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ABSTRACT 
 
 

    Supernode transformation, or tiling, is a technique that partitions algorithms to 

improve data locality and parallelism by balancing computation and inter-processor 

communication costs to achieve shortest execution or running time. It groups multiple 

iterations of nested loops into supernodes to be assigned to processors for processing in 

parallel. A supernode transformation can be described by supernode size and shape. This 

research focuses on supernode transformation on multi-processor architectures with 

distributed memory, including computer cluster systems and General Purpose Graphic 

Processing Units (GPGPUs). The research involves supernode scheduling, supernode 

mapping to processors, and the finding of the optimal supernode size, for achieving the 
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shortest total running time. The algorithms considered are two nested loops with regular 

data dependencies. The Longest Common Subsequence problem is used as an illustration. 

A novel mathematical model for the total running time is established as a function of the 

supernode size, algorithm parameters such as the problem size and the data dependence, 

the computation time of each loop iteration, architecture parameters such as the number 

of processors, and the communication cost. The optimal supernode size is derived from 

this closed form model. The model and the optimal supernode size provide better results 

than previous researches and are verified by simulations on multi-processor systems 

including computer cluster systems and  GPGPUs. 
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1. Introduction 
 

    Supernode partitioning, or tiling, is a transformation technique that groups a number of 

iterations in a nested loop in order to improve data locality and parallelism, thus 

ultimately improving execution performance on multi-processor systems. This paper 

addresses the problem of applying supernode transformation on multi-processor systems 

with distributed memory, including computer clustering system and the General Purpose 

Graphic Processing Units (GPGPUs), especially on finding the optimal supernode size to 

minimize the total running time. 

    In a parallel system with multiple processors, the total running time consists of two 

parts: the computation time and the communication time. An algorithm can be partitioned 

into supernodes or tiles where each supernode is assigned to one processor for parallel 

execution. If the supernode is too small (or too large), the communication time (or 

computation time) will dominate and the total running time is not minimized due to non-

optimal data locality and parallelism. Finding the optimal supernode size to achieve 

optimized locality to minimize the total running time is critical in supernode 

transformation. 

    The algorithms considered in this paper are nested loops with regular data 

dependencies or uniform dependencies [5]. Such an algorithm can be described by its 

iteration index space consisting of all iteration index vectors of the loop nest, and a 

dependence matrix, consisting of all uniform dependence vectors as its columns. The 

Longest Common Subsequence Problem, the LCS problem [2], which has found wide 

applications, such as in bioinformatics or in computer science, is used to illustrate how to 

use supernode transformations to minimize the total running time. 
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    The multi-processor architectures considered in this paper are computer cluster 

systems and the GPGPUs. A computer cluster consists of a set of loosely or tightly 

connected computers that work together to form a single computational unit. The 

computers of a cluster are usually connected to each other through fast local area 

networks. The clusters are formed to improve performance and availability over that of a 

single computer while still being much more cost-effective than single computers. 

    Another important computer architecture considered is the GPGPU system. Inside each 

GPGPU, there are multiple streaming multi-processors (SMs), each SM contains multiple 

cores for concurrent operations and these cores share a cache on the same chip. Then the 

SMs are connected at high level and share a global memory of a much larger size but 

with a much slower access speed. 

    The basic approach in this paper is as follows. Given an algorithm with two nested 

loops and a multi-processor distributed memory architecture with a fixed number of 

processors or GPGPU SMs, model for the total running time is established. This total 

running time is expressed as a function of the supernode size, algorithm parameters, such 

as the problem size and data dependence, the computation time of each loop iteration, 

architecture parameters, such as the number of processors/GPGPU SMs, and the 

communication cost. This estimated expression of the total running time is a convex 

function with two variables. By working on the derivatives, the optimal supernode size 

can be estimated. 

    The contributions of this research are as follow. For algorithms with two nested loops 

and regular dependences, a novel mathematical model for the total running time on multi-

processor distributed memory systems is established, the model is closed form by 



 6 

dividing solution space into three sub spaces. The total running time is expressed as a 

function of the supernode size, algorithm parameters such as the problem size and data 

dependence, the computation time of each loop iteration, architecture parameters such as 

the number of the computing nodes in cluster system, or the number of GPGPU blocks, 

and the communication cost. The optimal supernode size is obtained based on this model. 

This optimal supernode size leads to significant performance improvement than without 

using optimal supernode size, due to optimized locality, it leads to much better results 

than previous research. 

    The rest of this research report is organized as following. Section 2 summarizes the 

related work that has been done in the area of supernode transformation. Section 3 

presents the algorithm and architecture models. Section 4 shows how the mathematical 

models of total running time for supernode transformation are established. Section 5 

discusses how to obtain the optimal supernode size for the cluster system. Section 6 

presents analytical and simulation results for the GPGPU architecture. Section 8 provides 

future work direction and section 9 contains additional information as appendix. 
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2. Related Work  
 

    Irigoin and Troilet [4] proposed the supernode partitioning technique for 

multiprocessors in 1988 as a new restructuring method. The idea was to combine multiple 

loop iterations of perfectly nested DO loops in order to provide vector statements, parallel 

tasks, and data reference locality. They first defined hyperplane partitioning, then 

generalized it to partitioning with multiple hyperplanes. They gave conditions for valid 

partitioning, and other reasonable constraints on supernodes to ensure the supernodes 

were: 1) atomic, each tile is a unit of computation, all synchronization points are 

beginnings and ends of tiles; 2) identical, this is to allow for automatic code generation; 

3) bounded, the number of points inside a tile to be bounded by a constant independent of 

the domain size. They only briefly discussed the choice of parameters of supernode 

partitioning. They noted that supercomputer architectures were too intricate to derive 

analytical expression for the partitioned program execution time. They listed a number of 

possible optimization goals, noting that these goals were often conflicting. 

    Since then, researchers have studied supernode transformation in different contexts. 

The research has been mostly focused on the model of the supernode transformation and 

how to use the model to construct the optimal supernode transformation. In general, 

supernode transformations can be described by the size, the shape and the relative ratio of 

the sides of each supernode. The communication cost can be modeled either as a constant 

where the start-up time dominates or as a linear function of the message size. To 

construct an optimal supernode transformation for a general algorithm with any convex 

index set, any dependence structure, and a general architecture is difficult or sometimes 

impossible. So researchers tried special cases. Also, the optimal solution is quite different 
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for the case where the number of processor cores is unlimited and the case where that 

number is given and fixed. Following paragraphs summarize the research development in 

supernode transformation. 

 

2.1  Supernode Scheduling, Size and Shape 

 

    Scheduling is one of the challenging problems in the parallel computing, hence lots of 

research on it. But even without supernode transformation, finding the optimal 

scheduling is hard. Sinharoy and Szymanski in [9] presented efficient algorithms for 

finding the optimum wavefront and for partitioning the optimum wavefront into sections 

to be assigned to arbitrary large array of processors. Their algorithms can be used for one 

or higher dimensional processor arrays. But these algorithms are complex even for a two-

dimension array computation. 

   Shang and Fortes in [5] addressed the problem of identifying optimal linear schedules 

for uniform dependence algorithms to minimize their execution time. An algorithm can 

be thought of as a set of indexed computations. A uniform dependence algorithm is 

defined as an algorithm whose dependence vectors are uniform, where the data 

dependence vector is the difference of indexes where a variable is used and where that 

variable is generated. Figure 1 shows an example of a two-dimensional uniform 

dependence algorithm where each node is an indexed computation, the dependence 

vector is 
!!
D= 1 1 0

0 1 1
⎛

⎝⎜
⎞

⎠⎟
, the dashed lines are wavefronts on which computations are 
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independent of each other. They proposed procedures to find optimal linear schedules 

based on the mathematical solution of a nonlinear optimization problem. 

 

 
 
                        
  
 

 
 
 
 
 
                  
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

Figure 1: A Uniform Dependence Algorithm 

 
    Hodzic and Shang in [1,11] presented an execution of tiles for uniform dependence 

algorithms using linear scheduling under the condition of largely enough processors 

available, where each processor executes all tiles along a specific dimension, with non-

overlapping communication and computation phases. They discussed optimal supernode 

size and shape with a few interesting findings. First, they found the optimal supernode 

size is the ratio of the communication cost over the computation cost of one iteration of 

the original loop. Secondly, the supernode shape is a function of the cone spanned by all 

dependence vectors. Thirdly, the ratio of the lengths of supernode sides should be such 

that the index set after the supernode transformation should have equal side lengths. 

Based on their method, the optimal supernode transformation can be found for !n  

dimensional algorithms with at most !n  dependence vectors and two-dimensional 

algorithms with any number of dependence vectors.  

j 
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      In [27] Goumas et al. tried to improve the overall execution time of nested FOR-loops 

by using a modified linear scheduling, and by mitigating communication overhead by 

efficiently overlapping the communication and computation phases. They used Direct 

Memory Access (DMA) engines and network interfaces (NICs) that can work in parallel 

with the CPUs. 

    While Goumas’s method applied to a cluster of single CPUs, Athanasaki et al. in [14] 

extended it to a cluster of symmetric multiprocessors (SMP nodes). They grouped 

together neighboring tiles along a hyperplane and these tiles are concurrently executed by 

the CPUs of the same SMP node, taking advantage of the fact that there is no need for tile 

synchronization and communication between intra-node CPUs. 

 

2.2  The Polyhedral model and Affine Transformation 

 

    The Polyhedral Model is a mathematical framework for affine loop nest analysis and 

optimization [30,31,32]. It treats an instance of a statement in the loop as an integer point 

or lattice point in the space called polyhedron. The affine transformations on polytope, 

based on Linear Algebra and Integer Linear Programming, cause a sequence of complex 

loop transformations aiming for the improvements such as parallelism and data locality. 

Supernode transformation or tiling, as one of the key transformations, fits in this model 

well: it improves data locality by grouping points in the iteration space into supernodes 

that can be loaded in cache of processors for easy and fast reuse. It also improves 

parallelism by partitioning the iteration space into independent supernodes that are 

executed concurrently and atomically on processors, thus reducing communication. In 
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[37,38], Lim et al. proposed an algorithm to find the optimal affine partition that 

maximizes the degree of parallelism with the minimum communication in programs with 

arbitrary loop nests and affine data accesses, and used this algorithm for blocking to 

improve data locality. In [39] Ahmed et al. presented an approach for synthesizing 

transformations to enhance locality in imperfectly nested loop via affine embedding 

functions. In [33] Bondhugula et al. presented an end-to-end automatic integer linear 

optimization framework that finds good ways of supernode transformation in polyhedral 

model for parallelism and locality using affine transformations. The key part is to create 

an affine form cost function that represents the number of hyperplanes the dependence 

traverses along the hyperplane normal. This cost function is a measurement of reuse 

distance and also the communication cost if the hyperplane is used to generate 

supernodes for parallelization and used as a processor space dimension. By minimizing 

this cost function, they found supernode (or tiling) hyperplanes that not only minimize 

reuse distances and improve data locality, but also minimize communication volume thus 

improving parallelism. 

 

2.3  Scheduling with Fixed Processors 

 

    While many researches assumed unlimited number of processors or SMP nodes 

available [1,11,14], this assumption does not hold true in practice. The servers nowadays 

have fixed or limited number of cores, GPGPUs have limited number of SMs. For this 

reason, researchers studied supernode transformation with fixed processors. 

    Ohta et al. in [26] discussed the tile scheduling with limited number of physical 
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processors. When there are P processors available and interconnected as a ring, a 

computation domain of two-dimensional rectangle of size !M x N  can be partitioned into 

rectangular !w x h  tiles with tiles’ edges parallel to the axes, when the dependence vector 

after the tile transformation is 
!
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
, the best mapping of tiles is as follows: tiles are 

assigned via column-wise cyclic distribution, that is, tile (i, j) is allocated to processor 

!!j mod P .  The execution starts with processor !!P0  at tile (0,0), after the computation, the 

result is sent to the adjacent processor !!P1 , then concurrently !!P0  computes tile (0,1) and 

!!P1  computes tile (1,0), and this process continues, until !!P0  finishes all the tiles on column 

0, then it moves to column !P  and continues computation. The column-wise processor 

assignment is shown in Figure 2. 

    Based on this scheduling and mapping, Ohta et al. further derived the optimal tile size 

as follows, assuming non-overlapping computation and communication phases: 

!!
(w ,h)= (M

P
, Na
Mt

) , 
!!
Topt = ( N(Mt

P
+b)+ aP )2                                                (	
  1	
  ) 

where !P  denotes number of processors, !t  denotes the computation time per iteration, 

and !a  is the communication startup time and  !b  being the coefficient of  message size, 

linear to !h . 

    Apparently, the cyclic column-wise assignment makes sense due to its load-balancing 

tile distribution. In [15], Calland et al. demonstrated cyclic column-wise assignment is 

the best solutions among all possible distributions of tiles to physical processors for a 

two-dimensional computation domain, with the condition that the computation cost of a 

tile is greater than its communication cost. They further improved the scheduling and 
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execution time by overlapping communication and computation phases. 

 

 
                        
  
 
 
 
 
 

 
                  
 

 

 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Figure 2: Column-wise cyclic distribution of rectangular tiles on limited physical 
processors. Assuming P=3. Processor !!P0  finishes column 0, then moves to column 3. 

 

    But the cyclic column-wise assignment not only has the restriction that the 

computation cost of a tile needs be greater than its communication cost, it also does not 

provide the best solution in case of heterogeneous computing platforms. Boulet et al. in 

[17] handled this problem by aiming at load-balancing the work while not introducing 

idle time. They presented efficient scheduling and mapping strategies that are 

asymptotically optimal. 

    In [16] Athanasaki et al. further proposed four different methods for scheduling tiled 

iteration spaces onto a clustered system with a fixed number of SMP nodes, namingly the 

cyclic, the mirror, the cluster and the retiling scheduling. 
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2.4  Focus of This Research 

 

    The cyclic column-wise allocation of processors is regarded as the best scheduling 

solution when there are limited processors, due to its load-balancing nature. But as 

mentioned earlier, it has one restriction: the computation cost of a supernode has to be 

greater than its communication cost. This may not always be true since CPU performance 

has been increasing dramatically, especially with the advent of GPGPUs, which has very 

powerful computing capability, the computation and communication ratio may become 

very small. Let’s take a look at a hypothetical case: assume a computation domain of 

!!M x N = 60 x 60 , available processors !!P =6 . Let !!a= 400 , !!b=0  and !!t =1  in (1).  Then 

based on (1), the optimal !!(w ,h)=
!!
(M
P
, Na
Mt

)  = !(10, 20) , and
!!
Topt = ( N(Mt

P
+b)+ aP )2  

=5400. 

    But if the scheduling is wavefront-wise, and if !!(w ,h) != (12,20) , the domain size 

becomes !!5 x 3  after transformation. Giving that the longest wavefront is 3, each 

wavefront can be processed within one !Ttile  since there are more processors than 

supernodes on any wavefront, note !
Ttile =Tcomp +Tcomm , !

Tcomp =wht , !Tcomm = a+bh . The 

total execution time !T = total_num_of_wavefronts !x Ttile  = 

!(5+3−1)*(12*20*1+400)= 4480 . This result is less and better than the !!Topt =5400  

obtained via cyclic column-wise scheduling. The reason for this better result is the 

enhanced data locality. 
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    The goal of this research is to apply supernode transformation and linear scheduling to 

multi-processor system architectures, including computer cluster systems and GPGPUs, 

to find the optimal solution that is suitable no matter what the communication and 

computation ratio is. The research work involves following areas: linear scheduling, tiles 

to computing nodes or GPGPU blocks mapping, total running time model, optimal 

supernode size, applied algorithms, cluster system and GPGPU architectures and 

simulations. The objective of this research is to minimize the total running time. The total 

running time consists of communication time between supernodes and computation time 

within supernodes, representing parallelism and data locality respectively. By obtaining 

the time optimal solution, we not only improve the data locality and parallelism, but also 

optimize locality for an optimal balance between data locality and parallelism thus 

achieving optimal result. 

 

3. Models and Terminology 
 

    Models for applications or algorithms, parallel computer systems and the mapping 

from the application to the target parallel system are presented in this section. Some 

concepts and terms that are necessary to understand this paper are introduced. An 

example is presented to illustrate different concepts and ideas throughout the paper. 

