

Boderc

Citation for published version (APA):
Heemels, W. P. M. H., & Muller, G. J. (2006). Boderc: model-based design of high-tech systems : a collaborative
research project for multi-disciplinary design analysis of high-tech systems. Embedded Systems Institute.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/1287c22c-e473-488c-b6ec-e7964d4cca18

i

Boderc: Model-based design of
high-tech systems

A collaborative research project for multi-disciplinary
design analysis of high-tech systems.

Editors:

Maurice Heemels Eindhoven University of Technology
Gerrit Muller Embedded Systems Institute

Publisher:
Embedded Systems Institute, Eindhoven, The Netherlands

ii

Publisher:
Embedded Systems Institute
TU/e Campus, Den Dolech 2
P.O. Box 513, 5600 MB Eindhoven
Eindhoven, The Netherlands

First edition : November 2006, presented at symposium 2006.
Second edition : March 2007, updated version.

Keywords:
system design; system engineering; high-tech systems; modeling; high-level method;
performance; multi-disciplinary

ISBN-13: 978-90-78679-01-1
ISBN-10: 90-78679-01-8

c© Embedded Systems Institute, Eindhoven, The Netherlands 2006
All rights reserved. Nothing from this book may be reproduced or transmitted in any form or by
any means (electronic, photocopying, recording or otherwise) without the prior written
permission of the publisher.

The Boderc project has been executed under the responsibility of the Embedded
Systems Institute, and is partially supported by the Netherlands Ministry of Economic
Affairs under the Senter TS program.

iii

Foreword

Around 2001 Océ Research & Development experienced a paradox regarding the
future role of informatics in product design. In those days the world was at the sum-
mit of the internet hype. Océ, which is in the business of professional printing and
document management, handled these challenges in a prudent way - it was careful
not to be diverted from its bread and butter business. However, it did not pass unno-
ticed that product development became more and more dependent on the results and
challenges of embedded software technology, as well as on the effective interplay of
software, electrical, and mechanical engineering. Software engineers were exposed to
two fundamentally conflicting roles. On the one hand, they had to be aware of the
organisational risks that relate to new business development, while the sky seemed the
limit in the world of their peers. On the other hand, they were exposed to the daily
operational pressure to solve hard engineering problems in embedded systems. So it
was felt that, besides facilitating Océ’s entrance in the software and services business,
there was a significant need to improve the multidisciplinary interaction between the
embedded software, electrical and mechanical engineering disciplines, starting from
the very early phases of printer development.

It was in this period that the Embedded Systems Institute was scouting for their first
project ideas. This helped us to amplify the abovementioned challenges. An analysis of
the state of affairs led us to the hypothesis that multidisciplinary design interaction in
the earliest project stages, with full involvement of the IT discipline, should create sig-
nificant value. The possibility to explore this assumption together with the Embedded
Systems Institute, was considered a major opportunity.

This was one of the motivations to start the Boderc project, in which Océ par-
ticipated with research groups from the three technical universities, other industrial
partners, and ESI. The shared problem statement was the ‘multidisciplinary design of
print engines’. A central theme from the start of this project was the role of models
in multidisciplinary design, or, alternatively stated, a shared (formal) language across
disciplines. Models support the process of sharing knowledge; models allow to per-
form analyses; models can be applied to validate expected results. Still, it was not
clear what information those models should provide and how we should build them.
The search for an answer to these questions was considered the main challenge of the
Boderc research program.

And now, here we are with the results: a book that summarizes the research find-
ings of the Boderc project. So, what has happened with the project in the context of
Océ R&D? In my opinion this project has brought us both useful, specific results, and
promising general directions. It is also the start of a much longer lasting process that
aims to further pervade our R&D and the other partners. Some results entirely fulfilled
our initial expectations, the best known example being the ‘Happy Flow’ model. This
enabled us to skip at least one complete physical machine-build iteration, because pa-

iv

per path designs could now be explored virtually. The savings from this result alone
already amount to many man-years of effort. Nevertheless, the process creating such
models systematically is not yet very transparent, although the positive influence of
having research projects like Boderc, and therefore room for exploration, is crystal
clear.

All in all, we are very happy to have embarked upon this collaborative research
project. Product development has gained significantly from the results and our engi-
neers have become more effective in the early design phases of new printers. We value
our encounter with the Embedded Systems Institute, knowing that Boderc was the first
project of this organization, and wish them many more successful innovations. We
are confident they will further their impact, pursuing the cross-fertilization between in-
dustry and their problems and the fundamental insights of academia. Together we are
currently exploring the possibilities for continuing our fruitful cooperation. Learning
from each other has to becomethecontributing factor, and we are proud to have taken
the first steps towards this goal!

Ir. W. Orbons
Senior Vice President Research & Development
Océ Technologies B.V.
Venlo, The Netherlands
October 2006

v

Preface

This book is the result of a team effort in the truest sense. It reports on the results
of the Boderc project, which was the very first collaborative research project of the
Embedded Systems Institute that has been carried out in an ‘Industry-as-Laboratory’
setting. This is a unique research formula that combines the strengths of industrial com-
panies, universities, and research institutes, with the objective to create breakthrough
applied research under realistic industrial constraints.

This book summarizes the key results of the Boderc project and represents the
collective work of researchers and engineers from the companies Océ-Technologies,
Chess, and Imtech, together with research groups at the Technical University Eind-
hoven, University of Twente, Radboud University Nijmegen and the Embedded Sys-
tems Institute. Representatives from these organizations have worked together for
about five years, focusing their research on an industrial problem statement from Océ-
technologies. In effect, this book constitutes the accumulated knowledge and experi-
ence of this unique multidisciplinary community.

Publishing the project results in this book cannot be done without expressing our
gratitude to those who contributed to the success of Boderc. Many have participated in
the project, including at least six PhD-student advisors, six university professors, and
three industrial managers to guide the work. We would like to express our gratitude to
all our partners in both industry and academia, as it was their contribution that enabled
the success of this ambitious project. The funding by Océ Technologies and the Dutch
Ministry of Economic Affairs provided the essential financial means to carry out the
project. We are confident that it has brought significant benefits to the partners and will
be a source of inspiration for them, as well as all other interested parties in the future.

Prof. dr. Ed Brinksma
Scientific Director & Chair
Embedded Systems Institute
The Netherlands
October 2006

vi

Contents

1 Introduction 1

2 A design methodology for high-tech systems 11

3 The key driver method 27

4 Threads of reasoning 43

5 Budget-based design 59

6 Effective industrial modeling: The example of Happy Flow 77

7 Heat modeling in copiers 89

8 Modeling of performance 101

9 Virtual printer modeling 115

10 Using stepper motors in printers 129

11 Simulating the environment of embedded software 141

12 Evaluating embedded system architectures 151

13 Model-driven design of real-time systems 161

14 Time-varying delays in control 171

15 Sheet feedback control in a printer paper path 183

16 Event-driven control 193

17 Design trajectory and controller-plant interaction 203

vii

viii CONTENTS

18 Impact, lessons learned and conclusions 213

A List of Boderc publications 225

B List of authors 231

Chapter 1

Introduction

Authors: W.P.M.H. Heemels, G.J. Muller and P.F.A. van den Bosch

The design of high-tech mechatronic systems like wafer steppers, electron micro-
scopes, copiers, et cetera, is a complex process. Multiple ‘classical’ engineering dis-
ciplines need to make the overall design in close co-operation. Typically, electrical,
mechanical, software and other engineering disciplines together determine the func-
tioning of the final product. Especially in the early design phases, the design of the
product is vulnerable for erroneous design choices as many others will be based on
it subsequently. These erroneous choices tend to show up in later phases during the
integration or even the manufacturing itself. Late in a project, the ‘repairs’ are more
difficult and can lead to a much longer development period than planned and/or a less
optimal product.

The main reasons for non-optimal design choices, of which some are illustrated in
Figure 1.1, are summarized below.

• A common language and background between multiple engineering disciplines,
which enable the reasoning about system properties, are lacking. As a result, the
consequences of a choice, made by one discipline, cannot be overseen for other
disciplines; wrong assumptions are made on the sub-designs of other disciplines;
confusions and misunderstanding are present about definitions of specific terms
and priorities differ over disciplines.

• Many design choices are made in an implicit way, based on experience, intuition
and ‘gut-feeling.’ That way, it is hard to communicate the reasons and to discuss
the design or particular choices in it. Decisions are sometimes not well-founded
by quantitative arguments, but can be forced by seniority and ‘shouting loudest.’

• Especially dynamic, time depending aspects of a system are complex to grasp.
There are not many tools and methods available to support the time varying as-
pects in a design, in contrast to many static or steady-state aspects.

1

2 INTRODUCTION

• Out-of-phase project evolution is another important factor. A typical example
of the latter is that the mechanical design often precedes the electronic design,
which on its turn precedes the software design.

Many multi-disciplinary problems in product development

Most of the problems show up late in engineering and in the integration phase

Lack of systematic approaches to detect / solve these problems in early phases

Mechanical engineering precedes

Electronics engineering precedes
Software engineering

For instance mechatronics assumes 1 ms response

Software promises 10 ms response

Lots of tuning, trial and error

Unpredictable project timing and costs

Figure 1.1: Typical industrial problems in mechatronics systems

The effects of the above design complications are amplified by the size and com-
plexity of high-tech machines (typically millions lines of codes, tens of thousands me-
chanical components like pinches, springs, belts, motors, bolts, et cetera). The more
complex the machine and the more people involved in the design, the stronger the ef-
fects. Of course, the four mentioned reasons are not the only ones that complicate the
design. Other factors like organizational or political, or geographically scattering of
the design team contribute too. Those latter issues are important as well, but are of
a different dimension and more related to business management. We believe that the
aforementioned reasons can be relieved by the use of models that capture the system
behavior and a reasoning method that indicates how and when to use them. That is why
the Bode-RC project was initiated by the Embedded Systems Institute, Océ Technolo-
gies, Imtech, Chess and 6 academic groups of the universities of Eindhoven, Nijmegen
and Twente.

1.1 The Boderc project

Early on in the Boderc project, the goal was defined as shown in annotated form in
Figure 1.2. The goal of Boderc is to develop a model-based methodology that supports
multi-disciplinary design (space exploration) by predicting system performance. The
developed models, methods and techniques should in particular be applicable in the
early design phases and must satisfy industrial application constraints. They should
be usable in the industrial context with its particular people, processes and economic
constraints related to design time, effort and costs. Moreover, the economic constraints
and the traditional processes of the manufacturer of the product restrict the design
space a priori by posing constraints on the design. Most parts in a new design will
not be revolutionary, existing solutions and technologies and way of working will be

THE BODERC PROJECT 3

re-used, which constrains the design space. The methodology should be effective for
this constrained design space.

Figure 1.2: Boderc research project goal

During the Boderc project the awareness emerged that it is not only aboutpredict-
ing system performance. The methodology and models force to make design choices
quantitative and explicit which enables the analysis of various design options, commu-
nication between engineers from different disciplines and to commence the design with
all disciplines involved in the beginning of a project. Also modeling of (parts of) the
system increases the understanding and insight in the design. All these factors lead to
shorter design iterations and more confidence in the consequences of design choices.
In the end, better products are delivered faster.

Boderc: name and logo

The Boderc name and logo deserve also some explanation, especially considering the
various gimmicks being in it. Boderc stands for Beyond the Ordinary: Design of Em-
bedded Real-time Control. In the logo depicted in Figure 1.3 one can observe that the
first 4 letters ‘Bode’ are separated from ‘RC.’ Bode refers to the frequency response
functions in the form of Bode plots [14], one of the fundamental means to indicate
the performance of linear control systems in control theory. The ‘RC’ are capitalized
and indicate the letters that stand for resistors and capacitors, important components
in many electrical circuits. Also the letter ‘0’ has an integral through it denoting a so-
called circle integral, which is well-known in mathematics. This reflects the desirable
connection of the Boderc results to scientific foundations (next to industrial applicabil-
ity). Moreover, in this manner the Boderc logo indicates the multi-disciplinary nature
of the project. As Boderc aims at developing amodel-based design methodology, the

4 INTRODUCTION

pronunciation of Boderc refers to the actress Bo Derek, who after all is also a kind of
model.

Figure 1.3: Boderc logo

Research method: Industry-as-Laboratory

The Boderc project uses theindustry-as-laboratoryapproach, as proposed by Colin
Potts [94] and visualized in Figure 1.4.

research
industry

apply new

engineering
methods

hypothesis

evaluate
observe
results

improve

challenging
problems

Figure 1.4: Industry as Laboratory: Research of engineering methods

The industry-as-laboratory approach exploits the actual industrial setting as a test
environment, which warrants that the research question is based on real industrial prob-
lems. The Boderc research team, consisting of a mix of academic and industrial people,
investigates a new product engineering methodology. A research hypothesis is formu-
lated on the new methodology. The methodology is applied in the industrial setting
and the results of these experiments are observed and used to evaluate the hypothesis.
Coupled to the multi-disciplinary design problems for high-tech systems discussed in
the beginning of this chapter, the research hypothesis of the Boderc project was chosen
as:

The product creation lead time will be reduced significantly by the use of
multi-disciplinary models during the early product development phases.

The termCarrying Industrial Partner (CIP)is used for the company that provides
the problem and the industrial setting. The CIP of Boderc is Océ Technologies, which
creates high-volume document printing systems.

MULTI-DISCIPLINARY METHODS 5

The industrial context

One of the product families that is designed by Océ technologies is a range of high-
volume printers and copiers, see Figure 1.5.

31x5E 2050 2090

Figure 1.5: The Domain: Printers and copiers by Océ

The application context is best characterized by document printing systems that are
highly productive, reliable, and user-friendly. These systems can print on several sizes
of media, different weights, automatically on both sides and include stapling, booklet
production, or other types of finishing. In order to be perceived as reliable devices,
such copiers must be very robust with respect to variations in media. As the printing
speed is rather high (typically above 1 image per second), timing requirements are tight
and advanced mechatronics are indispensable. This indicates that variations in timing
parameters that relate to paper and image transport must be controlled up to a high
degree. This becomes the more apparent if one realizes that the positioning of images
on paper has tolerances well below 1 mm.

When considering the embedded control of these systems, one should think of con-
trolling multiple sheets that travel the paper path simultaneously and synchronizing this
sheet flow with the imaging process. In Figure 1.6 overviews of a copier are presented.
When the copier is in normal operation, a sheet is separated from the trays in the paper
input module (PIM), after which it is sent to the paper path that transports the sheets
accurately in the direction of the print engine, where the image is fused on a sheet of
paper. After that, the sheet is turned for duplex printing, or transported by the paper
path to the finisher.

1.2 Multi-disciplinary methods

The Boderc research falls typically within the category of multi-disciplinary design
methods as opposed to the more conventional mono-disciplinary research areas like
mechanical, electrical or software engineering. The latter research fields are relatively
mature, although some doubts exist about the maturity of software engineering [91].
Some bi-disciplinary approaches exist, for instance hybrid systems theory [103] that

6 INTRODUCTION

Figure 1.6: Illustration and schematic picture of a copier

combine continuous dynamical models (using e.g. differential equations) typically de-
scribing the physical part of a high-tech machine and discrete models (e.g. finite state
machines or automata) to described the software behavior. The hybrid field is relatively
immature and many issues are at present unsolved (at least at the large-scale needed
for industrial usefulness). However, the industrial need for analysis / synthesis methods
for high-tech machines in which this ‘hybrid interaction’ plays an important role, will
stimulate the research in this domain over the years to come.

Researchers in the mono-disciplinary areas are used to well-defined problems that
can be studied in depth with solutions most often based on mathematical rigor. A
lot of uncertainty pops up when we move to multi-disciplinary problem solving. The
problem itself is only partially defined, while at the solution side different formalisms
have to inter-operate, such as discrete (software) and continuous (mechanical) models.
Figure 1.7 shows a categorization of the design methods with as vertical axis the degree
of multi-disciplinary interaction. The form of the method is an indication how well the
method is defined and how much uncertainty is left.

In the industrial context thesystemlevel is often relatively well-defined in a sys-
tems requirement specification. Such a specification describes the functionality of the
system and quantifies the main performance characteristics. The translation of these re-
quirements into mono-disciplinary design choices, however, is still full of uncertainty.
A lot of uncertainty is caused by the many (dependent and interfering) design dimen-
sions that have to be managed at the same time. In Figure 1.7 the methods at this level
are calledmulti-objective design methods.

The translation of system requirements to detailed mono-disciplinary design deci-
sions spans many orders of magnitude. The few statements of performance, cost and
size in the system requirements specification ultimately result in millions of details in
the technical product description: million(s) of lines of code, connections, and parts.
Figure 1.8 shows this dynamic range as a pyramid with the system at the top and the
millions of technical details at the bottom.

The methodologies to be established by ESI, including the Boderc results, address
the multi-disciplinary area and aim at coupling the academic research to industrial

MULTI-DISCIPLINARY METHODS 7

mono-

disciplinary
design

multi-

disciplinary

design

system

evolvability

process

organization, people

reliabilityperformancecost

robustness

multi-objective
design methods multi-objective

design methods

performance and
resource prediction

single aspect
design method

VHDL RMAUML

hybrid

methods YAPI

process

issues

well defined

well defined

but soft

rather soft

legend

Mechanical Engineering Electrical Engineering Software Engineering

E
S

I
fo

c
u

s

Figure 1.7: From mono-disciplinary to system design

100

101

106

105

104

103

102

107
mono-

disciplinary

multi-

disciplinary

system
system

requirements

design

decisions

parts
connections

lines of code

n
u
m

b
e
r

o
f

d
e
ta

ils

E
S

I
fo

c
u
s

Figure 1.8: Exponential pyramid

practice. In Figure 1.7 this is the range fromsingle aspectto multi-objectivedesign
methods. In the pyramid, Figure 1.8, it is the area of translating hundreds of system
level requirements into tens of thousands of design choices.

The Embedded Systems Institute

Boderc is the first project in a long line of ESI projects within the field of multi-
disciplinary creation methods. This is a young research field, which is calledembedded
systems engineering(ESE) by ESI. The existing scientific disciplines have little expe-
rience in this field, most experience can be found in industry.

The mission of ESI isto advance industrial innovation and academic excellence in
embedded systems engineering (ESE)with its vision to create and apply together with

8 INTRODUCTION

its partners world-class ESE methods. The developed methodologies must support all
aspects of the creation: specification, design, integration, test and validation.

1.3 Reading guidelines

This book contains a selection of the main outcomes of the Boderc project. In the
Figure 1.9 an overview of the book is presented that can be used as a reading guide.
The introduction (Chapter 1) has almost ended. After the introduction we present in
Chapter 2 the Boderc design methodology, which consists of a system-level reasoning
framework and plug-ins (modeling formalisms and techniques) that are used during the
reasoning to get more in-depth insight. The Boderc methodology consists of a method
part, which forms together with sub-methods like the key driver method (Chapter 3),
threads of reasoning (Chapter 4) and budget-based design (Chapter 5) the reasoning
backbone of the Boderc methodology.

Figure 1.9: Overview of the contents of the book

This reasoning backbone is mainly qualitative. Once important design choices are
identified and the tension and conflict in the choice are known, often quantitative in-
formation is needed to make a well-founded tradeoff. Chapter 2 discusses this process
in detail. To obtain the quantitative information one can retrieve this from previous
projects, figures of merit, rules of thumb, data sheets, et cetera. If this information
and resulting insight are not sufficient to make a proper design tradeoff, an in-depth
model-based study is often used. This is where the plug-ins come into play.

Chapter 6 describes one of the most successful models of the Boderc project being
the Happy Flow model that studies the design of the mechanical lay-out of the paper
transport system and the scheduling of print jobs. This chapter presents the main char-
acteristics of the Happy Flow model and identifies the main industrial success factors.

READING GUIDELINES 9

These factors can be used as a stepping stone towards guidelines on how to create mod-
els that are industrially successful. Important aspects of a copier are the heat and power
flows, especially since environmental constraints are becoming tighter and tighter. In
Chapter 7 a modeling approach is presented that studies these issues. How to evalu-
ate the overall control architecture in terms of response times, CPU load, et cetera, is
discussed in Chapter 8. Chapter 9 describes models that are related to printing qual-
ity. New printer technologies are assessed via ‘virtual’ printer models on their printing
quality. The models described in Chapter 6-9 are positioned higher in Figure 1.9, when
compared to Chapters 12-17. The reason is that these models have a more ‘system-level
character’ as they describe system aspects or large subsystems of the copier. Roughly
speaking, the models presented in Chapters 10-17 have a more mono-disciplinary and
detailed nature.

Océ Technologies traditionally used DC motors as drives in the paper transport
system. However, there were important reasons to replace the DC motors by step-
per motors. Chapter 10 investigates the feasibility of stepper motors for this purpose
and aims at building an understanding of stepper motors that lead to practical design
rules. Chapter 12, gives an overview of several state-of-the-art performance analysis
for embedded system architectures for real-time systems. A case study inspired from
industrial practice will be used to compare the performance analysis techniques. Based
on these experiences, an indication will be given which method is best used under
which circumstances to successfully support the decision making process for the ar-
chitecture. Chapter 13 presents a model-driven design approach for real-time systems.
This approach enables the analysis of real-time systems and allows automatic software
code generation from the model that preserves the properties analyzed in the model.
Chapter 14 has a more control engineering view as it analyses the effects of jitter and
latencies (communication and computation delays present in any real-time system) on
the control (servo) loops present in copiers. Latencies are inevitable and their effects
can be disadvantageous with respect to stability and control performance. This chapter
gives analysis methods and techniques for the synthesis of controllers that are robust
against jitter and latencies.

For the control design of the drives of the paper transport system (based on the
schedules as computed via the Happy Flow model of Chapter 6) in Chapter 15 a hi-
erarchical control paradigm based on supervisory control is proposed. A systematic
analysis and design procedure based on low-level controllers for the motors in combi-
nation with high-level sheet control is proposed and verified via both simulations and
experiments.

Chapter 16 describes the design and application of event-driven control. Event-
driven control abandons one of the severe requirements that are often posed by control
engineers on the real-time implementation of their algorithms. The conventional fixed
sample time is removed and novel control algorithms are described, which allow for
control updates being triggered by events (e.g. the arrival of new measurement data),
rather than by progression of time. Event-driven control can have major benefits with
respect to resource utilization like processor and communication load, while still main-

10 INTRODUCTION

taining a good control performance. A particular event-driven controller was experi-
mentally validated for the image control in a printer prototype with good control and
software performance.

In the next chapter, Chapter 17, a systematic design trajectory is proposed for the
combination of real-time controllers and the physical / mechanical process. On several
levels the interactions between the hardware (processing platforms and implementa-
tion) and software aspects of controller-plant interaction are studied. A design path
is indicated in which stepwise the original (simulation) models of both plant and con-
troller are replaced by their real implementations. Chapter 11 is related to Chapter 17
as it discusses ways to simulate real-time embedded software together with its environ-
ment being of a physical / mechanical nature. Via the coupling of tools from software
engineering (that model the control software of the system) and simulation tools from
the mechanical/physical domain (modeling the physical part of the system) one can in-
spect if the software-plant combination is functioning properly. In this sense Chapter 11
is positioned closer to the system level than the detailed models in Chapters 15-17.

In the last chapter we will evaluate the overall project results and discuss its impact,
spin-off and lessons learned.

Chapter 2

A design methodology for
high-tech systems

Authors: W.P.M.H. Heemels, E.H. van de Waal and G.J. Muller

This chapter is a re-worked version of a paper for the Conference on System
Engineering Research (CSER) 2006 by the same authors and with the same title.

2.1 Introduction

As already mentioned in Chapter 1, there is a need for a framework that supports ef-
ficient evaluation of design choices over multiple disciplines. Actually, evaluation of
design choices over multiple disciplines is one of the important features of the emerging
field of Embedded Systems Engineering (ESE). Typically, ESE for high-tech machines
is performed by highly experienced individuals, using mostly intuition and ‘gut feel-
ing’. The experience of these individuals is hard to transfer, thereby limiting the speed
with which companies can develop new products. This way of working is effective
when the project remains small and limited to one location, where a relatively small
number of people are involved in the design. However, to enable the co-operation for
larger projects across multiple sites, an ESE framework is needed. Even for smaller
projects, such a framework is expected to speed up the design process and to reduce
integration time. Moreover, an ESE framework that captures the way of working of
the experienced architects should enable junior architects to learn the skill of system
engineering faster. Hence, in this respect the formulation of the design methodology
has both an educational as an industrial application character.

