computation, the dependence

vector is
!!
D= 1 1 0

0 1 1
⎛

⎝⎜
⎞

⎠⎟
, the dashed lines are wavefronts on which computations are

 9

independent of each other. They proposed procedures to find optimal linear schedules

based on the mathematical solution of a nonlinear optimization problem.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Figure 1: A Uniform Dependence Algorithm

 Hodzic and Shang in [1,11] presented an execution of tiles for uniform dependence

algorithms using linear scheduling under the condition of largely enough processors

available, where each processor executes all tiles along a specific dimension, with non-

overlapping communication and computation phases. They discussed optimal supernode

size and shape with a few interesting findings. First, they found the optimal supernode

size is the ratio of the communication cost over the computation cost of one iteration of

the original loop. Secondly, the supernode shape is a function of the cone spanned by all

dependence vectors. Thirdly, the ratio of the lengths of supernode sides should be such

that the index set after the supernode transformation should have equal side lengths.

Based on their method, the optimal supernode transformation can be found for !n

dimensional algorithms with at most !n dependence vectors and two-dimensional

algorithms with any number of dependence vectors.

j

 10

 In [27] Goumas et al. tried to improve the overall execution time of nested FOR-loops

by using a modified linear scheduling, and by mitigating communication overhead by

efficiently overlapping the communication and computation phases. They used Direct

Memory Access (DMA) engines and network interfaces (NICs) that can work in parallel

with the CPUs.

 While Goumas’s method applied to a cluster of single CPUs, Athanasaki et al. in [14]

extended it to a cluster of symmetric multiprocessors (SMP nodes). They grouped

together neighboring tiles along a hyperplane and these tiles are concurrently executed by

the CPUs of the same SMP node, taking advantage of the fact that there is no need for tile

synchronization and communication between intra-node CPUs.

2.2 The Polyhedral model and Affine Transformation

 The Polyhedral Model is a mathematical framework for affine loop nest analysis and

optimization [30,31,32]. It treats an instance of a statement in the loop as an integer point

or lattice point in the space called polyhedron. The affine transformations on polytope,

based on Linear Algebra and Integer Linear Programming, cause a sequence of complex

loop transformations aiming for the improvements such as parallelism and data locality.

Supernode transformation or tiling, as one of the key transformations, fits in this model

well: it improves data locality by grouping points in the iteration space into supernodes

that can be loaded in cache of processors for easy and fast reuse. It also improves

parallelism by partitioning the iteration space into independent supernodes that are

executed concurrently and atomically on processors, thus reducing communication. In

 11

[37,38], Lim et al. proposed an algorithm to find the optimal affine partition that

maximizes the degree of parallelism with the minimum communication in programs with

arbitrary loop nests and affine data accesses, and used this algorithm for blocking to

improve data locality. In [39] Ahmed et al. presented an approach for synthesizing

transformations to enhance locality in imperfectly nested loop via affine embedding

functions. In [33] Bondhugula et al. presented an end-to-end automatic integer linear

optimization framework that finds good ways of supernode transformation in polyhedral

model for parallelism and locality using affine transformations. The key part is to create

an affine form cost function that represents the number of hyperplanes the dependence

traverses along the hyperplane normal. This cost function is a measurement of reuse

distance and also the communication cost if the hyperplane is used to generate

supernodes for parallelization and used as a processor space dimension. By minimizing

this cost function, they found supernode (or tiling) hyperplanes that not only minimize

reuse distances and improve data locality, but also minimize communication volume thus

improving parallelism.

2.3 Scheduling with Fixed Processors

 While many researches assumed unlimited number of processors or SMP nodes

available [1,11,14], this assumption does not hold true in practice. The servers nowadays

have fixed or limited number of cores, GPGPUs have limited number of SMs. For this

reason, researchers studied supernode transformation with fixed processors.

 Ohta et al. in [26] discussed the tile scheduling with limited number of physical

 12

processors. When there are P processors available and interconnected as a ring, a

computation domain of two-dimensional rectangle of size !M x N can be partitioned into

rectangular !w x h tiles with tiles’ edges parallel to the axes, when the dependence vector

after the tile transformation is
!
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
, the best mapping of tiles is as follows: tiles are

assigned via column-wise cyclic distribution, that is, tile (i, j) is allocated to processor

!!j mod P . The execution starts with processor !!P0 at tile (0,0), after the computation, the

result is sent to the adjacent processor !!P1 , then concurrently !!P0 computes tile (0,1) and

!!P1 computes tile (1,0), and this process continues, until !!P0 finishes all the tiles on column

0, then it moves to column !P and continues computation. The column-wise processor

assignment is shown in Figure 2.

 Based on this scheduling and mapping, Ohta et al. further derived the optimal tile size

as follows, assuming non-overlapping computation and communication phases:

!!
(w ,h)= (M

P
, Na
Mt

) ,
!!
Topt = (N(Mt

P
+b)+ aP)2 (
 1	
)

where !P denotes number of processors, !t denotes the computation time per iteration,

and !a is the communication startup time and !b being the coefficient of message size,

linear to !h .

 Apparently, the cyclic column-wise assignment makes sense due to its load-balancing

tile distribution. In [15], Calland et al. demonstrated cyclic column-wise assignment is

the best solutions among all possible distributions of tiles to physical processors for a

two-dimensional computation domain, with the condition that the computation cost of a

tile is greater than its communication cost. They further improved the scheduling and

 13

execution time by overlapping communication and computation phases.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Figure 2: Column-wise cyclic distribution of rectangular tiles on limited physical
processors. Assuming P=3. Processor !!P0 finishes column 0, then moves to column 3.

 But the cyclic column-wise assignment not only has the restriction that the

computation cost of a tile needs be greater than its communication cost, it also does not

provide the best solution in case of heterogeneous computing platforms. Boulet et al. in

[17] handled this problem by aiming at load-balancing the work while not introducing

idle time. They presented efficient scheduling and mapping strategies that are

asymptotically optimal.

 In [16] Athanasaki et al. further proposed four different methods for scheduling tiled

iteration spaces onto a clustered system with a fixed number of SMP nodes, namingly the

cyclic, the mirror, the cluster and the retiling scheduling.

 14

2.4 Focus of This Research

 The cyclic column-wise allocation of processors is regarded as the best scheduling

solution when there are limited processors, due to its load-balancing nature. But as

mentioned earlier, it has one restriction: the computation cost of a supernode has to be

greater than its communication cost. This may not always be true since CPU performance

has been increasing dramatically, especially with the advent of GPGPUs, which has very

powerful computing capability, the computation and communication ratio may become

very small. Let’s take a look at a hypothetical case: assume a computation domain of

!!M x N = 60 x 60 , available processors !!P =6 . Let !!a= 400 , !!b=0 and !!t =1 in (1). Then

based on (1), the optimal !!(w ,h)=
!!
(M
P
, Na
Mt

) = !(10, 20) , and
!!
Topt = (N(Mt

P
+b)+ aP)2

=5400.

 But if the scheduling is wavefront-wise, and if !!(w ,h) != (12,20) , the domain size

becomes !!5 x 3 after transformation. Giving that the longest wavefront is 3, each

wavefront can be processed within one !Ttile since there are more processors than

supernodes on any wavefront, note !
Ttile =Tcomp +Tcomm , !

Tcomp =wht , !Tcomm = a+bh . The

total execution time !T = total_num_of_wavefronts !x Ttile =

!(5+3−1)*(12*20*1+400)= 4480 . This result is less and better than the !!Topt =5400

obtained via cyclic column-wise scheduling. The reason for this better result is the

enhanced data locality.

 15

 The goal of this research is to apply supernode transformation and linear scheduling to

multi-processor system architectures, including computer cluster systems and GPGPUs,

to find the optimal solution that is suitable no matter what the communication and

computation ratio is. The research work involves following areas: linear scheduling, tiles

to computing nodes or GPGPU blocks mapping, total running time model, optimal

supernode size, applied algorithms, cluster system and GPGPU architectures and

simulations. The objective of this research is to minimize the total running time. The total

running time consists of communication time between supernodes and computation time

within supernodes, representing parallelism and data locality respectively. By obtaining

the time optimal solution, we not only improve the data locality and parallelism, but also

optimize locality for an optimal balance between data locality and parallelism thus

achieving optimal result.

3. Models and Terminology

 Models for applications or algorithms, parallel computer systems and the mapping

from the application to the target parallel system are presented in this section. Some

concepts and terms that are necessary to understand this paper are introduced. An

example is presented to illustrate different concepts and ideas throughout the paper.

3.1 Algorithm Model

 16

An algorithm is modeled as a set of indexed computations, and a set of data

dependence. An indexed computation corresponds to a loop iteration in the algorithm.

The dimension of the algorithm !s corresponds to the number of the nested loops in the

algorithm. A data dependence is established if one computation uses data generated by

another computation, and is represented by a dependence vector that is the difference of

two indexes of the computations. In this paper, only algorithms with regular dependence

are considered, and such algorithms are called uniform dependence algorithms where the

dependence vectors are constant. Uniform dependence algorithms can be described by

two parameters !!(J ,D) : !J is the set of all iteration index vectors, !D is a matrix of !s x q

for a !s dimensional algorithm with !q dependences, and each column is a dependence

vector. Detailed description of uniform dependence algorithms can be found in [5].

 The two-sequence LCS problem is used to illustrate the algorithm model and is defined

as following [2]: given two input sequences: !!X = (x1 ,x2...xM) and !!Y = (y1 , y2... yN) with

!M and !N being the sizes of each sequence, the LCS problem is to find the length of the

longest common sequence, denoted as !!LCS(XM ,YN) . For example,

!!LCS("ABCBDAB","BDCABA")= 4 where the longest common subsequence is underlined.

A LCS recursion is presented below where !!LCS(Xi ,Yj) is the length of the longest

common sub sequence of two sub sequences !!X1 ,...Xi and !!Y1 ,...Yj .

 !!

LCS(Xi ,Yj)=
0 if i =0 or j =0
LCS(Xi−1 ,Yj−1)+1 if xi = y j
max(LCS(Xi ,Yj−1), LCS(Xi−1 ,Yj)) if xi ≠ y j

⎧

⎨
⎪⎪

⎩
⎪
⎪

 17

 A dynamic programming algorithm calculating LCS from [10] is shown in (2). This

algorithm has two nested loops. Therefore, the LCS algorithm is two dimensional or

!!s =2 . Each index vector is a two dimensional vector
!

i
j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 corresponding to an iteration

!!(i , j) and
!!
J = i

j
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,1≤ i ≤M ,1≤ j ≤N

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
. There are three data dependence vectors in the

LCS and
!!
D= 1 1 0

0 1 1
⎛

⎝⎜
⎞

⎠⎟
 where each column represents one dependence vector. The

dependence graph is shown in Figure 1 where each point represents an iteration and an

arrow represents a data dependence between two iterations of the algorithm in (2).

Because the LCS has uniform dependence, the dependence graph is regular. The

execution time to process each iteration !!(i , j) is denoted as !tc . Thus the LCS is modeled

by parameters !!(J ,D,M ,N ,tc). 	
 	

!!

for (i =0; i ≤M; i++)
for (j =0; j ≤N; j ++){
if (i ==0|| j ==0)
c[i][j]=0;

else if (x[i]== y[j])
c[i][j]=c[i−1][j −1]+1;

else
c[i][j]=max(c[i][j −1],c[i−1][j]);

}

(2)

3.2 Architecture Models

 18

 In this research, two important multi-processor distributed memory computer

architectures are considered, they are cluster systems and the GPGPUs.

3.2.1 Computer Cluster Systems

First, computer cluster architecture is considered. In a computer cluster system, there

are two types of computers: a master computer and computing computers (also called

computing nodes). The master computer breaks the algorithm into small tasks and sends

them to computing nodes to process in parallel. The master computer manages the cluster

and coordinates computing nodes such as synchronization due to dependence

considerations.

 The number of the computing nodes is modeled as the number of processors, denoted

as the communication time a computing node takes to receive dependent data from

other computing nodes is denoted as !tr , and the time a computing node takes to send

resultant data to other nodes is denoted as !ts . Therefore, a computer cluster system is

modeled by parameters

3.2.2 GPGPUs

Another architecture considered is GPGPUs. GPGPUs employ Single Instruction,

Multiple Thread (SIMT) parallel execution model, where multiple independent threads

execute concurrently using a single instruction, this provides excellent concurrent

processing capability. In 2006, Nvidia developed CUDA programming model to promote

!!P ,

!!(P , tr , ts).

 19

the use of its GPGPUs. At the core of CUDA programming model are three key

abstractions: a hierarchy of thread groups, a memory hierarchy, and barrier

synchronization. A CUDA program launches a grid of blocks, the blocks reside and run

on GPU’s streaming multiprocessors (SMs), and each block contains a group of

concurrent threads. A block can be thought of as a cluster of threads that run

cooperatively while still independently. All threads run the same code with different data,

differentiated by block id and thread id. GPGPUs have a tiered memory hierarchy shown

in Figure 3. Each SM has a large and unified register file and a L1 cache, to be used by

threads privately, and a local memory of low latency called shared memory that is

accessible and shared by all threads within the block running on this SM. This fast shared

memory provides great data locality improvement opportunity for algorithms. A larger

L2 cache is provided and shared among all SMs to service all load and store from/to

global memory. The global memory is a very large memory accessible by all threads but

has high latency. The goal of this research is to obtain optimal execution time for

algorithms by optimizing data locality via optimal use of GPGPU parallel processing

capability and fast on-chip shared memory.

Moving data between threads in a block on a SM and the global memory incurs

significant cost, due to the high latency of global memory. To improve performance, in

addition to the L2 cache, GPGPUs use coalescing technique for memory access to the

global memory. The global memory accesses by threads of a block are coalesced into a

single memory transaction when the words accessed by threads lie in the same segment,

i.e., within a certain memory space with contiguous addresses. The memory segment size

 20

!s is 32 bytes if threads access 1-byte words, or 64 bytes when accessing 2-byte words

and 128 bytes when accessing 4-byte or 8-byte words.

	

	

	

	

Figure 3: A typical GPGPU memory hierarchy. It contains a global memory and L2 cache
shared by all blocks, a L1 cache private to threads, and a shared memory SHM shared by
threads within the blocks.

 Let !P be the size of the grid, that is, the number of blocks/clusters, and !ts and !tr be

the times each block spends on saving data to and retrieving data from the global memory,

respectively. Therefore, a GPGPU can be modeled by parameters !!(P , ts , tr , s).

3.3 Linear Scheduling

 A linear schedule is a mapping from the multi-dimensional iteration vectors in the

iteration space into a one-dimensional execution time space. This mapping is

expressed as a linear function that involves a multiplication of a row vector , called

!J

!f ∏

SM-0

 Registers

Global Memory

 L1 Cache/SHM

L2 Cache

SM-1

 Registers

 L1 Cache/SHM

SM-N

 Registers

 L1 Cache/SHM

 21

linear schedule vector, by each and every column vector in the iteration space. In other

words, an iteration with index vector is assigned to execute at time A linear

schedule has to respect data dependences. That is, if an iteration depends on another

iteration, a feasible linear schedule should schedule the latter iteration to execute before

the former one. As described in a linear schedule vector is feasible if

Another concept associated with a linear schedule is its wavefronts in

the iteration space. All iterations that are assigned to the same execution time form a

wavefront. More description of linear schedule can be found in

	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

	

	

	

	

Figure 4: The ten wavefronts of the linear schedule vector [1,1] for the two-dimensional

uniform dependency algorithm in Figure 1, with N=5, M=6 and c=2,...,11.