 

3.1  Algorithm Model 
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An algorithm is modeled as a set of indexed computations, and a set of data 

dependence. An indexed computation corresponds to a loop iteration in the algorithm. 

The dimension of the algorithm !s  corresponds to the number of the nested loops in the 

algorithm. A data dependence is established if one computation uses data generated by 

another computation, and is represented by a dependence vector that is the difference of 

two indexes of the computations. In this paper, only algorithms with regular dependence 

are considered, and such algorithms are called uniform dependence algorithms where the 

dependence vectors are constant. Uniform dependence algorithms can be described by 

two parameters !!( J ,D) : !J  is the set of all iteration index vectors, !D  is a matrix of !s x q  

for a !s  dimensional algorithm with !q  dependences, and each column is a dependence 

vector. Detailed description of uniform dependence algorithms can be found in [5]. 

    The two-sequence LCS problem is used to illustrate the algorithm model and is defined 

as following [2]: given two input sequences: !!X = (x1 ,x2...xM )  and !!Y = ( y1 , y2... yN )  with 

!M  and !N  being the sizes of each sequence, the LCS problem is to find the length of the 

longest common sequence, denoted as !!LCS(XM ,YN ) . For example, 

!!LCS("ABCBDAB","BDCABA")= 4  where the longest common subsequence is underlined. 

A LCS recursion is presented below where !!LCS(Xi ,Yj )  is the length of the longest 

common sub sequence of two sub sequences !!X1 ,...Xi  and !!Y1 ,...Yj .  

      !!

LCS(Xi ,Yj )=
0 if i =0 or j =0
LCS(Xi−1 ,Yj−1)+1 if xi = y j
max(LCS(Xi ,Yj−1), LCS(Xi−1 ,Yj )) if xi ≠ y j

⎧

⎨
⎪⎪

⎩
⎪
⎪
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    A dynamic programming algorithm calculating LCS from [10] is shown in (2). This 

algorithm has two nested loops. Therefore, the LCS algorithm is two dimensional or 

!!s =2 . Each index vector is a two dimensional vector 
!

i
j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 corresponding to an iteration 

!!(i , j)  and 
!!
J = i

j
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,1≤ i ≤M ,1≤ j ≤N

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.  There are three data dependence vectors in the 

LCS and 
!!
D= 1 1 0

0 1 1
⎛

⎝⎜
⎞

⎠⎟
 where each column represents one dependence vector. The 

dependence graph is shown in Figure 1 where each point represents an iteration and an 

arrow represents a data dependence between two iterations of the algorithm in (2). 

Because the LCS has uniform dependence, the dependence graph is regular. The 

execution time to process each iteration !!(i , j)  is denoted as !tc . Thus the LCS is modeled 

by parameters !!( J ,D,M ,N ,tc ). 	
  	
  

                            

!!

for (i =0; i ≤M; i++)
for ( j =0; j ≤N; j ++){
if (i ==0|| j ==0)
c[i][ j]=0;

else if (x[i]== y[ j])
c[i][ j]=c[i−1][ j −1]+1;

else
c[i][ j]=max(c[i][ j −1],c[i−1][ j]);

}                                       

(2) 

 
 

3.2  Architecture Models 
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    In this research, two important multi-processor distributed memory computer 

architectures are considered, they are cluster systems and the GPGPUs. 

 

3.2.1 Computer Cluster Systems 

 

First, computer cluster architecture is considered. In a computer cluster system, there 

are two types of computers: a master computer and computing computers (also called 

computing nodes). The master computer breaks the algorithm into small tasks and sends 

them to computing nodes to process in parallel. The master computer manages the cluster 

and coordinates computing nodes such as synchronization due to dependence 

considerations. 

    The number of the computing nodes is modeled as the number of processors, denoted 

as  the communication time a computing node takes to receive dependent data from 

other computing nodes is denoted as !tr , and the time a computing node takes to send 

resultant data to other nodes is denoted as !ts . Therefore, a computer cluster system is 

modeled by parameters   

 

3.2.2 GPGPUs 

 

Another architecture considered is GPGPUs. GPGPUs employ Single Instruction, 

Multiple Thread (SIMT) parallel execution model, where multiple independent threads 

execute concurrently using a single instruction, this provides excellent concurrent 

processing capability. In 2006, Nvidia developed CUDA programming model to promote 

!!P ,

!!(P , tr , ts ).



 19 

the use of its GPGPUs. At the core of CUDA programming model are three key 

abstractions: a hierarchy of thread groups, a memory hierarchy, and barrier 

synchronization. A CUDA program launches a grid of blocks, the blocks reside and run 

on GPU’s streaming multiprocessors (SMs), and each block contains a group of 

concurrent threads. A block can be thought of as a cluster of threads that run 

cooperatively while still independently. All threads run the same code with different data, 

differentiated by block id and thread id. GPGPUs have a tiered memory hierarchy shown 

in Figure 3. Each SM has a large and unified register file and a L1 cache, to be used by 

threads privately, and a local memory of low latency called shared memory that is 

accessible and shared by all threads within the block running on this SM. This fast shared 

memory provides great data locality improvement opportunity for algorithms. A larger 

L2 cache is provided and shared among all SMs to service all load and store from/to 

global memory. The global memory is a very large memory accessible by all threads but 

has high latency. The goal of this research is to obtain optimal execution time for 

algorithms by optimizing data locality via optimal use of GPGPU parallel processing 

capability and fast on-chip shared memory. 

Moving data between threads in a block on a SM and the global memory incurs 

significant cost, due to the high latency of global memory. To improve performance, in 

addition to the L2 cache, GPGPUs use coalescing technique for memory access to the 

global memory. The global memory accesses by threads of a block are coalesced into a 

single memory transaction when the words accessed by threads lie in the same segment, 

i.e., within a certain memory space with contiguous addresses. The memory segment size 
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!s  is 32 bytes if threads access 1-byte words, or 64 bytes when accessing 2-byte words 

and 128 bytes when accessing 4-byte or 8-byte words. 

 

  
 

 
 
 

 
 
 
 
 
	
  

	
  

	
  

	
  

Figure 3: A typical GPGPU memory hierarchy. It contains a global memory and L2 cache 
shared by all blocks, a L1 cache private to threads, and a shared memory SHM shared by 
threads within the blocks. 

    Let !P  be the size of the grid, that is, the number of blocks/clusters, and !ts  and !tr  be 

the times each block spends on saving data to and retrieving data from the global memory, 

respectively. Therefore, a GPGPU can be modeled by parameters !!(P , ts , tr , s).  
 

3.3   Linear Scheduling 

 

    A linear schedule is a mapping from the multi-dimensional iteration vectors in the 

iteration space  into a one-dimensional execution time space. This mapping is 

expressed as a linear function  that involves a multiplication of a row vector , called 

!J

!f ∏

SM-0 

         Registers 
    

Global Memory 

    L1 Cache/SHM 
    

L2 Cache 

SM-1 

         Registers 
    

    L1 Cache/SHM 
    

SM-N 

         Registers 
    

    L1 Cache/SHM 
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linear schedule vector, by each and every column vector in the iteration space. In other 

words, an iteration with index vector  is assigned to execute at time  A linear 

schedule has to respect data dependences. That is, if an iteration depends on another 

iteration, a feasible linear schedule should schedule the latter iteration to execute before 

the former one. As described in  a linear schedule vector  is feasible if 

 
Another concept associated with a linear schedule is its wavefronts in 

the iteration space. All iterations that are assigned to the same execution time form a 

wavefront. More description of linear schedule can be found in   

 

 

 
 
 
 
 

 
 
 
 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

	
  
	
  

	
  
	
  
 
Figure 4: The ten wavefronts of the linear schedule vector [1,1] for the two-dimensional 

uniform dependency algorithm in Figure 1, with N=5, M=6 and c=2,...,11.   

    For the two dimensional iteration space in Figure 1, a feasible linear schedule vector is 

 and the corresponding feasible linear schedule is  The 

!j !!∏ j.

![5], ∏

!!∏dj >0, j =1,...,q.

![5].

![1,1], !!f ([i , j]
t )= [1,1][i , j]t = i+ j.

1 

2 

3 

4 

5 

1 2 3 4 5 6 
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entire iteration space is partitioned into wavefronts  where 

 Note all iterations  on the same wavefront are independent and can 

be executed at the same time in parallel, provided there are enough computing nodes 

available. Figure 4 shows a two-dimensional iteration space with  and , it is 

partitioned by ten wavefronts with  

 

3.3.1 Example of the LCS problem scheduling on GPGPU 

 

    The linear schedule !!f ([i , j]
t )= [1,1][i , j]t = i+ j  can be applied to LCS problem to 

ensure feasible and maximum parallelism, it is the traditional way of exploiting the 

parallelism in diagonal direction [36]. In [35] J. Yang et al. proposed an efficient 

approach to schedule iterations row by row by first changing the data dependency in the 

score table used by the dynamic programming algorithms for higher degrees of 

parallelism to take advantage of GPGPU’s parallel processing capability. This approach 

is shown to be three times faster than the traditional way in [36]. 

 

 

3.4   Supernode transformation on multi-processor system with  

processors 

 

!!

i
j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
:i+ j = c

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

!!c =2,...,N +M. !!(i , j)

!!N =5 !!M =6

!!c =2,...,11.

!P
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    To see the motivation of supernode transformation, let’s examine the different 

executions of the LCS problem. The first is the sequential execution by a single processor 

and the total execution time is  because there are  iterations and each iteration 

takes  time. In the parallel processing, all the iterations on the same wavefront are 

executed in parallel assuming there are enough processors. There are two phases: 

computation phase when the processor calculates an iteration in time  and 

communication phase when the processor sends and receives data from other processors 

with communication time !tcomm = tr +ts . Hence the execution time of each wavefront is 

 There are  wavefronts, so the total execution time is 

 If !!tc =1 , !!tcomm =100 , !!M =100 ,  then the sequential 

execution time is  and the parallel execution time is 

 This means the parallel execution time is even 

worse than the sequential one. 

    Supernode transformation is to optimize data locality by addressing the problem of 

unbalanced computation and communication costs. Instead of assigning one iteration to a 

processor, a set of neighboring iterations are grouped as a supernode and assigned to a 

processor. This way, the iterations in the same supernode are processed faster on the 

same processor, and the number of wavefronts is reduced and the system will spend less 

time on communication so the total execution time is minimized. For example, for the 

two dimensional iteration space in Figure 5 with each intersection being an iteration, one 

possible supernode transformation is  and , thus six iterations are grouped to 

!!MNtc , !MN

!tc

!tc

!!tc +tcomm. !!M +N −1

!!(tc +tcomm)(M +N −1). !!N =1000,

!!MNtc =10
5

!!(tc +tcomm)(M +N −1)=101*1099>105.

!!w =3 !!h=2
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form a supernode. The iteration space after the supernode transformation is shown in 

Figure 6. There are two possible cases:  and . 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  Two dimensional uniform dependence algorithm iteration space, each 
intersection is an iteration. Each dotted-line rectangle of !w x h   is a supernode, or a tile.  

    A supernode can be described by two parameters: the size and the shape. In [11], it is 

proven that the rectangular is the best shape for the two dimensional uniform dependence 

algorithms because it is the minimal parallelogram covering the cone of all dependence 

vectors. Therefore, for the two dimensional uniform dependence algorithms, the 

supernode shape and size can be defined by a rectangular of width  and height . Thus 

their supernode transformation can be modeled by  where  is the linear 

schedule and  and  are the supernode sizes in  and directions.  

 

 

 

 

!n≤m !n>m

!w !h

!!( f ,w ,h) !f

!w !h !X !Y
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Figure 6: Iteration space after supernode transformation, each intersection is a supernode. There 
are two cases:  and  

 

    This research is to apply supernode transformation !!( f ,w ,h)  to two dimensional 

uniform dependence algorithms  on cluster system !!(P , tr , ts )  or GPGPUS 

!!(P , ts , tr , s)  for time optimal execution enabled by optimal locality. For this purpose four 

key parameters are formally introduced here for later modeling use: 

  - the time used to process one supernode, including both computation and 

communication time by one computing node. It is a function of . 

  - total execution or running time, our goal is to minimize this value. 

 - the problem size in  direction after transformation, so 
!
m= M

w
, and 

!!m∈[1,M] . 

!n≤m !n>m

!n<m !!n≥m.

!!( J ,D)

!tsn

!!(w , h, tc , ts , tr )

T

m !X
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   - the problem size in  direction after transformation, so 
!
n= N

h
, and 

!!n∈[1,N] . 

    Without losing generality, this research focuses on the case where !n≥m . The iteration 

space after supernode transformation can be divided into three regions A, B and C, as 

shown in Figure 6. When !n≥m , in region A, there are  wavefronts and the number of 

supernodes in wavefronts increases from one to  In region B, there are  

wavefronts and the number of supernodes in each wavefront is a constant  In region C, 

there are  wavefronts and the number of supernodes in wavefronts decreases from  

to one.  

n !Y

!m

!!m. !!n−m−1

!!m.

!m !m
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4. Total Execution Time With Supernode 
Transformation 

 

    In this section, an execution model for a given two dimensional uniform dependence 

algorithm  on a multi-processor system such as a cluster system !!(P , tr , ts )  or 

GPGPU  !!(P , ts , tr , s)  is established. Based on this model, a novel closed form expression 

of the total execution time  is derived. This expression is used in the later sections to 

guide the selection of the optimal supernode transformations. 

    To respect the data dependence, the execution has to start at the first wavefront with 

only one supernode at the lower left corner in region A in Figure 6, and moves towards 

the upper right corner in region C, the execution of wavefront  can not start until all the 

wavefronts  are executed. The mapping of the supernodes on a wavefront to the 

processors (computing nodes in cluster, or GPGPU blocks) is as follows: assuming the 

current wavefront  has µ  supernodes, then the entire wavefront  is divided into 
!

µ
P

⎡

⎢
⎢

⎤

⎥
⎥   

contiguous sections, each section has  supernodes, with the exception that the last 

section may have fewer than  supernodes. The sections are executed sequentially and 

each section is processed by  processors in parallel, with one processor handling one 

supernode. So some processors may be idle when processing the last section, since there 

may be fewer than  supernodes. When a processor processes a supernode, it first takes 

 time to retrieve dependent data in earlier wavefronts such as   or !!c −2  from other 

computing nodes of the cluster, or from main memory of GPGPU. Then the execution 

!!( J ,D)

!T

!c

!!1,...,c −1

!c !c

!P

!P

!P

!P

!tr !!c −1



 28 

enters into computation phase by computing  iterations in supernode. Finally it takes 

 time to send the computation results to other computing nodes in the cluster, or back 

to the main memory of the GPGPU, for computing wavefronts such as . Thus the 

execution time of one wavefront is 
!
tsn ⋅

µ
P

⎡

⎢
⎢

⎤

⎥
⎥   where !tsn  is the time for a computing node 

of the cluster, or a block of the GPGPU, to process one supernode. Here in both data 

retrieving and sending phases, communication startup time is assumed to be dominant, so 

communication cost is fixed. 

    Let  be the total execution time for all wavefronts in region A,  for region B and 

 for region C. So , and since , . 

    For region A, the execution starts from lower left corner where the number of 

supernodes is one, then it moves towards the upper right direction until it reaches the 

wavefront with number of  supernodes . Thus: . 

    Let !m= kP + r  where ,  being the set of all positive integers, !r  being the 

remainder, !!r∈[0,P −1]. Let =  In region A, there are !m  wavefronts, for 

each wavefront  in the first set of  wavefronts, where   For each 

wavefront  in the second set of  wavefronts, where !!c∈[P +1, 2P] , 
!!
c
P

⎡

⎢
⎢

⎤

⎥
⎥ =2 , and so 

!w⋅h

!ts

!!c +1

!TA !TB

!TC A B CT T T T= + + A CT T= 2 A BT T T= +

!m
!!
TA =

c
P

⎡

⎢
⎢

⎤

⎥
⎥

c=1

m

∑ tsn = tsn
c
P

⎡

⎢
⎢

⎤

⎥
⎥

c=1

m

∑

!k∈Z + !Z +

!!v = k+1
!!
m
P

⎡

⎢
⎢

⎤

⎥
⎥.