In System Architecting (SA) research, some frameworks have been established
(see, e.g. [89], [77] or Chapter 4 in [81] for an overview). Also, academic research
has produced techniques that could be useful in industry. However, these find very

11

12 A DESIGN METHODOLOGY FOR HIGH-TECH SYSTEMS

limited use, see e.g. [94] and [83], and the need for multi-disciplinary methodologies
is still large as expressed in [82]. In [82] several reasons are mentioned that hamper
the creation of such methodologies. Lack of description and lack of connection of
the higher level design methodology to mono-disciplinary methods are just two. The
lack of connection hampers the use of frameworks and methodologies for (very) large
scale systems (e.g. aerospace and military) in thetechnicaldevelopment and realiza-
tion of high tech systems like a copier. This also reflects the slight difference between
SA and ESE as ESE particularly focusses on the connection between the system level
and mono-disciplinary methods. By lack of description we mean that although multi-
disciplinary methods exist and are in use in the industry in various domains, their use
is very implicit - typically ‘gut-feeling’-based as mentioned before. The consolidation
of these industrial methods is very poor. The lack of explicit description means that a
lot of open issues remain. Open issues erode the value of these multi-domain methods.
To tackle the lack of description and connection to mono-disciplinary techniques, this
chapter presents an attempt to explicitly describe such a multi-disciplinary method-
ology and give place to mono-disciplinary design techniques. As [77] states, at high
levels of complexity, analytical methods are no longer sufficient and heuristics come
into play. In this design methodology, heuristics and analytic rigor find their place in
the high-level method and the mono-disciplinary techniques, respectively. The useful-
ness of the proposed methodology here is largely due to the connection between the
two. Moreover, by making the methodology explicit, discussions should be triggered
on the open issues that require future research.

This chapter proposes the Bodercmodel-baseddesign methodology that consists
of formalisms, techniques, methods and tools:

Formalisms are languages / syntax used for system modeling. Formalisms exist for
modeling behavior, but also to formalize system requirements. Instances of for-
malisms are calledModels. Examples of formalisms are differential equations,
(timed and hybrid) automata, finite state machines, temporal logic and queuing
formalisms.

Techniques are used to retrieve information from models or to transform models. Ex-
amples of analysis techniques are model checking, performance analysis and
program analysis techniques. Examples of transformation techniques are high-
level synthesis and software compilation.

Methods (‘reasoning frameworks’) provide guidelines and can be seen as a ‘recipe
book’ how and in which order to apply certainFormalisms, Techniques, Sub-
methods and Tools to solve the design problem at hand.Methodsare ways
to ‘capture’ design and reasoning knowledge of experienced modelers and de-
signers. A method indicates for instance decomposition in steps (possibly tech-
niques) and an order in which the step should be performed.

Tools: SoftwareToolssupport the efficient application offormalism, techniquesand
submethods.

BODERC DESIGN METHODOLOGY 13

2.2 Boderc design methodology

When developing high-tech machines as described in the introduction, industrial con-
straints like project duration and available man power are paramount and as such they
were explicitly stated in the Boderc goal, see Figure 1.2. These constraints must be
deeply integrated in any successful methodology. To meet these constraints, a careful
selection has to be made on how to invest design effort and time. The methodology
provides two means:

• Focus the in-depth analysis (via modeling) on the most critical issues, preventing
‘wasting’ effort on less relevant problems. For this, one has to identify themost
essentialconflicts and tensions from the design decisions to be made.

• Using simple models that create insight in a design decision within a reasonable
time (hours, weeks), instead of detailed models that requires months or even
years to develop. The right level of detail must be chosen, which can range
from back-of-the-envelope calculations to very detailed models depending on the
accuracy of the answer needed. Stepwise refinement of models, typically starting
with back-of-the-envelope and then extending towards more detailed models, can
be useful for this.

Even when using models, physical prototypes are essential because of the con-
frontation with physical reality, where overlooked issues will inevitably pop up. How-
ever, it is difficult to quickly evaluate different designs through physical prototypes be-
cause a new prototype is needed for each design. Through analysis of models different
designs can be evaluated much faster. As a consequence, both models and prototypes
are indispensable.

Another benefit of the methodology is that it gives place to formalisms and tech-
niques (which can be seen as ‘plug-ins’ in the method) and when they should be ap-
plied. Documenting the conditions under which academic formalisms/techniques and
industrial state-of-the-practice are applicable and effective and their level of prediction
accuracy form valuable information. Moreover, gaps can also be identified that require
future research (e.g. extending state-of-practice and ‘industrializing’ state-of-the-art
academic techniques) to obtain the right abstraction level for industrial practice.

2.3 Linear stepwise version of the method

The high-level ‘method’-part of the methodology is given as the collection of the fol-
lowing steps:

1. Preparation of the design

(a) Identify (customer) key drivers and requirements

(b) Identify realization aspects of concern

14 A DESIGN METHODOLOGY FOR HIGH-TECH SYSTEMS

(c) Make core domain knowledge explicit

2. Selection of critical design aspects

(a) Identify tensions and conflicts (qualitative)

(b) Gather facts and identify uncertainties to quantify tensions and conflicts

3. Evaluation of design aspects

(a) Build small models (small = hours to weeks of effort)

(b) Perform measurements

Note that there can be other (sub)methods that are a part of the design methodology
that support the design of subsystems, e.g. control engineering has its own methods to
synthesize control algorithms. These submethods can be used when the control system
of the high-tech machine has to be designed.

The above steps in the (high-level) method are to be used iteratively, so that pro-
gressive knowledge can be used. In Figure 2.7 the iterative nature and the dynamic flow
of information between the steps is reflected better. Below, the steps and corresponding
submethods, techniques and formalisms will be explained in more detail. Good visu-
alization of the outcomes of the steps is important to create insight and overview. The
design of a high-volume copier will serve as a means to illustrate the individual steps.

2.4 Step 1: Preparation of the design

In step 1, a good understanding of the product to be developed has to be achieved and
existing knowledge is gathered to be available for the new design.

2.4.1 Step 1a: Identify (customer) key drivers and requirements

In step 1a, the goal is to identify why a customer (or other stake holders like the internal
business strategist) would want the new product. The main drivers for the stake holders
should be identified and insightfully related to system requirements. This is linked to
the product business case. This can be achieved using activities like interviewing mar-
keting experts, interviews and workshops with customers, story telling [81], et cetera.
The results of these activities can then be summarized using a high-level requirements
engineering technique. Thekey-driver modelhas been found to be very useful for this
purpose (see Chapter 3).

Example: As part of the Boderc project, the submethod of key driver analysis (see
Chapter 3) was applied to a high-volume copier. The key drivers of the copier were
identified and refined into application drivers and finally into system requirements.
This analysis is explained further in Chapter 3. Already a part of the key driver model is
shown in Figure 2.1 below. The complete key driver model can be found in Figure 3.6.

STEP 1: PREPARATION OF THE DESIGN 15

Ease-of-Use

user is not interested in the

workings of the machine at
all

56 scans/minute

85 ppm

First Copy: 11 s

First Print: 10 s

Minimal Waiting Time

People do not like to wait for
their job to be complete.

speed

Availability

(device available when

needed)

"Green button"

(Re)production Quality

Fill ADF in run

Full speed stapling

(except 2 sheets)

Scan-Once Print-Many

Full and fast error

recovery

Scan ahead

Key-drivers Derived application

drivers

System

Requirements

Duplex scanning

Full speed mixed paper

PIM

Functionality

Print Quality

Scan Quality

Full speed duplex

Service xx/yr

< xx paper jam ?

Required by market: must-haves

Unique selling point

See Chapter 3

for more

details

Figure 2.1: Part of a key driver model for a copier.

2.4.2 Step 1b: Identify realization aspects of concern

In step 1b, the goal is to identify which designs aspects of the machine are of concern
for its marketing success. In practice, typical the issues or worries that are hot during
(coffee or lunch) discussions between the design engineers form good starting points.
Some of them might be non- issues caused by non-rational fears, uncertainty, rumors,
et cetera, others might be critical and jeopardizing the success of the product. This has
to be found out in steps 2 and 3. In step 1b they are only identified. Currently, there
are not many concrete (sub)methods and techniques that can be used for this activity;
thus this is an interesting area for further research. Methods like ‘story telling’ [81]
and scenario or use case based reasoning (see e.g. [23]) can be used for this activity.

16 A DESIGN METHODOLOGY FOR HIGH-TECH SYSTEMS

Checklists with problematic issues in previous projects (typically input coming from
step 1c) can be used in step 1b. The introduction of new technology, new (more strict)
environmental regulations and successful or failing competitors (and in particular the
reasons of success of failure) should always be considered with caution.

Example: Based on experience of previous projects and the more stringent power
norms nowadays, maximum power usage was an issue in the design of the copier. Also
the introduction of stepper motors in the copier is a worry as traditionally DC motors
were used.

2.4.3 Step 1c: Make core domain knowledge explicit

In step 1c, the goal is to make the most important lessons that were learned during
the design of previous machines explicit. In most companies, this knowledge is only
known implicitly: it is stored in the minds of key designers. By making this knowledge
explicit, a common understanding can be achieved amongst engineers. Capturing the
contextin which a certain design was successful, can be useful to solve similar prob-
lems in a same manner in a new machine without much efforts (in Figure 2.7 indicated
by ‘no-brainers’). It prevents re-inventing the wheel. Going outside the context with a
particular solution should be done with caution, which could require to consider it as
an ‘aspect of concern’ and thus part of step 1b. Context is an important factor in design
success.

The goals of this step can be achieved by investigating the models, design solu-
tions, methodologies, and so on, used in previous designs. Especially designs that
were not successful are useful to investigate (see also 1b above). The main question is
why things were done in a certain way. The results of this investigation must then be
summarized, e.g. by identifying design patterns, by writing tutorials and white-papers,
determining rules-of-thumb, et cetera. Of course, part of this information is hopefully
consolidated at the end of previous projects, so that this is readily available. Industrial
practice often turns out otherwise.

Example: Figure 2.2 shows some core technologies for designing copiers: the
main system architecture, the paper-time diagram used for analysis of the timing of
print jobs in the paper path, and the main components used in the paper path.

pinches

sheet

motor

sensorpo
si

tio
n

time

front
side back

side

sheet
size

scanner

network

image
processing

print
engine

paper
path finisher

paper
input

Figure 2.2: Examples of core domain knowledge for a copier manufacturer.

This information is very well known for most experienced copier designers, and

STEP 2: SELECTION OF CRITICAL DESIGN ASPECTS 17

these items are always used. However, the familiarity has subtle dangers in that people
forget the reason why these technologies are used, what the limitations and advantages
are, and when alternatives should be used. Thus there is benefit in formally ‘docu-
menting’ this knowledge. Of course, this has to be done in an effective and structured
manner. Models can also be used to capture this knowledge. A good example is the
Happy Flow model (see Chapter 6), which is used for the design of the layout of the
paper path and the scheduling of print jobs. One of the reasons for industrial success is
that it contains a lot of core domain knowledge in an easily accessible model.

2.5 Step 2: Selection of critical design aspects

When designing a new product, issues arise constantly. It is imperative to differentiate
between important issues, which imply a great risk to the project if not dealt with ade-
quately, and non-issues. Otherwise much time is lost over unimportant issues making
development prohibitively expensive. In step 2 the design aspects of concern found
in 1b are prioritized by their importance or value for a customer (as analyzed in step
1a), by how hard it is to solve the problem, and how sensitive or vulnerable the overall
system is to this challenge.

2.5.1 Step 2a: Identify tensions and conflicts (qualitative)

In step 2a, the goal is to identifyqualitativelythe design tradeoffs and essential tensions
that are coupled to a certain aspect of concern (1b). The fact that a design issue is of
concern implies that it must have both benefits and drawbacks (in terms of key drivers
and system requirements found in step 1a). Making the tensions and conflicts between
benefits and drawbacks explicit allows them to be treated systematically throughout the
design process.

A good submethod to find these tensions and conflicts isthreads of reasoning,
which investigates where the real tradeoffs are in a design. Concrete design choices
are linked to key-drivers and negative side-effects pop-up. In Chapter 4 the submethod
is described and applied for the digital control architecture in a copier. The threads
of reasoning diagram for the case study is presented in Figure 2.3. Also the ‘question
generator’ [81, Section 9.2.3] supports the exploration of design tensions. Organizing
workshops and brainstorm sessions is another means. In a workshop, several experts
from different disciplines are invited to work together on the main concepts of the ma-
chine. They will very quickly find the tensions and conflicts in the design by bringing
their own concerns and worries across and connecting them.

Figure 2.3 is at the heart of the Boderc methodology. For several design choices
(e.g. the use of stepper motors instead of DC motors) the relations to the drivers for
the copier are displayed. The main benefit for the use of steppers is its low cost price.
However, a drawback is the limited positioning accuracy and thus possible problems
for the printing accuracy, which is a customer application driver (see Figure 2.1). The

18 A DESIGN METHODOLOGY FOR HIGH-TECH SYSTEMS

Printing Accuracy

Tight paper-image synchronisation

Accurate image

Accurate paper movement

Cost Price

Few components

Cheap components

Optimal use of

components

Stepper motors
Frequency

generator

Limited

accuracy

Generate in

software

Use dedicated

hardware

Time-to-Market
Predictable

dev process

Re-use of

experience

No re-engineering

from labmodel to product

Time sliced

architecture

Separation of functions

on multiple nodes

Over-dimensioned

resources

Limited action-

reaction speed

Predictable and composable

SW behavior for integration

Time sliced
optimal scheduling

for event-based
environment

Steppermotor
model

Time sliced
architecture with

interrupts in POOSL

CPU-usage for
several

scenarios in Excel

POOSL: evaluate several
(distributed) architectures

Concurrent design of SW

Application driver

Choice

Consequence

Conflict

Model

Figure 2.3: Visualization of threads of reasoning for the control architecture of a copier.

conflict between cost price and printing accuracy and several other conflicts are indi-
cated in the figure (see legend for color use). These require further investigation in step
2b. If the results from 2b are inconclusive, an in-depth study is required according to
the steps 3a and 3b. The rectangles indicate the models that have been used to create
more insight in the conflicts.

2.5.2 Step 2b: Gather facts and identify uncertainties to quantify
tensions and conflicts

In step 2a, tensions and conflicts were identified qualitatively. In step 2b, the goal is
to select those tensions and conflicts that require further study. Often, the tensions and
conflicts are a result of worries, uncertainty, lack of facts, non-rational fears and turn
out to be non-issues. These can often be unmasked by quantifying the issues with rough
estimates, using simple facts to weed out the fears, thereby diminishing the worries in
the organization and enabling it to focus on the important issues. However, there will
be some issues where there is insufficient knowledge to make an intelligent decision.
In those cases, further study is warranted (step 3).

There are many ways to find the facts needed besides using the core domain knowl-
edge of step 1c. For instance, an expert can be asked (use the question generator
mentioned above), or rough orders of magnitude can be estimated. Also, figures of

STEP 3: EVALUATION OF DESIGN ASPECTS 19

merit from previous designs can be used. Finally, much knowledge is readily available
through existing literature. Facts from all these sources can be used to discard irrel-
evant conflicts. Note that making quantitative assumptions, which all engineers have
in their mind, explicit will also reveal the (qualitative) tension. So, step 2b often also
precedes step 2a in practice.

Risk assessment (see e.g. Chapter 6 in [89]) is one way to select the tensions that
should be addressed more thoroughly as they consider both the impact and the proba-
bility of occurrence of a particular issue. Also back-of-the-envelope calculations can
be a good starting point as they do not require much effort and time and give first
estimates. Iterative refinement to more complicated models is a good means to pro-
gressively analyze a tension. Determining a budget (see Chapter 5 for details) which
distributes a resource over different parts of the machine is a formalism that is often
used in practice to determine the real magnitude of a problem which is too complex to
analyse at the top level. Of course, there is no strict boundary between the current steps
2b and 3a: it is not always clear when to categorize a back-of-the-envelope calculation
in step 2 and when to associate a model to step 3a. But in order to keep track of issues,
e.g. to allow proper project management, it is helpful to make anexplicit decision to
further study an issue by placing it in step 3a.

Example: In the Boderc project, it was investigated if it were better to use stepper
motors or DC motors in a specific copier configuration. For an initial investigation,
the thread of reasoning was extended with numerical data on cost price, life time, et
cetera. To assess the consequences of the implementation of steppers for important
machine characteristics, a risk assessment matrix model (see [89], Chapter 6) was cre-
ated (Figure 2.4). From this matrix, issues that required in-depth investigation were
identified.

 Uncertainties Impact Result

 Cost price 1 10 10

 Lifetime 3 3 9

 Accuracy (reliable) 10 9 90

 Ease of design (time) 7 5 35

 Noise 5 6 30

 Efficiency (power) 3 3 9

Figure 2.4: Quantified threads of reasoning for the use of stepper motors in a copier.

2.6 Step 3: Evaluation of design aspects

If the facts in step 2 are not sufficient to make a decision, the issue needs to be eval-
uated properly. There are two ways to do this: either using a model-based approach
or measurements on prototypes. Of course, it can also be a mixture of the two, e.g. to
validate models. A final validation of a product is of course always the final integration
before production.

20 A DESIGN METHODOLOGY FOR HIGH-TECH SYSTEMS

2.6.1 Step 3a: Build small models

In step 3a, the goal of this stage is to resolve an open conflict found in step 2 using
simple (small) models. As mentioned, models are often very efficient in evaluating
design options, as models can be readily modified whereas prototypes are harder to
modify. Also models might create a deeper understanding of the relationships in the
tension.

A key issue when using models is which formalism to use to answer the question at
hand. Often, model formalisms are suggested in the core domain knowledge gathered
in step 1c . If this is not the case, some literature study or research may be required to
find the right formalism.

A second key issue is to find the right abstraction level and model boundary to
answer the question with the right certainty. The goal is to keep the modeling effort as
small as possible.

An interesting question is whether the model is based on theoretical (physical)
knowledge (sometimes called first principle or white box modeling), or on empirical
facts (regression, identification or black box modeling). Depending on the case at hand,
one might prefer one over the other.

Example: Below are some examples of models used in the Boderc project. Already
in Figure 2.3 some models have been mentioned that were used to analyze specific ten-
sions further. Other modeling formalisms and techniques that have been used include:

• Performance analysis techniques to predict and evaluate the real-time behavior of
the copier control software running on hardware platforms (see e.g. Chapters 8,
12 and 13).

• Evaluation of real-time embedded control software via model-based simulation
of its environment is discussed in Chapter 11.

• The Happy Flow model, which supports the design of the paper transport systems
in the copier. Strong visualization and animation complement the models. These
are based on ‘good weather’ conditions: lower level (dynamical) phenomena of
motors, slip, jitter and delays in control loops, et cetera, are not included. See
Chapter 6 for an explanation of this model.

• Dynamical models including software execution times of part of the paper path
around the fuse, where paper and image meet and accurate synchronization is
needed [25].

• Power budgets as visualized in Figure 2.5 are also used to understand power
flows through a copier. Thickness of arrows in the figure is related to the amount
of power flow. See Chapter 5 for more details. Note that a budget itself is a
model with an underlying modeling formalism. In Chapter 5 a (sub)method is
even described on how to create budgets.

• Virtual printer models to assess the printing quality of new printer technologies
are presented in Chapter 9

STEP 3: EVALUATION OF DESIGN ASPECTS 21

• Dynamical models and techniques that analyse and predict the behavior of step-
per motors (power usage, vibrations and resonances, positioning accuracy, et
cetera). In Chapter 10 an overview of the modeling activities is given.

• Event-driven control models (Chapter 16) are derived to study the control perfor-
mance and the processor load of a new type of controllers that are used to control
the motion of the image.

• And many others as documented in this book.

Total power dissipation

Mains power available for the print-engine

Transfer unit Preheating unit

PaperCleaner

Scanner:

* Document feeder

* Scan electro

Print-engine control:

* User interface:
 - Display

* Datapath:
 - Printer controller

 - Image data processing

* Embedded controller:
 - Main and local nodes

Motors Paper Path:

* Paper input section

* Registration section

* Procédé section

- Transfer system

- Imaging system

* Turn section

* Paper output section

Imaging unit

Low-Voltage Supply

High-Voltage Supply

Cooling System:

* Imaging Unit cooling

* Cleaner cooling

eff = 85%

eff = 95%

Figure 2.5: Visualization of the power flow through a copier.

2.6.2 Step 3b: Perform measurements

In step 3b - just as 3a - the goal is to gather the facts with which issues from step 2 can
be dismissed by using measurements. Measurements can play two roles. Either they
are used to tune the models to describe practice closely (parameter estimation, identi-
fication, model validation) or try to resolve a conflict directly - without a model - by
using dedicated experiments. As measurements are from the ‘real world’, they are usu-
ally more authoritative than results from models. However, not every phenomenon can
be measured readily, for example because sensors can not be inserted (the place where
you would like to measure cannot be reached) or sensors disturb the phenomenon. It
is difficult to determine the effects of parameter variation from measurements. Also,
measurements can be faulty. Thus sanity checks are always required.

22 A DESIGN METHODOLOGY FOR HIGH-TECH SYSTEMS

Example: A model was made of the dynamic behavior of the motors in the paper
path [18], as mentioned before. This model was validated with measurements from a
real motor in the copier being modeled (see Figure 2.6). Within the Boderc project,
also measurements have been performed on hardware platforms to evaluate their real-
timing behavior (e.g. the influence of caching in micro processors), see Chapter 8.

Often, it is very beneficial to have short iterative loops where measurements and
modeling activities follow each other. The measurements show where the models can
be improved and the models explain the measurements and show how design choices
would influence the results. Models can often capture the relationships between system
properties better than a finite number of measurements. Towards the end of a develop-
ment project more and more the emphasis will shift from modeling (step 3a) towards
prototyping and building the actual system (step 3b).

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
−5

0

5

10

time(seconds)

I (
A

)

Measurements
Simulation

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
−10

0

10

20

30

time(seconds)

V
 (V

)

Measurements
Simulation

Figure 2.6: Simulation versus measurements for a single motor in the paper path.

2.7 The method as a structured chart

The nice step-plan shown in the previous section is iterative as depicted in Figure 2.7.
This figure contains the same steps, but shows the dynamic flow of information and
the making of decisions. For instance, once step 3 has given conclusive answers on a
particular issue of concern coming from 1b via step 2, a design decision can be taken.

THE METHOD AS A STRUCTURED CHART 23

The iteration now proceeds to a next issue of concern. However, also important infor-
mation obtained during the in-depth study of the previous issues (e.g. data, models,
design patterns) should be consolidated in the core domain knowledge (step 1c).

decisions

State of
the Art

market
opportunity

Design specifications Record Design decisions

rules, models,
data, solutions

questions

ch
an

ge
s

consolidate
core domain
know-how

answers

ch
an

ge
s

data, models, experience

Preparation

driversidentify key drivers
& requirements

realization aspects
of concern

Selection of critical aspects

identify
tensions and

conflicts

open
questions gather facts &

uncertainties

Evaluation of design options

build small
models

perform
measurements

explanation

the world

no
-b

ra
in

er
s

verification

ke
y

re
qu

ire
m

en
ts

re
al

iz
at

io
n

op
tio

ns

decisions

technological
opportunity

Figure 2.7: Dynamic flow of information in the method.