 For the two dimensional iteration space in Figure 1, a feasible linear schedule vector is

 and the corresponding feasible linear schedule is The

!j !!∏ j.

![5], ∏

!!∏dj >0, j =1,...,q.

![5].

![1,1], !!f ([i , j]
t)= [1,1][i , j]t = i+ j.

1

2

3

4

5

1 2 3 4 5 6

 22

entire iteration space is partitioned into wavefronts where

 Note all iterations on the same wavefront are independent and can

be executed at the same time in parallel, provided there are enough computing nodes

available. Figure 4 shows a two-dimensional iteration space with and , it is

partitioned by ten wavefronts with

3.3.1 Example of the LCS problem scheduling on GPGPU

 The linear schedule !!f ([i , j]
t)= [1,1][i , j]t = i+ j can be applied to LCS problem to

ensure feasible and maximum parallelism, it is the traditional way of exploiting the

parallelism in diagonal direction [36]. In [35] J. Yang et al. proposed an efficient

approach to schedule iterations row by row by first changing the data dependency in the

score table used by the dynamic programming algorithms for higher degrees of

parallelism to take advantage of GPGPU’s parallel processing capability. This approach

is shown to be three times faster than the traditional way in [36].

3.4 Supernode transformation on multi-processor system with

processors

!!

i
j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
:i+ j = c

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

!!c =2,...,N +M. !!(i , j)

!!N =5 !!M =6

!!c =2,...,11.

!P

 23

 To see the motivation of supernode transformation, let’s examine the different

executions of the LCS problem. The first is the sequential execution by a single processor

and the total execution time is because there are iterations and each iteration

takes time. In the parallel processing, all the iterations on the same wavefront are

executed in parallel assuming there are enough processors. There are two phases:

computation phase when the processor calculates an iteration in time and

communication phase when the processor sends and receives data from other processors

with communication time !tcomm = tr +ts . Hence the execution time of each wavefront is

 There are wavefronts, so the total execution time is

 If !!tc =1 , !!tcomm =100 , !!M =100 , then the sequential

execution time is and the parallel execution time is

 This means the parallel execution time is even

worse than the sequential one.

 Supernode transformation is to optimize data locality by addressing the problem of

unbalanced computation and communication costs. Instead of assigning one iteration to a

processor, a set of neighboring iterations are grouped as a supernode and assigned to a

processor. This way, the iterations in the same supernode are processed faster on the

same processor, and the number of wavefronts is reduced and the system will spend less

time on communication so the total execution time is minimized. For example, for the

two dimensional iteration space in Figure 5 with each intersection being an iteration, one

possible supernode transformation is and , thus six iterations are grouped to

!!MNtc , !MN

!tc

!tc

!!tc +tcomm. !!M +N −1

!!(tc +tcomm)(M +N −1). !!N =1000,

!!MNtc =10
5

!!(tc +tcomm)(M +N −1)=101*1099>105.

!!w =3 !!h=2

 24

form a supernode. The iteration space after the supernode transformation is shown in

Figure 6. There are two possible cases: and .

Figure 5: Two dimensional uniform dependence algorithm iteration space, each
intersection is an iteration. Each dotted-line rectangle of !w x h is a supernode, or a tile.

 A supernode can be described by two parameters: the size and the shape. In [11], it is

proven that the rectangular is the best shape for the two dimensional uniform dependence

algorithms because it is the minimal parallelogram covering the cone of all dependence

vectors. Therefore, for the two dimensional uniform dependence algorithms, the

supernode shape and size can be defined by a rectangular of width and height . Thus

their supernode transformation can be modeled by where is the linear

schedule and and are the supernode sizes in and directions.

!n≤m !n>m

!w !h

!!(f ,w ,h) !f

!w !h !X !Y

 25

Figure 6: Iteration space after supernode transformation, each intersection is a supernode. There
are two cases: and

 This research is to apply supernode transformation !!(f ,w ,h) to two dimensional

uniform dependence algorithms on cluster system !!(P , tr , ts) or GPGPUS

!!(P , ts , tr , s) for time optimal execution enabled by optimal locality. For this purpose four

key parameters are formally introduced here for later modeling use:

 - the time used to process one supernode, including both computation and

communication time by one computing node. It is a function of .

 - total execution or running time, our goal is to minimize this value.

 - the problem size in direction after transformation, so
!
m= M

w
, and

!!m∈[1,M] .

!n≤m !n>m

!n<m !!n≥m.

!!(J ,D)

!tsn

!!(w , h, tc , ts , tr)

T

m !X

A
A

B
C B

C

 26

 - the problem size in direction after transformation, so
!
n= N

h
, and

!!n∈[1,N] .

 Without losing generality, this research focuses on the case where !n≥m . The iteration

space after supernode transformation can be divided into three regions A, B and C, as

shown in Figure 6. When !n≥m , in region A, there are wavefronts and the number of

supernodes in wavefronts increases from one to In region B, there are

wavefronts and the number of supernodes in each wavefront is a constant In region C,

there are wavefronts and the number of supernodes in wavefronts decreases from

to one.

n !Y

!m

!!m. !!n−m−1

!!m.

!m !m

 27

4. Total Execution Time With Supernode
Transformation

 In this section, an execution model for a given two dimensional uniform dependence

algorithm on a multi-processor system such as a cluster system !!(P , tr , ts) or

GPGPU !!(P , ts , tr , s) is established. Based on this model, a novel closed form expression

of the total execution time is derived. This expression is used in the later sections to

guide the selection of the optimal supernode transformations.

 To respect the data dependence, the execution has to start at the first wavefront with

only one supernode at the lower left corner in region A in Figure 6, and moves towards

the upper right corner in region C, the execution of wavefront can not start until all the

wavefronts are executed. The mapping of the supernodes on a wavefront to the

processors (computing nodes in cluster, or GPGPU blocks) is as follows: assuming the

current wavefront has µ supernodes, then the entire wavefront is divided into
!

µ
P

⎡

⎢
⎢

⎤

⎥
⎥

contiguous sections, each section has supernodes, with the exception that the last

section may have fewer than supernodes. The sections are executed sequentially and

each section is processed by processors in parallel, with one processor handling one

supernode. So some processors may be idle when processing the last section, since there

may be fewer than supernodes. When a processor processes a supernode, it first takes

 time to retrieve dependent data in earlier wavefronts such as or !!c −2 from other

computing nodes of the cluster, or from main memory of GPGPU. Then the execution

!!(J ,D)

!T

!c

!!1,...,c −1

!c !c

!P

!P

!P

!P

!tr !!c −1

 28

enters into computation phase by computing iterations in supernode. Finally it takes

 time to send the computation results to other computing nodes in the cluster, or back

to the main memory of the GPGPU, for computing wavefronts such as . Thus the

execution time of one wavefront is
!
tsn ⋅

µ
P

⎡

⎢
⎢

⎤

⎥
⎥ where !tsn is the time for a computing node

of the cluster, or a block of the GPGPU, to process one supernode. Here in both data

retrieving and sending phases, communication startup time is assumed to be dominant, so

communication cost is fixed.

 Let be the total execution time for all wavefronts in region A, for region B and

 for region C. So , and since , .

 For region A, the execution starts from lower left corner where the number of

supernodes is one, then it moves towards the upper right direction until it reaches the

wavefront with number of supernodes . Thus: .

 Let !m= kP + r where , being the set of all positive integers, !r being the

remainder, !!r∈[0,P −1]. Let = In region A, there are !m wavefronts, for

each wavefront in the first set of wavefronts, where For each

wavefront in the second set of wavefronts, where !!c∈[P +1, 2P] ,
!!
c
P

⎡

⎢
⎢

⎤

⎥
⎥ =2 , and so

!w⋅h

!ts

!!c +1

!TA !TB

!TC A B CT T T T= + + A CT T= 2 A BT T T= +

!m
!!
TA =

c
P

⎡

⎢
⎢

⎤

⎥
⎥

c=1

m

∑ tsn = tsn
c
P

⎡

⎢
⎢

⎤

⎥
⎥

c=1

m

∑

!k∈Z + !Z +

!!v = k+1
!!
m
P

⎡

⎢
⎢

⎤

⎥
⎥.

!c !P !!c∈[1, P],
!!
c
P

⎡

⎢
⎢

⎤

⎥
⎥ =1.

!c !P

 29

on. For wavefronts where For the last !r wavefronts

where Thus:

 (3)

 For , the total number of wavefronts in region B is Each wavefront has

supernodes and the number of execution sections is So:

!!
TB = tsn(n−m−1) m

P
⎡

⎢
⎢

⎤

⎥
⎥ (
 4	
)

therefore:

!!
T =2TA +TB = tsn(

m− r
P

+1)(m+ r)+tsn(n−m−1) m
P

⎡

⎢
⎢

⎤

⎥
⎥

(
 5	
)

 To get a closed form for !T , let’s consider the following three cases:

Case 1: This happens when !!k =1 and !!r =0 , or and !!r∈[1, P −1]. Giving

!!
m
P

⎡

⎢
⎢

⎤

⎥
⎥ =1 , the total execution time based on (5) is:

!Tm≤P (6)

Case 2: !!r =0 . Giving , equation (5) becomes:

!c !!c∈[(k−1)P +1, kP],
!!
c
P

⎡

⎢
⎢

⎤

⎥
⎥ = k.

!!c∈[kP +1, kP + r],
!!
c
P

⎡

⎢
⎢

⎤

⎥
⎥ = k+1= v.

!!
TA = tsn(1+1+ ...+1

P
! "# $# +2+2+ ...+2

P
! "# $# + ...+k+k+ ...+k

P
! "# $# + v + v + ...+ v

r
! "# $#)

(1)()
2

sn
m r m r
P

t − ++=

BT !!n−m−1. !m

!!
m
P

⎡

⎢
⎢

⎤

⎥
⎥.

!!m≤ P. !!k =0

 = tsn(n+ m−1)

!!m≥ P , !!m= kP ,
!

m
P

⎡

⎢
⎢

⎤

⎥
⎥ = k

 30

!Tm=kP (
 7	
)

Case 3: !m= kP + r , !!r∈[1,P −1] . In this case,

so equation (4)

becomes:	

 (8)

 Therefore, the total execution time in (5) becomes:

 !Tm=kP+r
(
 9	
)	

Equations (3)-(9) form the mathematical foundation for the optimal solution of supernode

transformation, and are summarized as following:

(
 10	
)

 The goal of this research is to find the optimal solution that minimizes the

total execution time . In the following sections, supernode transformation is applied to

two multi-processor distributed memory systems: computer cluster systems and

GPGPUs. Equations (3)-(10) above are used to find the optimal solution that minimizes

the total execution time . Note the model applies to two dimensional uniform

!!
= tsn(n+P −1)

m
P

!!m≥ P ,
!!
m
P

⎡

⎢
⎢

⎤

⎥
⎥ =

m− r
P

+1,

TB = tsn(n− m−1)(m− r

P
+1)

!!
= tsn(

m− r
P

+1)(n+ r −1)

!!

T =

tsn(n+m−1) 1≤m≤ P ,m≤n≤N

tsn(n+P −1)
m
P

m= kP ,k ≥1,m≤M ,m≤n≤N

tsn(
m− r
P

+1)(n+ r −1) m= kP + r ,k ≥1,1≤m≤M ,m≤n≤N , 1≤ r ≤ P −1

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

!!(m0 ,n0)

!T

!T

 31

dependence algorithms with rectangular iteration space, with non-overlapping

communication and computation phases.

 32

5. Supernode Transformation On Computer Clusters

This section discusses supernode transformation on computer cluster system

!!(P , tr , ts) , especially the finding of the optimal solution of two dimensional

uniform dependence algorithm. The optimal solution minimizes the total execution time

expressed in (10).

 In (10), is the execution time of one supernode on one computing node of the

cluster. As mentioned in section 3, the execution of one supernode has three phases: data

reading phase that takes time computing phase, and data saving phase that takes time

 For a supernode with a rectangular shape and processed by one computing

node, the computing time is !w ⋅h⋅tc where is the computation time of one iteration. Let

 and , then:

!tsn = tr +whtc +ts
!
= A
mn

+B (
 2	
)

 The basic idea of how to find the optimal solution of in (10) is as follows. The

solution space of is divided into three subspaces !!S1 , !!S2 and !!S3 , where:

!!S1 = {m:m∈[1,P]} , !!S2 = {m:m= kP ,k∈Z + ,P ≤m≤M} , and

!!S3 = {m:m= kP + r ,k∈Z + ,P ≤m≤M ,1≤ r ≤ P −1} . The best solution in each subspace is

identified, and then the optimal solution is obtained by comparing these best solutions of

the three subspaces.

!!(m0 ,n0)

!tsn

!!tr ,

!!ts . !w x h

!tc

!A=MNtc !B = ts +tr

!T

!!m∈[1,M]

 33

5.1 Lemmas and Theorem

 In the following, three lemmas are introduced followed by the main theorem

presenting the optimal solution. The theorem is proved by these three lemmas, while the

proof of these lemmas can be found in Appendix A in section 9. Equations numbered (A

!x) are from Appendix A.

 For subspace !!S1 , according to (10) and (11), the total execution time !T is:

!!
Tm≤P(m,n)= (

A
mn

+B)(n+m−1) (A0)

 As discussed in the Appendix A, !!Tm≤P(m,n) is convex in !![2,P] , and has at most one

minimum point, or stationary point. If there exists such a stationary point, it is denoted as

!!(me ,ne) . Let !!(2,nb2) and !!(P ,nbP) be two points in !!S1 such that
!!
∂T
∂n
(2,nb2)=0 ,

!!
∂T
∂n
(P ,nbP)=0 . Let !!(m1 ,n1)∈S1 be the local minimum point, that is,

!!T(m1 ,n1)=min{T(m,n):m∈S1} , then !!(m1 ,n1) can be found by Lemma A1.

5.1.1 Lemma A1

 In the solution subspace !!S1 = {m:m∈[1,P]} , if the stationary point !!(me ,ne) exists,

!!(m1 ,n1)∈{(me ,ne), (1,1)} . Otherwise, !!(m1 ,n1)∈{(2,nb2), (P ,nbP), (1,1)} , where

!!
ne =

(me −1)A
meB

 ,
!!
nb2 =

A
2B ,

!!
nbP =

(P −1)A
PB

 34

 Lemma A1 provides a candidate set for !!(m1 ,n1) . The candidate with the lowest !T

value is the local minimum point. Equation (A5) from Appendix A is used to obtain !me

in !![2,P] :

!!B
2m5 −B2m4 −2ABm3 +2ABm2 +(A2 − AB)m− A2 =0 (A5)

Equation (A5) is a polynomial with one variable, real coefficients, and odd degree. So

(A5) must have at least one real root [12]. (A5) may have more than one real root because

some extraneous roots may be generated during processing. However, as discussed in

Appendix A, (A5) has at most one valid real root. For a root !mroot and its corresponding

!nroot , if they satisfy
!!
∂T
∂m

=0 and
!!
∂T
∂n

=0 for (A0), then !me =mroot . Otherwise, !!(me ,ne)

does not exist.

5.1.2 Lemma A2

 In the solution subspace defined in (10) takes

minimum at
!!
(m2 ,n2)= (P ,

A(P −1)
PB

). Note !m= P is also in solution subspace !!S1 .

5.1.3 Lemma A3

 For any !m in the solution subspace

!Tm=kP+r defined in (10) is always greater than !Tm=P in solution subspace !!S1 .

!!S2 = {m :m= kP , 1≤ k ,m≤M}, !T

!!S3 = {m :m= kP + r , 1≤ k ,m≤M , 1≤ r ≤ P −1},

 35

5.1.4 Theorem

 In a cluster system with fixed !P computing nodes, the total execution time is

minimized with supernode size that equals !!(m1 ,n1) defined in Lemma A1.