!c !P !!c∈[1, P],
!!
c
P

⎡

⎢
⎢

⎤

⎥
⎥ =1.

!c !P
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on. For wavefronts  where   For the last !r  wavefronts 

where   Thus: 

  

      
                                                                                   ( 3 ) 

    For , the total number of wavefronts in region B is  Each wavefront has  

supernodes and the number of execution sections is  So: 

!!
TB = tsn(n−m−1) m

P
⎡

⎢
⎢

⎤

⎥
⎥                                                 (	
  4	
  ) 

therefore:  

!!
T =2TA +TB = tsn(

m− r
P

+1)(m+ r)+tsn(n−m−1) m
P

⎡

⎢
⎢

⎤

⎥
⎥

                                       
(	
  5	
  ) 

    To get a closed form for !T , let’s consider the following three cases:  

Case 1:  This happens when !!k =1  and !!r =0 , or  and !!r∈[1, P −1]. Giving 

!!
m
P

⎡

⎢
⎢

⎤

⎥
⎥ =1 , the total execution time based on (5) is: 

!Tm≤P                                                                                             ( 6 ) 

Case 2:  !!r =0 . Giving , equation (5) becomes: 

!c !!c∈[(k−1)P +1, kP],
!!
c
P

⎡

⎢
⎢

⎤

⎥
⎥ = k.

!!c∈[kP +1, kP + r],
!!
c
P

⎡

⎢
⎢

⎤

⎥
⎥ = k+1= v.

!! 
TA = tsn(1+1+ ...+1

P
! "# $# +2+2+ ...+2

P
! "# $# + ...+k+k+ ...+k

P
! "# $# + v + v + ...+ v

r
! "# $# )

( 1)( )
2

sn
m r m r
P

t − ++=

BT !!n−m−1. !m

!!
m
P

⎡

⎢
⎢

⎤

⎥
⎥.

!!m≤ P. !!k =0

  = tsn(n+ m−1)

!!m≥ P , !!m= kP ,
!

m
P

⎡

⎢
⎢

⎤

⎥
⎥ = k
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!Tm=kP                                                                               (	
  7	
  ) 

Case 3:  !m= kP + r , !!r∈[1,P −1] . In this case, 
 
so equation (4) 

becomes:	
  

                                                                                ( 8 ) 

    Therefore, the total execution time in (5) becomes: 

 !Tm=kP+r                                                                         
(	
  9	
  )	
  

Equations (3)-(9) form the mathematical foundation for the optimal solution of supernode 

transformation, and are summarized as following: 

 

   

(	
  10	
  )

 

    The goal of this research is to find the optimal solution  that minimizes the 

total execution time . In the following sections, supernode transformation is applied to 

two multi-processor distributed memory systems: computer cluster systems and 

GPGPUs. Equations (3)-(10) above are used to find the optimal solution that minimizes 

the total execution time . Note the model applies to two dimensional uniform 

!!
= tsn(n+P −1)

m
P

!!m≥ P ,
!!
m
P

⎡

⎢
⎢

⎤

⎥
⎥ =

m− r
P

+1,

  
TB = tsn(n− m−1)( m− r

P
+1)

!!
= tsn(

m− r
P

+1)(n+ r −1)

!!

T =

tsn(n+m−1) 1≤m≤ P ,m≤n≤N

tsn(n+P −1)
m
P

m= kP ,k ≥1,m≤M ,m≤n≤N

tsn(
m− r
P

+1)(n+ r −1) m= kP + r ,k ≥1,1≤m≤M ,m≤n≤N , 1≤ r ≤ P −1

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

!!(m0 ,n0)

!T

!T
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dependence algorithms with rectangular iteration space, with non-overlapping 

communication and computation phases. 
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5. Supernode Transformation On Computer Clusters 
 

This section discusses supernode transformation on computer cluster system 

!!(P , tr , ts ) , especially the finding of the optimal solution  of two dimensional 

uniform dependence algorithm. The optimal solution minimizes the total execution time 

expressed in (10). 

    In (10),  is the execution time of one supernode on one computing node of the 

cluster. As mentioned in section 3, the execution of one supernode has three phases: data 

reading phase that takes time  computing phase, and data saving phase that takes time 

 For a supernode with a rectangular shape  and processed by one computing 

node, the computing time is !w ⋅h⋅tc  where is the computation time of one iteration. Let 

 and , then: 

!tsn = tr +whtc +ts  
!
= A
mn

+B                                                                                (	
  2	
  ) 

    The basic idea of how to find the optimal solution of  in (10) is as follows. The 

solution space of  is divided into three subspaces !!S1 , !!S2  and !!S3 , where: 

!!S1 = {m:m∈[1,P]} , !!S2 = {m:m= kP ,k∈Z + ,P ≤m≤M} , and 

!!S3 = {m:m= kP + r ,k∈Z + ,P ≤m≤M ,1≤ r ≤ P −1} . The best solution in each subspace is 

identified, and then the optimal solution is obtained by comparing these best solutions of 

the three subspaces. 

 

!!(m0 ,n0)

!tsn

!!tr ,

!!ts . !w x h

!tc

!A=MNtc !B = ts +tr

!T

!!m∈[1,M]
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5.1   Lemmas and Theorem 

 

    In the following, three lemmas are introduced followed by the main theorem 

presenting the optimal solution. The theorem is proved by these three lemmas, while the 

proof of these lemmas can be found in Appendix A in section 9. Equations numbered (A

!x ) are from Appendix A. 

    For subspace !!S1 , according to (10) and (11), the total execution time !T  is:  

!!
Tm≤P(m,n)= (

A
mn

+B)(n+m−1)                                                                          (A0) 

    As discussed in the Appendix A, !!Tm≤P(m,n)  is convex in !![2,P] , and has at most one 

minimum point, or stationary point. If there exists such a stationary point, it is denoted as 

!!(me ,ne ) . Let !!(2,nb2)  and !!(P ,nbP )  be two points in !!S1  such that 
!!
∂T
∂n
(2,nb2)=0 , 

!!
∂T
∂n
(P ,nbP )=0 . Let !!(m1 ,n1)∈S1 be the local minimum point, that is, 

!!T(m1 ,n1)=min{T(m,n):m∈S1} , then !!(m1 ,n1)  can be found by Lemma A1. 

 

5.1.1 Lemma A1 

 

    In the solution subspace !!S1 = {m:m∈[1,P]} , if the stationary point !!(me ,ne ) exists,

!!(m1 ,n1)∈{(me ,ne ), (1,1)} . Otherwise, !!(m1 ,n1)∈{(2,nb2), (P ,nbP ), (1,1)} , where 

!!
ne =

(me −1)A
meB

 , 
!!
nb2 =

A
2B , 

!!
nbP =

(P −1)A
PB
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    Lemma A1 provides a candidate set for !!(m1 ,n1) . The candidate with the lowest !T  

value is the local minimum point. Equation (A5) from Appendix A is used to obtain !me  

in !![2,P] : 

!!B
2m5 −B2m4 −2ABm3 +2ABm2 +(A2 − AB)m− A2 =0                                         (A5) 

Equation (A5) is a polynomial with one variable, real coefficients, and odd degree. So 

(A5) must have at least one real root [12]. (A5) may have more than one real root because 

some extraneous roots may be generated during processing. However, as discussed in 

Appendix A, (A5) has at most one valid real root. For a root !mroot  and its corresponding 

!nroot , if they satisfy 
!!
∂T
∂m

=0  and 
!!
∂T
∂n

=0  for (A0), then !me =mroot . Otherwise, !!(me ,ne )  

does not exist. 

 

5.1.2 Lemma A2 

 

    In the solution subspace   defined in (10) takes 

minimum at 
!!
(m2 ,n2)= (P ,

A(P −1)
PB

). Note !m= P  is also in solution subspace !!S1 . 

 

5.1.3 Lemma A3 

 

    For any !m  in the solution subspace  

!Tm=kP+r  defined in (10) is always greater than !Tm=P  in solution subspace !!S1 . 

 

!!S2 = {m :m= kP , 1≤ k ,m≤M}, !T

!!S3 = {m :m= kP + r , 1≤ k ,m≤M , 1≤ r ≤ P −1},
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5.1.4 Theorem 

 
    In a cluster system with fixed !P  computing nodes, the total execution time is 

minimized with supernode size  that equals !!(m1 ,n1)  defined in Lemma A1. 

    Proof:  According to Lemma A3, the optimal solution is not in . Lemma A2 tells 

that the local minimum solution of !!S2  is at !!m2 = P  which is also in solution subspace!!S1 . 

So the optimal solution is in solution subspace !!S1 . Thus =!!(m1 ,n1) . 

    In the above discussion, !!me , ne , nb2  and !nbP  might be real numbers instead of integers. 

Then the nearest integer value will be used as the best integer solution for the convex 

function !Tm≤P , denoted by symbol ⎡⎣ ⎤⎦ . For example, when !me  is not an integer, then we 

get !
me = me

⎡⎣ ⎤⎦ . 

 

5.2    Simulation 

 

    Simulations are conducted to find the optimal supernode size with the shortest running 

time for the LCS problem of size (600,1200). A multi-core system is used to simulate a 

cluster system. The system used is a X86_64 8 CPU server with 8 cores, the kernel 

release
 
is 3.13.0-55-generic. The operating system is Ubuntu 14.04.2 LTS. One core is 

designated as the master computer node and six cores are used as computing nodes, 

hence !!P =6 . The master computer and computing nodes reside on their dedicated cores 

via Linux sched_setaffinity() call. To facilitate more efficient communication and provide 

synchronization between computing nodes, the computing nodes communicate with the 

!!(m0 , n0)

!!S3

!!(m0 , n0)
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master computer only. The master computer drives the entire workflow, starts and 

initializes all computing nodes. For each execution of a section of a wavefront, the master 

computer sends dependent data to each and every computing node via Unix sockets in 

time , receives results from these computing nodes in time  after the computations 

are completed, and provides synchronization between computing nodes. The time each 

computing node spends on computation of one supernode is !w ⋅h⋅tc .  

    All possible pairs of  are exhaustively tested. In the simulation, 

, so there are  possible pairs of . The results are 

partially shown in the table below. In the table, a row corresponds to a particular value of 

!m  ranging from 1 to !n . The six columns correspond to particular values of !n=30, 20, 15, 

6, 5 and 1. For example, the total execution time for !!(m,n)= (2,30)  is 11103!µs .  The 

table shows that the total execution time at  is the shortest. The test results 

are also curved in Figure 7. 

!tr !ts

!!(m,n)

!!M =600,N =1200 600 1200× !!(m, n)

!!(m, n)= (6, 6)

 n=30 n=20 n=15 n=6 n=5 n=1 
1 14474 12084 11662 9719 9752 8502 
2 11103 9277 8439 7557 7658  
3 9412 7570 6699 5551 5556  
4 8837 7021 6169 5108 5140  
5 8583 6779 5936 4923 4970  
6 8489 6688       5850 4867   
7 14141 10286 8360    
8 14294 10470 8577    
9 14529 10726 8857    

10 14788 10996 9146    
11 15101 11319 9483    
12 15404 11628 9802    

!!m(≤n)
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Table 1: Total execution times for different values of (m,n) on a cluster system P=6 for the 
LCS problem of size 600x1200. For example, the total execution time for (m,n)=(2,30) is 
11103. 

    So !!(m0 ,n0)= (6,6) , or !!(w ,h)= (100,200) , is the optimal supernode size, and the 

shortest total execution time is 4867 , out of which, the total communication time 

recorded from simulation is 2118 , and the total computation time is 2749 . 

!us

!us !us

13 20313 14485 11588    
14 20197 14358 11455    
15 20728 14910 12031    
16 21294 15496     
17 22451 16692     
18 25553 17696     
19 25501 17640     
20 26241 18406     
21 27031      
22 28602      
23 29383      
24 29323      
25 31355      
26 33376      
27 34347      
28 35799      
29 36283      
30 36383      
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Figure 7: Total execution times for different values of (m,n) on cluster with P=6 for the LCS 
problem of size 600x1200. Six n values are shown. The chart indicates when (m,n)=(6,6), as 
indicated in the purple curve, T is the smallest. 

    To find the analytical value for !!(m0 ,n0)  from theorem, parameters 
!tr +ts

 and !tc  are 

needed. Giving that the total communication cost is 2118!us , and there are !!m+n−1  

wavefronts, the communication cost per supernode is calculated as following:  

  

    For computation cost , because the total computation cost is 2749 , there are 

wavefronts, and each wavefront needs one execution section which costs 

: 

!!tc = total _comp_time/((m+n−1)⋅w ⋅h)=2749/(11*100*200)=0.012us    
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    So !!A=MNtc =8640 , and !!B = ts +tr =193 . Then equation (A5) produces 5 roots: -7, -

6, 1, 6 and 7. Root -7, -6, 1 and 7 are not valid since they are not in the valid range of 

!![2,P]  which is [2,6]. So only !!m=6  is the valid root. 

    When m=6, 
!!
n= (m−1)A

mB

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=6 , 

!!
∂T
∂m

(mroot=6 ,nroot=6)=0  and 
!!
∂T
∂n
(mroot=6 ,nroot=6)=0 . 

So !!(me ,ne )= (6,6)  is the stationary point. Thus according to (A0): 

 
!!
T(6,6)= ( A

mn
+B)(n+m−1)

!
= (86406⋅6 +193)(6+6−1)= 4763  

Then based on Lemma A1, there is a special point !(1,1)  that needs to be checked: 

!!
T(1,1)= ( A

mn
+B)(n+m−1)

!
= (86401⋅1 +193)(1+1−1)=8833  

    According to Theorem, point !(6,6)  yields smaller !T  than the point !(1,1) , hence it is 

the optimal point. The analytical optimal solution (6,6) exactly matches the simulation 

results, and its total running time 4763!us  is very close to the simulation minimum result 

of 4867!us . 

    If the cyclic column-wise assignment in section 2.3 were used, !
Topt  would be 5181. 

Note !a= tr +ts  and !!b=0 . So this research provides better result, without any restriction. 

    For the hypothetical case in section 2.3, per the theorem, !!(m0 ,n0)= (2,2) , and 

!!Topt =3900  which is much better than 5400 obtained using cyclic column-wise 

assignment. 
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6. Supernode Transformation on GPGPUs 
 

This section discusses the supernode transformation on GPGPUs. The two-sequence 

LCS problem is used as an example to show how to use supernode transformation to map 

applications to a GPGPUs with the total execution time minimized. Equations of total 

execution times developed in section 4 apply to GPGPU architectures as well. However, 

the execution time of one supernode !tsn  is different from the one in section 5 and is 

derived in section 6.1. 

 

6.1   Analytical Results 

 

    The execution of a two dimensional uniform dependence algorithm such as LCS on a 

GPGPU is modeled as follows. A supernode with size !w x h  is assigned to a block 

running on a GPGPU SM. When a block is launched, it first reads in the dependent data 

for this supernode from the global memory in time !tr , then it processes the iterations 

inside the supernode. Note the dependence graph of this supernode is similar to the one in 

Figure 1, so the iterations are processed by wavefronts from lower-left corner to upper-

right corner, and there are !!w+h−1  wavefronts inside a supernode.  The results of the 

iterations on each wavefront are stored in the shared memory of the block on the SM, and 

are used by the subsequent dependent wavefronts. After all wavefronts in the supernode 

are processed, the results for all iterations of the supernode in the shared memory are 

saved back to the global memory in time !ts . 
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    Giving there are many threads inside each block/SM, the computations of iterations on 

one wavefront inside the supernode can be done in parallel, assuming inside each block, 

the number of threads is equal to or greater than the maximum number of iterations on 

any wavefront. Then all the iterations on the same wavefront are processed in parallel 

thus the execution time of one wavefront is !tc . The communication cost is ignored 

because the communication happens between threads and is done by accessing the shared 

memory on the same chip. Hence the total computation time of one supernode is 

!!(w+h−1)⋅tc . 

    Next the communication costs !ts  and !tr  of each supernode are discussed. When a 

block is launched for a supernode, the first thing the threads in the block do is to read in 

the dependent data of the iterations on the boundary of the supernode from the global 

memory. As shown in Figure 8, supernode of size !w x h  depends on !h  iterations on the 

left of the supernode and !!w+1  iterations at the bottom in the original iteration space. 