2.7.1 A ‘schoolbook’ example of Boderc reasoning

To give a good example on how the Boderc methodology and reasoning works we give
a quick preview of the selection of the parameters of an event-driven control algorithm
to control the position of sheets in the copier. Details on the particular case can be
found in Chapter 16 on event-driven control. This particular problem might at some
point be identified in step 1b as a realization aspect of concern. In step 2a the ten-
sion in this design issue can be found using threads of reasoning. It turned out that
a trade-off had to made between control performance (e.g. tracking errors and distur-
bance attenuation), which is related to the key driver printing quality on one hand, and
software performance (processor load of its implementation), which is related to the
cost price (as a smaller CPU or fewer CPUs can be used) on the other. After collecting
some figures-of-merit in step 2b it was concluded that more quantitative information

24 A DESIGN METHODOLOGY FOR HIGH-TECH SYSTEMS

would be necessary. A detailed dynamical model (using Matlab/Simulink) was made
that could predict the control performance (in terms of maximal tracking erroremax)
given the controller. By varying the main control parameter (eT) we could express the
control performance as a function of this parameter. Using the outcomes of this simu-
lation model, also the number of control computations could be derived. Together with
micro-measurements (step 3b) on the platform the controller would be implemented
on, a prediction could be made of the processor load (in terms of total computation
time over a given time interval). Both graphs are given in Figure 2.8.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.5

2

2.5

3

3.5

e
T

e m
ax

 [r
ps

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

e
T

to
ta

l c
om

p.
tim

e
[m

s]

prediction event−driven
prediction time−driven
measurement event−driven
measurement time−driven

Figure 2.8: Both control performance and software performance as function of the
main control parametereT .

These two graphs are returned to phase 2b in which this is the necessary quantitative
information to make a well-founded trade-off by a system architect as he can now
oversee the consequence in both domains. Actually, the predictions in Figure 2.8 were
validated later by measurements on a prototype.

Typically, in the way of working above, in-depth detailed models were used to
make predictions. Not the whole model was given to step 2, but only system-level
abstractions of it. Of course, both the models as well as the curves leading to the
decision can now be consolidated and documented as core domain knowledge (step 1c)
and another realization aspect of concern can be considered next. Sometimes the in-

CONCLUSIONS 25

depth study might also trigger new questions and new aspects of concern. For instance,
maybe there is not a satisfactory value for the control design parameter that satisfies the
requirements. This might trigger a reconsideration of the processing platform on which
the controller is implemented. As only micro-measurements (or benchmark numbers)
are needed to perform the prediction of the processor load, the modeling effort can also
support the selection of the processing platform.

2.7.2 Placing the Boderc activities in the Boderc methodology

Figure 1.9 in the Introduction has already given a rough positioning of the Boderc activ-
ities within the methodology. Typically, the modeling formalisms and corresponding
techniques for studying particular aspects or subsystems of the to-be-developed ma-
chine can be seen as ‘plug-ins’ that are used in the steps of the method. For several
aspects (e.g. printing quality, power usage, throughput, et cetera) and different parts of
the copier (e.g. ranging from detailed models for particular stepper motors and parts
of the digital control architecture to system level models of the complete paper track),
models and corresponding techniques were are applied. In view of the design pyra-
mid in Figure 1.8 these models have various levels of detail. Typically, Chapters 6-9
are more system level models and Chapter 10-16 describe the more detailed models.
Both categories can be used as ‘plug-ins’ in step 3a to get quantitative information and
insight in the qualitative tensions identified in step 2a. Next to the overall method of
the Boderc design methodology given in Section 2.3 there are three submethods: Key
driver method (Chapter 3), Threads of reasoning (Chapter 4) and Budget-based design
(Chapter 5). However, when designing subsystems one might use mono-disciplinary
submethods. For instance, for the synthesis of control algorithms one might use typical
design methods as available within control engineering.

2.8 Conclusions

As we are all aware, there is a strong need for multi-disciplinary methodologies that
support the system architecting process. In [82] various reasons are mentioned that
hamper the creation of such methodologies. In this chapter we presented research to
overcome two of them: lack of description and lack of connection to mono-disciplinary
techniques. This resulted in an emerging design methodology that was stated in an
explicit manner. The methodology consists of a reasoning framework in the form of
a multi-step method, modeling formalisms, analysis techniques and tools. By giving
place to modeling and analysis activities, which can be mono-disciplinary, a first step
is made in connecting the multi-disciplinary method to mono-disciplinary techniques.

Previous to writing this chapter, some steps were taken to validate the methodology.
Although various issues remain open, we can already draw the following conclusions:

• The Boderc methodology mimics the way of working of a senior system ar-
chitect. For instance in [70] the steps of the method can be recognized in the

26 A DESIGN METHODOLOGY FOR HIGH-TECH SYSTEMS

evaluation of an architecture for a DVD hard-disk recorder. As shown by [70],
applying the steps of the methodology can prevent system architects from falling
prey to ill-founded non-quantitative reasoning, which can lead to trade-offs based
on incorrect assumptions instead of on quantitative arguments and facts.

• Discussions with junior and senior system architects from Philips revealed that
there is a clear recognition of the steps in the method. It matches their way of
working and it makes that more explicit. They acknowledged the value of the
methodology. Of particular interest for them were the visualizations, e.g. the
key driver model in Figure 2.1 and tensions and conflicts in a thread of reasoning
diagram (Figure 2.3). Documenting design decisions and capturing the main
arguments in insightful overviews were considered particularly valuable. Also
various models as, for instance, the Happy Flow model (Chapter 6) contain a lot
of implicit design decision, which can be extracted.

• The application of individual modeling activities (using formalisms and tech-
niques) on particular industrial problems (e.g. paper flow scheduling, stepper
motor dynamics analysis, et cetera) were considered beneficial by Océ.

Of course, many issues are still open within this methodology, as in the whole
field of multi-disciplinary design. For instance, finding the right level of abstraction
for modeling formalisms in an industrial setting is hard. Many academic (mono-
disciplinary) formalisms are too complex and many state-of-practice formalisms are
too coarse. Finding the right balance between them is an important issue for future re-
search. Extending the design methodology by further formalisms and tools (especially
selecting design aspects of concern in step 1b and selecting critical design issues in
step 2b) is also open. Hence, by making an attempt to be explicit, this chapter hope-
fully initiates many discussions, allows further validation of the design methodology
and stimulates future ESE research.

Chapter 3

The key driver method

Authors: W.P.M.H. Heemels, L. Somers, P.F.A. van den Bosch, Z. Yuan, B. van der
Wijst, A. van den Brand and G.J. Muller

This chapter is a re-worked version of a paper for the International Conference on
System Engineering and Applications (ICSSEA) 2006.

3.1 Introduction

The complexity of the products being designed by industry today is increasing at an
astonishing rate. To keep the design of complex machines focused, it is important to
know the essential customer objectives and to relate these to those system requirements
that have the largest influence. A structured graph showing these relations helps to keep
an overview of the overall design. In particular, specifications can be easily traced back
to the objectives of the customer. Thekey driver methodis one of the possible means
to obtain the system requirements in a systematic way and to provide such a struc-
tured overview. The key driver method fits in the broader framework of the CAFCR
methodology [81], which is a decomposition of a system architectural description into
five views, shown in Figure 3.1. Thecustomer objectivesview (what does the cus-
tomer want to achieve) and theapplicationview (how does the customer realize his
goals) capture the needs of the customer. These needs provide the justification (‘why’)
for the specification and the design of the product. Thefunctionalview describes the
‘what’ of the product, which includes (despite its name) functional and non-functional
requirements. The ‘how’ of the product (the technical solution) is described in thecon-
ceptualandrealizationviews. In this way CAFCR is focused on the relation between
the customer world and the product. The functional view can be seen as the interface
between the problem and solution world. Another dimension in specification and de-
sign is themanufacturalview. This view describes operational aspects of the product

27

28 THE KEY DRIVER METHOD

manufacturer (not the operational aspects of the customer that belong to the A view)
like preferred way of designing and producing, culture, type and number of employees,
et cetera, The job of the system architect is to integrate all views in a consistent and
balanced way to get a valuable, usable and feasible product.

Customer
What

Customer
How

Product
What

Product
How

What does Customer need
 in Product and Why?

drives, justifies, needs

enables, supports

Customer

objectives

Application Functional Conceptual Realization

problem solution

Figure 3.1: CAFCR views

The key driver method can be considered a ‘CAF submethod’ of CAFCR. Thekey
driversrepresent the main customer objectives (C view). The key driver method helps
to derive the more detailed and quantifiedsystem requirements(F view). It translates
a few (three to six) customer key drivers into maybe hundreds of system requirements.
For instance, in the copier case study, 3 key drivers will be expanded to some 40 sys-
tem requirements. A bridge between key drivers and requirements is a layer ofap-
plication drivers, typically representing the A view. The key and application drivers
in the customer views (CA) will be linked via requirements (F) to design choices in
the other views (CR). Structuring this information graphically helps to keep a good
overview over the design process. It is useful for the designers to see why a certain
requirement is important from a customer perspective: to understand the ‘why’ be-
hind the requirements they have to realize (traceability). The final system requirements
are determined on one hand by the customer side (the objectives coming from CA
views), but on the other hand just as much by the technical (im)possibilities and so-
lutions side (CR) and the manufactural view. The key driver method focuses on the
CAF views, but, as the final key driver model is a living entity, the influence of the
CR views grows during the design process. Closely related to the key driver method
is Goal Oriented Design [6, 74, 129], which is also based on analysis of the customer
needs and goals in a hierarchical fashion. A goal oriented approach like KAOS [74] or
GRL [115] starts with goals and derives requirements from them. URN [5] combines
use case maps [23, 33, 114] (manufactural and functional requirements) and GRL (non-
functional requirements). Also in Quality Function Deployment [96], where the term
‘benefit’ is used for key driver, the link between benefits, engineering requirements and
design concepts is emphasized. The key driver method gains its value from relating a
few sharply articulated key drivers to a much longer list of requirements. By capturing
these relations, a much better understanding of customer and product requirements is

KEY DRIVER METHOD 29

achieved. The ‘why’ behind requirements is documented and the focus is maintained
on the most important issues and the trivial ones are left out. Other important values
are its conceptual simplicity and the fact that all product creation phases and corre-
sponding views are taken into account. This chapter describes the key driver method
and provides guidelines how to obtain a key driver model. Its application and effec-
tiveness are shown for a high-volume copier. The goal of the industrial case study is
to understand the end user requirements by building a key driver model. Moreover,
the key driver method is extended by a matrix that links the functional decomposition
of the copier to the requirements obtained via the key driver method. This extension
offers the possibility to have an overview of the ‘responsible’ functions for realizing a
specific requirement as the matrix provides a first breakdown of a requirement into the
functional subsystems. This gives a means to monitor the progress or can even be a
starting point for further design support techniques, like budget-based design [96]. The
outline of the chapter is as follows. In Section 2 the key driver method is presented.
Section 3 explains the case study of the copier and applies the key driver method. In
Section 4 the final graphical overview of the key driver model is shown and discussed.
In Section 5 we combine the results of the key driver model with a breakdown of all
the requirements with respect to the functional decomposition of the copier. Section 6
gives the strengths and limitation of the model and the lessons learned. We end with
the conclusions in Section 7.

3.2 Key driver method

The key driver method couples the customer side captured in the key drivers (Cus-
tomer Objectives view) to the product side (Conceptual and Realization view) via the
application driver (Application view) and system requirements (Functional view). The
following ingredients play an important role:

• Key drivers(C view): the top three to six driving customer objectives: what
does the customer want? For instance, a copier in a copy shop must print large
volumes in a short time. Thus, productivity is a key driver.

• Application drivers(A view): Drivers that describe how the customer is realizing
the key drivers: how does the customer achieve his goals? Application drivers are
closer to the solution space than the key drivers. For instance, the productivity
of a copier can be achieved by a.o. speed of printing and reliability. Speed and
reliability are typical derived application drivers for productivity.

• System requirements(F view): Detailed (often quantitative) specifications of the
product or its subsystems. For instance, the speed of printing can be related to
the system requirement of 85 pages per minute (for A4 paper) in full production.

The C(ustomer objectives), A(pplication) and F(unctional) views are explicitly in-
cluded in the key driver model. However, it does not explicitly include the C(onceptual)

30 THE KEY DRIVER METHOD

and the R(ealization) views (solution side) although these views have a strong influence
on the final system requirements as well. Also the operational constraints and prefer-
ences of the manufacturer and other stake holders than the main customers determine
the final requirements. This information is implicitly included via the process of set-
ting up the key driver model as described below e.g. via interviews with engineers or
system architects and using core domain knowledge from the manufacturer’s previous
projects.

• Build a graph of relations between drivers and requirements
by means of brainstorms and discussions

• Define the scope specific. in terms of stakeholder or market segments

• Acquire and analyze facts extract facts from the product specification
and ask why questions about the specification of existing products .

• Iterate many times increased understanding often triggers the move of issues
from driver to requirement or vice versa and rephrasing

where requirements
may have multiple drivers

• Obtain feedback discuss with customers , observe their reactions

Figure 3.2: Method to link key drivers to requirements by iterating over four steps

Figure 3.2 gives an outline of the key driver technique. Thefirst stepis to define the
scope of the key driver graph. From which customer or other stake holders do we want
to understand the objectives or needs? For the choice of the customer it is important
to determine the market segment of the product. Also the system boundary plays an
important role. For instance, for a copier, do we want to consider a stand-alone copier
(with for example an office user as user) or do we consider a complete copy shop
(with multiple networked copiers) for which the main operator or the director of the
shop might be the main stakeholder? Thesecond stepis to acquire facts, for example
by extracting functionality and performance figures out of the product specification
(for the predecessors of the to-be-developed system). Analysis of this information
recovers implicit and hidden facts. The requirements of an existing system can be
analyzed by asking ‘why questions’ and mapping this to the new product. For example:
‘Why does the copier need additional turning of sheets?’ At this point one might
have an unstructured collection of various key and application drivers together with
requirements. Thethird step is to bring more structure in the facts, by building a
graph, which connects requirements to key drivers. A workshop with brainstorms and
discussions is an effective way to obtain such a graph. In this case, it is important to get
the right people around the table representing the different views: marketing, strategic
planning, system architecting and involved engineering disciplines. Also, interviews
with people from previous projects or the current development project can be very
beneficial in this stage. Thefourth stepis to obtain feedback from customers. The
total graph can have a lot of many-to-many relations, i.e. requirements that serve many
drivers and drivers that are supported by many requirements. The graph is good if it is
as simple as possible and the customers are enthusiastic about the key drivers and the

CASE STUDY OF A HIGH-VOLUME COPIER 31

derived application drivers. If a lot of explanation is required, then the understanding
of the customer is far from good. Frequent iterations over these steps improve the
quality of the understanding of the customer viewpoint. Each iteration causes some
movements of elements in the graph in driver or requirement direction and also causes
rephrasing of elements in the graph. The use of the key driver technique benefits from
the following guidelines:

• The most important goals of the customer are obtained by limiting the number
of key drivers. In this way the participants in the discussion are forced to make
choices.

• The focus in product innovation is often on differentiating features, or unique
selling points. As a consequence, the core functionality from the customer point
of view may get insufficient attention. For instance, consider cell phones that are
overloaded with features, but have a poor user interface for making calls. The
core functionality must be dominantly present in the graph.

• The naming used in the graph must fit in the customer world and should be as
specific as possible. Very generic names tend to be always true, but they do not
help to really understand the customer viewpoint.

• The boundary between the customer objectives view and the application view is
not very sharp. When creating the graph that relates key drivers to requirements,
one frequently experiences that a key driver is stated in terms of a (partial) so-
lution. If this happens, either the key driver has to be split, rephrased, or the
solution should be moved to the requirement (or even realization) side of the
graph. A repetition of such iterations increases the insight in the needs of the
customer in relation to the characteristics of the product. Why, what and how
questions can help to rephrase drivers and requirements.

3.3 Case study of a high-volume copier

In Section 1.1 the global functioning of a copier is described. Figure 3.3 presents an
overview of a copier together with a decomposition into its major subsystems:

• Scanner module (SCAN): scans hard copy sheets and produces digital images
out of it.

• Image processing and job control (CONTROL): generation / adaptation of the
digital images coming from the scanner (copy) or network (print) and scheduling
of the print jobs (e.g. order of printing).

• Paper input module (PIM): trays from which sheets are separated and sent into
the registration module.

32 THE KEY DRIVER METHOD

• Registration module (REG): paper path that transports and performs accurate
positioning of the sheets.

• Print engine (PRINT): transforms the digital information into a toner image
which is fused on the sheets.

• Finisher (FIN): collects all finished sheets.

• User interface (UI): the communication means between copier and user.

PRINT REG

M
PIM

CONTROL

image

fuse

sensors

pinches motor
s

paper path

SCAN UI

FIN

Figure 3.3: Schematic overview of a copier

3.3.1 Step one: Define the scope specific

Stake holders.The high-volume copier under study was aimed at the market segment
of the copy shop or the central document production (CDP). The main stake holders are
summarized in Figure 3.4. Both the copy shop and the CDP are characterized by a unit
(an independent shop or a central place within a company) where individual customers
or employees can go to get copies of their originals. Originals vary from simple sheets
to entire workbooks. One can distinguish the following customer type stake holders
for the CDP (see Figure 3.4):

• Customer: the customer that goes to a CDP to get some copies or prints.

• Operator: this is a professional who uses the system for professional and pro-
ductive (re)production of end documents. He also plans the work and prepares
the jobs.

• Assistant Operator: a professional who uses the system for the professional and
productive (re)production of documents. Jobs are processed and planned by the
operator.

• System Administrator: an IT-professional responsible to keep the system net-
worked.

CASE STUDY OF A HIGH-VOLUME COPIER 33

• Buyer: responsible for acquiring new equipment.

Next to these stake holders, one also has stake holders for more conceptual, real-
ization and manufactural views:

• Service department: the engineers that service the copier. They come to maintain
the copier on a regular basis or in case of malfunctioning.

• Government: this stakeholder states restrictions concerning e.g. the environment
(pollution, noise, energy usage, et cetera) and safety.

• Development: the people that create the copier.

• Company board: board of the copier manufacturer that is interested in the busi-
ness success of the copier.

Selection of the stake holders. Considering all stake holders, some focus is
needed. We concentrate on the stake holders of the CDP depicted in the cloud in the
top of Figure 3.4, as they represent the customer side.

Service
department

Development

Government

Customer of
copy shop

Operator

System
administrator

Assistant
operator

Company
board

Buyer

CDP

Specific
copier

Figure 3.4: Overview of stake holders

3.3.2 Step two: Acquire and analyze facts

For each of the stake holders, scenarios have been generated. Scenarios extend use
cases (see e.g. [6, 23, 33, 114]) that are well known in software engineering. In the
context of real-time software systems, scenario-based requirements analysis is also
used in [99]. Scenarios for complete systems including hardware and mechatronics are
very useful to find the essential customer objectives and needs (both qualitatively and
quantitatively). The copier manufacturer has a set of such scenarios specified for each

34 THE KEY DRIVER METHOD

user, which turned out to be very helpful.

Scenarios for specific stake holders.Due to space limitations we cannot present
the scenarios for each stakeholder. Instead we concentrate the operator of the CDP.
From his perspective, document appearance and finishing quality (reproduction quality,
stapling, et cetera) are equally important.

• He is the ‘white collar’ CDP worker (as opposed to the ‘blue collar’ assistant
operator).

• He is an experienced and eager user of up-to-date repro IT-systems and work
flow management tools.

• He prepares, plans, and produces high quality documents, with much variety in
the type of documents.

• His main goal is to fulfill the needs of the CDP customer as good as possible. In
this respect he is a service provider.

• He uses the system both at the control panel and through specific server work-
stations.

• His main job is working with the copier as productive and efficient as possible.

• He knows everything about the copier and has been certified by the copier manu-
facturer. Might be consulted by the copier manufacturer to define new products.

In the first exploration to get to the key driver model, we used scenario-based rea-
soning using the information above for the operator and we studied the available (pub-
lic) commercial info and technical information. We combined this with a brainstorm
session with people from the copier manufacturer, which gave rise to the first guesses
on the key drivers. The initial guess of the key drivers for the CDP, based on expertise
and previous projects, was:

• Productivity.

• Print quality.

• Integral cost per copy.

3.3.3 Step three: Build a graph of relations

During the brainstorm session we tried to map the identified key drivers onto the de-
rived application drivers, which in turn can be translated into customer requirements of
the copier. This is going from left to right in the CAFCR model in Figure 3.1. Because
we experienced that determining the derived application drivers can be hard, we also
tried to get them by first making an inventory of the technical system requirements and

CASE STUDY OF A HIGH-VOLUME COPIER 35

then translating them back to one or more derived application drivers. This is going
from right to left in the CAFCR model. To refine the initial key driver model, we in-
terviewed the project leader of the development project for this specific copier. The
project leader pointed also towards ‘ease-of-use’ as one of the key drivers. This did not
seem to be one of the key drivers for the CDP as there are professional operators in the
CDP knowing the machine in all its aspects. As the project leader insisted on the ex-
treme relevance of ease-of-use, we continued the discussion to which customer this was
relevant (as we found it inconsistent with the CDP). The discussion led to office users
as important end users of the copier, revealing that the copier was aimed at more than
one market segments: next to the professional CDP, the copier is also intended as walk-
up office copier as found in the aisles of many offices, where people make their own
(limited number and limited complexity) copies or print-outs. Hence, the copier seems
to have a ‘double personality’: one product is aimed at two segments. Although this
aspect required further attention, this interview confirmed the initial key driver model
for the CDP part. To get more insight in the ‘double personality’ of the copier and to
refine the model, we interviewed a person from the business strategy department. Time
to market and cost of development were also very important (opportunity and market
share). We decided not take these into the key driver model, as they are not directly
related to the customer world. These issues are related more to the operational issues
of the manufacturer. The business strategy perspective showed (as to be expected) the
major differences in priority of the drivers and requirements as compared to the project
leader or the end user. Important for us was that the interview with the business unit
confirmed the two different market segments (CDP and walk-up) for one and the same
copier. As a consequence, it was necessary to split the customers in two groups and
include them both explicitly in the key driver model. This required a reconsideration
of step 2.

3.3.4 Step two revisited: Acquire and analyze facts

As mentioned in the previous section, it was concluded that indeed an additional branch
of customer representatives (related to walk-up) was needed. To include the corre-
sponding additional stake holders, Figure 3.4 is extended resulting in Figure 3.5 that
displays the stake holders for the two market segments: the right and left upper branch
are corresponding to the CDP and the walk-up environment, respectively.

The additional stake holders for the walk-up copier can be characterized as follows:

• (Generic) Office users: the people that send documents to the walk-up copier
electronically to get them printed or go to the machine themselves to get copies
of their documents.

• Super Users (e.g secretaries): experienced and heavy users of the copier. There-
fore, often asked by other employees for advice.

• Key Operator: a person responsible to keep the system up-and-running. He
knows the copier sufficiently to perform day-to-day maintenance.

36 THE KEY DRIVER METHOD

Service
department

Development

Government Company
board

Super user

Key operator

System
administrator

Office user

Buyer

Walk-up

Specific
copier

Customer of
copy shop

Operator

System
administrator

Assistant
operator

Buyer

CDP

Figure 3.5: Extended overview of stake holders

• The buyer and system administrator are similar as for the CDP.

To give an idea of how the walk-up environment is used, we describe thegeneric
office worker in more detail. This stakeholder represents an office worker who uses
the system for (re)production of work documents (typically, presence of information is
more important than appearance).

• He can have any level of education and task in the office.

• He produces mainly standard documents (A4, straightforward finishing) with
almost always the same settings. Typically single or a limited number of copies
or print-outs.

• He uses the system both at the control panel and through software on his desktop.

• He works with standard office tools (like windows, office, et cetera)

• He knows how to perform his own tasks on the copier, but not more. He asks the
super user in case of problems.

Due to the additional market segment for the copier, the process of reasoning, in-
terviewing and discussing was repeated and finally we came up with the following key
drivers (note that we kept their numbers restricted, i.e. three for both market segments).
For the CDP we selected:

• Productivity (for large volumes): the CDP needs to print large volumes.

• Versatility: suitable for different kind of jobs.

• (Re)production quality: this is what CDP sells.

OVERVIEW OF THE KEY DRIVER MODEL 37

For the walk-up copier the resulting key drivers are:

• Minimal waiting time: people do not want to wait (long) for their jobs to be
complete.

• Ease-of-use: the (inexperienced) user is not interested in the working of the ma-
chine at all and prefers a one (green) button approach.

• Reproduction quality.