 Proof: According to Lemma A3, the optimal solution is not in . Lemma A2 tells

that the local minimum solution of !!S2 is at !!m2 = P which is also in solution subspace!!S1 .

So the optimal solution is in solution subspace !!S1 . Thus =!!(m1 ,n1) .

 In the above discussion, !!me , ne , nb2 and !nbP might be real numbers instead of integers.

Then the nearest integer value will be used as the best integer solution for the convex

function !Tm≤P , denoted by symbol ⎡⎣ ⎤⎦ . For example, when !me is not an integer, then we

get !
me = me

⎡⎣ ⎤⎦ .

5.2 Simulation

 Simulations are conducted to find the optimal supernode size with the shortest running

time for the LCS problem of size (600,1200). A multi-core system is used to simulate a

cluster system. The system used is a X86_64 8 CPU server with 8 cores, the kernel

release

is 3.13.0-55-generic. The operating system is Ubuntu 14.04.2 LTS. One core is

designated as the master computer node and six cores are used as computing nodes,

hence !!P =6 . The master computer and computing nodes reside on their dedicated cores

via Linux sched_setaffinity() call. To facilitate more efficient communication and provide

synchronization between computing nodes, the computing nodes communicate with the

!!(m0 , n0)

!!S3

!!(m0 , n0)

 36

master computer only. The master computer drives the entire workflow, starts and

initializes all computing nodes. For each execution of a section of a wavefront, the master

computer sends dependent data to each and every computing node via Unix sockets in

time , receives results from these computing nodes in time after the computations

are completed, and provides synchronization between computing nodes. The time each

computing node spends on computation of one supernode is !w ⋅h⋅tc .

 All possible pairs of are exhaustively tested. In the simulation,

, so there are possible pairs of . The results are

partially shown in the table below. In the table, a row corresponds to a particular value of

!m ranging from 1 to !n . The six columns correspond to particular values of !n=30, 20, 15,

6, 5 and 1. For example, the total execution time for !!(m,n)= (2,30) is 11103!µs . The

table shows that the total execution time at is the shortest. The test results

are also curved in Figure 7.

!tr !ts

!!(m,n)

!!M =600,N =1200 600 1200× !!(m, n)

!!(m, n)= (6, 6)

 n=30 n=20 n=15 n=6 n=5 n=1
1 14474 12084 11662 9719 9752 8502
2 11103 9277 8439 7557 7658
3 9412 7570 6699 5551 5556
4 8837 7021 6169 5108 5140
5 8583 6779 5936 4923 4970
6 8489 6688 5850 4867
7 14141 10286 8360
8 14294 10470 8577
9 14529 10726 8857

10 14788 10996 9146
11 15101 11319 9483
12 15404 11628 9802

!!m(≤n)

 37

Table 1: Total execution times for different values of (m,n) on a cluster system P=6 for the
LCS problem of size 600x1200. For example, the total execution time for (m,n)=(2,30) is
11103.

 So !!(m0 ,n0)= (6,6) , or !!(w ,h)= (100,200) , is the optimal supernode size, and the

shortest total execution time is 4867 , out of which, the total communication time

recorded from simulation is 2118 , and the total computation time is 2749 .

!us

!us !us

13 20313 14485 11588
14 20197 14358 11455
15 20728 14910 12031
16 21294 15496
17 22451 16692
18 25553 17696
19 25501 17640
20 26241 18406
21 27031
22 28602
23 29383
24 29323
25 31355
26 33376
27 34347
28 35799
29 36283
30 36383

 38

Figure 7: Total execution times for different values of (m,n) on cluster with P=6 for the LCS
problem of size 600x1200. Six n values are shown. The chart indicates when (m,n)=(6,6), as
indicated in the purple curve, T is the smallest.

 To find the analytical value for !!(m0 ,n0) from theorem, parameters
!tr +ts

 and !tc are

needed. Giving that the total communication cost is 2118!us , and there are !!m+n−1

wavefronts, the communication cost per supernode is calculated as following:

 For computation cost , because the total computation cost is 2749 , there are

wavefronts, and each wavefront needs one execution section which costs

:

!!tc = total _comp_time/((m+n−1)⋅w ⋅h)=2749/(11*100*200)=0.012us

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

1	
 3	
 5	
 7	
 9	
 11	
 13	
 15	
 17	
 19	
 21	
 23	
 25	
 27	
 29	

To
ta
l	
 E
xe
cu
ta
io
n	

Ti
m
e	

T	

	

m	
 value	

n=30	

n=20	

n=15	

n=6	

n=5	

n=1	

!!ts +tr =2118/(m+n−1)=193us

!tc !us

!!m+n−1

!w ⋅h⋅tc

 39

 So !!A=MNtc =8640 , and !!B = ts +tr =193 . Then equation (A5) produces 5 roots: -7, -

6, 1, 6 and 7. Root -7, -6, 1 and 7 are not valid since they are not in the valid range of

!![2,P] which is [2,6]. So only !!m=6 is the valid root.

 When m=6,
!!
n= (m−1)A

mB

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=6 ,

!!
∂T
∂m

(mroot=6 ,nroot=6)=0 and
!!
∂T
∂n
(mroot=6 ,nroot=6)=0 .

So !!(me ,ne)= (6,6) is the stationary point. Thus according to (A0):

!!
T(6,6)= (A

mn
+B)(n+m−1)

!
= (86406⋅6 +193)(6+6−1)= 4763

Then based on Lemma A1, there is a special point !(1,1) that needs to be checked:

!!
T(1,1)= (A

mn
+B)(n+m−1)

!
= (86401⋅1 +193)(1+1−1)=8833

 According to Theorem, point !(6,6) yields smaller !T than the point !(1,1) , hence it is

the optimal point. The analytical optimal solution (6,6) exactly matches the simulation

results, and its total running time 4763!us is very close to the simulation minimum result

of 4867!us .

 If the cyclic column-wise assignment in section 2.3 were used, !
Topt would be 5181.

Note !a= tr +ts and !!b=0 . So this research provides better result, without any restriction.

 For the hypothetical case in section 2.3, per the theorem, !!(m0 ,n0)= (2,2) , and

!!Topt =3900 which is much better than 5400 obtained using cyclic column-wise

assignment.

 40

6. Supernode Transformation on GPGPUs

This section discusses the supernode transformation on GPGPUs. The two-sequence

LCS problem is used as an example to show how to use supernode transformation to map

applications to a GPGPUs with the total execution time minimized. Equations of total

execution times developed in section 4 apply to GPGPU architectures as well. However,

the execution time of one supernode !tsn is different from the one in section 5 and is

derived in section 6.1.

6.1 Analytical Results

 The execution of a two dimensional uniform dependence algorithm such as LCS on a

GPGPU is modeled as follows. A supernode with size !w x h is assigned to a block

running on a GPGPU SM. When a block is launched, it first reads in the dependent data

for this supernode from the global memory in time !tr , then it processes the iterations

inside the supernode. Note the dependence graph of this supernode is similar to the one in

Figure 1, so the iterations are processed by wavefronts from lower-left corner to upper-

right corner, and there are !!w+h−1 wavefronts inside a supernode. The results of the

iterations on each wavefront are stored in the shared memory of the block on the SM, and

are used by the subsequent dependent wavefronts. After all wavefronts in the supernode

are processed, the results for all iterations of the supernode in the shared memory are

saved back to the global memory in time !ts .

 41

 Giving there are many threads inside each block/SM, the computations of iterations on

one wavefront inside the supernode can be done in parallel, assuming inside each block,

the number of threads is equal to or greater than the maximum number of iterations on

any wavefront. Then all the iterations on the same wavefront are processed in parallel

thus the execution time of one wavefront is !tc . The communication cost is ignored

because the communication happens between threads and is done by accessing the shared

memory on the same chip. Hence the total computation time of one supernode is

!!(w+h−1)⋅tc .

 Next the communication costs !ts and !tr of each supernode are discussed. When a

block is launched for a supernode, the first thing the threads in the block do is to read in

the dependent data of the iterations on the boundary of the supernode from the global

memory. As shown in Figure 8, supernode of size !w x h depends on !h iterations on the

left of the supernode and !!w+1 iterations at the bottom in the original iteration space.

 For the !!w+1dependent iterations to the bottom, !!w+1 threads are used to read their

data into the block from the global memory, one thread for each iteration. Since the !!w+1

data are stored consecutively in the global memory, the !!w+1 reads are coalesced into

!!
w+1
s

⎡

⎢
⎢

⎤

⎥
⎥ memory segment transactions, note !s is the memory segment size. So the total

reading time is
!!
w+1
s

⎡

⎢
⎢

⎤

⎥
⎥tm , where !tm is one memory transaction time between the global

memory and a GPGPU block. For the !h dependent iterations on the left, they are not

consecutive in the global memory, so each iteration data takes one memory transaction to

 42

read. Hence it takes !htm to read these !h data. So it takes
!!
w+1
s

⎡

⎢
⎢

⎤

⎥
⎥tm +htm time to read in

the data of the dependent iterations for a supernode.

Figure 8: A LCS Supernode of size !w x h and its dependent nodes. The supernode is inside
the dashed-line rectangular, while the dependent nodes are on the left and at the bottom.

 According to (2), there are !w symbols from !X sequence, and !h symbols from !Y

sequence needed in the !LCS computation for a supernode. So it takes
!

w
s

⎡

⎢
⎢

⎤

⎥
⎥⋅tm and

 43

!

h
s

⎡

⎢
⎢

⎤

⎥
⎥⋅tm time to read these symbols in a coalesced way. Hence for a supernode, the !tr is

expressed as:

!!

tr =
w+1
s

⎡

⎢
⎢

⎤

⎥
⎥⋅tm +htm

for bottomand left dependent iterations
! "## $##

+ w
s

⎡

⎢
⎢

⎤

⎥
⎥⋅tm +

h
s

⎡

⎢
⎢

⎤

⎥
⎥⋅tm

for X and Y sequences symbols
! "## $##

 When the computations of a supernode are done, the results of all iterations in the

supernode, not just those of boundary nodes, are saved back into the global memory.

Each iteration generates one datum to be saved into the global memory, note !s

consecutive data in a row can be coalesced into one memory transaction. Therefore, for

the !w data on one row,
!

w
s

⎡

⎢
⎢

⎤

⎥
⎥ memory segment transactions are needed, and this process

is repeated !h times to finish the entire supernode, so for a supernode,
!
ts = h⋅

w
s

⎡

⎢
⎢

⎤

⎥
⎥tm .

Thus:

!!

tsn =(w+h−1)tc
computation time
! "# $#

+h w
s

⎡

⎢
⎢

⎤

⎥
⎥tm +

w+1
s

⎡

⎢
⎢

⎤

⎥
⎥tm +htm +

w
s

⎡

⎢
⎢

⎤

⎥
⎥tm +

h
s

⎡

⎢
⎢

⎤

⎥
⎥tm

communication cost
! "######## $########

 (11)

 To simplify the analysis, all ceiling functions are removed. The error analysis due to

this approximation is in section 5.3. Also
!
w = M

m
 and

!
h= N

n
, then:

 !!

tsn = (
M
m

+ N
n
−1)tc

computation time
! "## $##

+(N
n
+1) M

sm
tm +

M
m

+1
s

tm +
N
n
tm +

N
sn
tm

communication cost
! "####### $####### !

= A
m
+ B
n
+ C
mn

−D (12)

where

 44

 !!
A=M(tc +

2tm
s
) , !!
B =N(tc +(1+

1
s
)tm) ,

 !
C =

MNtm
s ,

 !
D= tc −

tm
s

(13)

 The basic idea of finding the optimal solution of !T in (10) on GPGPUs is similar to

that of in section 5, as follows. The solution space of !!m∈[1,M] is divided into three

subspaces !!S1 , !!S2 and !!S3 : !!S1 = {m:m∈[1,P]} , !!S2 = {m:m= kP , k∈Z + , P ≤m≤M} ,

!!S3 = {m:m= kP + r , k∈Z + , P ≤m≤M , 1≤ r ≤ P −1} . The best solution in each subspace

is identified, and then the optimal solution is obtained by comparing these best solutions

of the three subspaces.

6.2 Lemmas and Theorem

Three lemmas are introduced which lead to theorem that presents the

optimal

solution

of supernode transformation on GPGPUs. The theorem is proved based on these lemmas.

Please refer to Appendix

B

for the proof of these lemmas.

Equations numbered (B!x) are

from Appendix B.

 For subspace !!S1 , according to (10) and (12), the total execution time

!T is:

!!
Tm≤P(m,n)= (

A
m
+ B
n
+ C
mn

−D)(n+m−1)

(B0)

 As discussed in the Appendix B, !!Tm≤P(m,n) is convex in !![2,P] , and has at most one

minimum point, or stationary point. If there exists such a stationary point, it is denoted as

!!(me ,ne) . Let !!(2,nb2) and !!(P ,nbP) be two point in !!S1 such that
!!
∂T
∂n
(2,nb2)=0 ,

 45

!!
∂T
∂n
(P ,nbP)=0 . Let !!(m1 ,n1)∈S1 be the local minimum point, that is,

!!T(m1 ,n1)=min{T(m,n):m∈S1} . Then !!(m1 ,n1) can be found by Lemma B1.

6.2.1 Lemma B1

In the solution subspace !!S1 = {m:m∈[1,P]} , if the stationary point !!(me ,ne) exists,

!!(m1 ,n1)∈{(me ,ne), (1,1)} , otherwise, !!(m1 ,n1)∈{(2,nb2), (P ,nbP), (1,1)} , where

!!
ne =

Bme
2 +(C −B)me −C
A−Dme

,
!!
nb2 =

2B +C
A−2D ,

!!
nbP =

B ⋅P2 +(C −B)P −C
A−DP

 Lemma B1 provides a candidate set for !!(m1 ,n1) . The candidate yielding the lowest !T

value is the local minimum point. Equation (B5) from Appendix B is used to obtain !me

in !![2,P] :

!!a1m
7 +a2m

6 +a3m
5 +a4m

4 +a5m
3 +a6m

2 +a7m+a8 =0
(B5)

where !!A,B ,C ,D are constants defined in (13), and constants !!a1 ,a2 ,a3 ,a4 ,a5 ,a6 ,a7 are

defined in terms of !!A,B ,C ,D in (B6) in Appendix B.

 Equation (B5) is a polynomial in one variable with real coefficients and odd degree. So

(B5) must have at least one real root [12]. (B5) may have more than one root because

some extraneous roots may be generated during processing. However, as discussed in

Appendix B, (B5) has at most one valid real root. For a root !mroot and its corresponding

 46

!nroot , if they satisfy
!!
∂T
∂m

=0 and
!!
∂T
∂n

=0 for (A0), then !me =mroot . Otherwise, !!(me ,ne)

does not exist.

6.2.2 Lemma B2

In the solution subspace !!S2 = {m:m= kP ,1≤ k ,m≤M}, !T defined in (10) takes

minimum at
!!
(m2 , n2)= (P ,

(BP +C)(P −1)
A−DP

) . Note !!m2 = P is also in subspace !!S1 .

6.2.3 Lemma B3

For any !m in the solution subspace !!S3 = {m:m= kP + r ,1≤ k ,m≤M ,1≤ r ≤ P −1},

!!Tm=kP+r(m,n) defined in (10) is always greater than !!Tm=P(m,n) in subspace !!S1 .

6.2.4 Theorem

 On GPGPU system !!(P , ts , tr , s) , the total execution time of algorithm !!(J ,D) is

minimized with supernode size !!(m0 ,n0) that equals !!(m1 ,n1) , as defined in Lemma A1.