    For the !!w+1dependent iterations to the bottom, !!w+1  threads are used to read their 

data into the block from the global memory, one thread for each iteration. Since the !!w+1  

data are stored consecutively in the global memory, the !!w+1  reads are coalesced into 

!!
w+1
s

⎡

⎢
⎢

⎤

⎥
⎥  memory segment transactions, note !s  is the memory segment size. So the total 

reading time is 
!!
w+1
s

⎡

⎢
⎢

⎤

⎥
⎥tm , where !tm  is one memory transaction time between the global 

memory and a GPGPU block. For the !h  dependent iterations on the left, they are not 

consecutive in the global memory, so each iteration data takes one memory transaction to 
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read. Hence it takes !htm  to read these !h  data. So it takes 
!!
w+1
s

⎡

⎢
⎢

⎤

⎥
⎥tm +htm  time to read in 

the data of the dependent iterations for a supernode. 

 

 

Figure 8: A LCS Supernode of size !w x h  and its dependent nodes. The supernode is inside 
the dashed-line rectangular, while the dependent nodes are on the left and at the bottom. 

 

    According to (2), there are !w  symbols from !X  sequence, and !h  symbols from !Y  

sequence needed in the !LCS  computation for a supernode. So it takes 
!

w
s

⎡

⎢
⎢

⎤

⎥
⎥⋅tm  and 
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!

h
s

⎡

⎢
⎢

⎤

⎥
⎥⋅tm  time to read these symbols in a coalesced way. Hence for a supernode, the !tr  is 

expressed as: 

!! 

tr =
w+1
s

⎡

⎢
⎢

⎤

⎥
⎥⋅tm +htm

for bottomand left dependent iterations
! "## $##

+ w
s

⎡

⎢
⎢

⎤

⎥
⎥⋅tm +

h
s

⎡

⎢
⎢

⎤

⎥
⎥⋅tm

for X and Y sequences symbols
! "## $##

 

    When the computations of a supernode are done, the results of all iterations in the 

supernode, not just those of boundary nodes, are saved back into the global memory. 

Each iteration generates one datum to be saved into the global memory, note !s  

consecutive data in a row can be coalesced into one memory transaction. Therefore, for 

the !w  data on one row, 
!

w
s

⎡

⎢
⎢

⎤

⎥
⎥  memory segment transactions are needed, and this process 

is repeated !h  times to finish the entire supernode, so for a supernode, 
!
ts = h⋅

w
s

⎡

⎢
⎢

⎤

⎥
⎥tm . 

Thus: 

            

!! 

tsn =(w+h−1)tc
computation time
! "# $#

+h w
s

⎡

⎢
⎢

⎤

⎥
⎥tm +

w+1
s

⎡

⎢
⎢

⎤

⎥
⎥tm +htm +

w
s

⎡

⎢
⎢

⎤

⎥
⎥tm +

h
s

⎡

⎢
⎢

⎤

⎥
⎥tm

communication cost
! "######## $########

                         (11) 

    To simplify the analysis, all ceiling functions are removed. The error analysis due to 

this approximation is in section 5.3. Also 
!
w = M

m
 and 

!
h= N

n
, then: 

      !! 

tsn = (
M
m

+ N
n
−1)tc

computation time
! "## $##

+(N
n
+1) M

sm
tm +

M
m

+1
s

tm +
N
n
tm +

N
sn
tm

communication cost
! "####### $####### !

= A
m
+ B
n
+ C
mn

−D         (12) 

where 
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         !!
A=M(tc +

2tm
s
) , !!
B =N(tc +(1+

1
s
)tm) ,

  !
C =

MNtm
s ,

 !
D= tc −

tm
s

                          
(13)

 

    The basic idea of finding the optimal solution of  !T  in (10) on GPGPUs is similar to 

that of in section 5, as follows. The solution space of !!m∈[1,M] is divided into three 

subspaces !!S1 , !!S2  and !!S3 : !!S1 = {m:m∈[1,P]} , !!S2 = {m:m= kP , k∈Z + , P ≤m≤M} , 

!!S3 = {m:m= kP + r , k∈Z + , P ≤m≤M , 1≤ r ≤ P −1} . The best solution in each subspace 

is identified, and then the optimal solution is obtained by comparing these best solutions 

of the three subspaces. 

 

6.2   Lemmas and Theorem 

 

    
Three lemmas are introduced which lead to theorem that presents the

 
optimal

 
solution 

of supernode transformation on GPGPUs. The theorem is proved based on these lemmas. 

Please refer to Appendix
 
B

 
for the proof of these lemmas.

 
Equations numbered (B!x ) are 

from Appendix B.
 

    For subspace !!S1 , according to (10) and (12), the total execution time
 
!T is: 

!!
Tm≤P(m,n)= (

A
m
+ B
n
+ C
mn

−D)(n+m−1)
                                            

(B0) 

    As discussed in the Appendix B, !!Tm≤P(m,n)  is convex in !![2,P] , and has at most one 

minimum point, or stationary point. If there exists such a stationary point, it is denoted as 

!!(me ,ne ) . Let !!(2,nb2)  and !!(P ,nbP )  be two point in !!S1  such that 
!!
∂T
∂n
(2,nb2)=0 , 
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!!
∂T
∂n
(P ,nbP )=0 . Let !!(m1 ,n1)∈S1 be the local minimum point, that is, 

!!T(m1 ,n1)=min{T(m,n):m∈S1} . Then !!(m1 ,n1)  can be found by Lemma B1. 

 

6.2.1 Lemma B1 

 

In the solution subspace !!S1 = {m:m∈[1,P]} , if the stationary point !!(me ,ne ) exists,

!!(m1 ,n1)∈{(me ,ne ), (1,1)} , otherwise, !!(m1 ,n1)∈{(2,nb2), (P ,nbP ), (1,1)} , where  

!!
ne =

Bme
2 +(C −B)me −C
A−Dme

,
!!
nb2 =

2B +C
A−2D , 

!!
nbP =

B ⋅P2 +(C −B)P −C
A−DP

                       

    Lemma B1 provides a candidate set for !!(m1 ,n1) . The candidate yielding the lowest !T  

value is the local minimum point. Equation (B5) from Appendix B is used to obtain !me  

in !![2,P] : 

!!a1m
7 +a2m

6 +a3m
5 +a4m

4 +a5m
3 +a6m

2 +a7m+a8 =0                                  
(B5) 

where !!A,B ,C ,D  are constants defined in (13), and constants !!a1 ,a2 ,a3 ,a4 ,a5 ,a6 ,a7   are  

defined in terms of !!A,B ,C ,D  in (B6) in Appendix B. 

    Equation (B5) is a polynomial in one variable with real coefficients and odd degree. So 

(B5) must have at least one real root [12]. (B5) may have more than one root because 

some extraneous roots may be generated during processing. However, as discussed in 

Appendix B, (B5) has at most one valid real root. For a root !mroot  and its corresponding 
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!nroot , if they satisfy 
!!
∂T
∂m

=0  and 
!!
∂T
∂n

=0  for (A0), then !me =mroot . Otherwise, !!(me ,ne )  

does not exist. 

 

6.2.2 Lemma B2 

 

In the solution subspace !!S2 = {m:m= kP ,1≤ k ,m≤M},  !T  defined in (10) takes 

minimum at 
!!
(m2 , n2)= (P ,

(BP +C)(P −1)
A−DP

) . Note !!m2 = P  is also in subspace !!S1 . 

 

6.2.3 Lemma B3 

 

For any !m  in the solution subspace !!S3 = {m:m= kP + r ,1≤ k ,m≤M ,1≤ r ≤ P −1},  

!!Tm=kP+r(m,n)  defined in (10) is always greater than !!Tm=P(m,n)  in subspace !!S1 . 

 

6.2.4 Theorem 

 

    On GPGPU system !!(P , ts , tr , s) , the total execution time of algorithm !!( J ,D)  is 

minimized with supernode size !!(m0 ,n0)  that equals !!(m1 ,n1) , as defined in Lemma A1. 

    Proof: according to Lemma B3, the optimal solution is not in !!S3 . Lemma B2 tells that 

the local best solution of !!S2  is at !!m2 = P  which is also in solution subspace !!S1 . So the 

optimal solution is in solution subspace !!S1 . Thus !!(m0 ,n0)=!!(m1 ,n1) . 
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6.3   Simulation results 

 

Simulations are conducted to find the optimal supernode size with the shortest 

running time for the LCS problem of size !!(M ,N)= (600,1200) , using Nvidia’s GeForce 

GTX 760 GPGPU. Its base clock is 980MHz and it has 6 SMs. The simulations use a 

one-dimension grid of size 6, thus !!P =6 . For each execution of a wavefront section, a 

one-dimension grid of blocks is launched, and each block handles one supernode. 

Nvidia’s CUDA provides API clock64() for precise time measuring in the unit of clock 

cycles, it is used in the simulations to record the total execution time !T  and the 

communication time !ts +tr . 

   In the simulation, all possible pairs of !!(m,n)  are tested. Hence, there are 600 x 1200 

possible pairs of !!(m,n) . But in practice, Nvdia GPGPUs have a limit in the shared 

memory size. For example, the GeForce GTX 760 used in the simulation has 48KB 

shared memory size. This means there is one more restriction in the supernode size to 

ensure the entire supernode can be loaded in the shared memory for computation, that is, 

!!w ⋅h⋅z <48KB = 49152  bytes, where !z  is the size of each iteration value in the shared 

memory. In simulation, the value of each iteration is stored as “short integer” which 

occupies 2 bytes of storage, thus !!z =2.  Apparently !!(m,n)= (1,1) can not be the optimal 

solution since it treats the entire problem space as one supernode of size !!600x1200 , and 

this large supernode can not fit in the shared memory because !!600x1200x2 !!>48KB , so 

it has to be partitioned into smaller supernodes to take advantage of GPGPU’s shared 

memory for faster and more efficient execution. 
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    The test results are partially shown in Table 2. In Table 2, a row corresponds to a 

particular value of !m  ranging from 1 to 24. The four columns correspond to particular 

values of n=24, 12, 8 and 6. The total execution times !T  from simulations are recorded 

and shown. For example, !T  for !!m=3 , !!n=24  is 6,339,434 clock cycles. The tests show 

when !!(m,n)= (5,8) , with the corresponding !!(w ,h)= (123,152) , the total execution time 

!T =3,320,364 clock cycles is the shortest, out of which the total save/read time !ts +tr  

recorded is 358,704 clock cycles. The simulation results are also curved in Figure 9. Note 

there are some empty cells in the table because they require more shared memory than 

48KB. For example, when !!m=1  and !!n=24 , the corresponding !w  and !h  are 600 and 50, 

then !!w ⋅h⋅z=600⋅50⋅2>48KB . 

!m≤n   n=24 n=12 n=8 n=6 
1     
2 8278296    
3 6339434 4427573   
4 5387489 3989307 3664786  
5 4755731 3764232 3472624  
6 4351107 3650690 3480312 3615454 
7 6613261 4630957 4097116  
8 6072377 4507131 4164922  
9 5922144 4628155   

10 6067154 5014499   
11 5806633 4977027   
12 5900364 5289875   
13 6961389    
14 6666499    
15 6863515    
16 7016888    
17 7078705    
18 9600376    
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19 7449397    
20 8101262    
21 8231596    
22 8425767    
23 8802064    
24 9250178    

Table	
  2: Total execution times of the LCS problem for different values of (m,n) on a Nvidia 
GeForce GTX 760 GPGPU. For example, the total execution time for (m,n)=(3,24) is 
6,339,434 clock cycles. 

    Note Figure 9 shows recurring curve segments slanting upward to the right, the size of 

each segment is !m . According to (B7) from Appendix B, !Tm=kP  is: 

!Tm=kP !!
= (A+ B

n
m+ C

n
−Dm)(n+P −1)(1

P
)

                               
 (B7) 

 
Figure 9: Total execution times of the LCS problem for different values of (m,n) on a Nvidia 
GeForce GTX 760 GPGPU. Results for four n values are displayed. The chart indicates 
when (m,n)=(5,8), as indicated in the green curve, T is the smallest. 

    Giving that 
!
B
n
>D , !!Tm=kP

' >0 , so !Tm=kP  increases along with !k , that is, !!T(k+1)P >TkP , 

thus the graph slants upward to the right. 
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Then for all !m  between !Tm=kP  and !!Tm=(k+1)P , based on  (B9) from Appendix B:  

     !
Tm=kP+r !!

= HP(k+1)(r +G)(kP + r)P +E(k+1)(r +G)
                          

(B9) 

    Where !!1≤ r < P  and !!H , E ,G  are constants with !!G = n−1 . It’s easy to show 

!!
Tm=kP+r
" = −2H(k+1)(kP −G)(kP + r)3  with respect to !r . Giving that !!G = n−1≥m−1= kP + r −1 , 

!!Tm=kP+r
" >0  for all !!r∈[2,P)  , as shown as convex curves in each segment. When !!r =1 , 

!!Tm=kP+r
" =0 , !!Tm=kP+1  thus can be larger or smaller than !!Tm=kP+r ,r∈[2,P ) . 

    Now let’s check the optimal solution according to theorem.  Based on the simulation, 

the optimal point is !!(w ,h)= (123,152) , that is !!(m0 ,n0)= (5,8) , and !!T(5,8)  =3,320,364 

clock cycles, out of which, the total !tr +ts  for all wavefronts is 358,704 clock cycles. 

Given that there are !!m+n−1  wavefronts, each wavefront only needs one round of 

execution since !!m0 < P , and each execution costs one !tsn  to complete, out of which 

!!(w+h−1)⋅tc  time is on computation, thus !tc  is calculated as: 

!!
tc =

T(5,8)−total(ts +tr )
(m+n−1)(w+h−1) =

3320364−358704
(5+8−1)(123+152−1) = 901  clock cycles 

    Similarly, the total communication cost is !!(tr +ts )⋅(m+n−1) , and equation (12) gives 

out the communication cost !tr +ts  in !tsn , thus: 

!! 

(MN
smn

tm +
2M
sm
tm +

N
n
(1+ 1

s
)tm +

1
s
tm)

communication of one round execution
! "###### $######

(m+n−1)=358704   
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    Two bytes are used to store computation results in the simulation, so the memory 

segment size is 64 bytes [3], or !!s =32.  So: 

!!

tm =
358704

(600*120032*5*8 + 2*60032*5 + 12008 (1+ 1
32)+

1
32)(5+8−1)

= 41.3  clock cycles 

    Parameters in (13) are then obtained: !!A=542149 , !!B =1132309 , !!C = 929250 , 

!!D= 900 . With these values, (B5) gives five real roots: -653.8, -30.455, -2.249, 5.18, 

30.861. Apparently only root 5.18 is in valid range, thus !!me =mroot =5.18 , and per 

Lemman B1: 

!!
ne =

Bme
2 +(C −B)me −C
A−Dme

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 7.3⎡⎣ ⎤⎦ =7

 

    Thus !!(me ,ne )= (5.18,7)≈(5,7)  which is close to the simulation result !(5,8) . 

   Same simulations were also conducted on GeForce GTX Titan X, a higher end GPGPU 

with 24 SMs. The tests show similar results with a better optimal value of 2416220 clock 

cycles, a 27% improvement even compared to using GTX 760. 

 

6.4   Result Analysis  

 

According to (B0), 
!!
Tm≤P(5,7)= (

A
m
+ B
n
+ C
mn

−D)(m+n−1)  = 3254220, it is very 

close to the exhaustive test result of 3320364. This proves the mathematical model is 

reasonably correct. 

    While there is no existing formula for column-wise assignment on GPGPUs that can 

be used for comparison, the basic assumption of column-wise assignment is all available 
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processors participate in the execution. The exhaustive tests show when !!m= P =6 , the 

shortest running time is 3615454 clock cycles, which is much worse than the optimal 

result by this research. 

    The efficient algorithm in [35] is an improved approach running LCS on GPGPU, but 

it does not use supernode transformation to take advantage of improved data locality and 

parallelism. The simulations on the same GPGPU show it takes 12731633 clock cycles to 

complete the LCS problem of the same problem size, which is about 3.8 times of the 

result of the optimal solution of this research. 