Note that the integral cost per copy or the related issues of total cost of ownership /
running cost have been abandoned as key driver for the CDP to keep the number of key
drivers limited. We opted to focus on the actual users of the copier (with the customer
of the CDP and the (assistant) operator as the main stake holders) and less on the buyer
who is responsible for the integral cost aspects of the copier. However, integral cost
per copy would be added to the key drivers if we would put more emphasis on this
type of stakeholder (going to four key drivers for each segment). Typically, the integral
cost per copy could be subdivided into application drivers like cost of ownership, costs
of consumables, total number of prints (life span), personnel effort (to operate the
copier), et cetera, System requirements related to the application driver consumables
are for instance, toner usage, service frequency (e.g. related to number of paper jams)
and price, et cetera.

3.3.5 Step four: Obtain feedback

At several steps during the development of the key driver model, the results were dis-
cussed with people from the organization of the copier manufacturer. The people from
the marketing and business strategy were viewed as the internal representatives of the
customer side as they are closest to them. Their response on the resulting key driver
model was enthusiastic, thereby confirming the correctness and value of the model.

3.3.6 Iterate

In the previous sections only the main part of the whole process of obtaining the key
driver model is presented. This already reveals its iterative nature, although many more
iterations were made. By iterating over these steps and going from the C via the A to
the F view and vice versa many times, a good overview of drivers and requirements
was produced.

3.4 Overview of the key driver model

As mentioned, the copier aimed at two rather different market segments. Both sides
have different key drivers and application drivers that somehow have to be merged into
one set of system requirements. How this is done is reflected nicely in the key driver
model in Figure 3.6.

38 THE KEY DRIVER METHOD

Versatality
Suitable for

different kind of
jobs

(Re)production
Quality

The quality, this is
what the copyshop

sells

Key-
drivers

Derived
application

drivers

Ease-of-Use
user is not

interested in the
workings of the
machine at all

Minimal Waiting
Time

People do not like
to wait for their job

to be complete.

speed

Availability
(device

available
when needed)

"Green
button"

Speed

Capacity

Job
management

Productivity/
Volume

CDP needs to print
large volume

Reliability

(Re)production
Quality

Print Quality

Finish quality

Scan Quality

Key-
drivers

Derived
application

drivers

Flexibility
Can do

different kind
of jobs

Walk-up Environment Central Reproduction
(Print Room / Copy Shop)

System
Requirements

Functionality

Print Quality

Scan Quality

Required by market:
must-haves

Unique selling point

56 scans/minute

85 ppm

First Copy: 11 s

First Print: # s

auto zoom/rotate/
exposure

input 2*600 + 2*1700

auto paper

linked paper trays

Fill papertrays in run

600 dpi

high res scan

Scan registration

75 sheets on ADF

4 output bins, > 2500

Fill ADF in run

Full speed stapling
(except 2 sheets)

MailBox

Remote Control/Monitor

Scan-Once Print-Many

Job Programming

auto duplex

Cover Insertion

Full and fast error
recovery

Set Collation

Offline stapler

Scan ahead

Paper sizes / weights

xxx

80 sheets stapling

Duplex scanning

4 input bins

Full speed mixed paper
PIM

Booklet/multiple-up/
blank page

Image Logic

Remote assistence ?

Staple Quality

Collation Quality

Full speed duplex

Service 7.5/yr @90k/mnt

< 1:50K paper jam ?

sheet-image registr.:
< 0.5mm X-direction
< 0.5mm Z-direction
< 0.5mm Skewness

Figure 3.6: Copier key driver model

OVERVIEW OF THE KEY DRIVER MODEL 39

First, we will give some explanation of the graph:

• Boxes denote the system requirements: Rectangles indicate the must-haves, as-
sets that are indispensable for the market. Rounded rectangles indicate unique
selling points if compared to the competitors on the market.

• Thickness of arrows: the thicker the arrow, the larger the influence of a specific
requirement on the corresponding application driver. For instance, the CDP-
application driver print quality is mostly determined by the sheet-image registra-
tion.

To explain the obtained key driver model, we highlight some parts. Theminimal
waiting timefor walk-up is coupled to the derived application driveravailability. In
general, a walk-up user gets irritated if the copier is not available irrespective of the
reason. Thus paper jams have to be very infrequent. The corresponding system require-
ment is that paper jams have a frequency of occurrence less than a specific number of
printed sheets. Another system requirement related to the application driver availabil-
ity is a large stock of sheets in the paper input module. In this way the general office
user is rarely confronted with empty trays. The very low frequency of paper jams and
the huge stock of sheets are considered to have a larger influence on the availability
thanfull and fast error recovery. Therefore the former ones have thick arrows coming
from the application driver, whereas the latter one has only a thin arrow. There are a
number of many-to-many relationships in the graph: the requirementfull and fast error
recoveryis related to the application driveravailability with corresponding key driver
minimal waiting time, but also directly to the key driverease-of-use. Vice versa, a cer-
tain key or application driver is naturally coupled to many requirements. With respect
to the double personality of the copier, some observations can be made. Requirements
like time-to-first-copyand time-to-first-printare typically related to walk-up and not
to CDP. This phenomenon is directly related to the different key drivers for both envi-
ronments. Due to the large volumes and the continuous production of the copier in a
CDP environment, the initial waiting time does not have a large influence on the overall
speed of a job (productivity/volume). However, for walk-up this has a major impact
on the speed of the job (minimal waiting time) due to the low volumes. The system
requirementcover insertionis only relevant from a CDP key driver. A typical walk-up
user makes only a few copies and inserting a cover can easily be done manually (oth-
erwise he would probably give such a job to the CDP). For producing high volumes as
in a CDP automatic cover insertion maintains a high productivity (for various different
jobs). The customer objective here is high productivity of versatile jobs.

3.4.1 Decomposition linked to requirements

Consider again Figure 3.1 with the decomposition of the copier into various modules.
This decomposition can be mapped on the key driver model, which results in Table 3.7:
the system requirements obtained via the key driver method are mapped to the subsys-

40 THE KEY DRIVER METHOD

tems of the decomposition - only the first part of the matrix is displayed for shortness.
A ‘1’ in the figure means ‘related’ and an empty cell means ‘not related’.

System Requirements PIM REG FIN PRINT SCAN CONTROL UI

Scan ahead 1 1 1

First print out 1 1 1 1 1 1

First copy out 1 1 1 1 1 1 1

85 pages per minue 1 1 1 1 1 1

Full speed duplex 1

Full speed mixed paper (PIM) 1

56 scans per minute 1 1

Figure 3.7: Relating system requirements to system functions

A column gives the system requirements that a certain subsystem has to contribute
to and consequently this indicates which requirements the ‘subsystem implementation
team’ is responsible for. A row indicates how a requirement is distributed over the
subsystems and one can see the responsible and contributing subsystems to each in-
dividual requirement. This is very useful for supporting the system design. Next to
appointing responsibility, it might also be used as input for budget-based design [96]
as one already has a qualitative distribution of a system requirement over subsystems.
For instance, time-to-first-print is a shared responsibility of the implementation team
for CONTROL, PIM, REG, PRINT, FIN, UI and leads to a rough estimate of the time-
to-first-print as the sum of the UI response time, warming-up time (PRINT), and sep-
aration / transport / stapling time (PIM, REG, FIN). Note that the duration of the job
control and image processing plays a role as well, but good design would aim at per-
forming these tasks (in CONTROL) in parallel with the separation / transport time in
PIM and REG. Of interest are columns or rows that do not contain any numbers at all.
A row that does not contain any numbers means that a certain system requirement is
not related to any module in the system decomposition and hence, the question arises
how this requirement will be met. A column that is empty - which is less occurring in
practice - means that a certain module is not related to any of the system requirements
and thus not related to any of the key drivers. As a consequence, one might severely
question its existence.

3.5 Strengths, limitations, and lessons learned

The strengths of the key driver model are the good (high-level) overview it provides of
the system. System requirements are linked directly to the key drivers of the customer
(view). As such, the key driver model is an excellent means to use in discussion and
communication. It is valuable for communicating the goals of a project to the stake
holders and moreover, it enhances the understanding between the project leader and
his developers. It gives a good means for pointing out why certain requirements are a
must and why others are less stringent. A final benefit is its support in making sound
tradeoffs between the requirements of a product. Indeed, the model helps tracing the

CONCLUSIONS 41

impact of a change in requirements back to the way in which the customer or other
stake holders will perceive the change. After all, satisfying its stake holders is all
a product needs to accomplish. One of the limitations of the current model is that
not all stake holders have been included. For instance, buyer, service department, and
development were not taken into account to keep the focus and the overview. Of course,
it is possible to include these in one key driver model (as we briefly discussed for
integral cost per copyin Section 3.4), but this increases the complexity and possibly
more key drivers have to be added. This might cause loss of overview and insight.
Other key driver models for different stake holders might be a solution in this case.
Building a tool to support the modeling process and visualization (facilitating hopping
from one stakeholder to another) would be beneficial. However, the skill is to find a
balanced mix of the customers to set up one key driver model that leads to a balanced
set of system requirements as in the end only one copier is produced. From this broader
perspective, the key driver model of Figure 3.6 would require the extension with key
driver integral cost per click. To keep Figure 3.6 compact for presentation purposes,
we left it out and focused on the actual end users of the machine as discussed before.
This is also one of the lessons learned: in order to keep the overview in a key driver
model, one has to restrict the number of key drivers, which forces the modelers to make
clear choices. Another lesson learned is that scenario-based reasoning from a customer
perspective is very helpful in setting up a key driver model. The relevance of scenarios
in this context was also pointed out by [99]. The extension of the key driver method to
include a matrix that maps the system decomposition to the system requirements is an
effective means to support the design. Turning requirements from implicit to explicit
has the advantage of clear communication and negotiation. However, the key driver
model should be used with the right attitude: in an early design phase requirements
might still be up to change and flexibility and openness should be kept. Constant
checking a product against requirements is necessary throughout product development.
This might require adaptation of the key driver model. It is aliving modeland that
is the way it should be used. However, in general one must aim for stability of the
(qualitative) model and aim at changes in only the quantitative part during the design
process. One has to be careful by just copying requirements from previous projects
(re-use of requirements). However, an advantage of the key driver method is that, if the
requirements for a new product need modification, the method assist in detecting this.
Identifying potential new key drivers and connecting them to the application drivers and
requirements should reveal if (re-used) requirements need to be altered or removed.

3.6 Conclusions

In this chapter we described the key driver method and presented various guidelines for
its use. Its effectiveness was demonstrated by applying it to an existing high-volume
copier. The key driver method provides guidance to capture the system requirements
and to focus the development. The main advantages are the overview it provides, its
conceptual simplicity and the clear visibility of the tradeoffs. In this way it forms a

42 THE KEY DRIVER METHOD

good means for communication and discussion, especially since it aims at including
the requirements that play an important role and leave out the trivial ones. Interesting
for the specific key driver model presented here is that the copier aimed to fulfill the
needs of two different market segments: walk-up and CDP. This was directly reflected
in the key drivers that differ for both: minimal waiting time, ease-of-use and repro-
duction quality for the walk-up and productivity/volume, versatility and reproduction
quality for the CDP. The product itself had to unite these needs via one set of system
requirements. Several lessons have been learned and we believe that the key driver
method is a useful means to support the design of a copier. Several engineers and ar-
chitects of the copier manufacturer valued the model. Of course, there is always room
for improvement, for instance in requirements elicitation. However, in general we con-
clude that focusing on the most important issues and providing an overview via a key
driver model is a valuable tool in the design of high-tech products like copiers.

Chapter 4

Threads of reasoning

Authors: J.H. Sandee, W.P.M.H. Heemels, G.J. Muller, P.F.A. van den Bosch and
M.H.G. Verhoef

This chapter is a re-worked version of the work published in the proceedings of the
16th annual international symposium 2006 of the International Council on Systems
Engineering (INCOSE) [101].

4.1 Introduction

The complexity of products being designed by industry today is increasing at an aston-
ishing rate. The search is for a product that will satisfy the design drivers within certain
margins. Design drivers are the important system aspects on which design decisions are
based. Examples are: development costs, production costs, time-to-market, through-
put, response time, productivity, physical dimensions, power consumption, noise pro-
duction, and so on. Often, design drivers are conflicting, so that trade-offs must be
made.

The main need in the design process of a product is to bring structure in the typical
chaos of uncertainty and the huge amount of realization options present. This is most
profound in the early design phase. Even typical product requirements might be uncer-
tain in the sense that they are only known up to a certain degree or are still open for
discussion. Potential solutions or applied technologies all have advantages as well as
disadvantages, which causesconflictsin the design. Aconflict is the situation where a
specific design choice influences one or more design drivers positively, while influenc-
ing others in a negative way. For instance, in the design of a printer one might consider
using stepper motors, DC servo-motors or a combination of both for driving the sheets
of paper through the paper path. While stepper motors have the advantage of being
cheaper (particularly as they do not require expensive encoders and because of their

43

44 THREADS OF REASONING

long lifetime), they are in general less accurate in positioning the sheets of paper. This
causes a conflict between the design driversprinting accuracyon the one hand andcost
price on the other. Of course, more design drivers might play a role in such a decision
(e.g. size, power consumption, et cetera).

This chapter applies the submethodthreads of reasoning[81] to find such conflicts
in the design of the paper flow control in the printer. The submethod aims at composing
a clear overview of how the conflicts relate to the design drivers. As these relations
typically involve multiple design drivers, design choices and their consequences, we
refer to these relations asthreads. The submethod is called threads ofreasoningas the
threads typically reveal thereasoningapplied by the systems engineer. The details of
the submethod are presented together with a 5-step iterative scheme on how to create
the threads. Once the main conflicts are identifiedqualitatively, a furtherquantitative
investigation by modeling and measurements is necessary. The specific model-based
investigations are only indicated briefly.

In several communities there are alternative and / or related techniques available
to identify the main relations and conflicts in the design of a product. For instance,
in requirement engineering and more particular in [123] one uses the term ‘problem
bundle’ that has similar properties as a thread of reasoning. In [123] these bundles are
adopted for structuring a design problem at hand and relating this to the solution space.
In product line engineering one has methods like Pulse (see e.g. [10]) and in the system
engineering community one uses risk management approaches (see [89, Ch. 6]). These
techniques create similar overviews, but more retrospective. Threads of reasoning, on
the other hand, is applied throughout the complete system design process and in the
various design phases. Therefore, the threads are not static, but continuously changing
as the design evolves.

Also in VAP (visual architecting process) (see [78, Ch. 2]) and in ARES (Architec-
tural Reasoning for Embedded Software) [65] related techniques can be found which
are especially focussed on software design problems. In TRIZ [3] two important con-
cepts are introduced that are also crucial in our reasoning method: formulating the
‘ideal’ solution to a problem and identifying the conflicts in realizing the ideal product.
Quality function deployment (QFD) [98] relates product requirements of the customer
to design choices, which, from an abstract point of view, resembles the reasoning used
in this chapter. However, a distinguishing feature of threads of reasoning is that it
is graph- instead of matrix-oriented. Matrix-oriented techniques have the tendency
that the number of relationships easily explodes and one easily looses overview of the
essential threads. Threads of reasoning is particularly focused on keeping only the es-
sential conflicts, which we consider an advantage. As a consequence, it is possible to
graphically represent the overview of the most important design issues. Moreover, most
of the mentioned methods have a tendency to move more towards the customer context
and less to the realization aspects. The case study here shows how threads of reasoning
can also be used to support conceptual and realization choices of the technical design.

The disadvantage of the explosion of the number of relationships is also encoun-
tered in a complementary approach in which one archives the design process including

PROBLEM SCOPE 45

the conceptual and realization choices [2]. Often the argumentation why a certain
choice has been made is included as well. The documentation typically consists of a
chronologically ordered sequence of choices with the aim of traceability: how was a
certain choice made at some point in time? If some design changes are made in a later
stage, one can still apply the reasoning as kept in the archive. In practice creating and
maintaining such an archive is often not feasible due to the enormous complexity. This
results in a ‘tracing’ that is not kept up-to-date, with the consequence that its value di-
minishes. The threads of reasoning technique aims at keeping the essence of the design
choices and helps to keep overview.

The outline of this chapter is as follows. In the next section we present the problem
statement and put it in the perspective of the multi-disciplinary design of the printer. In
Section 4.3, the ‘threads of reasoning’ submethod is described. In Section 4.4, threads
of reasoning is applied to identify the most important conflicts in the case study. This
leads to conflicts that require a further study via modeling, measurements or other
techniques to obtain a well-founded trade-off. In the same section, we indicate briefly
which models have been applied to do the in-depth analysis. In Section 4.5, the con-
clusions are stated.

4.2 Problem scope

The problem scope of this chapter is the embedded control design of the paper flow
through the printer. Themain(most important)design driversfor this part of the design
are:

• throughput (pages per minute),

• printing accuracy (positioning of the image on the sheet),

• time-to-first-print (the time it takes before the first sheet comes out of the printer,
after pressing ‘start’),

• power usage,

• cost price and

• time-to-market.

The first three items of this list are typical performance requirements of the printer.
Items four and five are constraints on important resources. The last one, time-to-
market, is a constraint that is imposed by the organization. The design should be such
that all design drivers are satisfied within certain predefined margins.

For the case study used in this chapter, we assume that the mechanical layout is
already given, meaning that positions of (paper transport) rollers, the length and shape
of the paper path, et cetera, are known. The design process is in the phase of selecting
the control architecture, including:

• Selection of actuators (type and number of motors),

46 THREADS OF REASONING

• Selection of sensors,

• Selection of the processing architecture (e.g. centralized versus distributed con-
trol),

• Selection of operating system (interrupt driven or time sliced architectures?),

• Scheduling of sheets for print jobs.

To support the design process at this stage, the submethod of threads of reasoning is
applied.

4.3 The technique of threads of reasoning

Threads of reasoning is a graph-based, iterative technique to identify the most impor-
tant conflicts in the design problem and potential solutions. The system architect uses
threads of reasoning implicitly to integrate various views in a consistent and balanced
way, in order to design a valuable, usable and feasible product. Architects perform
this job by continuously iterating over many different points of view and sampling the
problem and solution space to build up an understanding of the case. These threads are
made explicitby the technique of threads of reasoning.

This submethod, as presented in the next section, is based on the work [81, Ch. 12].
A difference between the technique used here and the one by Muller lies in the usedcat-
egories. The categories are the components of the threads, which are coupled through
their relations. In particular, threads of reasoning in [81] uses the CAFCR framework
that adopts theCustomer objectives(addressing thewhatquestion from the customer
perspective),Application (addressing thehow question of the customer),Functional
(addressing thewhatquestion of the product),ConceptualandRealizationviews (ad-
dressing thehowof the product). Instead, it was more suitable in our case to use the
following four categories:

• main design drivers: limited set of the most important design drivers (typically
applying to system level), see Section 4.2,

• sub drivers: drivers, derived from the main design drivers (typically applying to
subsystem level),

• design choices: possible solutions or realizations,

• consequences: indicating consequences of a design choice.

The threads themselves are formed by multiple connections between the categories
above.

4.3.1 Overview of threads of reasoning

Figure 4.1 gives an overview of the iterative process of the threads of reasoning sub-
method. Step 1 is toselect a starting pointfor the process. After step 1 the iteration

THE TECHNIQUE OF THREADS OF REASONING 47

2. create insight
- story telling
- narratives
- use cases

3. deepen insight
- tests, measurements
- models, simulations

4. broaden insight
- questions: why, what, how

5. define and extend the thread
- what is the most important / valuable?
- what is the most critical / sensitive?
- look for the conflicts

1. select starting point
- actual dominant need or problem

Continuously

consolidate in

simple models,

communicate to

stakeholders

and update

documentation.

Figure 4.1: Overview of the threads of reasoning approach.

starts with step 2create insight. Step 3 isdeepening the insightand step 4 isbroaden-
ing the insightvia suitable questions. Step 5defines and extends the thread. Moreover,
the next iteration is prepared by step 5. In step 5, first the most important and criti-
cal threads are selected and one aims at finding conflicts. This insight and refinement
might lead to selecting the next need or problem for the new iteration. During this
iteration continuous effort is required tocommunicate with the stakeholders(the ones
involved in the specific design decisions) to keep them up-to-date, and toconsolidate in
simple modelsthe essence of the problem, and toupdate the documentationto capture
the insights obtained.

As mentioned before, the focus of threads of reasoning is to select the critical de-
sign issues (step 5) that require in-depth studies to make a sound design trade-off. The
in-depth studies are essentially step 3 in Figure 4.1. The limited models forconsolida-
tion, communication and reasoningare derived from these possibly more complex and
detailed models for analysis. Especially, since these in-depth studies require a major
part of the design time, one has to be selective in the ones that are actually carried out.
Of course, this does not mean that once the answers of these analyzes have been ob-
tained, the thread of reasoning is finished. On the contrary, it might actually be altered
based on the findings or continued given these new pieces of information.

Below we will describe each of the individual steps in more detail. Moreover, we
will present one thread of reasoning as an example from the case study to illustrate the
steps.

Step 1: Select a starting point.A good starting point is to take a need or problem
that is hot at the moment, within the problem scope. If this issue turns out to be
important and critical then it needs to be addressed anyway. If it turns out to be
not that important, then the outcome of the first iteration serves to diminish the

48 THREADS OF REASONING

worries in the organization, enabling it to focus on the really important issues. In
practice there are many hot issues that after some iterations turn out to be non-
issues. This is often caused by non-rational fears, uncertainty, doubt, rumors,
lack of facts, et cetera. Going through the iteration, which includes fact finding,
quickly clarifies the relevance of the issues.

Example. An important issue in the paper flow control is the question how
many processing nodes should be used. Because of the size and the complexity
of the software, which is both soft real-time and hard real-time for the various
implemented functions, it is almost impossible to process all the code on one
node, i.e. one processor. Nevertheless, there are various ways to distribute the
software functionality over different (numbers of) nodes. There can be several
‘local nodes’ that handle separately the control of single motors. Another option
is to have only two big processing nodes that handle the entire paper flow control.
This design issue is selected as the starting point of the thread.

Step 2: Create insight. In this phase one wants to obtain a rough overview of and
insight in the chosen issue. The selected issue can be considered by means of
one of the many (sub)methods to create more understanding. Typically, this
can be done by the submethods story telling [81, Ch. 11], narratives [33] or
scenario-based reasoning using e.g. use-cases [33]. Using these submethods, it
will quickly become clear what is known (and can be consolidated and commu-
nicated) and what is unknown, and what needs more study and hence forms input
for the next step.

Example. To create some first insight into the problem of selecting the
number and sizes of the processors in the control architecture, we linked this is-
sue to the main design drivers of Section 4.2. For the time-to-market to be short,
it is important to have a predictable development process. Therefore, a concur-
rent design process is preferred, which is in favor of having multiple processing
nodes. On the other hand, we also want the cost price to be low. Here, the ques-
tion pops up how the cost price relates to the number of nodes. Looking at the
design driver power consumption, there is an obvious relation that more nodes
require more power, but more specific information is needed to reveal the exact
relation and its importance.

Step 3: Deepening the insight.The insight is deepened by gathering specific facts.
This can be done by modeling (and model-based analysis), or by tests and mea-
surements on existing systems. Since the presented technique is iterative, in
a first iteration one aims at using simple models, measurements or facts that are
obtained in a reasonably short time. Typically, back-of-the-envelope calculations
or rules of thumb that are known from previous projects are useful. In a second
or subsequent iteration one selects the essential issues (most uncertain, most
important) that require more modeling and analysis effort. This aspect is cou-
pled directly to the Boderc design methodology [56] based on multi-disciplinary
modeling: to discover and select the in-depth modeling activities that have to

THE TECHNIQUE OF THREADS OF REASONING 49

be performed to support the system architect in taking (well-founded) design
choices. In the design it is important to only spend time on the crucial issues and
not on trivial ones to keep both the design effort and the time-to-market limited.
Typically, the models are aimed at shedding light on the conflicts, which were
identified earlier (step 5, first iteration).

