293 research outputs found

    Analysis of Embedded Controllers Subject to Computational Overruns

    Get PDF
    Microcontrollers have become an integral part of modern everyday embedded systems, such as smart bikes, cars, and drones. Typically, microcontrollers operate under real-time constraints, which require the timely execution of programs on the resource-constrained hardware. As embedded systems are becoming increasingly more complex, microcontrollers run the risk of violating their timing constraints, i.e., overrunning the program deadlines. Breaking these constraints can cause severe damage to both the embedded system and the humans interacting with the device. Therefore, it is crucial to analyse embedded systems properly to ensure that they do not pose any significant danger if the microcontroller overruns a few deadlines.However, there are very few tools available for assessing the safety and performance of embedded control systems when considering the implementation of the microcontroller. This thesis aims to fill this gap in the literature by presenting five papers on the analysis of embedded controllers subject to computational overruns. Details about the real-time operating system's implementation are included into the analysis, such as what happens to the controller's internal state representation when the timing constraints are violated. The contribution includes theoretical and computational tools for analysing the embedded system's stability, performance, and real-time properties.The embedded controller is analysed under three different types of timing violations: blackout events (when no control computation is completed during long periods), weakly-hard constraints (when the number of deadline overruns is constrained over a window), and stochastic overruns (when violations of timing constraints are governed by a probabilistic process). These scenarios are combined with different implementation policies to reduce the gap between the analysis and its practical applicability. The analyses are further validated with a comprehensive experimental campaign performed on both a set of physical processes and multiple simulations.In conclusion, the findings of this thesis reveal that the effect deadline overruns have on the embedded system heavily depends the implementation details and the system's dynamics. Additionally, the stability analysis of embedded controllers subject to deadline overruns is typically conservative, implying that additional insights can be gained by also analysing the system's performance

    Semantics-preserving cosynthesis of cyber-physical systems

    Get PDF

    From Packet to Power Switching: Digital Direct Load Scheduling

    Full text link
    At present, the power grid has tight control over its dispatchable generation capacity but a very coarse control on the demand. Energy consumers are shielded from making price-aware decisions, which degrades the efficiency of the market. This state of affairs tends to favor fossil fuel generation over renewable sources. Because of the technological difficulties of storing electric energy, the quest for mechanisms that would make the demand for electricity controllable on a day-to-day basis is gaining prominence. The goal of this paper is to provide one such mechanisms, which we call Digital Direct Load Scheduling (DDLS). DDLS is a direct load control mechanism in which we unbundle individual requests for energy and digitize them so that they can be automatically scheduled in a cellular architecture. Specifically, rather than storing energy or interrupting the job of appliances, we choose to hold requests for energy in queues and optimize the service time of individual appliances belonging to a broad class which we refer to as "deferrable loads". The function of each neighborhood scheduler is to optimize the time at which these appliances start to function. This process is intended to shape the aggregate load profile of the neighborhood so as to optimize an objective function which incorporates the spot price of energy, and also allows distributed energy resources to supply part of the generation dynamically.Comment: Accepted by the IEEE journal of Selected Areas in Communications (JSAC): Smart Grid Communications series, to appea

    Increasing the reliability and applicability of measurement-based probabilistic timing analysis

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2019Conforme a complexidade das arquiteturas computacionais aumenta para melhorar desempenho ou reduzir custos, o uso de processadores modernos em Sistemas de Tempo Real (STRs) é prejudicado cada vez mais pelo surgimento de efeitos temporais que dificultam a obtenção de limites confiáveis e precisos para os Worst-Case Execution Times (WCETs) de tarefas. A Análise Temporal Probabilística Baseada em Medições (ATPBM) visa determinar limites probabilísticos de WCET (i.e. pWCETs) aplicando a Teoria de Valores Extremos (TVE) sobre medições de tempos de execução, e é portanto promissora no tratamento da complexidade de hardware no projeto de STRs. Processadores temporalmente aleatorizados foram recentemente propostos para tornar o comportamento temporal de sistemas computacionais mais facilmente analisável através de ferramental probabilístico, e são projetados substituindo informações internas determinísticas ou especulativas por números (pseudo-)aleatórios. A pesquisa cujos resultados são apresentados nesta tese produziu contribuições em duas frentes distintas. Em primeiro lugar, foram propostos e aplicados métodos para avaliar a confiabilidade dos pWCETs produzidos pela ATPBM, baseados na coleta de grandes amostras de tempos de execução e na comparação (1) dos pWCETs com os maiores tempos de execução observados, e (2) das densidades de excedência dos pWCETs com seus valores esperados. Essas avaliações indicaram que modelos probabilísticos da TVE projetados para gerar margens mais precisas podem muitas vezes levar a subestimativas de pWCETs, e recomendou-se então que modelos sobrestimadores devem ser utilizados para obter-se pWCETs mais confiáveis. Em segundo lugar, avaliou-se a hipótese de que técnicas de escalonamento aleatorizado podem beneficiar a análise temporal de tarefas executadas em pipelines multithread através da ATPBM, por levarem os tempos de execução produzidos a atenderem às premissas básicas de aplicabilidade da técnica. Para tal, foram considerados tanto (A) um escalonador puramente aleatório, quanto (B) um escalonador aleatorizado capaz de limitar os efeitos temporais da interferência entre threads, sem comprometer sua analisabilidade pela ATPBM, através de um mecanismo de regulação de elegibilidade baseado em créditos.Abstract: As the complexity of computer architectures grows in order to improve performance and/or to reduce costs, the use of modern processors in the design of Real-Time Systems (RTSs) is increasingly hampered by the emergence of timing effects that challenge determining reliable and tight bounds for tasks' Worst-Case Execution Times (WCETs). The Measurement-Based Probabilistic Timing Analysis (MBPTA) technique aims determining probabilistic WCET bounds (i.e. pWCETs) by applying Extreme Value Theory (EVT) on tasks' execution time measurements, and is hence promising in handling hardware complexity issues within RTSs' design. Hardware-level time-randomized processors were recently proposed as a means to cause computing systems' timing behaviour to become more easily analysable through probabilistic tools, and are designed replacing deterministic or speculative internal information with (pseudo-)random numbers. The scientific research whose outcomes are presented in this thesis produced contributions on two distinct fronts. In first place, we proposed and applied methods for evaluating the reliability of pWCET estimates produced using MBPTA, based on collecting large execution time samples and then comparing (1) the pWCETs against the largest observed execution times, and (2) pWCETs' exceedance densities against their expected values. These evaluations led us to conclude that EVT probabilistic models intended to yield more precise bounds may often lead to pWCET underestimations, and we hence recommended that upper-bounding models should instead be used for deriving pWCETs with increased reliability. In second place, we evaluated the hypothesis that randomized scheduling techniques can benefit the timing analysis of tasks executed on multithread pipelines through MBPTA, by causing the yielded execution times to meet the technique's basic application requirements. For that, we considered both (A) a scheduler that employs a purely random policy, and (B) a randomized scheduler capable of limiting the timing effects of inter-thread interference, without compromising analysability, by using a credit-based eligibility regulation mechanism

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This book is Open Access under a CC BY licence. The LNCS 11427 and 11428 proceedings set constitutes the proceedings of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019. The total of 42 full and 8 short tool demo papers presented in these volumes was carefully reviewed and selected from 164 submissions. The papers are organized in topical sections as follows: Part I: SAT and SMT, SAT solving and theorem proving; verification and analysis; model checking; tool demo; and machine learning. Part II: concurrent and distributed systems; monitoring and runtime verification; hybrid and stochastic systems; synthesis; symbolic verification; and safety and fault-tolerant systems
    corecore