 

6.5   The Selection of GPGUP Architecture Model Parameter !P  

 

The GPGPU architecture parameter !P  is modeled as one-dimension grid size, that is, 

the number of blocks. In simulation it is set to !!P =6 , which is the number of SMs on 

GPGPU. Though this parameter shows up in equation (10) hence it impacts the value of 

optimal solution !!(m0 ,n0),  simulations show it does not affect the total execution time !T  

much. Table 2 shows different !P  values and their corresponding shortest total execution 

time !T  via exhaustive tests. 

!!P =6    !!P =12    !!P =24    !!P =30   !!P = 48   !!P =72  
3320364 3311516 3271551 3271625 3271625 3275971 

!!P = 96    !!P =120    !!P =144    !!P =168   !!P =192   
3288002 3308869 3315377 3315723 3321326 

Table 3: Total execution time obtained using exhaustive tests under different P. The 
difference is <1.5% showing the grid size has little impact on the result, due to the efficient 
block scheduling of GPGPU.  

    This is because Nvidia’s GPGPU is quite efficient in scheduling blocks and threads on 

its hardware multi-streaming processors. When one group of threads (a warp) stalls on a 
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memory operation, GPGPU will switch it out and switch in another group of threads 

efficiently. So All processors in GPGPU are productive, irrespective of the number of 

blocks, as long as there is enough parallelism (threads) to keep them busy. 
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7. Conclusion 
 

This paper addressed problem of supernode transformation for algorithm !!( J ,D)  on 

multi-processor system with distributed memory, including computer cluster systems and 

GPGPUs, especially on the finding of the optimal supernode size for time optimal 

performance. First a generic mathematical model is established for two dimensional 

uniform dependency algorithms. Then the model is applied on those two multi-processor 

architectures, and the optimal supernode size is obtained. Simulations on both 

architectures verified the correctness of the mathematical model and the optimal 

supernode size solution. 

    The model focuses on the total running time, which comprises of computation and 

communication times, representing locality and parallelism. Feasible linear schedule 

ensures maximum parallelism to take advantage of multi-processor’s parallel processing 

capability, while data locality is improved by tiling supported by computing nodes’ cache 

and GPGPU’s fast on-chip shared memory. The model captures these two aspects in 

terms of total running time. By minimizing the total running time, the optimal supernode 

size is obtained, leading to the optimized locality and parallelism for optimal execution 

performance. 
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8. Future Work 
 

While this research focuses on two dimensional uniform dependence algorithms, it 

will be worth to find out if it can be applied to higher dimensional arbitrary dependence 

and irregular shape algorithms. One way may be to combine this research, especially the 

execution time model, with polyhedral model for further study. 

    On cluster system, the model assumes the communication cost is a constant where the 

start-up time dominates. This becomes inaccurate when problem size is large. In such 

case, a linear function of the supernode size as communication cost is more appropriate. 

The model can be modified to accommodate such cases. Note this is not a problem with 

GPGPUs, since there the size of the supernode is already limited by the shared memory 

size of the SM chip. 
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9. Appendix  
 

9.1  Appendix A: Lemmas For Supernode Transformation On Cluster 

Systems 
 

The appendix A contains three lemmas and their proofs, for supernode transformation 

on cluster systems. The lemmas apply to three solution subspaces, respectively, they help 

to derive the theorem used in section 5 for supernode transformation on cluster system. 

 

9.1.1 Lemma A1 

 
In the solution subspace !!S1 = {m:1≤m≤ P},  with (11),  defined in (10) becomes:                                                                                       

                          !!
T(m,n)= ( A

mn
+B)(n+m−1)

                                                
 (A0) 

As shown later, when !!m∈[2,P] , !!T(m,n)  is convex and has at most one stationary point 

such that 
!!
∂T
∂m

=0
 
and

 !!
∂T
∂n

=0
 
at this point. If there exists such stationary point, it is 

denoted as !!(me ,ne ) . Let !!(2,nb2)  and !!(P ,nbP ) be two points in !!S1  such that 
!!
∂T
∂n
(2,nb2)=0  

and 
!!
∂T
∂n
(P ,nbP )=0 . Let !!Tmin  be the shortest running time in (A0), so 

!!Tmin =min{T(m,n):m∈S1} . Let !!(m1 ,n1)∈S1 be the local minimum point such that 

!!T(m1 ,n1)=Tmin , then !!(m1 ,n1)  can be found from (A1) as following: 

!T
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!!

(m1 ,n1)=

(1,1) if T(1,1)<T(me ,ne )andif (me ,ne )exists
if T(1,1)<min(T(m2 ,nb2),T(P ,nbP ))andif (me ,ne )not exist

(me ,ne ) if (me ,ne )exists and T(me ,ne )<T(1,1)
(2,nb2) if (me ,ne )not exist and T(m2 ,nb2)<min(T(1,1),T(P ,nbP ))
(P ,nbP ) if (me ,ne )not exist and T(P ,nbP )<min(T(1,1),T(m2 ,nb2))

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

(A1)  

    Proof: When !!m=1 , !T  in (A0) becomes !A+Bn , !!Tn
' = B > 0 , so !!n=1  will make !!Tm=1  

the smallest. Thus !(1,1)  is the optimal point for !T  for the case !!m=1 . This basically 

means the entire problem space is treated as one supernode and processed by one 

processor. This may happen when the computation time of a node !tc  is extremely small 

compared to the communication time !ts +tr , so the communication cost is dominant that 

makes it more efficient to process all iterations in one processor to minimize the 

communication cost. 

    Now consider equation (A0) for more general case !!m∈[2,P] . The partial derivative of 

 with respect to  is:                                                                                                                       

                       
!!
Tm
' = (1

n
−1)A 1

m2 +B                                                   (A2) 

    The second derivative with respect to !m  
!!
Tm
" = (1− 1

n
)A 2
m3 > 0  for all !!m∈[2,P] , so 

 is convex, which means there is one and only one minimum point, which is called 

stationary point. If !me is the stationary point, then with  increases, !T  decreases on the 

left hand side of !me  and increases on the right hand side of !me . For the given range [2,P], 

A convex can have three cases as shown in Figure 10: 1) !me happens outside the left 

!T !m

!!T(m)

!m
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boundary, then !!m=2  is the minimum point; 2) !me  happens outside the right boundary, 

then !m= P  is the minimum point; and 3)!!me ∈[2,P]  where !!Tm,m∈[2,P ]
' =0 . 

  

 

Figure 10: On a cluster system, the total execution time for a two-dimensional uniform 
dependence algorithm !T  is convex with respect to !m  when !!m∈[2,P] . !!Tmin  can happen at 

either of the three points: !!mmin =2 , !!mmin = P , and !!mmin =me ∈[2,P] where !!Tme
' =0 . 

    To get the solution point !me , take the partial derivative of  in (A0) with respect to 

: 

!!
Tn
' = ( 1

m
−1)A 1

n2
+B                                                              (A3) 

    Let both (A2) and (A3) =0, then two equations are obtained: 

                    !!
n= (m−1)A

mB
 
        

                                                                    (A4) 
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                          (A5) 

    Equation (A5) is a polynomial in one variable with real coefficients and odd degree, so 

it must have at least one real root [12]. From (A5) the root  can be obtained, then the 

corresponding !nroot  can be obtained based on equation (A4): 
!!
nroot =

(mroot −1)A
mrootB

. Note 

!!(mroot ,nroot )  may be not integer solution, then the nearest integer value will be used as the 

best integer solution for the convex function !!T2≤m≤P , that is, !!(me ,ne )= ( mroot
⎡⎣ ⎤⎦ , nroot⎡⎣ ⎤⎦) .  

    In the case !me  is outside range !![2,P] , boundaries !!mb2 =2  and !mbP = P  are checked for 

smaller !T , and according to (A4): 

!!
nb2 =

A
2B

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

and

 
!!
nbP =

(P −1)A
PB

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. 

    So combining the two cases: !!m=1 , the optimal solution for it is !(1,1) ; and !!m∈[2,P] , 

the optimal solution for it is !!(me ,ne )  if it exists in !![2,P] , otherwise it is either !!(2,nb2)  or 

!!(P ,nbP ). Hence the optimal solution !!(m1 ,n1)  for !!m∈[1,P]  is obtained as summarized in 

(A1). 

    Equation (A5) may have up to five roots because some extraneous roots may be 

produced when processing equations (A2) and (A3). When multiple roots are obtained, 

all roots are analyzed and the real valid one can be found by checking if it is in the valid 

range !![2,P]  and if it satisfies equation (A2)=0 and (A3)=0. 

 

!!B
2m5 −B2m4 −2ABm3 +2ABm2 +(A2 − AB)m− A2 =0

!mroot
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9.1.2 Lemma A2 

 

In solution subspace !!S2 = {m:m= kP ,1≤ k ,m≤M} , 
!!
(m2 ,n2)= (P ,

A(P −1)
PB

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 is the 

best solution. 

    Proof: According to (7) in section 4 and (11) in section 5: 

!!
= A
P
+ A(P −1)

P
1
n
+ B
P
mn+ B(P −1)

P
m

                         
(A6)

 

    The derivative of  with respect to  is: 
!!
Tm,m=kP
' = B

P
n+ B(P −1)

P
>0   

    So the smaller  is, the smaller  will be. Giving that !m= kP , then  is the 

smallest when  thus the optimal solution , and (A6) becomes: 

!!
Tm=P =

A
P
+ A(P −1)

P
1
n
+Bn+B(P −1)                                                    

    Get partial derivative with respect to and let it equal 0: 

!!
Tn ,m=P
' = − A(P −1)

P
1
n2

+B  ==>  
!!
n= A(P −1)

PB
                                                      

    So when , the best solution is: , 
!!
n2 =

A(P −1)
PB

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.  

 

9.1.3 Lemma A3 

 

For any !m  in solution subspace  

!Tm=kP+r  defined in (10) is always greater than  in !!S1 , that is: !Tm=kP+r >Tm=P . 

  
Tm=kP = tsn(n+ P −1)( m

P
)

!T !m

!m !T !m

!!k =1, !!m2 = P

!n

!m= kP !!m2 = P

!!S3 = {m :m= kP + r , 1≤ k ,m≤M , 1≤ r ≤ P −1},

!Tm=P
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    Proof:  from equation (9) in section 4: 

!!
Tm=kP+r = tsn(

m− r
P

+1)(n+ r −1)= tsn(k+1)(n+ r −1)                                       
(A7)

 

next check  from (7) in section 4: 

!!Tm=P = tsn(n+P −1)                                                                                              
(A8) 

It is obvious (A7) > (A8), thus  Lemma A3 is true. 

 

!!Tm=P ,

!!Tm=kP+r >Tm=P ,
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9.2   Appendix B: Lemmas For Supernode Transformation On GPGPUs 
 

This appendix B contains three lemmas and their proofs. The lemmas apply to three 

solution subspaces, respectively, for supernode transformation on GPGPUs, and they 

form the base of the theorem used in section 6 for time optimal solution on GPGPUs. 

 

9.2.1 Lemma B1 

 

On GPGPUs, in the
 
solution subspace !!S1 = {m:m∈[1,P]} , with (12), !T  defined in 

(10) becomes: 

!!
Tm≤P(m,n)= (

A
m
+ B
n
+ C
mn

−D)(m+n−1)
                                                          

(B0)
 

where 
!!
A=M(tc +

2tm
s
) ,!!
B =N(tc +(1+

1
s
)tm) ,

  !
C =

MNtm
s ,

 !
D= tc −

tm
s

.
 
 As shown later, 

!!T(m,n)  is convex when !!m∈[2,P]  and has at most one stationary point such that 
!!
∂T
∂m

=0
 

and
 !!
∂T
∂n

=0
 
at this point. If there exists such a stationary point, it is denoted as !!(me ,ne ) . 

Let !!(2,nb2)  and !!(P ,nbP ) be two point in !!S1  such that 
!!
∂T
∂n
(2,nb2)=0  and 

!!
∂T
∂n
(P ,nbP )=0 . 

Let !!Tmin  be the shortest execution time in (B0), so !!Tmin =min{T(m,n):m∈S1} . Let 

!!(m1 ,n1)∈S1 be the local minimum point, that is, !!T(m1 ,n1)=Tmin . Then !!(m1 ,n1)  can be 

found as follows: 
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!!

(m1 ,n1)=

(1,1) if T(1,1)=Tmin
(me ,ne ) if (me ,ne )exists and T(me ,ne )=Tmin
(2,nb2) if (me ,ne )does not exist and T(m2 ,nb2)=Tmin
(P ,nbP ) if (me ,ne )does not exist and T(P ,nbP )=Tmin

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

               (B1) 

Proof: From (B0), take partial derivative of !T  with respect to !m  and !n : 

           
!!
Tm
' =

−An+ A−C + C
n

m2 + B
n
−D  

                                                                     
(B2) 

            
!!
Tn
' =

−Bm+B −C + C
m

n2
+ A
m
−D                                                                        (B3) 

    First check the special case of !!m=1 . In this case (B3), so !!n=1  !!Tn
' = A−D>0will 

make !!Tm=1  the smallest. Thus !(1,1)  is the optimal point for !T  for the case !!m=1 . This 

basically treats the entire original problem space as one supernode and processes it using 

one GPGPU block. This could happen when the communication time !ts +tr  is so 

dominant that minimizing the communication cost will efficiently reduce the total 

execution time !T . 

    Next move to the more general case of !!m∈[2,P] for (B0). The second partial 

 derivative with respect to !m  is: 
!!
Tm
" =
2(A(n−1)+C(1− 1

n
))

m3 >0,  so !Tm  is convex, which 

means there is one and   only one minimum point, which is called stationary point.  

    To obtain !me and its corresponding !ne , let equations (B2) !!Tm
' =0  and (B3) !!Tn

' =0 , 

following two equations can be obtained: 
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!!
n= Bm2 +(C −B)m−C

A−Dm
                                                                          (B4) 

           !!
a1m

7 +a2m
6 +a3m

5 +a4m
4 +a5m

3 +a6m
2 +a7m+a8 =0                 

(B5) 

Where: !!a1 = BD
3   

 !!a2 = B
2D2 − ABD2   

 !!a3 = !!−ACD
2 − ABD2 −BD3 +2BCD2

  

 !!a4 =2BCD
2 + ACD2 −2ABCD+2A2BD

                                                               
(B6)

 

 !!a5 = −2ABCD−2AC
2D+2A2CD− A2BD−2BCD2 +2ABD2 +BC2D−2AB2D

  

 !!a6 =C
2D2 + A2C2 + A2B2 +2AC2D−2A2CD− ABC2 − A3B

  

!!a7 = −2AC
2D−4A2C2 + ABC2 + A3B −BC2D− A2BD+2A2BC

  

!!a8 =2A
2C2 + AC3 + A3C

  
    Equation (B5) is a polynomial in one variable with real coefficients and odd degree, so 

it must have at least one real root [12]. From (B5) the root !mroot  can be obtained, then the 

corresponding !nroot  can be obtained based on equation (B4). Note !!(mroot ,nroot )  may not 

be integer solution. Then the nearest integer value will be used as the best solution for the 

convex function !!T2≤m≤P , that is, !!(me ,ne )= ( mroot
⎡⎣ ⎤⎦ , nroot⎡⎣ ⎤⎦) .

 

    In the case !me is outside the range !![2,P] , boundaries !!mb2 =2  and !mbP = P  are checked 

for smaller !T , and according to (B4): 

!!
nb2 =

2B +C
A−2D

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  

and

 !!
nbP =

B ⋅P2 +(C −B)⋅P −C
A−D ⋅P

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  
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So combining the two cases: !!m=1 , the optimal solution for it is !(1,1) ; and !!m∈[2,P] , 

the optimal solution is !!(me ,ne )  if it exists in !![2,P] , otherwise either !!(2,nb2)  or !!(P ,nbP ). 

Hence the optimal solution !!(m1 ,n1)  for !!m∈[1,P]  is obtained as summarized in (B1). 

    Note equation (B5) may have up to seven roots because some extraneous roots may be 

introduced in during process. When multiple roots are produced, all roots are analyzed, 

the valid root must be in range !![2,P]  and satisfies both equation (B2) !!Tm
' =0  and 

equation (B3) !!Tn
' =0.  