Example. To get deeper insight in the issues of cost price and power usage
of processors, more specific information is needed. A rough quantitative estimate
for the cost price showed that a node costs typically about 40 euros, of which 10
euros is calculated for the controller and 30 euros for the printed circuit board
(PCB). Because for every node a separate PCB is used, doubling the number of
processors roughly means doubling the cost price, although the cost price of the
processor can be somewhat less for simple variants. Looking at power demands,
it turned out that both the smaller and the bigger processors use about 3 Watt. It
would therefore be beneficial to have as few processors as possible. On the other
hand, if we look at the power demands from other modules in the printer, that
use up to 2 kW, we can assume that the power demand from the processors is of
minor importance [48]. Therefore, the power issue will not be included in this
thread of reasoning as we aim at describing only the most important aspects.

Step 4: Broadening the insight.Needs and problems are never nicely isolated from
the context. Therefore, the insight is broadened by relating the need or prob-
lem to the other categories. This can be achieved by answeringwhy, whatand
how questions. Examples: How can a main design driver be realized by sub
drivers? How is a certain issue tackled? Why is a certain design choice good for
a specific design driver? What are the consequences of a design choice? How
is the consequence related to a specific driver? The insight in the main design
driver dimension can also be broadened by looking at the interaction with related
system qualities: what happens with safety or reliability when we increase the
performance?

Example. What happens if all software would run on two processors? An
issue that arises almost immediately from this question are possible synchroniza-
tion difficulties. This is a typical aspect that needs to be considered in further
iterations. Other example questions for the case-study are: If we separate the
software over multiple nodes, how efficiently can the software still be imple-
mented? How would multiple processors be connected?

Step 5: Define and extend the thread.In the previous steps and corresponding dis-
cussion of the needs, design choices and problems, many new issues pop up. A
single problem can trigger an avalanche of new problems. Key in the approach
is not to drown in this infinite ocean full of issues, by addressing the relevant
aspects of the problem. This is done by evaluating the following aspects:

1. Which specification and design decisions seem to be the most conflicting?

2. What is the value or the importance of the problem for the customer?

50 THREADS OF REASONING

3. How difficult it is to solve the problem? It is important to realize that
problems that can be solved in a trivial way should immediately be solved.

4. How critical is the implementation? The implementation can be critical
because it is difficult to realize, or because the design is rather sensitive or
rather vulnerable (for example, hard real-time systems with processor loads
close to 70% or higher, due to which low priority tasks could be blocked
for too long).

To evaluate the above aspects, the system architect often uses ‘gut-feeling’ based
on many years of experience. Analysis techniques, such as Failure Mode Effects
and Criticality Analysis (FMECA) can be used to analyze the impact of potential
problems in the system in a more structured way. Typically, these techniques
are used when the design is finished but they can be equally productive during
other life-cycle phases of the design process. To compare various solutions, trade
studies [89, Section 11.16] can effectively be applied as well.

The next crucial step is to define the thread. In this step theimportantrelations
between the design drivers, design choices and consequences are represented in
a concise diagram. Furthermore, the important conflicts should be clear from
the diagram. The problem, that serves as the starting point for the next iteration,
can be formulated in terms of this conflict. We believe that a clearly articulated
problem is half of the solution.

The insights obtained so far, in terms of the most crucial and critical conflicts,
should help to select the new need or problem to go into the next iteration (back
to step 2).

Example. At this moment in our reasoning on the number and size of pro-
cessing nodes, the first thread becomes visible, as visualized in Figure 4.2. The
thread is structured by means of the framework of the categories as introduced
before. The interpretation of this visualization is as follows:

• On the top of the picture, the relevantmain design driversare given in
capitals,

• From the main design drivers,sub driversare derived, indicated in bold
face,

• Specificdesign choicesthat satisfy the sub drivers are indicated in italic,
• Theconsequencesthat come with specific choices, are depicted with small

dashed arrows,
• The mainconflicts, that are identified between any of the above mentioned

aspects of the system, are depicted with thick double arrows.

Note that in step 3 we already concluded that the main design driver power
should not be included in this thread. Hence, a step 5 action of discarding less
relevant aspects of a thread was already applied. We see that from the question
of how many processing nodes to use, a conflict arises between the drivers ‘time-
to-market’ and ‘cost price’. As the most profound conflict is identified now, this

THREADS OF REASONING FOR THE CASE STUDY 51

Figure 4.2: Example thread in the design of the paper flow control.

can be input for step 2 and subsequently step 3. More detailed models (in com-
parison with the simple estimates of cost price done earlier) would be useful to
deepen the insight, which would support in making the trade-offs in the early de-
sign phase. From our first simple models we concluded that for reasons of cost
price we want as few processing nodes as possible. However, a proper software
design should still be feasible within a limited time span (influencing time-to-
market). Therefore, we used a Parallel Object Oriented Specification Language
(POOSL) model [95] (see also Chapter 13). With this modeling language and
analysis techniques, several possible architectures are evaluated and compared
on their feasibility with respect to software timing requirements. Note that a
part of the argumentation of a particular choice is captured now in the specific
models made. In another setting (or a different architecture) this can be used
to reevaluate the design choice. So some kind of ‘tracing’ - as discussed in the
introduction of this chapter - is kept.

The thread of reasoning of Figure 4.2 was obtained by iterating one-and-a-half
times through the 5-step scheme of Figure 4.1. As we will see, this is typical for the
case at hand as the aim of threads of reasoning in this setting is to select the in-depth
models to be made. Normally more iterations are used to find the essential conflicts for
instance, continuing after the modeling step.

4.4 Threads of reasoning for the case study

The structure that covers the most important threads and their relationships can be
complicated for the design of complex systems, like a high-volume document printing

52 THREADS OF REASONING

system. In addition to the thread presented previously, we will describe two other
essential threads in the control of the paper flow. In the figures below we will use the
same interpretation of the visualization as in Figure 4.2.

4.4.1 Stepper motors versus DC servo-motors

In this second example thread, the starting point is the use of stepper motors instead
of the originally used DC servo-motors for driving the rollers in the printer paper path.
The use of DC servo-motors is common for the printer manufacturer and less experi-
ence with stepper motors is present.

To create insight (step 2), the use of stepper motors was related to the identified
main design drivers. It was easy to see that stepper motors relate to the cost price of
the system, as the reason to select them in the first place was the fact that they are
cheap. DC servo-motors are more expensive because of their need for (expensive)
encoders and shorter lifetime. The use of stepper motors also relates to the printing
accuracy. The accuracy of a stepper motor is limited because of various reasons, such
as its mechanical construction, cogging and overshoot [47]. Because the stepper motors
have to control the movement of the sheet, the sheet can only be controlled with limited
accuracy. With a DC servo-motor (in combination with an encoder) the movement of
the sheet can be controlled up to much higher accuracy and therefore is no issue.

To see whether the aspects discussed above are really important, we need to deepen
our insight (step 3); in this case by quantifying the reasoning. The first aspect was the
cost price. The average price of a (low power) stepper motor does not differ that much
from the average cost price of a DC-motor. Both can be obtained (for large quantities)
for typically less than 10 euros. For both types of motors an electrical driver is required,
which also costs about the same for a stepper motor as for a DC-motor, i.e. circa 3
euros for low power applications. An encoder, which is solely needed to control the
DC-motor, cannot be obtained below 20 euros for high resolution rotary encoders. This
is one of the main reasons why the use of stepper motors is preferred.

Another aspect that needs some quantification is the accuracy of the stepper motor.
First measurements reveal that this indeed is an important issue. Figure 4.3 shows a
plot of position against time of a stepper motor running at 1 rotation/sec. Four steps
are visualized of a 200 steps/revolution motor. The dashed line corresponds to the
reference position, the solid line to the actual measured position. The horizontal grid
lines indicate the size of the four steps that are visualized. Each step of the motor
can be translated to a step-size in the order of 0.2 mm of the paper. From the figure
it can be seen that the inaccuracy in the motors position is about 1 step size, i.e. 0.2
mm. As the printing accuracy is defined at 1 mm, the paper needs to be positioned
with an accuracy well below 1 mm. The obtained value of 0.2 mm is therefore critical
and needs to be evaluated further. It is nevertheless hard to quantify the impact on
the real position of the sheet, because of load differences, the occurrence of slip and
interactions between two motors that are controlling the same sheet of paper for some
period of time. Therefore, more extensive models are needed.

THREADS OF REASONING FOR THE CASE STUDY 53

199.99 199.995 200 200.005 200.01
time(s)

po
si

tio
n

reference position
measured position

Figure 4.3: Measurement result of stepper motor.

Note that the above reasoning illustrates the typical back-of-the-envelope calcula-
tions that quantify the reasoning.

Like in the first example thread, we broaden our insight by means of thehow,
what andwhy questions (step 4). The first question could be how the motor should
be controlled. The answer to this question is that a frequency generator needs to be
implemented as for every step of the rotor, a drive pulse is needed. The follow-up
question to this answer is how this frequency generator could be implemented. This
pinpoints the question whether to do this with dedicated hardware or in software. Note
that this question is a common struggle in industry nowadays. It comes down to the
question whether cost price or accuracy and predictability is more important. Normally,
hardware implementations are more reliable and faster or more accurate, but increase
the cost price of the system.

The last step in this first iteration is the visualization of the thread. This is depicted
in Figure 4.4. We see that two important conflicts have been identified that need more
attention. The first one is the use of dedicated hardware for the frequency generator in
relation to the use of few components to reduce the cost price. The second conflict is
identified between the limited accuracy of stepper motors and the requirements on the
control accuracy of the sheets.

4.4.2 Time sliced versus event-driven architecture

During the design, a time sliced architecture was proposed for the processing nodes
on which, for each node, multiple tasks are scheduled. The idea is that by assigning
each task its own time slice, the execution of different functions is temporally separated
and task interference is thus avoided. Therefore, software functions can be developed
and tested separately while guaranteeing that it will work after combining them on one
processor if each task fits in a slice and there are enough slices. The fact that this choice
also has some important disadvantages, makes it a good starting point for a new thread
(step 1). To create insight (step 2), we again relate the issue to the main design drivers.
The main reason for adapting the time sliced architecture is to shorten the time-to-

54 THREADS OF REASONING

Figure 4.4: Thread of the example of stepper motors.

market, as it enables predictable and composable software design. Furthermore, we
can use existing knowledge from past experience of the printer manufacturer (since the
time sliced architecture has been applied in the past).

One of the disadvantages of using time slices is the inefficient use of available pro-
cessing power. Because each task gets a pre-determined part of the available processor
time, tasks cannot use the slack time of each other. To quantify the inefficiency of the
time sliced scheduling in our case (step 3), we created a simple spread-sheet model
which shows the tasks, the expected processor usage and the size of the slices. It also
includes an estimation of the interrupts that can occur. Because the interrupts can inter-
rupt any task, a task can effectively take longer to execute than its measured execution
time (without interruption). To guarantee the composability of the system, we have to
take this interrupt overhead into account for every slice. It turned out that the overhead
of the interrupts in a time sliced approach is 20%, while if we replace the time sliced
approach by e.g. a rate monotonic scheduler, it becomes much less: 3%.

To broaden our insight (step 4), we could ask ourselves what the influence of the
choice of the time sliced architecture would be on the printing accuracy. From past
experience, but also from literature it is known that the time sliced architecture intro-
duces a limited action-reaction speed. As we need tight paper-image synchronization
for accurate printing, this choice does influence the printing accuracy and therefore
needs further in-depth investigation (via modeling).

Figure 4.5 visualizes this thread, together with the first two example threads. From
the analysis above, two conflicts are identified between the use of the time sliced ar-
chitecture (because of the main design drivers: time-to-market, cost price and printing
accuracy).

THREADS OF REASONING FOR THE CASE STUDY 55

Figure 4.5: overview of several combined threads of reasoning.

4.4.3 Total overview

The three example threads are visualized in Figure 4.5 in one overview graph. It is
interesting to see how these conflicts relate to each other. One example is found in the
printing accuracy. The requirement of a high printing accuracy not only conflicts with
the use of stepper motors, but also with the use of a time sliced architecture.

With the global overview we have obtained a clear list of conflicts where multi-
disciplinary models can be made for deepening the insight (step 3). In Figure 4.5,
the light grey boxes are added to indicate the models that have been made. These
models give more insight into the identified conflicts. As mentioned before, the threads
of reasoning obtained here originate from one-and-a-half cycles through the 5-step
scheme to end up with the in-depth models to be made. Although Figure 4.5 originates
from a limited set of starting issues, related to only a subsystem of the complete printer,
and from only one-and-a-half iterations, it already shows a quite complicated structure.
Nevertheless, the overview already captures the most important conflicts in the design
of the control architecture for the paper path.

4.4.4 Detailed models to obtain insight in conflicts

To deepen the insight, specific models have been made, especially at design consid-
erations where conflicts are identified. Figure 4.5 shows the objects of study of the
models in the light gray boxes. To obtain more insight in the conflict explained in Sec-

56 THREADS OF REASONING

tion 4.3 (the size and number of processing nodes), a POOSL model is created [95].
With this modeling language and the analysis techniques, several possible architectures
are evaluated and compared.

A second model was made in the language POOSL to analyze the processor load
for the scenario in which the time sliced architecture is ‘polluted’ with interrupts, which
are necessary to make optimal use of components. This is a more detailed model than
the spread-sheet model described in Section 4.4.2. Both models can also be used to see
what the consequences are when the frequency generators for the stepper motors are
implemented in software.

To optimally use the processors (and minimize the number of processors), a model
was made to calculate optimal schedules for tasks in a time sliced architecture [8]. A
stepper motor model, created in Matlab/Simulink, was used to analyze the positioning
accuracy of stepper motors [47].

4.5 Conclusions

In this chapter, the submethod of threads of reasoning was applied to identify the most
important conflicts in the multi-disciplinary design of the paper flow control of the
printer. This submethod aids to structure in the typical chaos of uncertainty and the
huge amount of realization options present in early design phases.

Threads of reasoning is one of the submethods used in the (Boderc) design method-
ology that aims at using multi-disciplinary models to predict system performance in an
early design phase, while respecting the business constraints of available man power
and time-to-market. The restriction in available design time (related to time-to-market
and available man power) implies that in-depth and often time-consuming modeling
and analysis should be performed only for the essential and critical issues. Threads of
reasoning has turned out to be - at least in the case of designing the control architecture
for a printer - an effective means to find these issues and to create overview.

Combined with the in-depth models, threads of reasoning provides the system ar-
chitect with valuable insight that supports him in making the important design trade-
offs and to reduce some of the uncertainty in the early design phase. It results in a
concise picture with the important conflicts depictedexplicitly. It forces the designer
to quantify choices by replacing hand-waving with facts. This stimulates and focuses
the discussion with the consequence of a shorter time-to-market and a more predictable
design process. Moreover, a part of the argumentation of a particular design choice is
captured now in the specific models made and techniques used.

It is a true observation that threads of reasoning itself does notcreateknowledge. It
stimulates to make existing implicit knowledge explicit and aids in discovering which
knowledge is lacking and where development time should be invested. In this line of
reasoning, one could argue whether a submethod like this is part of an engineering
discipline. This does, nevertheless, not diminish the value of the submethod.

Based on the case study, the following suggestions for the use of threads of reason-
ing can be given:

CONCLUSIONS 57

• Keep the number and the size of the threads limited by selecting the most im-
portant ones to keep overview and not to drown in details. In our case study
the entanglement was much larger in a first instance of Figure 4.5. Additional
iterations were used to regain focus and gave rise to Figure 4.5 in its present
form.

• Whether or not certain conflicts are important, depends, amongst other things,
also on the level of the system design. The higher the level, the less detail has
to be taken into account. Often though, some iterations will have to go quite
deep in a short time to gather some facts that influence design choices at a much
higher level. It helps to quantify things (even if the numbers might be uncertain
in an early design phase) as it sharpens the discussion and replaces ‘gut-feeling’
by facts. In particular, back-of-the-envelope calculations, figures-of-merit and
rules-of-thumb help to identify the essential conflicts and to discard the unim-
portant ones.

• In the reasoning process, fast exploration of the problem and solution space im-
proves the quality of the design decisions. It is important tosamplespecific facts
and not to try to be complete. The speed of iteration is much more important
than the completeness of the facts. Otherwise the risk is to get stuck within one
particular aspect. It is often sufficient to know the order of magnitude and the
margin of error for the trade-off analysis (especially in early design phases). Be
aware that the iteration will quickly zoom in on the core design problems, which
will result in sufficient coverage of the issues anyway.

• It is essential to realize that such an exploration is highly concurrent; it is neither
top-down, nor bottom-up. It is typically viewpoint hopping and taking different
perspectives all the time.

We applied thread of reasoning to a relatively simple case study, compared to for
instance the design of a complete aircraft. To abstract up to more complicated systems,
one can apply thread of reasoning recursively on various levels of detail, for the system
and subsystem design. In the example of an airplane, one could start with applying
threads of reasoning to the overall design, restricting oneself in not taking too much
detail into account. Separate threads can then be created of the various decomposed
parts of the airplane, such as the motors and the navigation instruments. In the example
of the printer, we could have created a separate thread of the image processing and
corresponding hardware up to a less detailed thread for the complete system.

An open question still is how to learn the ‘skill’ of threads of reasoning. Being
able to iterate fast through the design space and views seems to be hard and tends to
be driven by knowledge and experience. Making the trade-offs in little time seems to
be a skill that you can only learn by experience. However, the guidelines given in this
chapter and the presented examples in the case study provide a first step in recognizing
the skills needed and, succeedingly, mastering these skills.

58 THREADS OF REASONING

Chapter 5

Budget-based design

Authors: H.J.M. Freriks, W.P.M.H. Heemels, G.J. Muller and J.H. Sandee

This chapter is a reworked version of the article ‘On the Systematic Use of
Budget-Based Design’ presented at the 16th annual international symposium 2006 of
the International Council on Systems Engineering (INCOSE), Orlando, U.S.A., July
2006.

5.1 Introduction

According to the dictionary, a budget is defined as an estimate of income and expen-
diture, for a specified period of time. Although financial budgets and overviews are
well-known to most people, the usage of budgeting in technical designs is less com-
mon. A technical budget primarily focuses on a resource that is considered important
in the design or in normal operation of the final product. Technical budgets typically
concentrate on distributed quantities (i.e. quantities that are used / shared by various
system components) such as standby power, processor load, product size, memory
size, response time or accuracy.

In this chapter we claim that using a more systematic approach towards budgeting
is an effective means for supporting a technical design process.

5.1.1 Related research

There are various application domains in which technical budgets are used. One of
these areas is optical data communication. In this field, optical link-loss budgets are
frequently used to check whether enough optical power is available to communicate
between transmitter and receiver. An example for an optical budget can be found in
[79].

59

60 BUDGET-BASED DESIGN

An application field in which budgeting is also widely accepted is lithography.
[125] shows how a company compared its overlay budged to the technology roadmap of
their industry. In this way they were able to show the evolution of their own equipment
in the context of general market trends. In [107] an overlay budget was used to specify
the total alignment accuracy of a new type of lithographic device. It is interesting
to see how the authors have formulated a number of summation rules that intend to
attribute budget parameter values to the corresponding use-case scenarios of the device
in question. In this chapter, we will also present an example from the lithography
industry.

Also in the area of hardware-software co-design budgets play an important role. An
example of this is, for example, given in [9]. The focus in [9] is on making tradeoffs in
the timing aspects of how software can be mapped onto different choices of hardware
configurations. Budgets of worst and best case execution times of software tasks on
various platforms are indispensable in their approach. Also the work of [122] is of
interest in this particular application domain.

Another example of budget-based design is given in [68]. This paper shows how
a budget was used for designing a processor in such way that the total electrical noise
contribution of all subparts could be kept within the specified limits. According to the
authors, this kind of planning in the early stages of the design was essential to meet the
requirements in a timely and cost-effective manner.

Space agencies also use budgeting in their design processes. In [45] mass budgets
are used to regulate the mass of a spacecraft, during development. The total mass of
the spacecraft and its load is important as it influences the amount of propellant and the
amount of steering force that are needed for manoeuvering through space. Moreover, in
[36] monetary budgets are used for setting up complete aerospace programs (unmanned
space programs) to minimize the risks of project failure.

Although several case studies on budget-based design have been described in liter-
ature in various application domains as outlined above, an overview of the budgeting
technique itself, and of guidelines towards using budgets, are hard to find. This chapter
aims at filling this gap by taking a moregeneric viewon budget-based design and re-
moving the application domain andresource specificaspects. Two examples illustrate
the general overview and the guidelines.

5.1.2 Influencing the design process

Budgeting basically is the process of gathering and structuring information about a re-
source that plays a major role in the design, and distributing this resource in the best
possible way over a decomposition of the system at hand. That is, once the retrieved
information is combined and represented in a clear and distinct manner, it is an excel-
lent means to support the design making process for the distribution of the resource.
A technical budget can be made on many topics like standby power, memory usage,
processor load, accuracy, or other product-specific aspects. Figure 5.1 depicts the way
in which budgeting is supposed to influence the engineering process.

INTRODUCTION 61

Budget

- ~
~ ~ ~ ~ ~~ ~

- ~
 ~~ ~~ ~ ~~~

- ~
~~ ~ ~ ~ ~ ~

- ~
 ~~ ~~ ~ ~~

Initial system Final system

Adapted system

Figure 5.1: The influence of budgeting

In first instance, engineers will start thinking about the design of the system. Us-
ing the initial design blueprint, the first budget is created from the information that
is already available. During this budgeting process, engineers first select a suitable
decomposition of the system and try to quantify the chosen components in terms of
resource usage. Experience from previous projects, from measurements, from models
or from data sheets is used for this. Eventually this must lead to a budget that expresses
a satisfactory distribution of the budgeted resource. In order to adapt the design to meet
the specifications, the relationships between design alternatives and resource consumed
should be known.

This distribution will certainly raise a lot of discussion between people involved,
solve a few misunderstandings or lead to some feasibility studies being started. The
relationships mentioned above are used to change the design. Once engineers have
agreed upon a new distribution, the initial system is adapted, after which an update of
the budget is made. This is an iterative process that continues until a final design is
found, which is satisfactory to all parties involved. This means that the design must
also fulfill a number of other important system requirements.

Using budgets in a design process serves the following purposes:

• To make the design more explicit.

• To provide a baseline for taking design decisions and verification of the imple-
mentation.

• To specify the requirements for the detailed designs of the components.

• To have guidance during integration.

• To manage the design margins explicitly.

62 BUDGET-BASED DESIGN

Although often assumed otherwise, making a budgetdoes notconsume a lot of time.
Practical cases have proven that, when relevant data is readily available, drawing-up a
budget can sometimes be done within a day. This is not a large expense considering the
fact that budgeting helps identifying design risks, stimulates faster design and creates
commitment between the engineers involved.

5.2 Budgeting

A budget contains the following elements:

• the budgeted resource,

• a decomposition and

• the distribution of the budgeted resource over the decomposition.

Budgeting work starts after one has decided what the subject of the budget will be.
In principle, all resources in a design could be covered by separate budgets. However,
as the amount of effort to be spent on budgeting is limited, one has to focus on the most
important aspects of the design: these aspects can determine success or failure of the
whole project.

key-driver specification

1) choose resource

key-driver model budget

2) decompose design

3) allocate resources

important requirement

Figure 5.2: (Pre-)budgeting processes

Figure 5.2 shows that the key-driver model can be useful for retrieving those system
requirements that are a candidate for budgeting. The key-driver technique as explained
in Chapter 3 is a way to determine the main business drivers of a product, from the
perspective of its stakeholders, and to relate them to the most important system re-
quirement(s). Of course, one can also use a different technique to identify the most
important system requirements. See [74], [99] and the references therein. Ultimately,
the resources that are selected to be budgeted are those that are most directly related to

BUDGETING 63

these essential requirements and drivers. The specification / requirement for a resource
provides an upper bound for a budget, that should not be exceeded. For instance, if a
power consumption budget is made for a device that uses power from the wall socket,
the total resource distributed in the budget should not exceed the maximum power
available from the socket (which depends on the country of residence). As Figure 5.2
also shows, there is no clear boundary between where the key-driver technique ends
and where the budgeting method starts. For instance, while making the budget it some-
times turns out that the budgeted resource has been wrongly chosen or that another
requirement plays a much more important role. At these moments, one just has to
adapt the existing budget or restart with a new one. The effort that was spent now
seems like lost time, but note that one has now eliminated already one of the (alleged)
critical system requirements. In the end, this effort will benefit the design.