 Proof: according to Lemma B3, the optimal solution is not in !!S3 . Lemma B2 tells that

the local best solution of !!S2 is at !!m2 = P which is also in solution subspace !!S1 . So the

optimal solution is in solution subspace !!S1 . Thus !!(m0 ,n0)=!!(m1 ,n1) .

 47

6.3 Simulation results

Simulations are conducted to find the optimal supernode size with the shortest

running time for the LCS problem of size !!(M ,N)= (600,1200) , using Nvidia’s GeForce

GTX 760 GPGPU. Its base clock is 980MHz and it has 6 SMs. The simulations use a

one-dimension grid of size 6, thus !!P =6 . For each execution of a wavefront section, a

one-dimension grid of blocks is launched, and each block handles one supernode.

Nvidia’s CUDA provides API clock64() for precise time measuring in the unit of clock

cycles, it is used in the simulations to record the total execution time !T and the

communication time !ts +tr .

 In the simulation, all possible pairs of !!(m,n) are tested. Hence, there are 600 x 1200

possible pairs of !!(m,n) . But in practice, Nvdia GPGPUs have a limit in the shared

memory size. For example, the GeForce GTX 760 used in the simulation has 48KB

shared memory size. This means there is one more restriction in the supernode size to

ensure the entire supernode can be loaded in the shared memory for computation, that is,

!!w ⋅h⋅z <48KB = 49152 bytes, where !z is the size of each iteration value in the shared

memory. In simulation, the value of each iteration is stored as “short integer” which

occupies 2 bytes of storage, thus !!z =2. Apparently !!(m,n)= (1,1) can not be the optimal

solution since it treats the entire problem space as one supernode of size !!600x1200 , and

this large supernode can not fit in the shared memory because !!600x1200x2 !!>48KB , so

it has to be partitioned into smaller supernodes to take advantage of GPGPU’s shared

memory for faster and more efficient execution.

 48

 The test results are partially shown in Table 2. In Table 2, a row corresponds to a

particular value of !m ranging from 1 to 24. The four columns correspond to particular

values of n=24, 12, 8 and 6. The total execution times !T from simulations are recorded

and shown. For example, !T for !!m=3 , !!n=24 is 6,339,434 clock cycles. The tests show

when !!(m,n)= (5,8) , with the corresponding !!(w ,h)= (123,152) , the total execution time

!T =3,320,364 clock cycles is the shortest, out of which the total save/read time !ts +tr

recorded is 358,704 clock cycles. The simulation results are also curved in Figure 9. Note

there are some empty cells in the table because they require more shared memory than

48KB. For example, when !!m=1 and !!n=24 , the corresponding !w and !h are 600 and 50,

then !!w ⋅h⋅z=600⋅50⋅2>48KB .

!m≤n n=24 n=12 n=8 n=6
1
2 8278296
3 6339434 4427573
4 5387489 3989307 3664786
5 4755731 3764232 3472624
6 4351107 3650690 3480312 3615454
7 6613261 4630957 4097116
8 6072377 4507131 4164922
9 5922144 4628155

10 6067154 5014499
11 5806633 4977027
12 5900364 5289875
13 6961389
14 6666499
15 6863515
16 7016888
17 7078705
18 9600376

 49

19 7449397
20 8101262
21 8231596
22 8425767
23 8802064
24 9250178

Table	
 2: Total execution times of the LCS problem for different values of (m,n) on a Nvidia
GeForce GTX 760 GPGPU. For example, the total execution time for (m,n)=(3,24) is
6,339,434 clock cycles.

 Note Figure 9 shows recurring curve segments slanting upward to the right, the size of

each segment is !m . According to (B7) from Appendix B, !Tm=kP is:

!Tm=kP !!
= (A+ B

n
m+ C

n
−Dm)(n+P −1)(1

P
)

 (B7)

Figure 9: Total execution times of the LCS problem for different values of (m,n) on a Nvidia
GeForce GTX 760 GPGPU. Results for four n values are displayed. The chart indicates
when (m,n)=(5,8), as indicated in the green curve, T is the smallest.

 Giving that
!
B
n
>D , !!Tm=kP

' >0 , so !Tm=kP increases along with !k , that is, !!T(k+1)P >TkP ,

thus the graph slants upward to the right.

0	

1000000	

2000000	

3000000	

4000000	

5000000	

6000000	

7000000	

8000000	

9000000	

10000000	

1	
 5	
 9	
 13	
 17	
 21	

To
ta
l	
 E
xe
cu
ti
on
	
 T
im
e	

in
	
 C
lo
ck
	
 C
yc
le
s	

m	
 values	

n=24	

n=12	

n=8	

n=6	

 50

Then for all !m between !Tm=kP and !!Tm=(k+1)P , based on (B9) from Appendix B:

 !
Tm=kP+r !!

= HP(k+1)(r +G)(kP + r)P +E(k+1)(r +G)

(B9)

 Where !!1≤ r < P and !!H , E ,G are constants with !!G = n−1 . It’s easy to show

!!
Tm=kP+r
" = −2H(k+1)(kP −G)(kP + r)3 with respect to !r . Giving that !!G = n−1≥m−1= kP + r −1 ,

!!Tm=kP+r
" >0 for all !!r∈[2,P) , as shown as convex curves in each segment. When !!r =1 ,

!!Tm=kP+r
" =0 , !!Tm=kP+1 thus can be larger or smaller than !!Tm=kP+r ,r∈[2,P) .

 Now let’s check the optimal solution according to theorem. Based on the simulation,

the optimal point is !!(w ,h)= (123,152) , that is !!(m0 ,n0)= (5,8) , and !!T(5,8) =3,320,364

clock cycles, out of which, the total !tr +ts for all wavefronts is 358,704 clock cycles.

Given that there are !!m+n−1 wavefronts, each wavefront only needs one round of

execution since !!m0 < P , and each execution costs one !tsn to complete, out of which

!!(w+h−1)⋅tc time is on computation, thus !tc is calculated as:

!!
tc =

T(5,8)−total(ts +tr)
(m+n−1)(w+h−1) =

3320364−358704
(5+8−1)(123+152−1) = 901 clock cycles

 Similarly, the total communication cost is !!(tr +ts)⋅(m+n−1) , and equation (12) gives

out the communication cost !tr +ts in !tsn , thus:

!!

(MN
smn

tm +
2M
sm
tm +

N
n
(1+ 1

s
)tm +

1
s
tm)

communication of one round execution
! "###### $######

(m+n−1)=358704

 51

 Two bytes are used to store computation results in the simulation, so the memory

segment size is 64 bytes [3], or !!s =32. So:

!!

tm =
358704

(600*120032*5*8 + 2*60032*5 + 12008 (1+ 1
32)+

1
32)(5+8−1)

= 41.3 clock cycles

 Parameters in (13) are then obtained: !!A=542149 , !!B =1132309 , !!C = 929250 ,

!!D= 900 . With these values, (B5) gives five real roots: -653.8, -30.455, -2.249, 5.18,

30.861. Apparently only root 5.18 is in valid range, thus !!me =mroot =5.18 , and per

Lemman B1:

!!
ne =

Bme
2 +(C −B)me −C
A−Dme

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 7.3⎡⎣ ⎤⎦ =7

 Thus !!(me ,ne)= (5.18,7)≈(5,7) which is close to the simulation result !(5,8) .

 Same simulations were also conducted on GeForce GTX Titan X, a higher end GPGPU

with 24 SMs. The tests show similar results with a better optimal value of 2416220 clock

cycles, a 27% improvement even compared to using GTX 760.

6.4 Result Analysis

According to (B0),
!!
Tm≤P(5,7)= (

A
m
+ B
n
+ C
mn

−D)(m+n−1) = 3254220, it is very

close to the exhaustive test result of 3320364. This proves the mathematical model is

reasonably correct.

 While there is no existing formula for column-wise assignment on GPGPUs that can

be used for comparison, the basic assumption of column-wise assignment is all available

 52

processors participate in the execution. The exhaustive tests show when !!m= P =6 , the

shortest running time is 3615454 clock cycles, which is much worse than the optimal

result by this research.

 The efficient algorithm in [35] is an improved approach running LCS on GPGPU, but

it does not use supernode transformation to take advantage of improved data locality and

parallelism. The simulations on the same GPGPU show it takes 12731633 clock cycles to

complete the LCS problem of the same problem size, which is about 3.8 times of the

result of the optimal solution of this research.

6.5 The Selection of GPGUP Architecture Model Parameter !P

The GPGPU architecture parameter !P is modeled as one-dimension grid size, that is,

the number of blocks. In simulation it is set to !!P =6 , which is the number of SMs on

GPGPU. Though this parameter shows up in equation (10) hence it impacts the value of

optimal solution !!(m0 ,n0), simulations show it does not affect the total execution time !T

much. Table 2 shows different !P values and their corresponding shortest total execution

time !T via exhaustive tests.

!!P =6 !!P =12 !!P =24 !!P =30 !!P = 48 !!P =72
3320364 3311516 3271551 3271625 3271625 3275971

!!P = 96 !!P =120 !!P =144 !!P =168 !!P =192
3288002 3308869 3315377 3315723 3321326

Table 3: Total execution time obtained using exhaustive tests under different P. The
difference is <1.5% showing the grid size has little impact on the result, due to the efficient
block scheduling of GPGPU.

 This is because Nvidia’s GPGPU is quite efficient in scheduling blocks and threads on

its hardware multi-streaming processors. When one group of threads (a warp) stalls on a

 53

memory operation, GPGPU will switch it out and switch in another group of threads

efficiently. So All processors in GPGPU are productive, irrespective of the number of

blocks, as long as there is enough parallelism (threads) to keep them busy.

 54

7. Conclusion

This paper addressed problem of supernode transformation for algorithm !!(J ,D) on

multi-processor system with distributed memory, including computer cluster systems and

GPGPUs, especially on the finding of the optimal supernode size for time optimal

performance. First a generic mathematical model is established for two dimensional

uniform dependency algorithms. Then the model is applied on those two multi-processor

architectures, and the optimal supernode size is obtained. Simulations on both

architectures verified the correctness of the mathematical model and the optimal

supernode size solution.

 The model focuses on the total running time, which comprises of computation and

communication times, representing locality and parallelism. Feasible linear schedule

ensures maximum parallelism to take advantage of multi-processor’s parallel processing

capability, while data locality is improved by tiling supported by computing nodes’ cache

and GPGPU’s fast on-chip shared memory. The model captures these two aspects in

terms of total running time. By minimizing the total running time, the optimal supernode

size is obtained, leading to the optimized locality and parallelism for optimal execution

performance.

 55

8. Future Work

While this research focuses on two dimensional uniform dependence algorithms, it

will be worth to find out if it can be applied to higher dimensional arbitrary dependence

and irregular shape algorithms. One way may be to combine this research, especially the

execution time model, with polyhedral model for further study.

 On cluster system, the model assumes the communication cost is a constant where the

start-up time dominates. This becomes inaccurate when problem size is large. In such

case, a linear function of the supernode size as communication cost is more appropriate.

The model can be modified to accommodate such cases. Note this is not a problem with

GPGPUs, since there the size of the supernode is already limited by the shared memory

size of the SM chip.

 56

9. Appendix

9.1 Appendix A: Lemmas For Supernode Transformation On Cluster

Systems

The appendix A contains three lemmas and their proofs, for supernode transformation

on cluster systems. The lemmas apply to three solution subspaces, respectively, they help

to derive the theorem used in section 5 for supernode transformation on cluster system.

9.1.1 Lemma A1

In the solution subspace !!S1 = {m:1≤m≤ P}, with (11), defined in (10) becomes:

 !!
T(m,n)= (A

mn
+B)(n+m−1)

 (A0)

As shown later, when !!m∈[2,P] , !!T(m,n) is convex and has at most one stationary point

such that
!!
∂T
∂m

=0

and

 !!
∂T
∂n

=0

at this point. If there exists such stationary point, it is

denoted as !!(me ,ne) . Let !!(2,nb2) and !!(P ,nbP) be two points in !!S1 such that
!!
∂T
∂n
(2,nb2)=0

and
!!
∂T
∂n
(P ,nbP)=0 . Let !!Tmin be the shortest running time in (A0), so

!!Tmin =min{T(m,n):m∈S1} . Let !!(m1 ,n1)∈S1 be the local minimum point such that

!!T(m1 ,n1)=Tmin , then !!(m1 ,n1) can be found from (A1) as following:

!T

 57

!!

(m1 ,n1)=

(1,1) if T(1,1)<T(me ,ne)andif (me ,ne)exists
if T(1,1)<min(T(m2 ,nb2),T(P ,nbP))andif (me ,ne)not exist

(me ,ne) if (me ,ne)exists and T(me ,ne)<T(1,1)
(2,nb2) if (me ,ne)not exist and T(m2 ,nb2)<min(T(1,1),T(P ,nbP))
(P ,nbP) if (me ,ne)not exist and T(P ,nbP)<min(T(1,1),T(m2 ,nb2))

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

(A1)

 Proof: When !!m=1 , !T in (A0) becomes !A+Bn , !!Tn
' = B > 0 , so !!n=1 will make !!Tm=1

the smallest. Thus !(1,1) is the optimal point for !T for the case !!m=1 . This basically

means the entire problem space is treated as one supernode and processed by one

processor. This may happen when the computation time of a node !tc is extremely small

compared to the communication time !ts +tr , so the communication cost is dominant that

makes it more efficient to process all iterations in one processor to minimize the

communication cost.

 Now consider equation (A0) for more general case !!m∈[2,P] . The partial derivative of

 with respect to is:

!!
Tm
' = (1

n
−1)A 1

m2 +B (A2)

 The second derivative with respect to !m
!!
Tm
" = (1− 1

n
)A 2
m3 > 0 for all !!m∈[2,P] , so

 is convex, which means there is one and only one minimum point, which is called

stationary point. If !me is the stationary point, then with increases, !T decreases on the

left hand side of !me and increases on the right hand side of !me . For the given range [2,P],

A convex can have three cases as shown in Figure 10: 1) !me happens outside the left

!T !m

!!T(m)

!m

 58

boundary, then !!m=2 is the minimum point; 2) !me happens outside the right boundary,

then !m= P is the minimum point; and 3)!!me ∈[2,P] where !!Tm,m∈[2,P]
' =0 .

Figure 10: On a cluster system, the total execution time for a two-dimensional uniform
dependence algorithm !T is convex with respect to !m when !!m∈[2,P] . !!Tmin can happen at

either of the three points: !!mmin =2 , !!mmin = P , and !!mmin =me ∈[2,P] where !!Tme
' =0 .

 To get the solution point !me , take the partial derivative of in (A0) with respect to

:

!!
Tn
' = (1

m
−1)A 1

n2
+B (A3)

 Let both (A2) and (A3) =0, then two equations are obtained:

 !!
n= (m−1)A

mB

 (A4)

0	

1000000	

2000000	

3000000	

4000000	

5000000	

6000000	

7000000	

8000000	

9000000	

10000000	

0	
 2	
 4	
 6	
 8	
 10	
 12	

To
ta
l	
 E
xe
cu
ti
on
	
 T
im
e	

m	
 value,	
 P=6	

m(min)=m(e)=
5	
 which	
 is	

between	
 2	
 and	

P	

m(min)=8>P,	

so	

m(min)=P=6,	

at	
 the	
 right	

boundary	
 m(min)=1,	
 so	

m(min)=2,	
 at	

the	
 left	

boundary	

!T !n

 59

 (A5)

 Equation (A5) is a polynomial in one variable with real coefficients and odd degree, so

it must have at least one real root [12]. From (A5) the root can be obtained, then the

corresponding !nroot can be obtained based on equation (A4):
!!
nroot =

(mroot −1)A
mrootB

. Note

!!(mroot ,nroot) may be not integer solution, then the nearest integer value will be used as the

best integer solution for the convex function !!T2≤m≤P , that is, !!(me ,ne)= (mroot
⎡⎣ ⎤⎦ , nroot⎡⎣ ⎤⎦) .