 

9.2.2 Lemma B2 

 

In solution subspace !!S2 = {m:m= kP ,1≤ k ,m≤M} , !T  defined in (10) takes minimum 

at 
!!
(m2 , n2)= (P ,

(BP +C)(P −1)
A−DP

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
) . 

    Proof: From (7) in section 4, and (12) in section 5: 

!!
Tm=kP = (

A
m
+ B
n
+ C
mn

−D)(n+P −1)(m
P
)
!!
= (A+ B

n
m+ C

n
−Dm)(n+P −1)(1

P
)        (A7) 

    Take the partial derivative with respect to !m , 
!!
Tm,m=kP
' = (B

n
−D)(n+P −1)(1

P
)>0 , so 

the smaller !m  is, the smaller !T  will be. Since !m= kP , then !!k =1  makes !m  the smallest, 

so !!m2 = P . !!n2  is obtained by letting !m= P  and (B3)=0: 
!!
n2 =

(BP +C)(P −1)
A−DP

. Thus: 
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!!
m2 = P , n2 =

(BP +C)(P −1)
A−DP

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                                                    (B8) 

 

9.2.3 Lemma B3 

 

For any !m  in solution subspace !!S3 = {m:m= kP + r ,1≤ k ,m≤M ,1≤ r ≤ P −1},  !Tm=kP+r  

defined in (10) is always greater than !Tm=P  in !!S1 ,  that is: !Tm=kP+r >Tm=P . 

    Proof: from (9) in section 4 and (12) in section 5: 

            
!!
Tm=kP+r = tsn(

m− r
P

+1)(n+ r −1)= ( A
kP + r

+ B
n
+ C
(kP + r)n −D)(k+1)(n+ r −1)   

                       
!!
= HP(k+1)(r +G)(kP + r)P +E(k+1)(r +G)  

                                                       
(B9) 

where 
!
E = B

n
−D , !!G = n−1 , and !H = A+F , also let 

!!
F = C

n
.
 

From (B7) and let !m= P : 

!!
Tm=P = (

A
m
+ B
n
+ C
mn

−D)(n+P −1)(m
P
)
!!
= (HP +HG)(kP + r)

P(kP + r) +EP +EG
           

(B10)
 

Subtract (B10) from (B9): 

!Tm=kP+r −Tm=P = !!
HPkr +HPkG+HPr+HPG−HPkP −HPr−HGkP −HGr

P(kP + r)   

                                      !+Ekr +EkG+Er +EG−EP −EG
  
 

                                   !!
= H(P − r)(n−1−kP)

P(kP + r) +Ekr +Ek(n−1)+Er −EP
      

since !!G = n−1    
  

                                   !!
≥ H(P − r)(m−1−kP)

P(kP + r) +Ekr +Ek(m−1)+Er −EP    (!n≥m= kP + r ) 
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                                   !!
= H(P − r)(kP + r −1−kP)

P(kP + r) +Ekr +Ek(kP + r −1)+Er −EP
  

Since
 !!

H(P − r)(kP + r −1−kP)
P(kP + r) ≥0,

 
!!Ekr +Ek(kP + r −1)+Er −EP >0,  hence 

!Tm=kP+r >Tm=P .  

Thus Lemma B3 is proven. 
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9.3  Appendix C: Source Code of Supernode Transformation on 
Computer Cluster Systems 

 

Appendix C contains source code implementing the LCS problem running on 

computer cluster systems. There are three parts: code running on the master computer, 

code running on the computing nodes, and the include file used by both codes. 

 

9.3.1 Code Running on the Master Computer 

 
The master computer drives the entire work flow. It manages the cluster, handles the 

synchronizations between the computing nodes. It first initializes all computing nodes by 

starting the client code on them, then connects to each and every computing nodes via 

socket and sends the X and Y sequences to them. After that, it follows the execution 

model explained in section 4, sends supernodes’ dependent data to computing nodes to do 

LCS processing and receives the resultant data. It continues this process until the last 

wavefront is processed. The computation time and the communication time are recorded 

for analysis using the mathematical model obtained in section 4. 

Following is the source code for the code running on the master computer 

MasterComputer.c 

 

#include "sc.h" 

 

int client_socket[NUM_OF_PROCESSOR]; 

int client_ready[NUM_OF_PROCESSOR]; 

double each_calc_cpu; 
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double each_com_time; 

uint16_t LCS[M][N]; 

char X[M+1], Y[N+1]; 

 

/** 

 * master node creates computing node 

 * param i is the core id that the computing node (process) will 

 * reside on the new process runs computing node image (cnode) 

 **/ 

int create_process(int i) { 

   char buf[12]; 

   int p = fork(); 

   if (p < 0) { 

      perror("fork failed: "); 

      exit(-1); 

   } else if (p == 0) { //child process 

      snprintf(buf, sizeof(buf), "%d", i); 

      execlp("./cnode", buf, (char *)NULL); 

      perror("should not come here: "); 

   } else { //parent process 

      return p; 

   } 

} 

 

/** 
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 * populating a sequence (of LCS) with random values 

 **/ 

void _populate_seq(char *seq, int size) { 

   char *ref = "abcdefghijklmnopqrstuvwxyz\ 

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890"; 

   int len = strlen(ref); 

   int pos, i; 

   for (i=0; i<size; i++) { 

      pos = rand() % len; 

      seq[i] = ref[pos]; 

   } 

} 

 

/** 

 * reset all clients' status to NOT READY 

 **/ 

void reset_clients() { 

   int i; 

   for (i=0; i<NUM_OF_PROCESSOR; i++) 

      client_ready[i] = FALSE; 

} 

 

/** 

 * check if all clients are in READY state 

 **/ 
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int clients_ready() { 

   int i; 

   for (i=0; i<NUM_OF_PROCESSOR; i++) 

      if (client_ready[i] == FALSE) { 

         return FALSE; 

      } 

   return TRUE; 

} 

 

/** 

 * process computing node 'i' by first receiving data then processing 

 * it. The expected data should be MSG_INIT1, or MSG_INIT2, or MSG_DATA 

 * MSG_INIT1 means client is initialized, MSG_INIT2 indicates client has 

 * received X and Y sequences. 

 * 

 * client is marked as READY when done. 

 **/ 

void process_client(int i, int node_w, int node_h) { 

   int bytes_read, ii, jj; 

   msg read_buf; 

   struct timespec end; 

 

   bytes_read = recv(client_socket[i], &read_buf, sizeof(msg), MSG_WAITALL); 

   if (bytes_read == 0) { 

      close(client_socket[i]); 
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      client_socket[i] = 0; 

      return; 

   } 

 

   msg *m = (msg *)&read_buf; 

   if (m->type == MSG_INIT1 || m->type == MSG_INIT2) { 

      client_ready[i] = TRUE; 

   } else if (m->type == MSG_DATA) { 

      clock_gettime(CLOCK_MONOTONIC, &end); 

      if (each_calc_cpu < m->each_calc_cpu) { 

         each_calc_cpu = m->each_calc_cpu; //use the largest one 

      } 

      double diffcom = (end.tv_sec - m->startw.tv_sec)*1000000 + 

  (double)((end.tv_nsec - m->startw.tv_nsec)/(double)1000); //micro secs 

      if (each_com_time < diffcom ) { 

         each_com_time = diffcom; //use the largest one 

      } 

      if (m->base_x >= 0 && m->base_x < M && 

        m->base_y >= 0 && m->base_y < N) { 

         for (ii=0; ii<m->width; ii++) { 

            memcpy(&LCS[m->base_x+ii][m->base_y], 

      &m->data.reply[ii][0], m->height*sizeof(uint16_t)); 

         } 
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      } 

      client_ready[i] = TRUE; 

   } 

} 

 

/** 

 * signal handler for SIGINT and SIGTERM, make sure all child processes 

 * (computing nodes) are terminated. 

 **/ 

void sighandler(int signum) { 

   kill(0, SIGUSR1); 

} 

 

/** 

 * the main function which controls the entire work flow, 

 * by initializing the computing nodes, send/receive data 

 * to/from computing nodes and provide synchronization 

 * between all computing nodes. 

 **/ 

int main(int argc, char *argv[]) { 

   int w, h, k, l, client, ii, i; 

   int opt = TRUE; 

   int master_socket, addrlen, new_socket; 

   int max_clients = NUM_OF_PROCESSOR, activity, sd; 

   int max_sd; 

   struct sockaddr_in address; 
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   fd_set readfds; 

 

   set_affinity(0); 

   signal(SIGINT, sighandler); 

   signal(SIGTERM, sighandler); 

   _populate_seq((char *)X, M); 

   _populate_seq((char *)Y, N); 

 

   for (i=0; i<max_clients; i++) { 

      client_socket[i] = 0; 

      client_ready[i] = FALSE; 

   } 

   if ((master_socket=socket(AF_INET, SOCK_STREAM, 0)) == 0) { 

      perror("master socket error: "); 

      exit(-1); 

   } 

 

   if (setsockopt(master_socket, SOL_SOCKET, SO_REUSEADDR, (char *)&opt, 

sizeof(opt)) < 0){ 

      perror("set socket:"); 

      exit(-1); 

   } 
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   address.sin_family = AF_INET; 

   address.sin_addr.s_addr=INADDR_ANY; 

   address.sin_port=htons(PORT); 

 

   if (bind(master_socket, (struct sockaddr*)&address, sizeof(address)) < 0) { 

      perror("bind error: "); 

      exit(-1); 

   } 

 

   if (listen(master_socket, 2*NUM_OF_PROCESSOR) < 0) { 

      perror("listen error: "); 

      exit(-1); 

   } 

 

   addrlen = sizeof(address); 

   printf("waiting for incoming connection...\n"); 

 

   for (i=0; i<max_clients; i++) 

      create_process(i); 

   // first connecting to all computing nodes 

   while (TRUE) { 

      FD_ZERO(&readfds); 

      FD_SET(master_socket, &readfds); 
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      max_sd = master_socket; 

      for (i=0; i<max_clients; i++) { 

         sd = client_socket[i]; 

         if (sd > 0) 

            FD_SET(sd, &readfds); 

         if (sd > max_sd ) 

            max_sd = sd; 

      } 

 

      activity = select(max_sd+1, &readfds, NULL, NULL, NULL); 

      if ((activity < 0) && errno != EINTR) 

         printf("select error: "); 

 

      if (FD_ISSET(master_socket, &readfds)) { 

         new_socket = accept(master_socket, (struct sockaddr *)&address, 

(socklen_t*)&addrlen); 

         if (new_socket < 0) { 

            perror ("accept error: "); 

            exit(-1); 

         } 

 

         for(i=0; i<max_clients; i++) { 

            if (client_socket[i] == 0) { 
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              client_socket[i] = new_socket; 

              break; 

           } 

         } 

      } 

 

      for (i=0; i<max_clients; i++) 

      { 

         sd = client_socket[i]; 

         if (FD_ISSET(sd, &readfds)) { 

            process_client(i, 0, 0); 

         } 

      } 

 

      // if all computing nodes are connected 

      if (clients_ready() == TRUE) 

         break; 

   } 

   reset_clients(); 

 

   // now sending X and Y to clients 

   msg m1; 

   m1.type = MSG_INIT; 
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   m1.width = M; 

   m1.height = N; 

   memcpy(m1.data.bl.bottom, X, M); 

   memcpy(m1.data.bl.left, Y, N); 

 

   for (client=0; client<max_clients; client++) { 

      send(client_socket[client], &m1, sizeof(msg), 0); 

   } 

 

   while (TRUE ) { 

      FD_ZERO(&readfds); 

      FD_SET(master_socket, &readfds); 

      max_sd = master_socket; 

      for (i=0; i<max_clients; i++) { 

         sd = client_socket[i]; 

         if (sd > 0) 

            FD_SET(sd, &readfds); 

         if (sd > max_sd) 

            max_sd = sd; 

      } 

      activity = select(max_sd+1, &readfds, NULL, NULL, NULL); 

      if ((activity < 0) && errno != EINTR) { 

  printf("select() error: "); 
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      } 

 

      for (i=0; i<max_clients; i++) { 

         sd = client_socket[i]; 

         if (FD_ISSET(sd, &readfds)) { 

            printf("received XY reply, i=%d\n", i); 

     process_client(i, 0, 0);//need to send X and Y to clients 

         } 

      } 

 

      if (clients_ready() == TRUE) { 

         break; 

      } 

   } 

   reset_clients(); 

 

   // now start the computation, it computes all possible pairs of (w,h), 

   // thus an exhaustive testing approach. 

   for (w=1; w<=M; w++) { 

      for (h=1; h<N; h++) { 

 

         int m=M%w==0 ? M/w : (M/w+1); 

         int n=N%h==0 ? N/h : (N/h+1); 
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         msg m1; 

         m1.type = MSG_DATA; 

         m1.width = w; 

         m1.height = h; 

 

         double Tcpu = 0;  

         double Tcom = 0; 

 

         if (m >= n) { 

            for (k=0; k<(m+n-1); k++) { 

               int wavelength; 

               if (k < n) 

                  wavelength = k+1; 

               else if (k>=n && k<m) 

                  wavelength = n; 

               else 

                  wavelength = n-(k-m)-1; 

               int num_of_seg = wavelength%max_clients==0 ? wavelength/max_clients : 

(wavelength/max_clients+1); 

 

               for (l=0; l<num_of_seg; l++ ) { 

                  for (client=0; client<max_clients; client++) { 
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       if (k < (n-1)) { 

                        m1.base_x = (k-l*max_clients-client)*w; 

                        m1.base_y = (l*max_clients+client)*h; 

       } else if (k>=(n-1) && k<(m-1)) { 

                        m1.base_x = (k-l*max_clients-client)*w; 

                        m1.base_y = (l*max_clients+client)*h; 

       } else { // k>=m-1 && k<n+m-1 

                        m1.base_x = (m-1-l*max_clients-client)*w; 

                        m1.base_y = (k-(m-1)+l*max_clients+client)*h; 

       } 

                     m1.width = w; 

                     m1.height = h; 

                     if (m1.base_x >= 0 && m1.base_x < M && m1.base_y >= 0 && 

m1.base_y < N) { 

                        m1.width = (m1.base_x+m1.width)>M ? (M-m1.base_x) : m1.width; 

                        m1.height = (m1.base_y+m1.height)>N ? (N-m1.base_y) : m1.height; 

                        if (m1.base_x == 0) { 

                           for (ii=0; ii<m1.height; ii++) { 

                              m1.data.bl.left[ii] = 0; 

                           } 

                        } else { 

                           for (ii=0; ii<m1.height; ii++) { 

                              m1.data.bl.left[ii]=LCS[m1.base_x-1][m1.base_y+ii]; 
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                           } 

                        } 

 

                        if (m1.base_y == 0) { 

                           for (ii=0; ii<m1.width; ii++) { 

                              m1.data.bl.bottom[ii] = 0; 

                           } 

                        } else { 

                           for (ii=0; ii<m1.width; ii++) { 

                              m1.data.bl.bottom[ii] = LCS[m1.base_x+ii][m1.base_y-1]; 

                           } 

                        } 

 

                        if (m1.base_x!=0 && m1.base_y!=0) { 

                           m1.leftbottom = LCS[m1.base_x-1][m1.base_y-1]; 

                        } 

                     } 

                     clock_gettime(CLOCK_MONOTONIC, &m1.startw); 

                     send(client_socket[client], &m1, sizeof(msg), 0); 

                  } 

 

                  each_calc_cpu = 0; 

                  each_com_time = 0; 
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                  while (TRUE ) { 

                     FD_ZERO(&readfds); 

                     FD_SET(master_socket, &readfds); 

                     max_sd = master_socket; 

                     for (i=0; i<max_clients; i++) { 

                        sd = client_socket[i]; 

                        if (sd > 0) 

                           FD_SET(sd, &readfds); 

                        if (sd > max_sd) 

                           max_sd = sd; 

                     } 

                     activity = select(max_sd+1, &readfds, NULL, NULL, NULL); 

                     if ((activity < 0) && errno != EINTR) { 

                        printf("select err:"); 

   exit(-1); 

       } 

 

       for (i=0; i<max_clients; i++) { 

          sd = client_socket[i]; 

       if (FD_ISSET(sd, &readfds)) { 

      process_client(i, w, h); 

   } 
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       } 

 

       if (clients_ready() == TRUE) { 

                        reset_clients(); 

          break; 