5.2.1 A systematic approach

The following paragraph shows the basic guidelines for making a technical budget.
These budgeting rules can be applied as soon as the topic/resource of the budget has
been selected.

Clearly define the scope within which the budget is applied.

Budgets generally have a limited scope within which they are valid. For this reason,
one needs to set the system boundaries before starting to budget. First of all, one
needs to decide what parts of the design will be included in the budget and what parts
will not. For example, some add-on modules may be regarded as a part of the entire
product and thus as a part of the budget, whereas others may not. In case of a copier,
for instance, the sheet finisher must be connected to a separate wall socket (by design
choice). Hence, this part of the product should not be included in the power budget
for the copier, either. Furthermore, one has to choose in what operating modes or in
what use-case scenarios [33] the budget is valid. A system architect, for example, must
decide whether he will be budgeting the typical usage of a product or whether he rather
sees the budget based on worst-case conditions, like for instance extremely intensive
usage of the device.

Select a decomposition of the system-under-design that suits the budgeted re-
source.

A decompositionis the foundation of a budget. No universal recipe exists for the way
of decomposing a design. Theconstructional decompositionand thefunctional de-
compositionare frequently used for this purpose. From project management point of
view, a decomposition that easily maps on the development organization is preferred.
This way every component from the decomposition is easily assigned to a responsible
person who collects the information and who can be held responsible for meeting the

64 BUDGET-BASED DESIGN

specifications as agreed. Moreover, it is also preferred to make use of budgets for ex-
isting products to obtain an initial decomposition. These budgets have a certain proven
authority and therefore provide a first guidance to fill-in the new budget. Furthermore,
it is recommended always to stay focused on the budgeted resource. Although peo-
ple are often inclined to decompose a design into the most obvious functional blocks,
the decomposition that most closely corresponds to the budgeted resource is the one
that ought to be chosen. Of course, one has to realize that for the project management
reasons mentioned before, this might have drawbacks. As such, it is of importance to
carefully select the decomposition.

Find the quantitative figures in each of the chosen components from the decom-
position.

If available, budgets for existing products provide the first guidelines for filling in the
budget for a new design. Although the budget for a new system can be based on an
existing one, it must have a number of explicit improvements in order to fulfill the
new specifications. The figures that are presented in the budget must be substantiated
by means of calculations, estimates, data sheets or simulation of the designed com-
ponents. Known uncertainties in the used figures and expected margins in the given
estimates should always be included. The further the design process evolves, the bet-
ter the initial figures can be verified with the real design and the better they can be
matched to measurements of existing (sub)systems. A budget can thus continuously be
improved. Also see Section 5.2.2.

Combine the gathered information into a clear and simple overview and reiterate
between the previous steps.

A clear overview must reveal the essence of the budget and the most critical issues to
the system architect and his stake holders, in the glimpse of an eye. The architect must
ensure themanageabilityof the budgets. A good budget has (at most) tens of quantities
described. The danger of having a more detailed budget is loss of overview. An unam-
biguous representation, like a graphical decomposition, supports the discussion about
matching the design to its specification. These debates lead to fruitful negotiations over
the design and to the design improvements needed to meet the specifications. This is
an iterative process over the previous steps.

5.2.2 Gathering the relevant data

Aside from the basic guidelines as given in the previous paragraph, there is also the art
of retrieving relevant data. Although this information can come from various sources,
the first source lies within the company itself. As most companies make products with
which they are already familiar, experience such as measurement data, design spec-
ification documents of previous projects or existing budgets can provide a valuable
reference for future designs. This work can be used in order to gain insight in what is

BUDGETING 65

possible in new projects and in order to obtain initial estimates. For instance, data from
other devices in the same product family can be interpreted in order to make realistic
estimates for the resources required for the new product. Besides that, (measurement)
data from reuseable modules can often be extrapolated into figures that are relevant
to the current budget. Talking to experts is another valuable source to get estimates.
Moreover, predictions and estimates made by experienced colleagues often give a good
indication of what can be expected in the new design. Even more so, models, simula-
tions and back-of-the-envelope calculations bring the information one needs.

In addition, also be sure to use the specifications given by third party vendors.
If these resources still do not give enough information to complete the budget, one
can also turn to articles, browse through academic research reports or even scroll the
internet. One could even decide to apply trend analysis (e.g. Moore’s Law) or to take
notice of the strategy of one’s competitors.

5.2.3 Continuous evolution

Projects in industrial environments usually show a fast progress. For this reason, design
budgets have a very evolutionary character. A budget is a ‘living entity’, which has a
limited time of validity before new content updates are required. In addition to this,
there can be other factors which outdate a budget. The following paragraphs deal with
changes that often occur.

Direct Changes. Direct changes are mostly due to changing requirements con-
cerning the budgeted resource itself. An example that played a major role in the de-
velopment of a digital copier is power consumption. In the initial stage of the design,
the requirement on the budgeted resource was set by the power available from the wall
socket. After a while, however, people realized themselves that also some work needed
to be done in order to make the device compliant to the major energy criteria. Although
this change was not initially foreseen, in the end it did have an effect on the power bud-
get as this became tighter (the upper bound on the usage of power was more strict.) In
this case the change isdirect in the sense that it is the power requirement itself that has
changed.

Indirect Changes. Indirect changes are design changes that are not directly related
to the budgeted resource, but which have an influence on the budgeted resource indi-
rectly. For example, in the development project for a copier system, it was decided in a
late stage that the total outer dimensions needed to be some 20% smaller. This does not
have a direct influence on the budgeted resource (power consumption) in contrast with
a ‘direct change’ like lowering the maximally allowable power usage. However, the
change of the size of the machine required major modifications in the size and shape of
the paper path, the number and types of motors used, the schedule of sheets, et cetera.
These changesdo affect the power consumption and thus the effect is more indirect.
In the selected case we could fortunately show that the change only had limited con-
sequences on the total power budget. By exactly showing the consequences, we could
remove one of the worries for the strategic change in size. From a higher abstraction,

66 BUDGET-BASED DESIGN

what happened here is that two or more budgets were influencing each other. The size
budget and power budget have an effect on each other. Certain design decisions might
have a positive effect on one budget, but a negative on the other. The decision making
process for the overall design can benefit from using both budgets as this makes the
tradeoffexplicit.

Another example of an indirect change is given by the choice for the type of motors
in the same copier project. DC motors were initially assumed to take care of paper
transport. Once the first version of the budget was available, some engineers wanted
to replace DC motors by stepper motors, for cost price reasons. Due to this design
change, the magnitude of the power peaks changed, thus leading to a change in the
power budget. In the studied case, the updated budget was used to assess whether this
change in motor type could be realized, considering the given resource.

5.2.4 Margins, uncertainties & inaccuracies

One important aspect of filling in a budget is how to deal with measurement inaccura-
cies and uncertainties. Of course one could stay on the safe side and always assume a
worst-case situation. However, this may be much too conservative, causing a feasible
design to be judged infeasible instead. As a consequence, one will start improving the
design that was wrongly labeled ‘infeasible’, which can possibly lead to a higher cost
price or other negative effects. Dealing with uncertainties in such a way that one obtains
a nearly optimal - but still properly functioning - solution, is therefore a true art. More-
over, possible design improvements that require further investigation can be explicitly
included in a budget as (obtainable) design margins. These design improvements can
be exploited to reduce the total resource usage and thereby matching the specifications
better. Of course such improvements should not interfere with other design criteria.

The impact of deviations. One of the factors, which influence how errors should
be dealt with, is their impact on the budget, and therefore on the design. Suppose
you have conducted a measurement of peak power consumption, which shows that the
measured peaks have a mean value of 1.5, a standard deviation of 0.5, but that there is
an occasional peak with an absolute maximum of 4.5. Depending on the impact of this
peak on the total budget, we have several ways to deal with it. If an occurrence of the
worst case peak will cause a severe malfunction of the product, then the value 4.5 needs
to be included in the budget. When its impact is less prominent, then one could include
the measured value including for instance twice the standard deviation in the budget. If
the error is insignificant enough, one might consider leaving it out altogether and use
the mean value of 1.5. However, remember that the significance of an error depends
on how much margin there is left in the budget, and be aware that many small errors
can still make a big one after all. So, explicitly keeping track of errors and margins
remains important. Note that this issue is clearly related to step 1 in Section 5.2.1: the
interpretation of the figures is related to the scope of the budget (its use-case).

Correlation of deviations. The second factor that needs to be considered is the
correlation between deviations in budget figures. In case deviations in the figures are

CASE STUDY: THE OVERLAY BUDGET FOR A WAFER STEPPER 67

related, special care should be taken not to handle them as individual and insignificant
variations. For instance, imagine that the power peak for a number of components al-
ways coincides. The deviation for each component may be insignificant to the total
budget, but if they are taken together they might indeed be of influence. In case the
relationships between figures are known in more detail, one can also use stochastic
techniques to express their influence on the total budget. This actually means that one
has a conceptual model of the decomposition and the system-under-design that pro-
vides the necessary insight to correctly attribute the overall effect of components to the
resource. A good example for this is found in the overlay budget as will be presented
in the following section. Here the purely stochastic effects were accounted for by
quadratic summation, whereas linear and weighted additions were used for systematic
and mixed effects, respectively.

Application and user expectation.Another point of attention is the application of
the product for which the budget is made. For example, assume there is a peak in the
processor load, which occurs approximately once every hour and causes the product to
slow down for a minute. Statistically seen, one would be inclined to omit this kind of
deviation. However, whether it is important or not depends on the application in which
the product is used and/or on the customers’ expectations for it. For an office printer,
for instance, the user will be annoyed for having to wait a little while, but will probably
forget about it in the next half hour. The situation changes when the user expects the
device to operate flawlessly, e.g. in case one is dealing with the design of a pacemaker.

5.3 Case study: The overlay budget for a wafer stepper

The budgeting method as presented in the previous section has been formulated in
accordance with experiences gained in real engineering projects. The first case study
considers the overlay budget of a wafer stepper, see also [82]. Wafer steppers are
machines that produce integrated circuits out of slices bare silicon, so-called wafers.
During the fabrication process, the wafers will be exposed to the patterns that need to
be etched into them. This patterning takes place by a short wavelength light source in
combination with an optical system and a pattern mask, called reticle. As a wafer is
much larger than the area that can be exposed in one go, it needs to be moved (stepped)
several times in order to expose the entire surface. This process is repeated many times,
typically 16-25 times per wafer adding layers on top of previously exposed layers. To
guarantee a correct alignment of the patterns, the movement needs to take place quite
accurately. The accuracy is expressed as the amount of misalignment that occurs when
a pattern is projected on the wafer. This so-calledoverlay is the topic of the budget.
Thegoalsof the overlay budget are:

• To summarize the requirements for subsystems and components.

• To get early feedback on the total overlay performance of a design, by being able
to compare the results of individual component prototypes with the budgeted
targets.

68 BUDGET-BASED DESIGN

Scope of the budget

The budget was limited to those elements that directly influence overlay, such as the
lens, the motion control system and the available sensors. The budget is valid under
typical operating conditions.

Selecting a decomposition

The new overlay budget was based on the existing budget for a previous generation of
equipment. Also the system decomposition into components had already been made
before and could therefore be reused in the new budget. Note that this is a typical
situation.

Finding quantitative figures

In first instance, the figures of merit for the relevant design choices were retrieved
from measurement data that was already available from a previous version of the wafer
stepper. This provided an initial budget. The existing budget for the previous ver-
sion also comprised the contribution of each individual component to the budget total.
Quadratic summation was used to account for stochastic effects, linear addition for sys-
tematic effects and weighted addition for mixed effects. These relations were based on
an explicit model made by the system engineers. An example for quadratic summation
is given by theglobal alignment accuracyin Figure 5.3. The figures for each of the
three contributions do not add linearly (like it does for thestage overlay), but rather
as a quadratic sum:42 + 42 + 22 = 62. At the same time, also a top-down approach
was followed, since the new generation of wafer steppers needs a much better overlay
specification than the older generation. The maximum allowable resource usage was
set to a value determined by strategic road mapping [92]. Based on the road map, 80
nm became the required overlay target for this new generation of wafer steppers. This
immediately pointed out the major design issue: all design choices needed to match
this new resource requirement. This specification gave the upper bound and sufficient
improvements were made with respect to the existing stepper to achieve this (as can be
seen in the final budget in Figure 5.3).

Providing a clear overview

Figure 5.3 presents the overlay budget in a top-down decomposition. This overview
must be read from left to right. The total allowable process overlay is 80 nm, which
is split up into the contribution that each of the subsystems makes. After that, the
contribution of all the main components is further broken down into different subparts
and related to a specification for each part.

CASE STUDY: THE POWER BUDGET FOR A COPIER 69

process

overlay

80 nm

reticule

15 nm

matched

machine

60 nm

process

dependency

sensor

5 nm

matching

accuracy

5 nm

single

machine

30 nm

lens

matching

25 nm

global

alignment

accuracy

6 nm

stage

overlay

12 nm

stage grid

accuracy

5 nm

system

adjustment

accuracy

2 nm

stage Al.

pos. meas.

accuracy

4 nm

off axis pos.

meas.

accuracy

4nm

metrology

stability

5 nm

alignment

repro

5 nm

position

accuracy

7 nm

frame

stability

2.5 nm

tracking

error phi

75 nrad

tracking

error X, Y

2.5 nm

interferometer

stability

1 nm

blue align

sensor

repro

3 nm

off axis

Sensor

repro

3 nm

tracking

error WS

2 nm

tracking

error RS

1 nm

Figure 5.3: Waferstepper overlay budget

System adaptations

The initial budget had been based on an older generation of wafer steppers. Since
the future generation had to have an improved performance, the initial budget lead to
discussions among system engineers on how to satisfy the maximum overlay demand.
In this interactive process, several design alternatives were discussed and some itera-
tions on the budget were made. After a final round of negotiations the people involved
agreed upon one of the solutions and they started converting the system-level budget
into mono-disciplinary design decisions. This case study shows that a budget plays a
crucial role in wafer stepper development.

5.4 Case study: The power budget for a copier

The project that was subject in this study dealt with the realization of a digital office
copier, whose sales were targeted at a number of different countries. The latter condi-
tion implied that, in some of those countries, the copier needed to be operable under
very strict power conditions. For instance, in the United States less than 2 kW is avail-
able from the power sockets found in an average office. As countries like the United
States are important sales regions, the design of the copier was greatly influenced by
the power issue. Being able to operate on the power from normal wall sockets became
one of the most important realization aspects for this project. Moreover, other projects
in the past had also struggled with power issues. As a result, power usage became a
critical realization aspect, and was therefore subject of the budget.

70 BUDGET-BASED DESIGN

5.4.1 Scope of the budget

Office equipment knows various modes of operation, like full production, low power
or standby. Since a main driver was‘to be operable within the limits of a wall socket’,
this particular case focused on the situation in which the largest amount of power is
consumed: during full production of the copier.

5.4.2 Selecting a decomposition

The next point of concern was to subdivide the layout of the copier into suitable com-
ponents that influence power usage. Since a copier is naturally divided into a number
of physical functions, this decomposition was largely maintained. An exception was
made for the losses created in the voltage supplies and the cooling system. These losses
could either be attributed to the functional components that cause them, or they could
be grouped into the supply and cooling functions. During development, these losses
are usually measured at the voltage supply side and at the cooling side. Therefore it
was decided to group the losses into three blocks: the high voltage supply, the low
voltage supply and the cooling system. On the other hand, if they had been attributed
to each specific functional component separately, this would have explicitly shown the
contribution of each component. The choice for a division in 3 groups was made for the
sake of easy measurement and verification. The identified functional components are
depicted in the graphical power decomposition, as given in Figure 5.4. The thickness
of an arrow is proportional to the amount of power used by a component.

power
supplies

cooling

UI and control

paper path

paper input
module

finisher paper

procedé

electrical
power

heat

Figure 5.4: Graphical representation of the power budget of a copier

CASE STUDY: THE POWER BUDGET FOR A COPIER 71

5.4.3 Finding quantitative figures

The largest part of the budgeting work was to find the realization choices in each of the
functional blocks and to retrieve realistic values for them. The following paragraphs
deal with some of the ways in which this was done.

Using a reference architecture in combination with third-party data. Theprint
engine controlunit was one of the components for which a reference architecture from
a previous project was available. Although the exact configuration of its processing
architecture was not known at the moment of the initial budget, the reference did prove
to be a good indication of what power consuming componentsprint engine control
would ultimately contain. Once the components were known, data sheets from third
party manufacturers of processors, memory and driver boards were used to make a
reasonable estimate.

For those parts for which data sheets were not yet available, extrapolation on data of
previous projects was carried out. Since manufacturers tend to give figures for prede-
fined (worst-case) scenarios only, this approach only works well in case one is making
a budget based on these scenarios. Once you need more specific values that depend on
a non-typical mode of operation, hardly any concrete formulas are given. Finding the
appropriate data may then become a cumbersome job. For example, how would one try
to estimate the power usage of a processor when it has a 30% CPU load? Measurements
on existing controllers or test bench prototypes are useful in these situations.

Using documented formulas. Another way of gathering data was employed in
estimating the amount of energy that is transferred from thetransfer unittowards each
sheet of paper. In this case, internal documents contained the formulas for calculating
the approximate amount of transferred heat. This kind of documentation actually forms
an excellent basis for budgeting. Besides this information, (academic) literature often
provides starting points for reliable budgets, too.

Using existing measurements.The power consumption of thecleanerandpre-
heaterunits was estimated by means of data available from comparable units in exist-
ing products. Unfortunately, the copy speed of the new copier differed from that of its
predecessor. An extrapolation on existing data was therefore performed. This intro-
duced an extrapolation error whose margins were very difficult to determine. In order
to reduce the associated uncertainty, measurements on a real test bench were done later
on in the project.

Using prototype measurements.The amount of power absorbed by thetransfer
and thecooling unitcannot be expressed by formulas so easily. The estimates for their
power consumption were based on measurements carried out on experimental setups
and early prototypes. Unfortunately, this method leads to figures that are only valid
momentarily and that - depending on their sensitivity to design changes - may become
useless as soon as some details in the setup are changed. For this reason, figures found
by means of experiments should be monitored throughout the project and validation in
later stages might be necessary.

Simulation and modeling.The functional components that had the largest amount
of uncertainty were thepaper pathand thescannermodules. Both of them are made

72 BUDGET-BASED DESIGN

up of actuators that drive and control the flow of paper sheets through the copier and
the scanner, respectively. Since paper transport is a time-dependent (dynamic) process
rather than a static one, the figures for these components are the most difficult to extract.
Of course, one could again take worst-case figures. However, since these worst-case
figures only express power peaks that occur during accelerations, they provide a very
conservative (too high) estimate for the overall consumption of the copier. That is,
thanks to the spreading of the peaks, the overall power consumption will usually turn
out to be lower than the sum of the peaks. On the other hand, once the peak power
usage of the various actuators coincides, the resulting figure will become dramatically
worse. For this reason, the time of occurrence (related to scheduling of paper flow) and
the magnitude of these peaks must preferably be known prior to making predictions.
In the studied case, this issue was analyzed by using a simulation model that was de-
veloped for scheduling the sheets in the paper path of the copier. Based on the velocity
profiles for the actuators, the time-dependent power profile could be determined. The
magnitude of the power peaks was retrieved from comparable actuators that were used
in existing projects. So, based on assumptions concerning the paper schedule and the
type of actuator used, we were able to reasonably predict actuator power consumption.
Besides giving a sufficiently reliable indication of the actual power consumption, the
resulting figures also made some of the project engineers aware of the fact that they
needed to assure that actuators were driven such that none of the power peaks coin-
cided. This is an example that shows how budget-based design positively influences a
design process.

5.4.4 Providing a clear overview

After the information has been gathered, a budget needs to be presented to its stake
holders. These stake holders could for instance be a project leader, a design team or
even company management. In the copier case, the sales department might also be seen
as stakeholder, since (small) power consumption can be a good sales argument. Since
one of the goals of the budget is to communicate the effect of certain design decisions
to others, its representation must provide a clear overview for all people involved in
the project. For this reason, the tabular form might not always be the most ideal way
to depict it. To really convince others by means of the budget, its data needs to be
represented in a very informative way: preferably in a graphical depiction. Figure 5.4
presented the functional decomposition of the copier, together with the collected data
on power consumption. Thepower decompositionin Figure 5.4 should be read from
top to bottom. The upper horizontal bar represents the source of the system resource
that was budgeted (the available power, less than 2000 Watt), whereas the lower hori-
zontal bar expresses its sink (the dissipated power). The blocks in between the source
and the sink represent the functional modules that consume the resource. Recall that
these are the same modules as identified during step 2 of the budgeting process. The ar-
rows in between source and sink express the resource flow (power flow) from source to
modules, mutually between modules, and from modules to sink. The arrows have been

BUDGET DYNAMICS 73

scaled to show their relative influence on the total resource flow. For what the studied
case concerns, this tells you in the glimpse of an eye that the largest amount of power is
consumed in the modules at the right side of the figure: in thetransferand thepreheat-
ing units. Such a conclusion gives system architects a convincing argument to demand
for considerable improvements in the responsible modules. So, although Figure 5.4
expresses the same figures as could have been written down in a simple table, it does
give a much better overview on the whole situation. Moreover, for quantitative details
a table can be consulted anyway. According to our experiences, visual depictions have
proven to be much more informative in the sense that people immediately understand
how the resource is distributed over the various components in the design. Hence the
visualization is a major factor in creating insight in the distribution of a resource.

5.5 Budget dynamics

Resource budgets applied in engineering environments can be categorized roughly into
two types:

Static budgets. The wordstatic signifies that budget values do not change with the
particular operating mode of a device. Typical examples are average or worst-
case values. Note that static figures do change when a design changes after some
time.

Semi-static budgets.A semi-staticbudget means that several static budgets are made:
each for a different mode of operation of the product. The budget for a copier, for
instance, can have a version for full production as well as one for standby of the
device. Semi-static budgets are often used in combination with scenarios. For
each available scenario or use case (see e.g. [33]), a dedicated budget is made.
Each budget then solely contains the effects that occur under that particular con-
dition.

If the resource cannot be properly captured by static or semi-static budgets, often
(simulation) models are used. Typically, when the dynamic time-varying behavior of
components play a major role in the budget, it is best to use simulation models and tools
instead. We already discussed the example of the paper path in Section 5.4.3 for which
the worst-case power usage (the power peak) of the paper path could not be derived
from the power peaks of each individual motor. The reason was that the individual
power peaks are spread out over time. As a consequence, the total peak power depends
heavily of the distribution over time of these individual peaks. This is prohibitive for
making a useful decomposition of the paper path into smaller subcomponents for the
purpose of a (static or semi-static) power budget for the copier. The paper path should
be taken as one entity in the decomposition. In this case the use of a simulation model
for this part of the system is advised. An example of a simulation run is given in
Figure 5.5. This plot depicts the sum of the power usage of some motors in the paper

74 BUDGET-BASED DESIGN

path of a copier, over time, during a copy job. The outcome of a simulation model can
be used to find the corresponding figures that are required in a (semi-)static budget.

5 5.5 6 6.5 7 7.5
0

20

40

60

80

100

120

140
Simulated power usage of all paper path motors

Time [s]

po
w

er
 [W

]

Power
Average

Figure 5.5: Simulated motor power usage

5.6 Budgeting benefits & concerns

The case studies presented in this chapter show how the proposed budgeting approach
can be applied in a systematic way. The outcome of these studies was that consistently
applying budget-based design techniques has various advantages. These advantages
are described in the following paragraphs.

5.6.1 Benefits

Identify threats & (early) design improvements. One of the merits of making bud-
gets is that budgets clearly document the particular specification of a project. They state
the available resource and the way in which it is supposed to be distributed across the

BUDGETING BENEFITS & CONCERNS 75

design. In order to compose a budget, project engineers first have to think thoroughly
about a design for the system, the decomposition and how to quantify the components
with realistic values. Since different engineers have different opinions, this process
will undoubtedly lead to discussions and negotiations, based on facts rather than on
feelings. Discussing a design in order to create commitment between engineers often
reveals a number of critical realization aspects. Such a priori knowledge of potential
problems enables one to adapt the design on time. Since budgeting is often started
in the initial stage of a design, optimizations can still be made before any irreversible
decisions are taken or costly mistakes are made.