 In the case !me is outside range !![2,P] , boundaries !!mb2 =2 and !mbP = P are checked for

smaller !T , and according to (A4):

!!
nb2 =

A
2B

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

and

!!
nbP =

(P −1)A
PB

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

 So combining the two cases: !!m=1 , the optimal solution for it is !(1,1) ; and !!m∈[2,P] ,

the optimal solution for it is !!(me ,ne) if it exists in !![2,P] , otherwise it is either !!(2,nb2) or

!!(P ,nbP). Hence the optimal solution !!(m1 ,n1) for !!m∈[1,P] is obtained as summarized in

(A1).

 Equation (A5) may have up to five roots because some extraneous roots may be

produced when processing equations (A2) and (A3). When multiple roots are obtained,

all roots are analyzed and the real valid one can be found by checking if it is in the valid

range !![2,P] and if it satisfies equation (A2)=0 and (A3)=0.

!!B
2m5 −B2m4 −2ABm3 +2ABm2 +(A2 − AB)m− A2 =0

!mroot

 60

9.1.2 Lemma A2

In solution subspace !!S2 = {m:m= kP ,1≤ k ,m≤M} ,
!!
(m2 ,n2)= (P ,

A(P −1)
PB

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 is the

best solution.

 Proof: According to (7) in section 4 and (11) in section 5:

!!
= A
P
+ A(P −1)

P
1
n
+ B
P
mn+ B(P −1)

P
m

(A6)

 The derivative of with respect to is:
!!
Tm,m=kP
' = B

P
n+ B(P −1)

P
>0

 So the smaller is, the smaller will be. Giving that !m= kP , then is the

smallest when thus the optimal solution , and (A6) becomes:

!!
Tm=P =

A
P
+ A(P −1)

P
1
n
+Bn+B(P −1)

 Get partial derivative with respect to and let it equal 0:

!!
Tn ,m=P
' = − A(P −1)

P
1
n2

+B ==>
!!
n= A(P −1)

PB

 So when , the best solution is: ,
!!
n2 =

A(P −1)
PB

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

9.1.3 Lemma A3

For any !m in solution subspace

!Tm=kP+r defined in (10) is always greater than in !!S1 , that is: !Tm=kP+r >Tm=P .

Tm=kP = tsn(n+ P −1)(m

P
)

!T !m

!m !T !m

!!k =1, !!m2 = P

!n

!m= kP !!m2 = P

!!S3 = {m :m= kP + r , 1≤ k ,m≤M , 1≤ r ≤ P −1},

!Tm=P

 61

 Proof: from equation (9) in section 4:

!!
Tm=kP+r = tsn(

m− r
P

+1)(n+ r −1)= tsn(k+1)(n+ r −1)
(A7)

next check from (7) in section 4:

!!Tm=P = tsn(n+P −1)
(A8)

It is obvious (A7) > (A8), thus Lemma A3 is true.

!!Tm=P ,

!!Tm=kP+r >Tm=P ,

 62

9.2 Appendix B: Lemmas For Supernode Transformation On GPGPUs

This appendix B contains three lemmas and their proofs. The lemmas apply to three

solution subspaces, respectively, for supernode transformation on GPGPUs, and they

form the base of the theorem used in section 6 for time optimal solution on GPGPUs.

9.2.1 Lemma B1

On GPGPUs, in the

solution subspace !!S1 = {m:m∈[1,P]} , with (12), !T defined in

(10) becomes:

!!
Tm≤P(m,n)= (

A
m
+ B
n
+ C
mn

−D)(m+n−1)

(B0)

where
!!
A=M(tc +

2tm
s
) ,!!
B =N(tc +(1+

1
s
)tm) ,

 !
C =

MNtm
s ,

 !
D= tc −

tm
s

.

 As shown later,

!!T(m,n) is convex when !!m∈[2,P] and has at most one stationary point such that
!!
∂T
∂m

=0

and
 !!
∂T
∂n

=0

at this point. If there exists such a stationary point, it is denoted as !!(me ,ne) .

Let !!(2,nb2) and !!(P ,nbP) be two point in !!S1 such that
!!
∂T
∂n
(2,nb2)=0 and

!!
∂T
∂n
(P ,nbP)=0 .

Let !!Tmin be the shortest execution time in (B0), so !!Tmin =min{T(m,n):m∈S1} . Let

!!(m1 ,n1)∈S1 be the local minimum point, that is, !!T(m1 ,n1)=Tmin . Then !!(m1 ,n1) can be

found as follows:

 63

!!

(m1 ,n1)=

(1,1) if T(1,1)=Tmin
(me ,ne) if (me ,ne)exists and T(me ,ne)=Tmin
(2,nb2) if (me ,ne)does not exist and T(m2 ,nb2)=Tmin
(P ,nbP) if (me ,ne)does not exist and T(P ,nbP)=Tmin

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 (B1)

Proof: From (B0), take partial derivative of !T with respect to !m and !n :

!!
Tm
' =

−An+ A−C + C
n

m2 + B
n
−D

(B2)

!!
Tn
' =

−Bm+B −C + C
m

n2
+ A
m
−D (B3)

 First check the special case of !!m=1 . In this case (B3), so !!n=1 !!Tn
' = A−D>0will

make !!Tm=1 the smallest. Thus !(1,1) is the optimal point for !T for the case !!m=1 . This

basically treats the entire original problem space as one supernode and processes it using

one GPGPU block. This could happen when the communication time !ts +tr is so

dominant that minimizing the communication cost will efficiently reduce the total

execution time !T .

 Next move to the more general case of !!m∈[2,P] for (B0). The second partial

 derivative with respect to !m is:
!!
Tm
" =
2(A(n−1)+C(1− 1

n
))

m3 >0, so !Tm is convex, which

means there is one and only one minimum point, which is called stationary point.

 To obtain !me and its corresponding !ne , let equations (B2) !!Tm
' =0 and (B3) !!Tn

' =0 ,

following two equations can be obtained:

 64

!!
n= Bm2 +(C −B)m−C

A−Dm
 (B4)

 !!
a1m

7 +a2m
6 +a3m

5 +a4m
4 +a5m

3 +a6m
2 +a7m+a8 =0

(B5)

Where: !!a1 = BD
3

 !!a2 = B
2D2 − ABD2

 !!a3 = !!−ACD
2 − ABD2 −BD3 +2BCD2

 !!a4 =2BCD
2 + ACD2 −2ABCD+2A2BD

(B6)

 !!a5 = −2ABCD−2AC
2D+2A2CD− A2BD−2BCD2 +2ABD2 +BC2D−2AB2D

 !!a6 =C
2D2 + A2C2 + A2B2 +2AC2D−2A2CD− ABC2 − A3B

!!a7 = −2AC
2D−4A2C2 + ABC2 + A3B −BC2D− A2BD+2A2BC

!!a8 =2A
2C2 + AC3 + A3C

 Equation (B5) is a polynomial in one variable with real coefficients and odd degree, so

it must have at least one real root [12]. From (B5) the root !mroot can be obtained, then the

corresponding !nroot can be obtained based on equation (B4). Note !!(mroot ,nroot) may not

be integer solution. Then the nearest integer value will be used as the best solution for the

convex function !!T2≤m≤P , that is, !!(me ,ne)= (mroot
⎡⎣ ⎤⎦ , nroot⎡⎣ ⎤⎦) .

 In the case !me is outside the range !![2,P] , boundaries !!mb2 =2 and !mbP = P are checked

for smaller !T , and according to (B4):

!!
nb2 =

2B +C
A−2D

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

and

 !!
nbP =

B ⋅P2 +(C −B)⋅P −C
A−D ⋅P

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 65

So combining the two cases: !!m=1 , the optimal solution for it is !(1,1) ; and !!m∈[2,P] ,

the optimal solution is !!(me ,ne) if it exists in !![2,P] , otherwise either !!(2,nb2) or !!(P ,nbP).

Hence the optimal solution !!(m1 ,n1) for !!m∈[1,P] is obtained as summarized in (B1).

 Note equation (B5) may have up to seven roots because some extraneous roots may be

introduced in during process. When multiple roots are produced, all roots are analyzed,

the valid root must be in range !![2,P] and satisfies both equation (B2) !!Tm
' =0 and

equation (B3) !!Tn
' =0.

9.2.2 Lemma B2

In solution subspace !!S2 = {m:m= kP ,1≤ k ,m≤M} , !T defined in (10) takes minimum

at
!!
(m2 , n2)= (P ,

(BP +C)(P −1)
A−DP

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
) .

 Proof: From (7) in section 4, and (12) in section 5:

!!
Tm=kP = (

A
m
+ B
n
+ C
mn

−D)(n+P −1)(m
P
)
!!
= (A+ B

n
m+ C

n
−Dm)(n+P −1)(1

P
) (A7)

 Take the partial derivative with respect to !m ,
!!
Tm,m=kP
' = (B

n
−D)(n+P −1)(1

P
)>0 , so

the smaller !m is, the smaller !T will be. Since !m= kP , then !!k =1 makes !m the smallest,

so !!m2 = P . !!n2 is obtained by letting !m= P and (B3)=0:
!!
n2 =

(BP +C)(P −1)
A−DP

. Thus:

 66

!!
m2 = P , n2 =

(BP +C)(P −1)
A−DP

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (B8)

9.2.3 Lemma B3

For any !m in solution subspace !!S3 = {m:m= kP + r ,1≤ k ,m≤M ,1≤ r ≤ P −1}, !Tm=kP+r

defined in (10) is always greater than !Tm=P in !!S1 , that is: !Tm=kP+r >Tm=P .

 Proof: from (9) in section 4 and (12) in section 5:

!!
Tm=kP+r = tsn(

m− r
P

+1)(n+ r −1)= (A
kP + r

+ B
n
+ C
(kP + r)n −D)(k+1)(n+ r −1)

!!
= HP(k+1)(r +G)(kP + r)P +E(k+1)(r +G)

(B9)

where
!
E = B

n
−D , !!G = n−1 , and !H = A+F , also let

!!
F = C

n
.

From (B7) and let !m= P :

!!
Tm=P = (

A
m
+ B
n
+ C
mn

−D)(n+P −1)(m
P
)
!!
= (HP +HG)(kP + r)

P(kP + r) +EP +EG

(B10)

Subtract (B10) from (B9):

!Tm=kP+r −Tm=P = !!
HPkr +HPkG+HPr+HPG−HPkP −HPr−HGkP −HGr

P(kP + r)

 !+Ekr +EkG+Er +EG−EP −EG

 !!
= H(P − r)(n−1−kP)

P(kP + r) +Ekr +Ek(n−1)+Er −EP

since !!G = n−1

 !!
≥ H(P − r)(m−1−kP)

P(kP + r) +Ekr +Ek(m−1)+Er −EP (!n≥m= kP + r)

 67

 !!
= H(P − r)(kP + r −1−kP)

P(kP + r) +Ekr +Ek(kP + r −1)+Er −EP

Since
 !!

H(P − r)(kP + r −1−kP)
P(kP + r) ≥0,

!!Ekr +Ek(kP + r −1)+Er −EP >0, hence

!Tm=kP+r >Tm=P .

Thus Lemma B3 is proven.

 68

9.3 Appendix C: Source Code of Supernode Transformation on
Computer Cluster Systems

Appendix C contains source code implementing the LCS problem running on

computer cluster systems. There are three parts: code running on the master computer,

code running on the computing nodes, and the include file used by both codes.

9.3.1 Code Running on the Master Computer

The master computer drives the entire work flow. It manages the cluster, handles the

synchronizations between the computing nodes. It first initializes all computing nodes by

starting the client code on them, then connects to each and every computing nodes via

socket and sends the X and Y sequences to them. After that, it follows the execution

model explained in section 4, sends supernodes’ dependent data to computing nodes to do

LCS processing and receives the resultant data. It continues this process until the last

wavefront is processed. The computation time and the communication time are recorded

for analysis using the mathematical model obtained in section 4.

Following is the source code for the code running on the master computer

MasterComputer.c

#include "sc.h"

int client_socket[NUM_OF_PROCESSOR];

int client_ready[NUM_OF_PROCESSOR];

double each_calc_cpu;

 69

double each_com_time;

uint16_t LCS[M][N];

char X[M+1], Y[N+1];

/**

 * master node creates computing node

 * param i is the core id that the computing node (process) will

 * reside on the new process runs computing node image (cnode)

 **/

int create_process(int i) {

 char buf[12];

 int p = fork();

 if (p < 0) {

 perror("fork failed: ");

 exit(-1);

 } else if (p == 0) { //child process

 snprintf(buf, sizeof(buf), "%d", i);

 execlp("./cnode", buf, (char *)NULL);

 perror("should not come here: ");

 } else { //parent process

 return p;

 }

}

/**

 70

 * populating a sequence (of LCS) with random values

 **/

void _populate_seq(char *seq, int size) {

 char *ref = "abcdefghijklmnopqrstuvwxyz\

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";

 int len = strlen(ref);

 int pos, i;

 for (i=0; i<size; i++) {

 pos = rand() % len;

 seq[i] = ref[pos];

 }

}

/**

 * reset all clients' status to NOT READY

 **/

void reset_clients() {

 int i;

 for (i=0; i<NUM_OF_PROCESSOR; i++)

 client_ready[i] = FALSE;

}

/**

 * check if all clients are in READY state

 **/

 71

int clients_ready() {

 int i;

 for (i=0; i<NUM_OF_PROCESSOR; i++)

 if (client_ready[i] == FALSE) {

 return FALSE;

 }

 return TRUE;

}

/**

 * process computing node 'i' by first receiving data then processing

 * it. The expected data should be MSG_INIT1, or MSG_INIT2, or MSG_DATA

 * MSG_INIT1 means client is initialized, MSG_INIT2 indicates client has

 * received X and Y sequences.

 *

 * client is marked as READY when done.

 **/

void process_client(int i, int node_w, int node_h) {

 int bytes_read, ii, jj;

 msg read_buf;

 struct timespec end;

 bytes_read = recv(client_socket[i], &read_buf, sizeof(msg), MSG_WAITALL);

 if (bytes_read == 0) {

 close(client_socket[i]);

 72

 client_socket[i] = 0;

 return;

 }

 msg *m = (msg *)&read_buf;

 if (m->type == MSG_INIT1 || m->type == MSG_INIT2) {

 client_ready[i] = TRUE;

 } else if (m->type == MSG_DATA) {

 clock_gettime(CLOCK_MONOTONIC, &end);

 if (each_calc_cpu < m->each_calc_cpu) {

 each_calc_cpu = m->each_calc_cpu; //use the largest one

 }

 double diffcom = (end.tv_sec - m->startw.tv_sec)*1000000 +

 (double)((end.tv_nsec - m->startw.tv_nsec)/(double)1000); //micro secs

 if (each_com_time < diffcom) {

 each_com_time = diffcom; //use the largest one

 }

 if (m->base_x >= 0 && m->base_x < M &&

 m->base_y >= 0 && m->base_y < N) {

 for (ii=0; ii<m->width; ii++) {

 memcpy(&LCS[m->base_x+ii][m->base_y],

 &m->data.reply[ii][0], m->height*sizeof(uint16_t));

 }

 73

 }

 client_ready[i] = TRUE;

 }

}

/**

 * signal handler for SIGINT and SIGTERM, make sure all child processes

 * (computing nodes) are terminated.