                     } 

                  } 

                  Tcpu += each_calc_cpu; 

                  Tcom += each_com_time; 

               } 

            } 

 

         } else { //m<n 

            for (k=0; k<(m+n-1); k++) { 

               int wavelength; 

               if (k < m) 

                  wavelength = k+1; 

               else if (k>=m && k<n) 

                  wavelength = m; 

               else //k>=n 

                  wavelength = m-(k-n)-1; 

 

               int num_of_seg = wavelength%max_clients==0 ? wavelength/max_clients : 
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         (wavelength/max_clients+1); 

               for (l=0; l<num_of_seg; l++ ) { 

                  for (client=0; client<max_clients; client++) { 

       if (k < (m-1)) { 

                 m1.base_x = (k-l*max_clients-client)*w; 

          m1.base_y = (l*max_clients+client)*h; 

       } else if (k>=(m-1) && k<(n-1)) { 

          m1.base_x = (m-1-l*max_clients-client)*w; 

          m1.base_y = (k-(m-1)+l*max_clients+client)*h; 

       } else { // k>=n && k<=n+m-1 

          m1.base_x = (m-1-l*max_clients-client)*w; 

          m1.base_y = (k-(m-1)+l*max_clients+client)*h; 

       } 

 

                     if (m1.base_x >= 0 && m1.base_x < M && m1.base_y >= 0 && 

m1.base_y < N) { 

                        m1.width = (m1.base_x+m1.width)>M ? (M-m1.base_x) : m1.width; 

                        m1.height = (m1.base_y+m1.height)>N ? (N-m1.base_y) : m1.height; 

 

                        if (m1.base_x == 0) { 

                           for (ii=0; ii<m1.height; ii++) { 

                              m1.data.bl.left[ii] = 0; 

                           } 
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                        } else { 

                           for (ii=0; ii<m1.height; ii++) { 

                              m1.data.bl.left[ii] = LCS[m1.base_x-1][m1.base_y+ii]; 

                           } 

                        } 

 

                        if (m1.base_y == 0) { 

                           for (ii=0; ii<m1.width; ii++) { 

                              m1.data.bl.bottom[ii] = 0; 

                           } 

                        } else { 

                           for (ii=0; ii<m1.width; ii++) { 

                              m1.data.bl.bottom[ii] = LCS[m1.base_x+ii][m1.base_y-1]; 

                           } 

                        } 

 

                        if (m1.base_x!=0 && m1.base_y != 0) { 

                           m1.leftbottom = LCS[m1.base_x-1][m1.base_y-1]; 

                        } 

                     } 

                     clock_gettime(CLOCK_MONOTONIC, &m1.startw); 

                     send(client_socket[client], &m1, sizeof(msg), 0); 

                  } 
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                  each_calc_cpu = 0; //biggest 

                  each_com_time = 0; 

 

                  while (TRUE ) { 

                     FD_ZERO(&readfds); 

                     FD_SET(master_socket, &readfds); 

                     max_sd = master_socket; 

                     for (i=0; i<max_clients; i++) { 

                        sd = client_socket[i]; 

                        if (sd > 0) 

                           FD_SET(sd, &readfds); 

                        if (sd > max_sd) 

                           max_sd = sd; 

                     } 

                     activity = select(max_sd+1, &readfds, NULL, NULL, NULL); 

                     if ((activity < 0) && errno != EINTR) 

                        printf("select err:"); 

 

       for (i=0; i<max_clients; i++) 

       { 

          sd = client_socket[i]; 

       if (FD_ISSET(sd, &readfds)) { 
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      process_client(i, w, h); 

   } 

       } 

 

       if (clients_ready() == TRUE) { 

                        reset_clients(); 

          break; 

                     } 

                  } 

                  Tcpu += each_calc_cpu; 

                  Tcom += each_com_time; 

               } 

            } 

         } 

         printf("Tcom is %f, Tcpu=%f, total time is %f, w=%d, h=%d\n", Tcom, Tcpu, 

Tcom+Tcpu, w, h); 

         fflush(NULL); 

      } 

   } 

   kill(0, SIGUSR1); 

} 
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9.3.2 Code Running on the Computing Nodes 

The code running on the computing nodes acts as client code in client/server model, it 

is driven by the master computer. It receives dependent data from the master computer, 

process the data based on the LCS problem logic, and them sends the resultant data back 

to the master computer. It continues this logic until it receives the KILL signal from the 

master computer indicating the completion of the entire process. 

Following is the source code ComputingNode.c. 

 

/** 

 * the code on computing nodes 

 */ 

#include "sc.h" 

 

char d_X[M+1], d_Y[N+1]; 

msg m_reply, *m; 

int my_client_id = 0; 

 

int main(int argc, char *argv[]) { 

   int sock, bytes_read; 

   struct sockaddr_in server; 

   msg server_data; 

   int ii, jj; 

   struct timespec start, end; 

   double tr; // comm cost from server to this client 
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   if (argc == 1) 

      my_client_id = (int)(*argv[0]-'0'); 

   else { 

      printf("Please specify client id on command line.\n"); 

      exit(-1); 

   } 

 

   set_affinity(my_client_id + 1); 

   sock = socket(AF_INET, SOCK_STREAM, 0); 

   if (sock == -1) { 

      perror("socket error:"); 

      exit(-1); 

   } 

   // “127.0.0.1” indicating the local host, in cluster, the real IP address of  

   // the master computer should be used. 

   server.sin_addr.s_addr = inet_addr("127.0.0.1"); 

   server.sin_family = AF_INET; 

   server.sin_port = htons(PORT); 

   if (connect(sock, (struct sockaddr *)&server, sizeof(server)) < 0) { 

      perror("connect failed: "); 

      exit(-1); 

   } 

 



 91 

   // tell server we are ready 

   m_reply.type = MSG_INIT1; 

   send(sock, &m_reply, sizeof(m_reply), 0); 

 

   while (1) { // while loop, program is terminated via server sending KILL signal 

      if ((bytes_read=recv(sock, &server_data,sizeof(msg),MSG_WAITALL)) < 0) { 

         perror("received error:"); 

         exit(-1); 

      } 

 

      if (bytes_read != sizeof(msg)) { 

         sleep(1); 

         continue; 

      } 

 

      m = (msg *)&server_data; 

      clock_gettime(CLOCK_MONOTONIC, &start); 

 

      if (m->type == MSG_INIT) { //receive X and Y sequences 

         memcpy(d_X, m->data.bl.bottom, m->width); 

  d_X[m->width] = '\0'; 

         memcpy(d_Y, m->data.bl.left, m->height); 

  d_Y[m->height] = '\0'; 
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         m_reply.type = MSG_INIT2; 

      } else if (m->type == MSG_DATA) { 

         tr = (start.tv_sec - m->startw.tv_sec)*1000000000 + 

   (start.tv_nsec - m->startw.tv_nsec); 

         m_reply.type = MSG_DATA; 

         m_reply.width = m->width; 

         m_reply.height = m->height; 

         m_reply.base_x = m->base_x; 

         m_reply.base_y = m->base_y; 

 

         if (m->base_x>=0 && m->base_x<M && m->base_y>=0 && m->base_y<N) { 

            for (jj=0; jj<m->height; jj++) { 

               for (ii=0; ii<m->width; ii++) { 

    if (m->base_x==0 && ii==0){ 

              m_reply.data.reply[ii][jj] = 0; 

    } else if (m->base_y == 0 && jj == 0) { 

       m_reply.data.reply[ii][0] = 0; 

    } else if (d_X[m->base_x+ii] == d_Y[m->base_y+jj]) { 

       int leftbottom; 

                     if (ii == 0) { 

                        if (jj == 0) { 

                           leftbottom = m->leftbottom; 

                        } else { 
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                           leftbottom = m->data.bl.left[jj-1]; 

                        } 

                     } else if (jj == 0) { 

                        if (ii == 0) { 

                           leftbottom = m->leftbottom; 

                        } else 

                           leftbottom = m->data.bl.bottom[ii-1]; 

                     } else { 

                        leftbottom = m_reply.data.reply[ii-1][jj-1]; 

                     } 

          m_reply.data.reply[ii][jj] = 1 + leftbottom; 

    } else { 

       int left, bottom; 

       if (ii == 0) 

          left = m->data.bl.left[jj]; 

              else 

          left = m_reply.data.reply[ii-1][jj]; 

 

       if (jj==0) { 

          bottom = m->data.bl.bottom[ii]; 

              } else 

          bottom = m_reply.data.reply[ii][jj-1]; 
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                     m_reply.data.reply[ii][jj] = left>bottom?left:bottom; 

                 } 

   } 

           } 

        } 

      } 

      clock_gettime(CLOCK_MONOTONIC, &end); 

      double diffcpu = (end.tv_sec - start.tv_sec)*1000000 + 

       (double)((end.tv_nsec - start.tv_nsec)/(double)1000); //micro secs 

 

      m_reply.each_calc_cpu = diffcpu; 

      clock_gettime(CLOCK_MONOTONIC, &m_reply.startw); 

      m_reply.startw.tv_nsec -= tr; //add 'send' comm cost 

      send(sock, &m_reply, sizeof(msg), 0); 

   } 

} 

 

9.3.3 Include File 

The include file defines some commonly used data structures and functions, it is 

included and used by both ComputingNode.c and MasterComputer.c. 

 

#include <stdio.h> 

#include <string.h> 
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#include <stdlib.h> 

#include <errno.h> 

#include <unistd.h> 

#include <arpa/inet.h> 

#include <sys/types.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <time.h> 

#include <sys/time.h> 

#include <limits.h> 

 

#define _GNU_SOURCE 

#include <sched.h> 

#include "signal.h" 

 

#define TRUE  1 

#define FALSE  0 

#define PORT  8319 

 

#define NUM_OF_CORE  6 

 

#define M 600 

#define N 1200 
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#define MSG_SIZE (M*N+32) 

#define MSG_READY 0 

#define MSG_DATA 1 

#define MSG_INIT 2 

#define MSG_INIT1 3 

#define MSG_INIT2 4 

 

typedef struct _bottomleft { 

   uint16_t bottom[M + 1]; 

   uint16_t left[N + 1]; 

} bottomleft; 

 

// the message data structure, between server and client 

typedef struct _msg { 

   int type; 

   int base_x; 

   int base_y; 

   int width; //width of the array 

   int height; //height of the array 

   int leftbottom; 

   double each_calc_cpu; 

   struct timespec startw; 
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   union { 

      uint16_t reply[M + 1][N + 1]; 

      bottomleft bl; 

   } data; 

} msg; 

 

/** 

 * calling Linux sched_getaffinity() to get a core to work on 

 * returns 0 if successful 

 * return -1 if failed 

 **/ 

int set_affinity(int which) { 

   cpu_set_t set, mask; 

   int i; 

 

   CPU_ZERO(&set); 

   CPU_SET(which, &set); 

   printf(" setting to core %d\n", which); 

 

   if (sched_setaffinity(getpid(), sizeof(cpu_set_t), &set)) { 

      printf(" client %d sched failed:.\n", which); 

      perror(" client sched failed"); 

      return -1; 

   } 
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   CPU_ZERO_S(sizeof(cpu_set_t), &mask); 

   if (sched_getaffinity(0,  sizeof(cpu_set_t), &mask) == -1) { 

      perror("can't get it:"); 

      return -1; 

   } 

 

   if (!CPU_ISSET_S(which, sizeof(cpu_set_t), &mask)) { 

      printf(" it's NOT on %d\n", which); 

      return -1; 

    } 

 

   return 0; 

} 
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9.4   Appendix D: Code on GPGPUs. 

GPGPU programming is different from the traditional programming. A GPGPU 

program is divided into two parts: one running on the host CPU and the other running on 

GPU. The host program drives the entire work flow, sets up the data, then launches the 

GPU code called kernel for fast and parallel processing on GPU SMs. 

Following is the LCS.cu code for running the LCS program on GPGPU, it following 

the execution model explained in section 4 to process the supernodes. Nvidia’s CUDA 

development kit 6.0 is used in the code. 

 
#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <inttypes.h> 

 

#include <cuda.h> 

 

#define NUM_OF_BLOCK 30 

#define NUM_OF_THREAD 1024 

 

// problem size 

#define M        600 

#define N    1200 

 

typedef struct { 
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   uint16_t width; 

   uint16_t height; 

   uint16_t *elements; 

} Matrix; 

 

char X[M]; 

char Y[N]; 

 

__global__ void lcs_kernel(char *d_X, char *d_Y, int w, int h, int k, int l, Matrix d_L, 

unsigned long long int *d_T, int m, int n, int p, int width, int height); 

 

void _populate_seq(char *xy, int size) { 

   char *ref = "abcdefghijklmnopqrstuvwxyz\ 

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890"; 

   int len = strlen(ref); 

   int pos; 

 

   for (int i=0; i<size; i++) { 

      pos = rand()%len; 

      xy[i] = ref[pos]; 

   } 

} 
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//main program  -- Host code 

void main_program(int num_of_block) 

{ 

   int w, h, mmin, nmin; 

   int k, l; 

   char *device_X, *device_Y; 

   Matrix L, device_L; 

   unsigned long long int *T, *d_T, Tmin, Tused, Tused0, Tmem_min, Tmem, Tmem0; 

   //invoke kernel 

   dim3 dimGrid(num_of_block); 

 

   _populate_seq(X, M); 

   _populate_seq(Y, N); 

 

   T = (unsigned long long int *)malloc(2*num_of_block*sizeof(unsigned long long int)); 

   cudaMalloc((void **)&d_T, 2*num_of_block*sizeof(unsigned long long int)); 

   cudaMalloc((void **)&device_X, M); 

   cudaMemcpy(device_X, X, M, cudaMemcpyHostToDevice); 

   cudaMalloc((void **)&device_Y, N); 

   cudaMemcpy(device_Y, Y, N, cudaMemcpyHostToDevice); 

 

   L.width = M; 

   L.height = N; 
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   L.elements = (uint16_t *)malloc(L.width*L.height*sizeof(uint16_t)); 

   device_L.width = M; 

   device_L.height = N; 

   cudaMalloc((void **)&device_L.elements, 

device_L.width*device_L.height*sizeof(uint16_t)); 

 

   Tmin = 0; 

   Tmem_min = 0; 

   for (h=1; h<=N; h++) { 

      for (w=1; w<M; w++) { 

 

         if ((w*h)>20000) 

     continue;  //GTX 760 shared memory per block is 48KB. 