To make the design explicit for communication and awareness.A side effect
of discussing the budget is that the exact meaning of the quantities in the budget gets
documented and communicated quite effectively towards all project members. Once
implicit design assumptions are made more concrete and are talked over by engineers,
they tend to develop a larger awareness of potential design risks. In this way everyone
will become more aware of the consequences of the decisions they take and sees how
this fits in the bigger, multidisciplinary picture. In this sense the budget provides a
baseline to take decisions.

Enabling concurrent design via specification of requirements for components.
Besides contributing to design improvements, budgets also enable concurrent design of
parts for which the specification can be extracted from the budget. Once the budget has
been written down, it expresses the exact distribution of the resource over the individual
functional modules. The budget itself is used to ensure that the interaction between the
individual components satisfies the overall resource requirements for the product. This
gives also clear guidance during the integration process. Moreover, since a budget
records the agreements that were made, people will also tend to argue less about them
afterwards. Potential conflicts can thus be avoided, which is good for the working
atmosphere.

Managing design margins. Although this was not emphasized in the particular
case studies, one of the large advantages of budgets is that they enable making de-
sign margins explicit. On the one hand, budgets can include the uncertainties due to
unknown effects and missing information, whereas on the other hand, they can also
include the design margins that can be obtained by improving the design (at the cost of
longer design time, larger design effort or higher cost price). By making uncertainties
more concrete, risks can be identified and reduced in an early stage. If improvements
are required and the budget offers various options to achieve them, a suitable choice
can be made.

Support road mapping. As we saw in the case study of the overlay, budgets can
also serve as a tool to road map future versions of one’s design [92]. The future evo-
lution of the budgeted resource can be strategically relevant to the company’s success.
Budgets indicate the strengths of the current design and can therefore help to identify
the necessary technological steps to achieve the improvements to be realized.

76 BUDGET-BASED DESIGN

5.6.2 Concerns

One of the major concerns for using the budgeting method in a project is that one
needs to watch out for that people ‘hide’ themselves behind the figures in the budget
and that become inflexible to changes in the figures, in a later stage. In early stages of
the design the figures might still be uncertain and subject to change. People have to
realize this and appreciate the value of the budget anyway, since it makes the design
issues explicit. People that use the figures in the budget as an excuse for not having a
proactive attitude, no longer take their own responsibility for the quality of the overall
product. This phenomenon requires an attitude change for some persons, or sometimes
even a cultural change within a company.

5.7 Conclusions

In this chapter the system-level method of budget-based design is promoted. An itera-
tive approach consisting of four steps was given to set up a budget. In addition to the
iterative approach, guidelines are given on how to retrieve the relevant data and how
to deal with uncertainties and design margins. The proposed budgeting approach was
applied in two practical cases. During these cases, several advantages were recognized.
Budget-based design supports:

• Early recognition of potential threats to meeting the requirements for the bud-
geted resource. This provides guidance in taking the correct design decisions
and in making improvements.

• Making the design more explicit and transparent. This enables improved com-
munication of project targets, leading to a greater awareness of the consequences
of individual decisions on the design as a whole.

• Concurrent design and integration. Proper documentation of the resource distri-
bution in a design can be seen as a specification for the individual components.
This enables an improved concurrent design process and provides a baseline for
integration.

• Managing design margins explicitly.

• Identification of the technological leap to be taken in future, therefore assisting
the road mapping process that is carried out with the goal of keeping the business
successful.

Taking all pros and cons into account, we believe that its systematic approach sup-
ports making decisions that reach over the mono-disciplinary engineering disciplines
and over the functional modules of a product. Thereby it is a multidisciplinary design
method that supports product design. This chapter can be used as first start to learn the
skill of budgeting.

Chapter 6

Effective industrial modeling:
The example of Happy Flow

Authors: J.M.J. Beckers, W.P.M.H. Heemels, B.H.M. Bukkems and G.J. Muller

6.1 Introduction

In various branches of engineering, modeling plays a central role. As such, it finds also
its place in the design of high-tech systems like copiers, wafer steppers and televisions.
In the design of these high-tech systems multiple disciplines need to make the overall
design in close co-operation. For instance, the electronic design, mechanical design
and software design together need to describe a consistent, functioning machine. The
designs are often made in parallel by multiple groups of people, where the communica-
tion between these groups is hampered by lack of common understanding. In addition,
the complexity of a copier (typically millions of lines of code, thousands of mechani-
cal components like frames, springs, and belts, and many motors, sensors, and printed
circuit boards) give rise to many cross-disciplinary design decisions. To make a good
tradeoff, the overall effect of a design decision needs to be evaluated as early as possi-
ble. This is where models come into play. On one hand models can be used to predict
and evaluate the effect of possible design choices, even when the machine itself has
not been built yet. In this stage models support taking design decisions. On the other
hand, models can capture design decisions and can create a common understanding
that bridges the gap between the disciplines involved in the design. However, even
when using models, physical prototypes are essential because of the confrontation with
physical reality, where overlooked issues will inevitably pop up.

Models appear in all kinds of forms; they range from simple drawings or sketches of
the layout on blackboards to detailed models (e.g. differential equations for describing

77

78 EFFECTIVE INDUSTRIAL MODELING: THE EXAMPLE OF HAPPY FLOW

physical processes or finite state machines or automata for computer programs). In this
chapter we are interested in the question which properties a model should have to be
effective from an industrial point of view.

As already seen in Chapter 1, the Boderc goal is to develop a design methodology
based on multi-disciplinary modeling to predict the performance of a system in the
early design phases (see Figure 1.2). The aim of the methodology is to reduce the
overall design effort and time and is based on the philosophy of shorter cycle times
between design phases. The latter is expected to be achieved by models that can be built
relatively quickly and generate reasonably accurate predictions of system behavior. To
stress this point, very accurate modeling is sacrificed to reach a fast iteration through
various model instantiations. Already the use of models has the advantage that they
enable a much faster evaluation of different design options if compared to physical
prototypes. The reason is that a new prototype would needed to be built for each design
option, which is very time consuming. Through analysis of models different designs
can be evaluated much faster.

Several models have been proposed in the Boderc project to support the design of
a copier, as evidenced by this book. Some of these models were easily used by the
industrial partners, while others did not find employment. This indicates that there are
specific properties that make a model a success in industry. To identify why certain
models are embraced by industry so easily, we consider in this chapter the most suc-
cessful industrial model created within Boderc. This model focuses on the design of
the sheet transportation system in a copier. By identifying the success factors of the
model, we aim to indicate how modeling can be improved from a point of view of
industrial usefulness.

6.2 The design problem

The copier context has already been described in Chapter 1. The focus in this chapter
is on two levels of the copier design, although they heavily interact and influence each
other:

• the layout of the paper path,

• the scheduling of sheets.

In Figure 6.1 a more detailed drawing of a paper path is given.

6.2.1 The layout of the paper path

Several issues play a role in the design of the transportation system of the sheets in the
copier. The model of the transportation system consists of several parameters of which
the layout parameters of the trackare the first that come to mind. Next to this layout,
thedrivesof the sheets have to be selected, i.e. thepinchesandswitches/flipsto direct

THE DESIGN PROBLEM 79

Motor 1

Motor 3

Motor 9

Main

Motor

Motor 6

1

3a

3c 3b

5

6

9

Main Motor Motor 5

Figure 6.1: Paper path, with positions of the pinches, bypass and duplex loop.

the sheets into the right track. The pinches and switches requireactuatorslike motors.
Moreover,sensorshave to be present to detect the presence of the sheets.

The layout of the track has to be such that some functionality of a copier is guaran-
teed:

• A turn loop has to be present to enable duplex, i.e. two-sided printing,

• Registration and synchronizationare necessary to accurately adjust the sheet po-
sition in accordance with the images,

• The fuseor copy press is the location where the images are printed onto the
sheets,

• A heaterhas to be present in the track such that the temperature of the sheets
is increased to a desirable level for the fusing process. The track has to provide
space for this.

• Start and destinationof the track. The sheets have to be inserted from the paper
trays at some point and have to leave the track again at the finisher. Sometimes
the paper input module, the fuse and the finisher are at fixed locations due to
standardization.

Within these ‘functional’ constraints, in principle everything is possible. Although
several other constraints, some based on specifications of the copier and others based
on previous design experience, apply to the track. The size of the copier forms one
of the most severe restrictions on the paper path, but also the maximal curvature of a
curve is constrained due to bending properties of heavy sheets of paper.

80 EFFECTIVE INDUSTRIAL MODELING: THE EXAMPLE OF HAPPY FLOW

6.2.2 The scheduling of print jobs

Given the layout of the track, it still has to be determined how the sheets will move
through the paper path in the sense that the position and velocity profiles over time have
to be determined for individual sheets (called the timing table), but also for complete
print jobs. In the scheduling of a print job, the sheets motions have to be coordinated
with respect to each other and for instance collisions between sheets have to be pre-
vented. The print schedule has major implications for the total timing of the engine
as most other actions in the copier are synchronized to the schedule. Indeed, from
this schedule one derives the motor profiles, the requirements on motor characteris-
tics and control algorithms, the sensor triggering and the real-time response properties
of the software, the timing of the imaging process and its related subsystems and so
on. Hence, the scheduling has a large impact on the total success of the copier. The
scheduling is of course depending on how the mechanical layout is chosen and actually
this layout imposes constraints for the schedule. For instance, if there is a certain time
needed to open a closed switch/flip, this indicates that certain margins between two
sheets that have to take different routes at the switch must be included in the schedule.
If a desirable scheduling of the sheet flow cannot be realized guaranteeing for example
a certain throughput of the machine, then an adaptation of the mechanical layout is
necessary.

6.2.3 Requirements

Various key drivers and system requirements should be satisfied when designing a new
system. Key drivers from the customer’s perspective are for instance minimal waiting
time, ease-of-use and (re)production quality. These key drivers translate into various
technical system requirements like throughput (pages per minute), position accuracy
of sheets, time-to-first-print, et cetera. See Chapter 3 for an overview on the key driver
model for a particular printer. Of course, also many other (resource) constraints like
power usage, cost price, size, et cetera, play an important role. The choice of the layout
of the track and the scheduling have a major influence on several of these requirements:

Energy and power usage:these are related to acceleration, velocity and forces re-
quired for the transportation. Energy and power usage have strict constraints; ob-
jectives related to energy labels like Energy Star play an important role, whereas
maximal power usage is directly coupled to the maximal power available from a
normal wall socket in the country of interest.

Low costs: by using a simple concept of control, cheap and few actuators by com-
bining drives (e.g. one motor controlling multiple pinches), the cost price of the
system can be kept low.

Throughput and time-to-first print: realize that certain print jobs are finished quickly.

MODEL-BASED DESIGN: HAPPY FLOW 81

Synchronization, printing accuracy and registration: make sure that a certain re-
production quality is obtained. This requires tight synchronization and position-
ing of sheets and images.

Low complexity of control concepts:keep the development and the size of the con-
trol software manageable.

Size: the size of the resulting copier.

In order to facilitate the design of the mechanical lay-out and the scheduling, a
model calledHappy Flowwas developed within Boderc.

6.3 Model-based design: Happy Flow

The name Happy Flow is based on the conscious simplification of the model, where
only the desired behavior of a sheet and the ideal movements of all parts are modeled.
All disturbances and variations of actual hardware performance are ignored. It is a
kinematical model, where non-idealities such as friction and limited jerk (derivative of
acceleration) of motors are not taken into account.

The main goal of the Happy Flow model is to perform a quick design space ex-
ploration with respect to the job scheduling. From the insight obtained in this phase
also the mechanical layout can be adapted in a cyclic design procedure (cf. Section 6.4
below). For the fast design space exploration the following subgoals can be distin-
guished:

• Easy specification of a ‘happy flow’ schedule of print jobs.

• Fast checking if for a certain happy flow, for a given paper path, for all required
sheet sizes and operation modes, the design requirements like throughput and
power usage are met and the constraints (safety distance between time, sufficient
time to put switches in right position, et cetera) are not violated.

• Verification of the robustness of the happy flow for implementation.

• Demonstration and inspection of the details of the happy flow in an easy manner,
such that it can be optimized manually.

• Generation of timing tables, speed settings, and the expected times of arrival at
specific points, that will be used in the software that controls the paper path.

The prerequisite that is needed to setup the Happy Flow model is an (initial) me-
chanical layout of the paper path including the position of pinches, switches, et cetera.
As already mentioned before, Happy Flow is a high-level (idealized) model where all
sorts of low-level (non-ideal) effects are ignored. However, the most important effects
are taken into account in the model, for example critical software delays, actuation
delays (e.g. solenoid delays for setting a flip), and a maximum acceleration and decel-
eration rate are incorporated.

82 EFFECTIVE INDUSTRIAL MODELING: THE EXAMPLE OF HAPPY FLOW

6.3.1 Basic working of Happy Flow

The Happy Flow model started as a small and simple simulation, where logistics and
timing information was combined to generate position-time diagrams for sheets in print
jobs. The availability of the input data for this simulation was also convenient for
generating an animation, superimposed on a drawing of the paper path. A next step
was to generate the input data for the Happy Flow model directly from available mono-
disciplinary design data, such as CAD drawings. This evolution is shown in Figure 6.2.

timing
table

logistics
info

generate
x,t

position-time

timing
table

logistics
info

animate

video

generate
x,t

position-time

create
timing
table

timing
table

mono-
disciplinary
design data

drawing

Figure 6.2: Incremental growth of the happy flow model. From left to right: initial
form, intermediate form and latest addition.

The current version of Happy Flow starts from the CAD construction drawing of
the mechanical layout. Important registration points at the CAD drawing are indi-
cated which are necessary to capture the mechanical layout in a computerized two-
dimensional format. Also important points at the layout (like pinches, sensors, switches,
et cetera) are included as registration points. Typically the computerized two-dimensional
information of the track consists of the coordinates of registration points and an indi-
cation how the track between them is connected, which is typically via linear interpo-
lation. Together with individual sheet info (e.g. the length of the sheet, duplex/simplex
printing, its source and destination, et cetera), a 1D track is constructed. This 1D track
is the one-dimensional view on the track the sheet has to travel. It consists of a con-
catenation of all the registration points the sheet has to pass, together with the total
traveling distance. The 1D track information together with certain hardware parame-
ters will be converted into a timing table (see Figure 6.3 for an individual sheet that can
have several representation forms: position-time diagram, timing table and velocity
profile). Hardware parameters are for instance the relative velocity of specific pinches
with respect to the fuse speed, necessary stopping times at certain positions to perform
specific actions, et cetera. The information like the number of sheets in a job, the order-
ing of sheets in finisher, et cetera are collected in job info and converted into a schedule.
The job schedule typically consists of the starting times of each individual sheet in the
job; as each sheet of the same format will follow the same position-time diagram, the
starting times are sufficient to specify a print job. For the animation typically a jpeg or
bitmap picture of the mechanical layout (typically a simplification of the CAD draw-
ing) is used to display the motion of the sheets through the machine. This animation is
interactive and can run forward or backward at any speed. It can also animate motors

MODEL-BASED DESIGN: HAPPY FLOW 83

and switches when they have their own specific ‘happy flow’ specified. The animation
of sheets, motors, and switches, gives good evidence that the model can work in reality.
This certainly helps to avoid many unpleasant surprises afterwards.

6.3.2 The scheduling of sheets in a job

The basis of job scheduling is that the design assumes that each sheet of the same for-
mat always follows the same position-time diagram. The job schedule is typically
based on the desired throughput (pages per minute) that has to be achieved. This
throughput, the sheet format and desirable inter-sheet distance determine how fast the
fuse (where the actual printing process takes place) should run. This creates a fixed
rhythm of the copier in steady state operation, which can be translated to the starting
times of the individual sheets in the Paper Input Module.

p
o
s
it
io

n

time

front

side back
side

sheet
size

sensor 1

pinch 1

pinch 2

sensor B

time

20

40

50

70

pos

3

9

9

15

m

2

2

2

2

v

0.3

0

0.3

0.5

a

-0.1

0.1

0.1

0

v
e
lo

c
it
y

time

Figure 6.3: Multiple representations used in the model: position-time diagram, timing
table and velocity profile

6.3.3 Animation

In the animation the timing tables are used and the 1D track developed in the model
structure, i.e. the track being described on the position axis of the position/time dia-
grams, is mapped back to 2D and one can see the actual movement of the sheets in the
print job through the paper path. As a background the CAD drawing (or a derivative
of it) is used for this purpose. The animation is interactive as you can run it on any
percentage of the real engine speed. Sliders and keys can be used to slow down or
speed up, and you can step forward or backward to any situation, take snapshots (‘pho-
tos’) to illustrate documentation and make movies for presentations. Figure 6.4 gives
an impression of what this looks like. In the upper left corner an active table of all the
sheets that are currently being transported can be seen. The time until they reach the
fuse for the first time (first column) and their actual position (fourth column), velocity
(fifth column) and acceleration (seventh column) are given. One can imagine that this
provides a very insightful means to visually inspect all kinds of behavior in the paper
path.

84 EFFECTIVE INDUSTRIAL MODELING: THE EXAMPLE OF HAPPY FLOW

GUI

‘Life’ Animation
vario

Figure 6.4: Impression of the Happy Flow animation

6.4 Design cycle

Typically, one designs the timing tables for the common sheets sizes A4 and A3 and for
simplex and duplex and derives via minor adaptations the timing tables for other sheet
sizes. If the problems cannot be solved at the level of the scheduling (timing table
and job scheduling), changes in the mechanical layout might be necessary. Several
iterations might be necessary in the design cycle as depicted below.

Domain

know-how

Paperpath

design

Visualisation

Requirements

Key-drivers

Constraints

Designers

Mechanical

layout

+

Scheduling

+

Setpoints

Model

in

out

HappyFlow

CAD

drawing

Figure 6.5: The Happy Flow design cycle

INDUSTRIAL SUCCESS FACTORS AND CONCLUSIONS 85

6.5 Industrial success factors and conclusions

Besides describing the basic working of the Happy Flow, the original goal of this chap-
ter is to identify industrial success factors of modeling. Based on the success of this
particular model, we will provide a list of the reasons why this model was so easily
introduced in and used by industry. As indicated in the introduction, the goal of the
Boderc design methodology is to enable fast model-based design space exploration in
the early design space by predicting system performance. The main drivers for this
Boderc goal are the business objectives time-to-market anddesign effort/costwhile
keeping industrial constraintslike maintainability of a model andhuman resource
constraintsin mind. By human resource constraints we mean that the model should
support the engineering approach used in industries. Typically this requires that the
model should beeasy to learn(low initial investment of time and effort to learn to use
the model in aneffective manner) andeasy to use, properties that various academic
models often lack. For short time-to-market ashort cycle timeof the application of the
model is needed. This means that the model should be easy to build and should have a
reasonably accurate predictive power. The right balance between accuracy and design
time is important. The business objectives time-to-market and low design effort/cost
are realized by five sub-drivers being: using a model instead of a prototype, short cal-
culation time for the model, stimulate cross-disciplinary communications, approach
the right problem (which is crucial for the overall system design) and find relevant
information in the model (and of the to-be-built system) easily. In Figure 6.6 we rep-
resented the above reasoning graphically. All the above mentioned drivers that realize
the Boderc goal are in the end related to 12 issues that played from our perspective a
role in Happy Flow’s industrial success. These 12 issues are:

A. Modular setup. Happy Flow has a modular setup. The complete model and pro-
gram consists of smaller parts that are connected through input-output relations
(see also Figure 6.2). By suitable concatenation of these subprograms one ob-
tains a high-level function that can be easily interpreted. This is important for
understanding, insight and maintainability of the tool.

B. Stepwise introduction and feedback.Little steps in the evolution of the Happy
Flow model made evaluation towards industrial practice possible and of course,
the success of the individual steps led to a stepwise introduction at the copier
manufacturer (see also Figure 6.2). Moreover, this also enables that feedback
was given during the development of Happy Flow, which lead to frequent refac-
toring of the tool to keep its structure useful and practical for its users and pur-
poses.

C. Limited size. The size of the model is limited (one thousand lines of code).
This is important for understanding, insight and maintainability of the tool. The
model size also has effect on speed of execution.

D. Use of conventional paradigms. The conventional representations of timing
tables and position-time diagrams are still present in the model or can easily be

86 EFFECTIVE INDUSTRIAL MODELING: THE EXAMPLE OF HAPPY FLOW

generated. Hence, the outcomes of the model can still be easily communicated
and transferred to all people, which are familiar with timing tables.

E. Right representation at right place. Several variations are used that represent
the timing table for the motion on an individual sheet (see Figure 6.3). The
representations can be converted into each other, so that for the particular purpose
the ‘best’ representation can be selected and easily generated. ‘The right man at
the right place’ so to say. This has a positive effect on speed of computation as
well.

F. Good level of abstraction.The model has a good level of abstraction. It is not too
detailed. The distance to system level key drivers like throughput, power usage,
size, et cetera. is not too large so that it helps to make system level trade-offs.
The model is not too coarse either as it still predicts the basic timing of the sheets
within reasonable accuracy. The Happy Flow model is directly connected to the
design of subparts of the machines like selection of motors, real-time software, et
cetera. Hence, on one hand it assists in predicting important system level drivers
like throughput, power usage, et cetera, but on the other hand it also couples to
mono-disciplinary design problems.

G. Simple and fast computations.The computations that have to be performed are
very simple. This enables fast calculation of the model and thus gives answers
in short time.

H. Conceptually simple.Happy Flow is conceptually easy to understand and as such
can be used for reasoning and communication across disciplines. This supports
breaking down the communication barriers, which are often present in multi-
disciplinary designs.

I. Addresses right design problem.The model addresses an actual and current de-
sign problem. Although engineers could solve it in the past by large investments
of time and effort, the introduction of Happy Flow was able to gain much in de-
sign time. It was a latent design question. Outcomes of the model are important
for the overall design in the form of event or signal tables.

J.Easy visual inspection via animation.Visualization and animation on a picture of
the mechanical layout (CAD drawing) makes it easy to interpret the results and
makes them insightful.

K. Data base. In the use of Happy Flow one continuously makes assumptions for
design issues that are currently unknown or not documented. By doing so one
stimulates discussion and modifications in the assumptions by showing the ef-
fects via visualization. Hence, consensus is created for these assumptions and
this implicit domain knowledge is somehow ‘documented’ in the Happy Flow
model. In this sense Happy Flow also has the role of a database with the latest
design specs.

INDUSTRIAL SUCCESS FACTORS AND CONCLUSIONS 87

L. Easy validation to reality. It is easy to compare model output to reality (valida-
tion of model). Significant differences can be adjusted. Little deviations can be
attributed to the good weather conditions under which Happy Flow works.

A 13th issue is indicated as ‘Prediction of system performance,’ which goes almost
without saying as this is what a model within the Boderc context should typically do
(see Figure 1.2).

business objectives
profit

margin

market share

time-to-market

design

effort/costs

industrial

constraints

short cycle
time

model iso
prototype

short calculation

time

stimulate

cross-disc

communication

approach right
problem

find relevant info

easy

prediction system

performance

address right problem

good level of

abstraction

right representation

simple and fast

computation

easy validation to

reality

database

modular

limited size

use of conventional
paradigm

conceptually simple

stepwise introduction

and feedback

easy visual inspectionJ

B

H

D

C

A

K

L

G

F

E

I

easy to learn
low initial time

effort investment

easy to use

maintainability

human

resource
constraints
(engineering

approach)

Figure 6.6: Overview of success factors of Happy Flow

All these factors contributed to the fact that the Happy Flow method is now used
by industry and the results are promising. Engineers embrace it, explore the design
space in shorter time, extract all kinds of information from it, use it for measurements
and use advanced spin-off models. The designers have confidence in the model and
drastic changes in the mechanical layout are now easily handled without hesitation even
in critical phases of the development. Moreover, the good prediction capabilities of
Happy Flow and the overview of the total paper transportation system that it provides,
enable less conservative designs. As risks and uncertainties are reduced, certain (more
optimal) designs are admissible at present, while these would be discarded in the past.
From an even broader, system engineering perspective, it is important to learn from
such instances of successful industrial models. The identification of the success factors
is a first step towards a more systematic method that gives clear guidelines on how to
create industrial effective models that support the system architects and speed up the
multi-disciplinary design of high-tech machines. This chapter forms a first step as only
one successful model is considered, but future work of the Embedded Systems Institute
focuses on finding such a method.