 **/

void sighandler(int signum) {

 kill(0, SIGUSR1);

}

/**

 * the main function which controls the entire work flow,

 * by initializing the computing nodes, send/receive data

 * to/from computing nodes and provide synchronization

 * between all computing nodes.

 **/

int main(int argc, char *argv[]) {

 int w, h, k, l, client, ii, i;

 int opt = TRUE;

 int master_socket, addrlen, new_socket;

 int max_clients = NUM_OF_PROCESSOR, activity, sd;

 int max_sd;

 struct sockaddr_in address;

 74

 fd_set readfds;

 set_affinity(0);

 signal(SIGINT, sighandler);

 signal(SIGTERM, sighandler);

 _populate_seq((char *)X, M);

 _populate_seq((char *)Y, N);

 for (i=0; i<max_clients; i++) {

 client_socket[i] = 0;

 client_ready[i] = FALSE;

 }

 if ((master_socket=socket(AF_INET, SOCK_STREAM, 0)) == 0) {

 perror("master socket error: ");

 exit(-1);

 }

 if (setsockopt(master_socket, SOL_SOCKET, SO_REUSEADDR, (char *)&opt,

sizeof(opt)) < 0){

 perror("set socket:");

 exit(-1);

 }

 75

 address.sin_family = AF_INET;

 address.sin_addr.s_addr=INADDR_ANY;

 address.sin_port=htons(PORT);

 if (bind(master_socket, (struct sockaddr*)&address, sizeof(address)) < 0) {

 perror("bind error: ");

 exit(-1);

 }

 if (listen(master_socket, 2*NUM_OF_PROCESSOR) < 0) {

 perror("listen error: ");

 exit(-1);

 }

 addrlen = sizeof(address);

 printf("waiting for incoming connection...\n");

 for (i=0; i<max_clients; i++)

 create_process(i);

 // first connecting to all computing nodes

 while (TRUE) {

 FD_ZERO(&readfds);

 FD_SET(master_socket, &readfds);

 76

 max_sd = master_socket;

 for (i=0; i<max_clients; i++) {

 sd = client_socket[i];

 if (sd > 0)

 FD_SET(sd, &readfds);

 if (sd > max_sd)

 max_sd = sd;

 }

 activity = select(max_sd+1, &readfds, NULL, NULL, NULL);

 if ((activity < 0) && errno != EINTR)

 printf("select error: ");

 if (FD_ISSET(master_socket, &readfds)) {

 new_socket = accept(master_socket, (struct sockaddr *)&address,

(socklen_t*)&addrlen);

 if (new_socket < 0) {

 perror ("accept error: ");

 exit(-1);

 }

 for(i=0; i<max_clients; i++) {

 if (client_socket[i] == 0) {

 77

 client_socket[i] = new_socket;

 break;

 }

 }

 }

 for (i=0; i<max_clients; i++)

 {

 sd = client_socket[i];

 if (FD_ISSET(sd, &readfds)) {

 process_client(i, 0, 0);

 }

 }

 // if all computing nodes are connected

 if (clients_ready() == TRUE)

 break;

 }

 reset_clients();

 // now sending X and Y to clients

 msg m1;

 m1.type = MSG_INIT;

 78

 m1.width = M;

 m1.height = N;

 memcpy(m1.data.bl.bottom, X, M);

 memcpy(m1.data.bl.left, Y, N);

 for (client=0; client<max_clients; client++) {

 send(client_socket[client], &m1, sizeof(msg), 0);

 }

 while (TRUE) {

 FD_ZERO(&readfds);

 FD_SET(master_socket, &readfds);

 max_sd = master_socket;

 for (i=0; i<max_clients; i++) {

 sd = client_socket[i];

 if (sd > 0)

 FD_SET(sd, &readfds);

 if (sd > max_sd)

 max_sd = sd;

 }

 activity = select(max_sd+1, &readfds, NULL, NULL, NULL);

 if ((activity < 0) && errno != EINTR) {

 printf("select() error: ");

 79

 }

 for (i=0; i<max_clients; i++) {

 sd = client_socket[i];

 if (FD_ISSET(sd, &readfds)) {

 printf("received XY reply, i=%d\n", i);

 process_client(i, 0, 0);//need to send X and Y to clients

 }

 }

 if (clients_ready() == TRUE) {

 break;

 }

 }

 reset_clients();

 // now start the computation, it computes all possible pairs of (w,h),

 // thus an exhaustive testing approach.

 for (w=1; w<=M; w++) {

 for (h=1; h<N; h++) {

 int m=M%w==0 ? M/w : (M/w+1);

 int n=N%h==0 ? N/h : (N/h+1);

 80

 msg m1;

 m1.type = MSG_DATA;

 m1.width = w;

 m1.height = h;

 double Tcpu = 0;

 double Tcom = 0;

 if (m >= n) {

 for (k=0; k<(m+n-1); k++) {

 int wavelength;

 if (k < n)

 wavelength = k+1;

 else if (k>=n && k<m)

 wavelength = n;

 else

 wavelength = n-(k-m)-1;

 int num_of_seg = wavelength%max_clients==0 ? wavelength/max_clients :

(wavelength/max_clients+1);

 for (l=0; l<num_of_seg; l++) {

 for (client=0; client<max_clients; client++) {

 81

 if (k < (n-1)) {

 m1.base_x = (k-l*max_clients-client)*w;

 m1.base_y = (l*max_clients+client)*h;

 } else if (k>=(n-1) && k<(m-1)) {

 m1.base_x = (k-l*max_clients-client)*w;

 m1.base_y = (l*max_clients+client)*h;

 } else { // k>=m-1 && k<n+m-1

 m1.base_x = (m-1-l*max_clients-client)*w;

 m1.base_y = (k-(m-1)+l*max_clients+client)*h;

 }

 m1.width = w;

 m1.height = h;

 if (m1.base_x >= 0 && m1.base_x < M && m1.base_y >= 0 &&

m1.base_y < N) {

 m1.width = (m1.base_x+m1.width)>M ? (M-m1.base_x) : m1.width;

 m1.height = (m1.base_y+m1.height)>N ? (N-m1.base_y) : m1.height;

 if (m1.base_x == 0) {

 for (ii=0; ii<m1.height; ii++) {

 m1.data.bl.left[ii] = 0;

 }

 } else {

 for (ii=0; ii<m1.height; ii++) {

 m1.data.bl.left[ii]=LCS[m1.base_x-1][m1.base_y+ii];

 82

 }

 }

 if (m1.base_y == 0) {

 for (ii=0; ii<m1.width; ii++) {

 m1.data.bl.bottom[ii] = 0;

 }

 } else {

 for (ii=0; ii<m1.width; ii++) {

 m1.data.bl.bottom[ii] = LCS[m1.base_x+ii][m1.base_y-1];

 }

 }

 if (m1.base_x!=0 && m1.base_y!=0) {

 m1.leftbottom = LCS[m1.base_x-1][m1.base_y-1];

 }

 }

 clock_gettime(CLOCK_MONOTONIC, &m1.startw);

 send(client_socket[client], &m1, sizeof(msg), 0);

 }

 each_calc_cpu = 0;

 each_com_time = 0;

 83

 while (TRUE) {

 FD_ZERO(&readfds);

 FD_SET(master_socket, &readfds);

 max_sd = master_socket;

 for (i=0; i<max_clients; i++) {

 sd = client_socket[i];

 if (sd > 0)

 FD_SET(sd, &readfds);

 if (sd > max_sd)

 max_sd = sd;

 }

 activity = select(max_sd+1, &readfds, NULL, NULL, NULL);

 if ((activity < 0) && errno != EINTR) {

 printf("select err:");

 exit(-1);

 }

 for (i=0; i<max_clients; i++) {

 sd = client_socket[i];

 if (FD_ISSET(sd, &readfds)) {

 process_client(i, w, h);

 }

 84

 }

 if (clients_ready() == TRUE) {

 reset_clients();

 break;

 }

 }

 Tcpu += each_calc_cpu;

 Tcom += each_com_time;

 }

 }

 } else { //m<n

 for (k=0; k<(m+n-1); k++) {

 int wavelength;

 if (k < m)

 wavelength = k+1;

 else if (k>=m && k<n)

 wavelength = m;

 else //k>=n

 wavelength = m-(k-n)-1;

 int num_of_seg = wavelength%max_clients==0 ? wavelength/max_clients :

 85

 (wavelength/max_clients+1);

 for (l=0; l<num_of_seg; l++) {

 for (client=0; client<max_clients; client++) {

 if (k < (m-1)) {

 m1.base_x = (k-l*max_clients-client)*w;

 m1.base_y = (l*max_clients+client)*h;

 } else if (k>=(m-1) && k<(n-1)) {

 m1.base_x = (m-1-l*max_clients-client)*w;

 m1.base_y = (k-(m-1)+l*max_clients+client)*h;

 } else { // k>=n && k<=n+m-1

 m1.base_x = (m-1-l*max_clients-client)*w;

 m1.base_y = (k-(m-1)+l*max_clients+client)*h;

 }

 if (m1.base_x >= 0 && m1.base_x < M && m1.base_y >= 0 &&

m1.base_y < N) {

 m1.width = (m1.base_x+m1.width)>M ? (M-m1.base_x) : m1.width;

 m1.height = (m1.base_y+m1.height)>N ? (N-m1.base_y) : m1.height;

 if (m1.base_x == 0) {

 for (ii=0; ii<m1.height; ii++) {

 m1.data.bl.left[ii] = 0;

 }

 86

 } else {

 for (ii=0; ii<m1.height; ii++) {

 m1.data.bl.left[ii] = LCS[m1.base_x-1][m1.base_y+ii];

 }

 }

 if (m1.base_y == 0) {

 for (ii=0; ii<m1.width; ii++) {

 m1.data.bl.bottom[ii] = 0;

 }

 } else {

 for (ii=0; ii<m1.width; ii++) {

 m1.data.bl.bottom[ii] = LCS[m1.base_x+ii][m1.base_y-1];

 }

 }

 if (m1.base_x!=0 && m1.base_y != 0) {

 m1.leftbottom = LCS[m1.base_x-1][m1.base_y-1];

 }

 }

 clock_gettime(CLOCK_MONOTONIC, &m1.startw);

 send(client_socket[client], &m1, sizeof(msg), 0);

 }

 87

 each_calc_cpu = 0; //biggest

 each_com_time = 0;

 while (TRUE) {

 FD_ZERO(&readfds);

 FD_SET(master_socket, &readfds);

 max_sd = master_socket;

 for (i=0; i<max_clients; i++) {

 sd = client_socket[i];

 if (sd > 0)

 FD_SET(sd, &readfds);

 if (sd > max_sd)

 max_sd = sd;

 }

 activity = select(max_sd+1, &readfds, NULL, NULL, NULL);

 if ((activity < 0) && errno != EINTR)

 printf("select err:");

 for (i=0; i<max_clients; i++)

 {

 sd = client_socket[i];

 if (FD_ISSET(sd, &readfds)) {

 88

 process_client(i, w, h);

 }

 }

 if (clients_ready() == TRUE) {

 reset_clients();

 break;

 }

 }

 Tcpu += each_calc_cpu;

 Tcom += each_com_time;

 }

 }

 }

 printf("Tcom is %f, Tcpu=%f, total time is %f, w=%d, h=%d\n", Tcom, Tcpu,

Tcom+Tcpu, w, h);

 fflush(NULL);

 }

 }

 kill(0, SIGUSR1);

}

 89

9.3.2 Code Running on the Computing Nodes

The code running on the computing nodes acts as client code in client/server model, it

is driven by the master computer. It receives dependent data from the master computer,

process the data based on the LCS problem logic, and them sends the resultant data back

to the master computer. It continues this logic until it receives the KILL signal from the

master computer indicating the completion of the entire process.

Following is the source code ComputingNode.c.

/**

 * the code on computing nodes

 */

#include "sc.h"

char d_X[M+1], d_Y[N+1];

msg m_reply, *m;

int my_client_id = 0;

int main(int argc, char *argv[]) {

 int sock, bytes_read;

 struct sockaddr_in server;

 msg server_data;

 int ii, jj;

 struct timespec start, end;

 double tr; // comm cost from server to this client

 90

 if (argc == 1)

 my_client_id = (int)(*argv[0]-'0');

 else {

 printf("Please specify client id on command line.\n");

 exit(-1);

 }

 set_affinity(my_client_id + 1);

 sock = socket(AF_INET, SOCK_STREAM, 0);

 if (sock == -1) {

 perror("socket error:");

 exit(-1);

 }

 // “127.0.0.1” indicating the local host, in cluster, the real IP address of

 // the master computer should be used.

 server.sin_addr.s_addr = inet_addr("127.0.0.1");

 server.sin_family = AF_INET;

 server.sin_port = htons(PORT);

 if (connect(sock, (struct sockaddr *)&server, sizeof(server)) < 0) {

 perror("connect failed: ");

 exit(-1);

 }

 91

 // tell server we are ready

 m_reply.type = MSG_INIT1;

 send(sock, &m_reply, sizeof(m_reply), 0);

 while (1) { // while loop, program is terminated via server sending KILL signal

 if ((bytes_read=recv(sock, &server_data,sizeof(msg),MSG_WAITALL)) < 0) {

 perror("received error:");

 exit(-1);

 }

 if (bytes_read != sizeof(msg)) {

 sleep(1);

 continue;

 }

 m = (msg *)&server_data;

 clock_gettime(CLOCK_MONOTONIC, &start);

 if (m->type == MSG_INIT) { //receive X and Y sequences

 memcpy(d_X, m->data.bl.bottom, m->width);

 d_X[m->width] = '\0';

 memcpy(d_Y, m->data.bl.left, m->height);

 d_Y[m->height] = '\0';

 92

 m_reply.type = MSG_INIT2;

 } else if (m->type == MSG_DATA) {

 tr = (start.tv_sec - m->startw.tv_sec)*1000000000 +

 (start.tv_nsec - m->startw.tv_nsec);

 m_reply.type = MSG_DATA;

 m_reply.width = m->width;

 m_reply.height = m->height;

 m_reply.base_x = m->base_x;

 m_reply.base_y = m->base_y;

 if (m->base_x>=0 && m->base_x<M && m->base_y>=0 && m->base_y<N) {

 for (jj=0; jj<m->height; jj++) {

 for (ii=0; ii<m->width; ii++) {

 if (m->base_x==0 && ii==0){

 m_reply.data.reply[ii][jj] = 0;

 } else if (m->base_y == 0 && jj == 0) {

 m_reply.data.reply[ii][0] = 0;

 } else if (d_X[m->base_x+ii] == d_Y[m->base_y+jj]) {

 int leftbottom;

 if (ii == 0) {

 if (jj == 0) {

 leftbottom = m->leftbottom;

 } else {

 93

 leftbottom = m->data.bl.left[jj-1];

 }

 } else if (jj == 0) {

 if (ii == 0) {

 leftbottom = m->leftbottom;

 } else

 leftbottom = m->data.bl.bottom[ii-1];

 } else {

 leftbottom = m_reply.data.reply[ii-1][jj-1];

 }

 m_reply.data.reply[ii][jj] = 1 + leftbottom;

 } else {

 int left, bottom;

 if (ii == 0)

 left = m->data.bl.left[jj];

 else

 left = m_reply.data.reply[ii-1][jj];

 if (jj==0) {

 bottom = m->data.bl.bottom[ii];

 } else

 bottom = m_reply.data.reply[ii][jj-1];

 94

 m_reply.data.reply[ii][jj] = left>bottom?left:bottom;

 }

 }

 }

 }

 }

 clock_gettime(CLOCK_MONOTONIC, &end);

 double diffcpu = (end.tv_sec - start.tv_sec)*1000000 +

 (double)((end.tv_nsec - start.tv_nsec)/(double)1000); //micro secs

 m_reply.each_calc_cpu = diffcpu;

 clock_gettime(CLOCK_MONOTONIC, &m_reply.startw);

 m_reply.startw.tv_nsec -= tr; //add 'send' comm cost

 send(sock, &m_reply, sizeof(msg), 0);

 }

}

9.3.3 Include File

The include file defines some commonly used data structures and functions, it is

included and used by both ComputingNode.c and MasterComputer.c.