 

  if (w > 1024 && h > 1024) 

     continue; // max 1024 threads per block 

 

  int m = M%w==0 ? M/w : (M/w+1); 

  int n = N%h==0 ? N/h : (N/h+1); 

 

  dim3 dimBlock(1024); 

 

  Tused = 0; Tmem = 0; 
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  if (m >= n) { 

     for (k=0; k<(m+n-1); k++) { 

        int wavelength; 

        if (k < n) 

    wavelength = k + 1; 

        else if (k >= n && k < m) 

    wavelength = n; 

        else 

    wavelength = n-(k-m)-1; 

 

        int num_of_seg = wavelength%num_of_block==0 ? 

wavelength/num_of_block : (wavelength/num_of_block + 1); 

 

        for (l=0; l<num_of_seg; l++) { 

 

    lcs_kernel<<<dimGrid, dimBlock, 

sizeof(uint16_t)*(w*h+w+h+w+1+h+1)>>>(device_X, device_Y, w, h, k, l, device_L, 

d_T, m, n, num_of_block, M, N); 

    cudaError_t cudaerr = cudaDeviceSynchronize(); 

    if (cudaerr != CUDA_SUCCESS) { 

       exit(-1); 

    } 
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    cudaMemcpy((void *)T, (void *)d_T, 2*num_of_block*sizeof(unsigned 

long long int), cudaMemcpyDeviceToHost); 

    Tused0 = 0; 

    Tmem0 = 0; 

 

    for (int j=0; j<num_of_block; j++) { 

       if (Tused0 < T[j]) { 

          Tused0 = T[j]; 

       } 

       if (Tmem0 < T[j+num_of_block]) { 

          Tmem0 = T[j+num_of_block]; 

       } 

    } 

      Tused += Tused0; 

    Tmem += Tmem0; 

        } 

     } 

 

     cudaMemcpy((void *)&L.elements[M*N-1], (void 

*)&device_L.elements[M*N-1], sizeof(uint16_t), cudaMemcpyDeviceToHost); 

  } else { //m<n 

     for (k=0; k<(m+n-1); k++) { 

        int wavelength; 
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        if (k < m) 

    wavelength = k+1; 

        else if (k >= m && k < n) 

    wavelength = m; 

        else //k>=n 

    wavelength = m-(k-n)-1; 

 

        int num_of_seg = wavelength%num_of_block==0 ? 

wavelength/num_of_block : (wavelength/num_of_block+1); 

        for (l=0; l<num_of_seg; l++) { 

    lcs_kernel<<<dimGrid, dimBlock, 

sizeof(uint16_t)*(w*h+w+h+w+1+h+1)>>>(device_X, device_Y, w, h, k, l, device_L, 

d_T, m, n, num_of_block, M, N); 

    cudaError_t cudaerr = cudaDeviceSynchronize(); 

           if (cudaerr != CUDA_SUCCESS) { 

       exit(-1); 

    } 

           cudaMemcpy((void *)T, (void *)d_T, 2*num_of_block*sizeof(unsigned 

long long int), cudaMemcpyDeviceToHost); 

    Tused0 = 0; 

    Tmem0=0; 

    for (int j=0; j<num_of_block; j++) { 

       if (Tused0 < T[j]) { 



 106 

          Tused0 = T[j]; 

              } 

              if (Tmem0 < T[j+num_of_block]) { 

          Tmem0 = T[j+num_of_block]; 

       } 

    } 

       Tused += Tused0; 

    Tmem += Tmem0; 

        } 

     } 

     cudaMemcpy((void *)&L.elements[M*N-1], (void 

*)&device_L.elements[M*N-1], sizeof(uint16_t), cudaMemcpyDeviceToHost); 

  } 

 

  if (Tmin == 0  || Tmin > Tused){ 

     Tmin = Tused; 

     mmin = m; 

     nmin = n; 

     Tmem_min = Tmem; 

  } 

 

  printf("w=%d,h=%d,LCS=%hu Tused=%llu, Tmin=%llu, Tmem=%llu, 

mmin=%d, nmin=%d\n",  
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     w, h, L.elements[M*N-1], Tused, Tmin, Tmem_min, mmin, nmin); 

         fflush(NULL); 

      } 

   } 

 

   cudaFree(device_L.elements); 

   free(L.elements); 

} 

 

// one thread only handles one (x,y) in one wavefront at one time, but it's in a loop 

__device__ unsigned long long int  

one_thread_calculation(int k, int l, char *d_X, char *d_Y, int base_x, int base_y, int w, 

int h, Matrix d_L, uint16_t *A, int width, int height, unsigned long long int *d_T, int p) { 

   int i; 

   int my_delta_x; 

   int my_delta_y; 

   uint16_t *a_bottom, *a_left; 

   char *a_X, *a_Y; 

 

   // copy global memory to A 

   // A is wxh, then w+1, h+1 for d_L values, then w+h for d_X and d_Y 

   a_bottom = &A[w*h]; 

   a_left = &A[w*h+w+1]; 
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   a_X = (char *)&A[w*h+w+1+h+1]; 

   a_Y = (char *)&A[w*h+w+1+h+1+w]; 

 

   int thread_id = threadIdx.x; 

   if (base_x < width && (base_y + thread_id) < height) { 

      int len = (base_x + w) >= width ? (width - base_x) : w; 

      int hh = (base_y + h) >= height ? (height-base_y) : h; 

 

      int counter = 0; 

      while (true) { 

         int pos =  counter*NUM_OF_THREAD + threadIdx.x; 

         if (pos < len) { 

            a_X[pos] = d_X[base_x+pos]; 

            counter ++; 

         } else 

            break; 

      } 

       

      counter = 0; 

      while (true) { 

         int pos =  counter*NUM_OF_THREAD + threadIdx.x; 

         if (pos < hh) { 

            a_Y[pos] = d_Y[base_y + pos]; 
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            counter ++; 

         } else 

            break; 

      } 

 

      if (base_x==0 && base_y==0) { 

         if (thread_id==0) { 

            memset(a_bottom, 0, len + 1); 

            memset(a_left, 0, hh + 1); 

         } 

      } else if (base_x != 0 && base_y != 0) { 

         int pos = (base_y-1)*width + base_x - 1; 

         counter = 0; 

         while (true) { 

            int pos3 = counter*NUM_OF_THREAD + threadIdx.x; 

            if (pos3 < (len + 1)) { 

               a_bottom[pos3] = d_L.elements[pos + pos3]; 

               counter ++; 

            } else 

               break; 

         } 

 

         counter=0; 
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         while (true) { 

            int pos3 =  counter*NUM_OF_THREAD + threadIdx.x; 

            int pos1 = (base_y-1+pos3)*width + base_x - 1; 

            if (pos3 < (hh + 1)) { 

               a_left[pos3] = d_L.elements[pos1]; 

               counter ++; 

            } else 

               break; 

         } 

      } else if (base_x == 0) { // then base_y !=0 

         int pos = (base_y-1)*width; 

 

         counter = 0; 

         while (true) { 

            int pos3 = counter*NUM_OF_THREAD + threadIdx.x; 

            if (pos3 < len) { 

               a_bottom[1+pos3] = d_L.elements[pos + pos3]; 

               counter ++; 

            } else 

               break; 

         } 

 

         a_bottom[0] = 0; //actually we may not need it 



 111 

         memset(a_left, 0, hh + 1); 

      } else { // base_y==0 and base_x !=0 

         memset(a_bottom, 0, len + 1); 

         a_left[0] = 0; 

 

         counter = 0; 

         while (true) { 

            int pos3 = counter*NUM_OF_THREAD + threadIdx.x; 

            int pos1 = pos3*width + base_x - 1; 

            if (pos3 < hh) { 

               a_left[1+pos3] = d_L.elements[pos1]; 

               counter ++; 

            } else 

               break; 

         } 

      } 

   } 

 

   __syncthreads(); 

 

   if (w >= h) { 

      for (i=0; i<(w+h-1); i++) { //each mini wavefront is done by all threads, each thread 

handles one point 
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         // now get each thread's position for calculation 

         if (i < h) { 

            my_delta_x = i - threadIdx.x; 

            my_delta_y = threadIdx.x; 

         } else if (i >= h && i < w) { 

            my_delta_x = i - threadIdx.x; 

            my_delta_y = threadIdx.x; 

         } else {//i>=w and i<(w+h-1) 

            my_delta_x = w - 1 - threadIdx.x; 

            my_delta_y = i - (w-1) + threadIdx.x; 

         } 

 

         if (my_delta_x < w && my_delta_x >= 0 && my_delta_y < h && my_delta_y >= 

0 && 

              (my_delta_x + base_x) >= 0 && (my_delta_x + base_x) < width && 

              (my_delta_y + base_y) >= 0 && (my_delta_y + base_y) < height) { //so some 

threads may be idle 

 

            if (base_x == 0 && my_delta_x == 0) { 

               A[my_delta_y*w] = 0; 

            } 

            else if (base_y == 0 && my_delta_y == 0) { 

               A[my_delta_x] = 0; 
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            } 

            else { 

               char d_x_b = a_X[my_delta_x]; 

               char d_y_l = a_Y[my_delta_y]; 

 

               if (d_x_b == d_y_l) { 

                  int leftbottom; 

 

                  if (my_delta_x == 0 && my_delta_y == 0) 

                     leftbottom = a_bottom[0]; 

                  else if (my_delta_x == 0)  

                     leftbottom = a_left[my_delta_y]; 

                  else if (my_delta_y == 0) 

                     leftbottom = a_bottom[my_delta_x]; 

                  else 

                     leftbottom = A[(my_delta_y-1)*w + my_delta_x-1]; 

 

                  A[my_delta_y*w+my_delta_x] = 1 + leftbottom; 

               } else { 

                  int left, bottom; 

 

                  if (my_delta_x == 0) { 

                     left=a_left[my_delta_y + 1]; //left value 
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                  } 

                  else 

                     left = A[my_delta_y*w + my_delta_x - 1]; 

 

                  if (my_delta_y == 0) { 

                     bottom = a_bottom[my_delta_x + 1]; //bottom value 

                  } 

                  else 

                     bottom = A[(my_delta_y-1)*w + my_delta_x]; 

 

                  A[my_delta_y*w + my_delta_x] = left > bottom ? left : bottom; 

               } 

            } 

         } 

         __syncthreads(); //wait till all threads are done for this wavefront in w*h 

      } 

 

      //copy A back to d_L 

      if (base_x >= 0 && base_x < width && base_y >= 0 && base_y < height) { 

         int cpy_count; 

         if ((base_x+w) < width) 

            cpy_count = w; 

         else 
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            cpy_count = width - base_x; 

 

         int jj; 

         for (jj=0; jj<h; jj++) { 

            if ((jj+base_y) >= height) 

        break; 

            int counter = 0; 

            while (true) { 

               int d_L_pos = (base_y+jj)*M + base_x; 

               int A_pos = jj*w; 

               int pos3 = counter*NUM_OF_THREAD + threadIdx.x; 

               if (pos3 < cpy_count) { 

                  d_L.elements[d_L_pos+pos3] = A[A_pos+pos3]; 

                  counter ++; 

               } else 

                  break; 

            } 

         } 

 

      } 

 

      __syncthreads(); //wait till all threads are done 
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   } else { //h>w case, we have w threads 

      for (i=0; i<(w+h-1); i++) { //each mini wavefront is done by all threads 

         // now get each thread's position for calculation 

         if (i < w) { 

            my_delta_x = i - threadIdx.x; 

            my_delta_y = threadIdx.x; 

         } else if (i >= w && i < h) { 

            my_delta_x = w - 1 - threadIdx.x; 

            my_delta_y = i - (w-1) + threadIdx.x; 

         } else {//i>=h and i<(w+h-1) 

            my_delta_x = w - 1 - threadIdx.x; 

            my_delta_y = i - (w-1) + threadIdx.x; 

         } 

 

         if (my_delta_x < w && my_delta_x >= 0 && my_delta_y < h && my_delta_y >= 

0 && 

              (my_delta_x+base_x) >= 0 && (my_delta_x+base_x) < width && 

              (my_delta_y+base_y) >= 0 && (my_delta_y+base_y) < height) { //so some 

threads may be idle 

            if (my_delta_x == 0 && base_x == 0) { 

               A[my_delta_y*w] = 0; 

            } 

            else if (my_delta_y == 0 && base_y == 0) { 
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               A[my_delta_x] = 0; 

            } 

            else { 

               int d_x_b = a_X[my_delta_x]; 

               int d_y_l = a_Y[my_delta_y]; 

 

               if (d_x_b == d_y_l) { 

                  int leftbottom; 

                  if (my_delta_x == 0 && my_delta_y == 0) 

                     leftbottom = a_bottom[0]; 

                  else if (my_delta_x == 0)  

                     leftbottom = a_left[my_delta_y]; 

                  else if (my_delta_y == 0) 

                     leftbottom = a_bottom[my_delta_x]; 

                  else 

                     leftbottom = A[(my_delta_y-1)*w+my_delta_x-1]; 

 

                  A[my_delta_y*w+my_delta_x] = 1 + leftbottom; 

               } else { 

                  int left, bottom; 

 

                  if (my_delta_x == 0) { 

                     left = a_left[my_delta_y + 1]; //left value 
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                  } 

                  else 

                     left = A[my_delta_y*w + my_delta_x - 1]; 

 

                  if (my_delta_y == 0) { 

                     bottom = a_bottom[my_delta_x + 1]; //bottom value 

                  } 

                  else 

                     bottom = A[(my_delta_y-1)*w + my_delta_x]; 

 

                  A[my_delta_y*w+my_delta_x] = left > bottom ? left : bottom; 

               } 

            } 

         } 

         __syncthreads(); //wait till all threads are done 

      } 

 

      //copy A back to d_L 

      //if (threadIdx.x == 0) 

      if (base_x >= 0 && base_x < width && base_y >= 0 && base_y < height) { 

         int cpy_count; 

         if ((base_x+w) < width) 

            cpy_count = w; 
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         else 

            cpy_count = width - base_x; 

         int jj; 

         for (jj=0; jj<h; jj++) { 

            if ((base_y+jj) >= height) 

        break; 

            int d_L_pos = (base_y+jj)*M+base_x; 

            int A_pos = jj*w; 

            int counter = 0; 

            while (true) { 

               int pos3 =  counter*NUM_OF_THREAD + threadIdx.x; 

               if (pos3 < cpy_count) { 

                  d_L.elements[d_L_pos+pos3] = A[A_pos+pos3]; 

                  counter ++; 

               } else 

                  break; 

            } 

         } 

      } 

 

      __syncthreads(); 

   } 
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   return 0; 

} 

 

__global__ void lcs_kernel(char *d_X, char *d_Y, int w, int h, int k, int l, Matrix d_L, 

unsigned long long int *d_T, int m, int n, int p, int width, int height) 

{ 

   unsigned long long int clock1=0, clock2=0, delta=0; 

   extern __shared__ uint16_t A[]; //A should be w*h size, thread size is either w or h 

 

   memset((void **)(d_T+blockIdx.x), 0, sizeof(unsigned long long int)); 

   memset((void **)(d_T+p+blockIdx.x), 0, sizeof(unsigned long long int)); 

 

   if (threadIdx.x == 0) 

      clock1 = clock64(); 

 

   int block_id = blockIdx.x; 

   // base_x, base_y is the lower left corner coordinate of the block in d_L 

   int base_x; 

   int base_y; 

 

   if (m>=n) { 

      if (k < (n-1)) { 

         base_x = (k-l*p-block_id)*w; 
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         base_y = (l*p+block_id)*h; 

      } else if (k >= (n-1) && k < (m-1)) { 

         base_x = (k-l*p-block_id)*w; 

         base_y = (l*p+block_id)*h; 

      } else { // k>=m-1 && k<n+m-1 

         base_x = (m-1-l*p-block_id)*w; 

         base_y = (k-(m-1)+l*p+block_id)*h; 

      } 

   } else { //m<n 

      if (k < (m-1)) { 

         base_x = (k-l*p-block_id)*w; 

         base_y = (l*p+block_id)*h; 

      } else if (k >= (m-1) && k < (n-1)) { 

         base_x = (m-1-l*p-block_id)*w; 

         base_y = (k-(m-1)+l*p+block_id)*h; 

      } else { // k>=n && k<=n+m-1 

         base_x = (m-1-l*p-block_id)*w; 

         base_y = (k-(m-1)+l*p+block_id)*h; 

      } 

   } 

 

   if (base_x >= 0 && base_x < width && base_y >= 0 && base_y < height) 
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      one_thread_calculation(k, l, d_X, d_Y, base_x, base_y, w, h, d_L, A, width, height, 

d_T, p); 

 

   __syncthreads(); //wait till all threads are done 

   if (threadIdx.x == 0) { 

      clock2 = clock64(); 

      delta = clock2-clock1; 

      d_T[block_id]=delta; 

   } 

} 

 

int main(int argc, char *argv[]) 

{ 

   int num_devices, d; 

   int num_of_core; 

   cudaDeviceProp deviceProp; 

 

   cudaGetDeviceCount(&num_devices); 

   printf("num of devices is %d\n", num_devices); 

   cudaGetDevice(&d); 

 

   cudaGetDeviceProperties(&deviceProp, d); 
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   printf("device %d has compute capability %d.%d.\n", d, deviceProp.major, 

deviceProp.minor); 

   printf("device %d multiProcessorCount is %d.\n", d, deviceProp.multiProcessorCount); 

   printf("device name is %s, totalGlobalMem is %d\n", deviceProp.name, 

deviceProp.totalGlobalMem); 

   printf("device shared mem per block %d, regs per block %d\n", 

deviceProp.sharedMemPerBlock, deviceProp.regsPerBlock); 

   printf("device max threads per block %d, max grid size [%d %d %d]\n", 

           deviceProp.maxThreadsPerBlock, deviceProp.maxGridSize[0],  

           deviceProp.maxGridSize[1], deviceProp.maxGridSize[2]); 

 

   num_of_core = deviceProp.multiProcessorCount; 

 

   main_program(NUM_OF_BLOCK); 

 

} 
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