#include <stdio.h>

#include <string.h>

 95

#include <stdlib.h>

#include <errno.h>

#include <unistd.h>

#include <arpa/inet.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <time.h>

#include <sys/time.h>

#include <limits.h>

#define _GNU_SOURCE

#include <sched.h>

#include "signal.h"

#define TRUE 1

#define FALSE 0

#define PORT 8319

#define NUM_OF_CORE 6

#define M 600

#define N 1200

 96

#define MSG_SIZE (M*N+32)

#define MSG_READY 0

#define MSG_DATA 1

#define MSG_INIT 2

#define MSG_INIT1 3

#define MSG_INIT2 4

typedef struct _bottomleft {

 uint16_t bottom[M + 1];

 uint16_t left[N + 1];

} bottomleft;

// the message data structure, between server and client

typedef struct _msg {

 int type;

 int base_x;

 int base_y;

 int width; //width of the array

 int height; //height of the array

 int leftbottom;

 double each_calc_cpu;

 struct timespec startw;

 97

 union {

 uint16_t reply[M + 1][N + 1];

 bottomleft bl;

 } data;

} msg;

/**

 * calling Linux sched_getaffinity() to get a core to work on

 * returns 0 if successful

 * return -1 if failed

 **/

int set_affinity(int which) {

 cpu_set_t set, mask;

 int i;

 CPU_ZERO(&set);

 CPU_SET(which, &set);

 printf(" setting to core %d\n", which);

 if (sched_setaffinity(getpid(), sizeof(cpu_set_t), &set)) {

 printf(" client %d sched failed:.\n", which);

 perror(" client sched failed");

 return -1;

 }

 98

 CPU_ZERO_S(sizeof(cpu_set_t), &mask);

 if (sched_getaffinity(0, sizeof(cpu_set_t), &mask) == -1) {

 perror("can't get it:");

 return -1;

 }

 if (!CPU_ISSET_S(which, sizeof(cpu_set_t), &mask)) {

 printf(" it's NOT on %d\n", which);

 return -1;

 }

 return 0;

}

 99

9.4 Appendix D: Code on GPGPUs.

GPGPU programming is different from the traditional programming. A GPGPU

program is divided into two parts: one running on the host CPU and the other running on

GPU. The host program drives the entire work flow, sets up the data, then launches the

GPU code called kernel for fast and parallel processing on GPU SMs.

Following is the LCS.cu code for running the LCS program on GPGPU, it following

the execution model explained in section 4 to process the supernodes. Nvidia’s CUDA

development kit 6.0 is used in the code.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <inttypes.h>

#include <cuda.h>

#define NUM_OF_BLOCK 30

#define NUM_OF_THREAD 1024

// problem size

#define M 600

#define N 1200

typedef struct {

 100

 uint16_t width;

 uint16_t height;

 uint16_t *elements;

} Matrix;

char X[M];

char Y[N];

__global__ void lcs_kernel(char *d_X, char *d_Y, int w, int h, int k, int l, Matrix d_L,

unsigned long long int *d_T, int m, int n, int p, int width, int height);

void _populate_seq(char *xy, int size) {

 char *ref = "abcdefghijklmnopqrstuvwxyz\

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";

 int len = strlen(ref);

 int pos;

 for (int i=0; i<size; i++) {

 pos = rand()%len;

 xy[i] = ref[pos];

 }

}

 101

//main program -- Host code

void main_program(int num_of_block)

{

 int w, h, mmin, nmin;

 int k, l;

 char *device_X, *device_Y;

 Matrix L, device_L;

 unsigned long long int *T, *d_T, Tmin, Tused, Tused0, Tmem_min, Tmem, Tmem0;

 //invoke kernel

 dim3 dimGrid(num_of_block);

 _populate_seq(X, M);

 _populate_seq(Y, N);

 T = (unsigned long long int *)malloc(2*num_of_block*sizeof(unsigned long long int));

 cudaMalloc((void **)&d_T, 2*num_of_block*sizeof(unsigned long long int));

 cudaMalloc((void **)&device_X, M);

 cudaMemcpy(device_X, X, M, cudaMemcpyHostToDevice);

 cudaMalloc((void **)&device_Y, N);

 cudaMemcpy(device_Y, Y, N, cudaMemcpyHostToDevice);

 L.width = M;

 L.height = N;

 102

 L.elements = (uint16_t *)malloc(L.width*L.height*sizeof(uint16_t));

 device_L.width = M;

 device_L.height = N;

 cudaMalloc((void **)&device_L.elements,

device_L.width*device_L.height*sizeof(uint16_t));

 Tmin = 0;

 Tmem_min = 0;

 for (h=1; h<=N; h++) {

 for (w=1; w<M; w++) {

 if ((w*h)>20000)

 continue; //GTX 760 shared memory per block is 48KB.

 if (w > 1024 && h > 1024)

 continue; // max 1024 threads per block

 int m = M%w==0 ? M/w : (M/w+1);

 int n = N%h==0 ? N/h : (N/h+1);

 dim3 dimBlock(1024);

 Tused = 0; Tmem = 0;

 103

 if (m >= n) {

 for (k=0; k<(m+n-1); k++) {

 int wavelength;

 if (k < n)

 wavelength = k + 1;

 else if (k >= n && k < m)

 wavelength = n;

 else

 wavelength = n-(k-m)-1;

 int num_of_seg = wavelength%num_of_block==0 ?

wavelength/num_of_block : (wavelength/num_of_block + 1);

 for (l=0; l<num_of_seg; l++) {

 lcs_kernel<<<dimGrid, dimBlock,

sizeof(uint16_t)*(w*h+w+h+w+1+h+1)>>>(device_X, device_Y, w, h, k, l, device_L,

d_T, m, n, num_of_block, M, N);

 cudaError_t cudaerr = cudaDeviceSynchronize();

 if (cudaerr != CUDA_SUCCESS) {

 exit(-1);

 }

 104

 cudaMemcpy((void *)T, (void *)d_T, 2*num_of_block*sizeof(unsigned

long long int), cudaMemcpyDeviceToHost);

 Tused0 = 0;

 Tmem0 = 0;

 for (int j=0; j<num_of_block; j++) {

 if (Tused0 < T[j]) {

 Tused0 = T[j];

 }

 if (Tmem0 < T[j+num_of_block]) {

 Tmem0 = T[j+num_of_block];

 }

 }

 Tused += Tused0;

 Tmem += Tmem0;

 }

 }

 cudaMemcpy((void *)&L.elements[M*N-1], (void

*)&device_L.elements[M*N-1], sizeof(uint16_t), cudaMemcpyDeviceToHost);

 } else { //m<n

 for (k=0; k<(m+n-1); k++) {

 int wavelength;

 105

 if (k < m)

 wavelength = k+1;

 else if (k >= m && k < n)

 wavelength = m;

 else //k>=n

 wavelength = m-(k-n)-1;

 int num_of_seg = wavelength%num_of_block==0 ?

wavelength/num_of_block : (wavelength/num_of_block+1);

 for (l=0; l<num_of_seg; l++) {

 lcs_kernel<<<dimGrid, dimBlock,

sizeof(uint16_t)*(w*h+w+h+w+1+h+1)>>>(device_X, device_Y, w, h, k, l, device_L,

d_T, m, n, num_of_block, M, N);

 cudaError_t cudaerr = cudaDeviceSynchronize();

 if (cudaerr != CUDA_SUCCESS) {

 exit(-1);

 }

 cudaMemcpy((void *)T, (void *)d_T, 2*num_of_block*sizeof(unsigned

long long int), cudaMemcpyDeviceToHost);

 Tused0 = 0;

 Tmem0=0;

 for (int j=0; j<num_of_block; j++) {

 if (Tused0 < T[j]) {

 106

 Tused0 = T[j];

 }

 if (Tmem0 < T[j+num_of_block]) {

 Tmem0 = T[j+num_of_block];

 }

 }

 Tused += Tused0;

 Tmem += Tmem0;

 }

 }

 cudaMemcpy((void *)&L.elements[M*N-1], (void

*)&device_L.elements[M*N-1], sizeof(uint16_t), cudaMemcpyDeviceToHost);

 }

 if (Tmin == 0 || Tmin > Tused){

 Tmin = Tused;

 mmin = m;

 nmin = n;

 Tmem_min = Tmem;

 }

 printf("w=%d,h=%d,LCS=%hu Tused=%llu, Tmin=%llu, Tmem=%llu,

mmin=%d, nmin=%d\n",

 107

 w, h, L.elements[M*N-1], Tused, Tmin, Tmem_min, mmin, nmin);

 fflush(NULL);

 }

 }

 cudaFree(device_L.elements);

 free(L.elements);

}

// one thread only handles one (x,y) in one wavefront at one time, but it's in a loop

__device__ unsigned long long int

one_thread_calculation(int k, int l, char *d_X, char *d_Y, int base_x, int base_y, int w,

int h, Matrix d_L, uint16_t *A, int width, int height, unsigned long long int *d_T, int p) {

 int i;

 int my_delta_x;

 int my_delta_y;

 uint16_t *a_bottom, *a_left;

 char *a_X, *a_Y;

 // copy global memory to A

 // A is wxh, then w+1, h+1 for d_L values, then w+h for d_X and d_Y

 a_bottom = &A[w*h];

 a_left = &A[w*h+w+1];

 108

 a_X = (char *)&A[w*h+w+1+h+1];

 a_Y = (char *)&A[w*h+w+1+h+1+w];

 int thread_id = threadIdx.x;

 if (base_x < width && (base_y + thread_id) < height) {

 int len = (base_x + w) >= width ? (width - base_x) : w;

 int hh = (base_y + h) >= height ? (height-base_y) : h;

 int counter = 0;

 while (true) {

 int pos = counter*NUM_OF_THREAD + threadIdx.x;

 if (pos < len) {

 a_X[pos] = d_X[base_x+pos];

 counter ++;

 } else

 break;

 }

 counter = 0;

 while (true) {

 int pos = counter*NUM_OF_THREAD + threadIdx.x;

 if (pos < hh) {

 a_Y[pos] = d_Y[base_y + pos];

 109

 counter ++;

 } else

 break;

 }

 if (base_x==0 && base_y==0) {

 if (thread_id==0) {

 memset(a_bottom, 0, len + 1);

 memset(a_left, 0, hh + 1);

 }

 } else if (base_x != 0 && base_y != 0) {

 int pos = (base_y-1)*width + base_x - 1;

 counter = 0;

 while (true) {

 int pos3 = counter*NUM_OF_THREAD + threadIdx.x;

 if (pos3 < (len + 1)) {

 a_bottom[pos3] = d_L.elements[pos + pos3];

 counter ++;

 } else

 break;

 }

 counter=0;

 110

 while (true) {

 int pos3 = counter*NUM_OF_THREAD + threadIdx.x;

 int pos1 = (base_y-1+pos3)*width + base_x - 1;

 if (pos3 < (hh + 1)) {

 a_left[pos3] = d_L.elements[pos1];

 counter ++;

 } else

 break;

 }

 } else if (base_x == 0) { // then base_y !=0

 int pos = (base_y-1)*width;

 counter = 0;

 while (true) {

 int pos3 = counter*NUM_OF_THREAD + threadIdx.x;

 if (pos3 < len) {

 a_bottom[1+pos3] = d_L.elements[pos + pos3];

 counter ++;

 } else

 break;

 }

 a_bottom[0] = 0; //actually we may not need it

 111

 memset(a_left, 0, hh + 1);

 } else { // base_y==0 and base_x !=0

 memset(a_bottom, 0, len + 1);

 a_left[0] = 0;

 counter = 0;

 while (true) {

 int pos3 = counter*NUM_OF_THREAD + threadIdx.x;

 int pos1 = pos3*width + base_x - 1;

 if (pos3 < hh) {

 a_left[1+pos3] = d_L.elements[pos1];

 counter ++;

 } else

 break;

 }

 }

 }

 __syncthreads();

 if (w >= h) {

 for (i=0; i<(w+h-1); i++) { //each mini wavefront is done by all threads, each thread

handles one point

 112

 // now get each thread's position for calculation

 if (i < h) {

 my_delta_x = i - threadIdx.x;

 my_delta_y = threadIdx.x;

 } else if (i >= h && i < w) {

 my_delta_x = i - threadIdx.x;

 my_delta_y = threadIdx.x;

 } else {//i>=w and i<(w+h-1)

 my_delta_x = w - 1 - threadIdx.x;

 my_delta_y = i - (w-1) + threadIdx.x;

 }

 if (my_delta_x < w && my_delta_x >= 0 && my_delta_y < h && my_delta_y >=

0 &&

 (my_delta_x + base_x) >= 0 && (my_delta_x + base_x) < width &&

 (my_delta_y + base_y) >= 0 && (my_delta_y + base_y) < height) { //so some

threads may be idle

 if (base_x == 0 && my_delta_x == 0) {

 A[my_delta_y*w] = 0;

 }

 else if (base_y == 0 && my_delta_y == 0) {

 A[my_delta_x] = 0;

 113

 }

 else {

 char d_x_b = a_X[my_delta_x];

 char d_y_l = a_Y[my_delta_y];

 if (d_x_b == d_y_l) {

 int leftbottom;

 if (my_delta_x == 0 && my_delta_y == 0)

 leftbottom = a_bottom[0];

 else if (my_delta_x == 0)

 leftbottom = a_left[my_delta_y];

 else if (my_delta_y == 0)

 leftbottom = a_bottom[my_delta_x];

 else

 leftbottom = A[(my_delta_y-1)*w + my_delta_x-1];

 A[my_delta_y*w+my_delta_x] = 1 + leftbottom;

 } else {

 int left, bottom;

 if (my_delta_x == 0) {

 left=a_left[my_delta_y + 1]; //left value

 114

 }

 else

 left = A[my_delta_y*w + my_delta_x - 1];

 if (my_delta_y == 0) {

 bottom = a_bottom[my_delta_x + 1]; //bottom value

 }

 else

 bottom = A[(my_delta_y-1)*w + my_delta_x];

 A[my_delta_y*w + my_delta_x] = left > bottom ? left : bottom;

 }

 }

 }

 __syncthreads(); //wait till all threads are done for this wavefront in w*h

 }

 //copy A back to d_L

 if (base_x >= 0 && base_x < width && base_y >= 0 && base_y < height) {

 int cpy_count;

 if ((base_x+w) < width)

 cpy_count = w;

 else

 115

 cpy_count = width - base_x;

 int jj;

 for (jj=0; jj<h; jj++) {

 if ((jj+base_y) >= height)

 break;

 int counter = 0;

 while (true) {

 int d_L_pos = (base_y+jj)*M + base_x;

 int A_pos = jj*w;

 int pos3 = counter*NUM_OF_THREAD + threadIdx.x;

 if (pos3 < cpy_count) {

 d_L.elements[d_L_pos+pos3] = A[A_pos+pos3];

 counter ++;

 } else

 break;

 }

 }

 }

 __syncthreads(); //wait till all threads are done

 116

 } else { //h>w case, we have w threads

 for (i=0; i<(w+h-1); i++) { //each mini wavefront is done by all threads

 // now get each thread's position for calculation

 if (i < w) {

 my_delta_x = i - threadIdx.x;

 my_delta_y = threadIdx.x;

 } else if (i >= w && i < h) {

 my_delta_x = w - 1 - threadIdx.x;

 my_delta_y = i - (w-1) + threadIdx.x;

 } else {//i>=h and i<(w+h-1)

 my_delta_x = w - 1 - threadIdx.x;

 my_delta_y = i - (w-1) + threadIdx.x;

 }

 if (my_delta_x < w && my_delta_x >= 0 && my_delta_y < h && my_delta_y >=

0 &&

 (my_delta_x+base_x) >= 0 && (my_delta_x+base_x) < width &&

 (my_delta_y+base_y) >= 0 && (my_delta_y+base_y) < height) { //so some

threads may be idle

 if (my_delta_x == 0 && base_x == 0) {

 A[my_delta_y*w] = 0;

 }

 else if (my_delta_y == 0 && base_y == 0) {

 117

 A[my_delta_x] = 0;

 }

 else {

 int d_x_b = a_X[my_delta_x];

 int d_y_l = a_Y[my_delta_y];

 if (d_x_b == d_y_l) {

 int leftbottom;

 if (my_delta_x == 0 && my_delta_y == 0)

 leftbottom = a_bottom[0];

 else if (my_delta_x == 0)

 leftbottom = a_left[my_delta_y];

 else if (my_delta_y == 0)

 leftbottom = a_bottom[my_delta_x];

 else

 leftbottom = A[(my_delta_y-1)*w+my_delta_x-1];

 A[my_delta_y*w+my_delta_x] = 1 + leftbottom;

 } else {

 int left, bottom;

 if (my_delta_x == 0) {

 left = a_left[my_delta_y + 1]; //left value

 118

 }

 else

 left = A[my_delta_y*w + my_delta_x - 1];

 if (my_delta_y == 0) {

 bottom = a_bottom[my_delta_x + 1]; //bottom value

 }

 else

 bottom = A[(my_delta_y-1)*w + my_delta_x];

 A[my_delta_y*w+my_delta_x] = left > bottom ? left : bottom;

 }

 }

 }

 __syncthreads(); //wait till all threads are done

 }

 //copy A back to d_L

 //if (threadIdx.x == 0)

 if (base_x >= 0 && base_x < width && base_y >= 0 && base_y < height) {

 int cpy_count;

 if ((base_x+w) < width)

 cpy_count = w;

 119

 else

 cpy_count = width - base_x;

 int jj;

 for (jj=0; jj<h; jj++) {

 if ((base_y+jj) >= height)

 break;

 int d_L_pos = (base_y+jj)*M+base_x;

 int A_pos = jj*w;

 int counter = 0;

 while (true) {

 int pos3 = counter*NUM_OF_THREAD + threadIdx.x;

 if (pos3 < cpy_count) {

 d_L.elements[d_L_pos+pos3] = A[A_pos+pos3];

 counter ++;

 } else

 break;

 }

 }

 }

 __syncthreads();

 }

 120

 return 0;

}

__global__ void lcs_kernel(char *d_X, char *d_Y, int w, int h, int k, int l, Matrix d_L,

unsigned long long int *d_T, int m, int n, int p, int width, int height)

{

 unsigned long long int clock1=0, clock2=0, delta=0;

 extern __shared__ uint16_t A[]; //A should be w*h size, thread size is either w or h

 memset((void **)(d_T+blockIdx.x), 0, sizeof(unsigned long long int));

 memset((void **)(d_T+p+blockIdx.x), 0, sizeof(unsigned long long int));

 if (threadIdx.x == 0)

 clock1 = clock64();

 int block_id = blockIdx.x;

 // base_x, base_y is the lower left corner coordinate of the block in d_L

 int base_x;

 int base_y;

 if (m>=n) {

 if (k < (n-1)) {

 base_x = (k-l*p-block_id)*w;

 121

 base_y = (l*p+block_id)*h;

 } else if (k >= (n-1) && k < (m-1)) {

 base_x = (k-l*p-block_id)*w;

 base_y = (l*p+block_id)*h;

 } else { // k>=m-1 && k<n+m-1

 base_x = (m-1-l*p-block_id)*w;

 base_y = (k-(m-1)+l*p+block_id)*h;

 }

 } else { //m<n

 if (k < (m-1)) {

 base_x = (k-l*p-block_id)*w;

 base_y = (l*p+block_id)*h;

 } else if (k >= (m-1) && k < (n-1)) {

 base_x = (m-1-l*p-block_id)*w;

 base_y = (k-(m-1)+l*p+block_id)*h;

 } else { // k>=n && k<=n+m-1

 base_x = (m-1-l*p-block_id)*w;

 base_y = (k-(m-1)+l*p+block_id)*h;

 }

 }

 if (base_x >= 0 && base_x < width && base_y >= 0 && base_y < height)

 122

 one_thread_calculation(k, l, d_X, d_Y, base_x, base_y, w, h, d_L, A, width, height,

d_T, p);

 __syncthreads(); //wait till all threads are done

 if (threadIdx.x == 0) {

 clock2 = clock64();

 delta = clock2-clock1;

 d_T[block_id]=delta;

 }

}

int main(int argc, char *argv[])

{

 int num_devices, d;

 int num_of_core;

 cudaDeviceProp deviceProp;

 cudaGetDeviceCount(&num_devices);

 printf("num of devices is %d\n", num_devices);

 cudaGetDevice(&d);

 cudaGetDeviceProperties(&deviceProp, d);

 123

 printf("device %d has compute capability %d.%d.\n", d, deviceProp.major,

deviceProp.minor);

 printf("device %d multiProcessorCount is %d.\n", d, deviceProp.multiProcessorCount);

 printf("device name is %s, totalGlobalMem is %d\n", deviceProp.name,

deviceProp.totalGlobalMem);

 printf("device shared mem per block %d, regs per block %d\n",

deviceProp.sharedMemPerBlock, deviceProp.regsPerBlock);

 printf("device max threads per block %d, max grid size [%d %d %d]\n",

 deviceProp.maxThreadsPerBlock, deviceProp.maxGridSize[0],

 deviceProp.maxGridSize[1], deviceProp.maxGridSize[2]);

 num_of_core = deviceProp.multiProcessorCount;

 main_program(NUM_OF_BLOCK);

}

 124

10. References

[1]. E. Hodzic and W. Shang, “On supernode transformation with minimized total
running time,” Parallel and Distributed Systems, IEEE Transactions on (Volume :9,
Issue:5), P417-428, May 1998.

[2]. D. Hirschberg, “A linear space algorithm for computing maximal common
subsequences,” Communications of the ACM, Volume 18, Issue 6, P341-343, June 1975
[3]. Nvidia CUDA Programming Guide 2.3, Nvidia Corporation, 2009.

[4]. F. Irigoin and R. Triolet, “Supernode Partitioning,” Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of Programming Languages,” P319-329,
San Diego, California, 1988.

[5]. W. Shang and J. Fortes, “Time Optimal Linear Schedules for Algorithms with
Uniform Dependencies,” IEEE Transactions on Computers, Volume 40 Issue 6, June
1991. Page 723-742.

[6]. J. Steinbrecher and W. Shang, “On Supernode Transformations And Multithreading
For The Longest Common Subsequence Problem,” Proceedings of the Tenth Australasian
Symposium on Parallel and Distributed Computing, Melbourne, Australia, 2012.

[7]. J. Xue, “On Tiling as a Loop Transformation,” Parallel Processing Letters, Vol. 7,
P409-424, 1997.

[8]. R. Andonov, S. Rajophdhye, and N. Yanev, “Optimal Orthogonal Tiling,” Proc.
Fourth Int’l Euro-Par Conf., D. Pritchard and J. Reev, eds. P480-490, September 1998.

[9]. B. Sinharoy, B. Szymanski, “Finding Optimum Wavefront of Parallel Computation,”
Journal of Parallel Algorithms and Applications, Vol. 2, No. 1, 1994, P5-26.

[10]. T. Cormen, C. Leiserson, R. Rivest, C. Stein, “Introduction to Algorithms,” MIT
Press, Cambridge, MA, USA, 2001.

[11]. E. Hodzic, W. Shang, “On Time Optimal Supernode Shape,” IEEE Transactions on
Parallel and Distributed Systems, December 2002, P1220-1233.

[12]. A Jeffrey, “Complex Analysis and Applications,” Second Edition, P22-23, 2005.

[13] T. Andronikos, N. Koziris, “Optimal Scheduling for UET-UCT Grids Into Fixed
Number of Processors,” Proceedings of 8th Euromicro Workshop on Parallel and
Distributed Processing, P237-243, IEEE, 2000.

[14] M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, N. Koziris, “Pipelined Scheduling of
Tiled Nested Loops onto Clusters of SMPs using Memory Mapped Network Interfaces,”

 125

Proceedings of the 2002 ACM/IEEE conference on Supercomputing (SC2002),
Baltimore, Maryland, November 2002.

[15] P. Y. Calland, J. Dongarra, Y. Robert, “Tiling with Limited Resources,” Proceedings
Conference Application Specific Systems, Architectures, and Processors, IEEE Computer
Society, P229-238, 1997.

[16]. M. Athanasaki, E. Koukis, N. Koziris, “Scheduling of Tiled Iteration Spaces onto a
cluster with a Fixed Number of SMP Nodes,” Proceedings of the 12th Euromicro
Conference on Parallel, Distributed and Network-Based Processing, IEEE, 2004.

[17] P. Boulet, J. Dongarra, Y. Robert, and F. Vivien, “Tiling for Heterogeneous
Computing Platforms,” Technical Report UT-CS-97-373, Univ. of Tennessee, Knoxville,
1997

[18] L. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, P. Sadayappan, N.
Vasilache, “Loop Transformations: Convexity, Pruning and Optimization,” Proceedings
of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, P549-562, Austin, TX, USA 2011

[19] G. Goumas, N. Drosinos, N. Koziris, “Communication-Aware Supernode Shape,”
IEEE transactions on Parallel and Distributed Systems, Volume 20, Issue 4, P498-511,
2009

[20] S. Parsa, Sh. Lotfi, “Wave-Fronts Parallelization and Scheduling,” 4th International
Conference on Innovations in Information Technology, IEEE, Dubai, UAE, P382-386,
2007

[21] L. Liu, L. Chen, C. Wu, X Feng, “Global Tiling for Communication Minimal
Parallelization on Distributed Memory Systems,” 14th International Euro-Par Conference,
Las Palmas de Gran Canaria, Spain, P382-391, 2008

[22] J. Yang, Y. Xu, Y. Shang, “An Efficient Parallel Algorithm for Longest Common
Subsequence Problem on GPUs,” Proceedings of the World Congress on Engineering
June, 2010 Vol I, London, U.K.

[23] J. Kloetzli, B. Strege, J. Decker, M. Olano, “Parallel Longest Common Subsequence
using Graphics Hardware,” Proceedings, Eurographics Symposium on Parallel Graphics
and Visualization, 2008, Crete, Greece.

[24] J. Xue, “Communication-Minimal Tiling of Uniform Dependence Loops,” Journal
of Parallel and Distributed Computing, Vol. 42, No. 1, P42-59, 1997

[25] R. Andonov, S. Balev, S. Rajopadhye, N. Yanev, “Optimal Semi-Oblique Tiling,”
IEEE Trans. On Parallel and Distributed Systems, Vol. 14, No. 9, P944-960, September,
2003

 126

[26] H. Ohta, Y. Saito, M. Kainaga, and H. Ono, “Optimal tile size adjustment in
compiling general DOACROSS loop nests.” In 1995 International Conference on
Supercomputing, pages 270-279, ACM Press, 1995.

[27] G. Goumas, A. Sotiropoulos, and N. Koziris, “Minimizing Completion Time for
Loop Tiling with Computation and Communication Overlapping.” In Proceedings of
IEEE Int’l Parallel and Distributed Processing Symposium (IPDPS’01), San Francisco,
Apr 2001.

[28] A. Sotiropoulos, G. Tsoukalas, and N. Koziris, “Enhancing the Performance of Tiled
Loop Execution onto Clusters using Memory Mapped Network Interfaces and Pipelined
Schedules.” In Proceedings of the 2002 Workshop on Communication Architecture for
Clusters (CAC’02), Int’l Parallel and Distributed Processing Symposium (IPDPS’02),
Fort Lauderdale, Florida, April 2002

[29] P. Boulet, A. Darte, T. Risset, Y. Robert, “(Pen)-ultimate tiling?” INTERGRATION,
The VLSI Journal, volume 17, Pages 33-51, 1994

[30] A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, N. Vasilache, “Facilitating
the Search for Compositions of Program Transformations”, ACM ICS 2005: Proceeding
of the 19th Annual International Conference on Supercomputing, P151-160, New York,
NY, USA

[31] P. Feautrier, “Some efficient solutions to the affine scheduling problem. Part I: one-
dimensional time,” International Journal of Parallel Programming, 21(5), P313-348,
1992

[32] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, O. Temam,
“Semi-automatic composition of loop transformations for deep parallelism and memory
hierarchies,” International Journal of Parallel Programming, 34(30) P261-317, 2006

[33] U. Bondhugula, A. Hartono, J. Ramanujam, P. Sadayappan, “A practical automatic
polyhedral parallelizer and locality optimizer.” In PLDI 2008 Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
Tuscon, USA, Jun. 2008

 [34] S. Pop, A. Cohen, C. Bastoul, S. Girbal, P. Jouvelot, G.-A. Silber, N. Vasilache,
“GRAPHITE: Loop optimizations based on the polyhedral model for GCC,” In Proc. Of
the 4th GCC Developer’s summit, Ottawa, Canada, Jun. 2006

[35] J. Yang, Y. Xu, Y. Shang, "An efficient parallel algorithm for longest common
subsequence problem on GPUs.” WCE 2010 – Proceedings of the World Congress on
Engineering 2010, P499-504

[36] N. Ukiyama, H. Imai, “Parallel multiple alignments and their implementation on

 127

CM5,” Genome Informatics, Yokohama, Japan, P103-108, Dec. 1993

[37] A. Lim, S. Liao, M. Lam, “Blocking and array contraction across arbitrarily nested
loops using affine partitioning,” in proceedings of the eighth ACM SIGPLAN
symposium on Principles and practices of parallel programming, P103-112, 2001

[38] A. Lim, G. Cheong, M. Lam, “An affine partitioning algorithm to maximize
parallelism and minimize communication,” in proceedings of the 13th international
conference on supercomputing, P228-237, 1999

 [39] N. Ahmed, N. Mateev, K. Pingali, “Synthesizing Transformations for Locality
Enhancement of Imperfectly-Nested Loop Nests,” International Journal of Parallel
Programming, 29(5), P493-544, Oct. 2001

[40] T. Grosser, S. Verdoolaege, A. Cohen, “Polyhedral ast generation is more than
scanning polyhedra,” ACM Transactions on Programming Languages and Systems,
Volume 37, Issue 4, 2015

[41] C. Nugteren, P. Custers, H. Corporaal, “Algorithmic species: A classification of
affine loop nests for parallel programming,” ACM Transactions on Architecture and
Code Optimization, Volume 9, issue 4, 2013

	Santa Clara University
	Scholar Commons
	3-21-2017

	Supernode Transformation On Parallel Systems With Distributed Memory – An Analytical Approach
	Yong Chen
	Recommended Citation

	Front Page Yong Chen
	Dissertation_SuperNode