88 EFFECTIVE INDUSTRIAL MODELING: THE EXAMPLE OF HAPPY FLOW

Chapter 7

Heat modeling in copiers

Authors: E.H. van de Waal, J.M.J. Beckers and J.F. Broenink

7.1 Introduction

Heat is one of those system aspects that is influenced by multiple engineering disci-
plines. Because it is difficult to communicate design decisions between disciplines, as
discussed briefly in Chapter 1, it is difficult to find the optimal design with respect to
these system aspects. One way in which the design process can be improved is to use
model-based design. Using models, it becomes possible for the disciplines to com-
municate insights and make trade-offs in an early stage of development, before design
changes become prohibitively expensive.

In this chapter, an example of a heat model is shown that can be used for these
purposes. First, the relevance of heat in a printer is explained by linking heat to the
fundamental goal of a printer: making high-quality prints. This gives insight in the
questions to be answered by modeling. Then some modeling techniques for heat are
discussed, and a case is studied in which a heat model is constructed.

7.1.1 Relation to key drivers

Heat can lead to many potential design issues. To streamline the design process, prior-
ities need to be assigned to potential issues. To assign priorities, heat should be linked
to the key-drivers (see Chapter 3) for a printer. Thus, the effect of heat flow on the
customer perception of the printer can be investigated.

A customer can observe the following effects of the heat house holding:

• The amount of energy needed to establish the temperatures required by the print-
ing process determines the amount of time needed for the printer to warm up in
preparing for the first print (Time-to-first-print).

89

90 HEAT MODELING IN COPIERS

• The temperatures of paper and toner at the moment they meet in the fuse pinch,
strongly define how much and how deep the melted toner penetrates into the
paper fibres and strongly influences the printing quality (one of the key drivers
for an Océ printer). As such, this effect is also taken into account in the printing
accuracy model of Chapter 9.

• The amount of heat lost during printing affects the speed at which the printer can
print. Throughput is also a key driver, as shown in Chapter 3.

• The average energy consumption of the printer over a normal ‘office’ day is part
of the running costs for a printer. Most power consumed by a printer is used
to maintain heat flows. Also, power usage has been restricted by environmental
agencies.

• The peak energy consumption of the printer partially determines how easy it is to
install a printer at a customer site. This is nation dependent: in Europe, a regular
socket can supply roughly twice the power a regular socket in the USA or Asia
can supply.

These issues serve to illustrate the importance of proper heat management for a printer.

7.1.2 Temperature constraints within a printer

Printing is a physical process in which a toner image is produced using electro-magnetic
forces, which is then transferred to the paper and fused. Fusing is performed by apply-
ing heat and pressure to the toner and paper, such that the toner melts and enters the
paper. In Figure 7.1 the main parts of the VarioPrinter 2090 are shown: the pre-heater
(VVW) that rises the temperature of the paper before fusing; the imaging unit that gen-
erates the toner image; the Toner TransFer belt (TTF) that tansports the toner from the
imaging unit to the fuse pinch, and the fuse pinch where toner is fused on the paper.
While intended to increase the life-time of the imaging unit, the TTF also separates the
warm and cold areas. The printing process is described further in Chapter 1.

Most of the energy consumed by a printer is used to establish and maintain these
temperature levels, and many key drivers are influenced by the resulting flow of heat.
As an example, the key driverTime to first printwill be taken. This time must be as
short as possible, and is directly determined by the speed with which the temperature
levels can rise to acceptable levels in a printer. Whether the temperatures are ‘accept-
able’ is determined by the following constraints:

• If the fuse temperature is too low, the toner will not penetrate the paper properly.
It will form a layer on top of the paper which is easily removed through bending
and scratching.

• If the fuse temperature is too high, toner will be too fluid and may be smudged
by mechanical contacts.

INTRODUCTION 91

Figure 7.1: Printer process overview

• When forming the toner image, toner must not stick to any surfaces except to
the paper where it is intended. This means that the temperature of those surfaces
must stay well below the fusing temperature to prevent accidental fusing and
soiling of these surfaces.

• Toner and paper dust will invariably contaminate parts of the rubber belt with
which toner is fused to the paper. The surface is cleaned using a special drum
that is sufficiently warmer than the surface being cleaned. In this manner toner
sticks to the cleaning drum and traps the paper dust.

• Temperature constraints apply to the imaging unit to prevent damage.

A printer will usually not produce prints continuously. Often, the printer will enter
stand-by mode when no jobs are being processed. During stand-by the temperature
levels must drop as little as possible to minimize the time to first print. If the printer is
not used for a longer period, it should enter sleep-mode and finally the power should be
switched off, to meet environmental requirements. During these phases, the tempera-
tures must also drop as little as possible. The cool rate is determined by the construction
of the printer. This leads to a number of trade-offs:

• The heat capacity of the printer should be large during printing and stand-by, and
small during warm-up.

92 HEAT MODELING IN COPIERS

• To minimize the heat lost during stand-by, the printer should be thermally in-
sulated. However, while heat is transferred from hot areas to cool areas during
cooling, it must be ensured by the design that the maximum temperatures for the
cool areas are not exceeded.

• The rollers should have high thermal resistance to minimize heat loss, but should
have low thermal resistance to equalize heat distribution e.g. over the rubber TTF
belt.

Model-based design can be used to meet the constraints and find the optimal trade-offs.

7.1.3 Heat modeling goals

If a model is to be used in model-based design, it must give answers to specific ques-
tions. For example, an important printer property is the time required to warm the
printer when it has cooled after being shut-down for a long period. Environmental
agencies specify the maximum warm-up time. It is one of the main figures of merit for
a printer. An interesting question is if a current design will have an acceptable warm-up
time. A model can be used to give the answer.

Various strategies can be used to heat the printer, by distributing the available power
in different ways to the various parts of the printer. Using a prototype, different meth-
ods of heating the printer can be tested empirically. However, only one such experi-
ments can be performed per day, due to the need for the well insulated printer to cool
before the experiment can be repeated to test an alternative strategy. Thus develop-
ment time can be gained if a suitable model is available to determine which strategy is
optimal, and how the temperatures react when a printer starts printing after warm-up.

Another reason to use modeling is that it gives insight in how the current design
can be optimized. For example, a model gives insight into which are the dominant heat
losses, so that efforts to reduce loss can be focused on the areas with the most impact.

7.2 Heat modeling techniques

Heat is a property of matter. Each chunk of matter stores heat, and achieves a certain
temperature depending on the amount of heat stored. This behavior can be modeled
similarly to the storage of electrical charge. For example, a capacitor stores electrical
charge, resulting in an electrical potential over the capacitor. Another analogy that can
be used is the storing of fluid in a container, which results in a pressure at the bottom
of the container. Here, the electrical analogy will be used most often. Just like the
storage of heat can be modeled similar to the modeling of charge in a capacitor, the
transportation of heat can be modeled similar to electrical charge, which is transported
through resistors. As with electrical resistors, heat resistors are assumed tonot store
heat.

Heat can be transported through conduction by the mechanical construction, con-
vected through the flow of air inside the printer, and radiated by hot surfaces. Also,

HEAT MODELING TECHNIQUES 93

heat is transported by the movement of objects (e.g. sheets or the TTF belt) through
a printer. Heat conduction and convection are linear resistance effects, although the
resistance may depend on system parameters e.g. rotation speed. Heat radiation is a
non-linear resistance effect, following the Stefan-Boltzmann radiation law [16].

Heat is inserted into the printer as electrical power. Most of the electrical energy
consumed by the printer is turned into heat. A printer has several heaters which gener-
ate heat from electrical energy. They can be modeled as perfect heat sources.

The heaters, the mechanical contacts through which heat is conducted, and the air
flows inside the printer that are responsible for convection, are often controllable e.g.
through actuators. As such the heat resistances must be modeled as variables, and their
control is to be included in the model.

Using heat sources, heat capacitors and heat resistances, thermodynamical models
can be made. Two main methods exist: finite-element modeling where mechanical
parts are modeled in detail, and lumped models where the thermal properties of parts
are lumped together.

7.2.1 Finite Elements Models

In Finite Elements Models (FEM), the assumption is that real matter consists of an
infinite number of infinitely small heat capacitances interconnected by heat resistors,
and that reality can be closely approximated using a fine-grained grid of partial differ-
ential equations. This can be done in one, two or three dimensions, depending on the
modeling needs.

FEMs are well suited to determine the temperature distribution of an object or
system of objects, and to predict the actual thermal characteristics of these objects.
However, when studying a complete printer, this modeling technique is too detailed:
to keep model complexity acceptable, only the average temperatures of objects and
average object characteristics can be taken into account. Océ uses FEMs to optimize
the shape of individual components in a printer that are related to heat distribution,
such as, for instance, a pre-heater.

7.2.2 Lumped heat modeling using bond graphs

In a lumped model of a printer, the model is simplified such that only the most interest-
ing temperatures are explicitly included. The assumption is then that there are a number
of parts that directly determine this temperature, and that these can be lumped together
into a single heat capacitance. The interaction between areas of different temperatures
are modeled using heat resistors between the lumped capacitances. If necessary, the
model can be refined by adding heat capacitances to better model reality.

Bond graphs can be used to construct heat flow models in two ways [67]. As bond
graphs represent energy flow regardless of the type of energy, they can be used to model
interactions between the thermal domain and other domains, for instance mechanical
or electrical. The convention for a bond graph is that the product of the two variables

94 HEAT MODELING IN COPIERS

associated with a bond must equal power. For example, in the mechanical domain the
variables are Force and Speed; in the electrical domain they are Voltage and Current.
For the thermal domain, these variables should be Temperature and Entropy flow. This
choice allows direct interaction with other domains. However, with this choice the
capacitances and resistances of the thermal domain will be non-linear, making them
complicated to model.

It is also possible to model heat flow using linear elements with Pseudo bond
graphs. Here, the two bond variables are Temperature and Heat flow. As heat flow is
a form of energy flow, this choice of variables means that the product of the two bond
variables does not equal power, hence these models are calledpseudobond graphs.
Direct connections between domains are not allowed in pseudo bond graphs. However,
as the transformation of energy between domains is not directly relevant for a printer,
pseudo bond graphs are well suited to make lumped thermal models of a printer.

7.3 Modeling heat flow with pseudo bond graphs

A heat flow model using pseudo bond graphs usually consists of the following ele-
ments:

• Heat sources. These inject heat into the model, and represent e.g. electrical heat-
ing elements.

• Heat capacitances. These stores heat, and represents physical mass.

• Heat resistances. These forms the connection between two heat capacitances.
The amount of heat that flows depends on the temperature difference between
the two masses and the resistance, which is dependent on e.g. material and con-
struction.

An storage element analogous to the electrical inductor is not needed for heat models,
as there is no physical effect that would require it for accurate modeling.

Using these elements, and the usual 0 and 1 junctions, a model can be constructed
(see [20]). In Figure 7.2, a bondgraph model of a simple heater is shown. The bond-
graph model is equivalent to the iconic model shown left in Figure 7.2; the simulation
tool 20SIM supports both types of models.

7.4 A case study

7.4.1 Modeling goal

The goal of the model described in this case study is to be able to predict the time
in which the printer is ready for printing, and what happens during the first minutes
of printing when all temperatures settle to the new situation. A printer is ready for

A CASE STUDY 95

Figure 7.2: A bondgraph model

printing when it has been warmed to such an extent that the fuse temperature stays
within acceptable bounds if printing starts at that time. Thus the following phenomena
should be modeled:

• The heating of the parts that determine the fuse temperature. These are mainly
the pre-heater (VVW) and the rubber TTF belt.

• The heating of paper sheets in the pre-heater.

• The exchange of heat between the TTF and sheets during fusing.

• The main elements that extract heat out of the TTF (various rollers and other
losses to the environment).

7.4.2 Modeling strategy

The following simplifications have been made:

• The printer is modeled in one dimension: two or three dimensional distributions
have largely been ignored. However, it is taken into account that the TTF does
not have a uniform temperature: just before the heater, the TTF surface tem-
perature is the lowest, just behind the heater it is at its highest. From the base
temperature of the TTF and the amount of heat put into it, the temperatures at
other locations are calculated.

• When interacting with the TTF, sheets are not modeled individually but as a
continuous heat flow.

Using these simplifications, it is expected that the fuse temperature can be predicted
with sufficient accuracy.

96 HEAT MODELING IN COPIERS

7.4.3 The model

Figure 7.3: Printer engine submodel

Based on these assumptions, a model can be made of the printer heat flow. The
tool 20SIM was used to construct the model. The heart of the model is shown in
Figure 7.3. The model is based on the temperatures of the TTF-core and the pre-heater
(‘VVW_plate’). From these locations, connections are made to:

• The heaters that insert heat to the system: HoD_straler and heater_VVW.

• The sensors T_VVW_sensor and T_sensor.

• The various rollers that are in contact with the TTF.

• The paper that extracts heat from the pre-heater and exchanges heat with the
TTF.

• The environment to which heat is leaked.

A CASE STUDY 97

The rotational speed of the printer is an input to the model. This is because the heat
flow through a rolling contact is dependent on the roll speed. Through experiments, the
following relationship was found:

R =
c√
v

whereR is the heat resistance;v is the roll speed, andc is a constant depending on
material characteristics and construction details, that is determined experimentally. In
20SIM, this formula is easily inserted in the heat resistances.

Many of the contacts are dependent on the mode of the printer. For example, to
prevent unnecessary heat loss, rollers like the imaging unit are only connected to the
TTF during printing, not during warm-up. This effect is modeled by giving the heat
resistance between TTF and imaging unit a second input, besides the rotation speed,
that determines whether there is contact or not.

The contact between TTF and paper was hard to model. The paper is first heated
in the pre-heater, before the contact with the TTF is established. To model the heating,
a resettable integrator is used that is reset at the start of each page, using the Start Of
Page (SOP) signal. If a normal capacitance / resistor combination is used, unwanted
interactions between VVW and TTF would result. Thus the paper / TTF interaction is
modeled by a power source that is driven by the final paper temperature (Tpap).

The model shown in Figure 7.3 is not self-contained. There is an interface to a
higher level that determines the amount of power inserted into the printer, the input
variables printer status and printer speed. Due to this structure, the model can be used
for simulation but also for validation. To validate the model, earlier measurements
can be inserted into the model using the variables, as shown in Figure 7.4. During
simulation, a controller can be implemented that uses the temperatures generated by
the model to control the virtual printer.

7.4.4 Identification and validation

The model includes various parameters that need to be specified to reflect the design
choices made. Some of these parameters can be calculated analytically, but most of
them need to be identified from measurements.

Obtaining measurements for identification is not a trivial exercise. To be useful,
measurements need to have the following characteristics:

• The thermal conditions of printer and environment need to be known accurately.

• The state of the printer needs to be known accurately. For this a log needs to be
maintained of the changes to the prototype.

• The relation between measurements and simulation results needs to be as clear
and simple as possible.

98 HEAT MODELING IN COPIERS

Figure 7.4: Top-level model

• Only one parameter should be changed during the experiment, preferably using
a simple profile, e.g. a step or sinus profile. This enables the modeller to see if
the model structure is sufficiently accurate.

• The behavior and configuration of the control software inside the prototype must
be known exactly.

• The state of mechanical switches in the printer must be known at all times. These
are determined by the software controling the prototype, which will frequently
change.

As thermal experiments have a long duration, care must be taken that the printer
is not disturbed during the experiment. Also, the measurements must be continuous
during the experiment. Measuring should not stop when the printer is shut down.

CONCLUSIONS 99

7.4.5 Managing multiple experiments

When performing measurements on a prototype, it is important to be able to compare
different measurements with each other. A model is always a simplification of real-
ity. Thus, there will always be differences between model and reality. By comparing
modeled and measured temperatures for many experiments, it can be evaluated if the
‘typical’ case is correctly modeled.

An advantage is taken from the separation of the control model from the physical
model. The state of switchable contacts and the power injected into the printer is
measured, and are injected into the physical model. Then, the outputs of the model
are compared with the measured outputs, and parameters are tuned to get a proper
response.

A scripting language is needed to do this effectively. It must be possible to quickly
modify C and R values, evaluate the models quickly in a batch process, and present the
results in a way that gives overview. At the time of writing, 20SIM did not offer a script-
ing language. Therefore, C-code was generated automatically from the detailed model,
and this C-model was evaluated using the Matlab scripting language in Simulink. Fig-
ure 7.5 shows how the 20SIM model was encapsulated in Simulink. Figure 7.6 shows
the top-level Simulink model.

Figure 7.5: 20SIM model in Simulink Figure 7.6: Top-level Simulink model

This set-up allows the evaluation of the model with measurements taken in different
conditions, to see how robust the model is. If the evaluation shows that the model is
not accurate in different conditions than those used for identification, the model is an
oversimplification. Missing elements can then be added to the model. Also, this set-up
gives the possibility to implement automatic tuning of model parameters. However, in
the current implementation this is not present yet. This is a topic for future research.

7.5 Conclusions

As shown in this chapter, heat flows can be modeled using 20SIM. However, identifi-
cation of the model parameters from experiments takes considerable effort.

100 HEAT MODELING IN COPIERS

At the time of writing this chapter, the model was still under development. Thus
no definite results can be given. However, the expectation is that using this model, the
following can be achieved:

• Optimization of the warm-up procedure.

• Testing and tuning the control algorithms for temperature.

• Optimization of critical parts of the heat flow design.

It is expected that it will be straightforward to re-use this model for other printers
of comparable design. Also, the modeling strategy described in this chapter can be
used to construct heat models for any printer. It is also expected that by using the
model described in this chapter, the design time needed to optimize the heating of a
new printer can be substantially reduced.

Chapter 8

Modeling of performance

Authors: P.F.A. van den Bosch, O. Florescu, M.H.G. Verhoef and G.J. Muller

8.1 Introduction

The performance of the control system is an important aspect of a machine. It would
be a waste if a high-tech machine has been build such that it can physically achieve a
high throughput, for example printed sheets of paper, but is limited because the soft-
ware controlling it cannot keep up. Unfortunately, with current techniques it is hard to
‘predict’ beforehand what the performance of the software will be when it finally runs
in the real system on the real processor(s). There are two (extreme) ways to deal with
it:

1. Over-dimension the hardware platform to make sure the software will run.

2. Implement the software, then run and evaluate its performance on the target hard-
ware platform. Then use this information in the next design cycle.

The disadvantages of both approaches are clear. In the first situation the cost price of
the entire system will surely be higher than necessary. In the second case, the design
time is increased dramatically because more design cycles are needed. Therefore, it is
important to strive to a development method that leads to fast design cycles for software
performance, while having an accurate enough prediction.

8.2 Problem formulation

As explained, the goal is to find or develop methods, techniques and tools that make it
possible to predict the performance of software accurately based on only a small model

101

102 MODELING OF PERFORMANCE

that does not need a lot work to come up with. Obviously, there is a tension between
the accuracy of the performance prediction and the amount of work needed to make
the model. In general, it is even likely (but not proven) that it will require more work
to make anexactprediction of the performance than it would be to create the whole
system, run it and see how it performs.

During the process of performance modeling, and also during other Boderc activ-
ities, we realized that the goal of creating a model is not only to do an analysis and
to make a prediction. Probably more important is the understanding that is obtained
by creating the model. This understanding leads to the ability to make better design
choices and to be able to understand the influences faster, thus decreasing the design
cycle time.

Summarizing, the aim of this work is

A model of the performance characteristics of a control system that in-
creases the understanding of the relations between hardware and software
parameters, such that in early design stages enough confidence is gained
to be able to iterate through the design choices with a short cycle-time.

8.3 Modeling approach

In this chapter an approach is presented to make a model according to the aim men-
tioned before. Although there are techniques, like the ones presented in [117] and
[40] that enable analysis and prediction of the performance of a system before its ac-
tual realization, they are not largely used in industry because of their conservatism or
problems to scale with the dimension of the system. Each method makes a trade-off
between the time spend to make such a model and the accuracy of the results. Many
things influence the performance of a system. In Figure 8.1 an overview is provided of
typical factors that determine the performance. Four layers are considered:

• The lowest level is thehardware platformthat influences the performance through
processor speed, bandwidth and access latency. The efficiency at which it can
make use of the memory bandwidth is increased by a memory cache. However,
this makes the performance less predictable and more dependent on what exactly
runs on the processor.

• The next layer is typically theoperating system, including a scheduler, which
takes care of resource sharing by handling task switches and interrupts, and can
provide advanced inter-process communication.

• Then there might be another layer, themiddle wareor services that typically
providesservicesand abstractions.

• The top-layer is the application itself. This application might be modeled entirely
with the help of the middle ware layer, but usually also contains direct RTOS
calls and might directly access the hardware.

MODELING APPROACH 103

The performance of the entire system depends on how the higher levels use the lower
levels. On the vertical bar in Figure 8.1 thetools are mentioned, like compilers and
linkers but also code generators of the middle ware that can have a huge influence on
the performance.

Figure 8.1: Important layers when considering software performance.

The modeling approach is to consider these layers and to characterize the important
aspects of all these layers with quantifiable parameters. Ideally, the model will be a
formula in which the performance (execution time) of the application is expressed as a
function of the middle ware, RTOS and hardware parameters. The middle ware again
can be expressed as a function of the RTOS and hardware and the RTOS as a function
of the hardware alone. Unfortunately, some characteristics on the lower levels are
dependent on the higher levels. For example, the efficiency of a processor is boosted
by the use of caches, but the higher levels and tools determine what the influence of the
cache will be. Despite it is hard or impossible to estimate these influences accurately,
it will be shown that it is possible to create useful insights in the performance.

8.3.1 The case under study

In the next paragraphs, the embedded control software of a printer / copier will be taken
as a study object; it wil be used for measurements and modeling. The embedded control
consists of roughly two parts: a hard real-time part and a soft real-time part. The hard
real-time part is the lower level that takes care of things like motor controllers, heater
controller, and paper transport; it directly interacts with the environment. The higher
layer (soft real-time) is in charge of planning: it receives requests to print or scan one
or multiple pages and then makes a detailed planning for these sheets. The planning
considers the availability of all functions, like paper path, finisher and printing process.
Once this planning or allocation is ready, it is communicated to the lower level control,
which will execute it and report back on success or error conditions.

104 MODELING OF PERFORMANCE

Figure 8.2: Positioning the embedded control in the printer.

In our casestudy, the control software runs on a microprocessor (ARM9) on which
the VxWorks operating systems is also running. The aforementioned hard real-time
tasks are all executed in a periodical task that is called every 2 ms. This task has a high
priority to make sure its behavior is very predictable. The other tasks (like allocation,
error handling et cetera) run as VxWorks threads with lower priority. Most of the
control software is generated from RoseRT and uses an extra abstraction layer, the
RoseRT runtime system. This runtime system (RTS) includes a mechanism to handle
messages between capsules (objects) and handles the execution of state machines that
are part of the capsules. The RTS and the application can be spread over multiple
threads (each capsule has its own thread) or combined in one.

So, when the system is running, the hard real-time task will interrupt the other tasks
every 2 ms and run until completion (of course much less time than 2 ms). The other
tasks will only run in the processor time that is left, and typically take longer to finish.

8.4 Characterization of the layers

As proposed, the model will be a function that relates the performance of the appli-
cation to the other layers. For each layer it is possible to measure or calculate a few
characteristics. These characteristics can be used to evaluate the performance of the
control software as a whole.

8.4.1 Characterization of the hardware platform

Figure 8.3 shows the architecture of the chosen system-on-chip (SoC) with ARM9
core. The CPU core runs at a maximum speed of 200 MIPS (Million Instructions Per
Second), but because the latency and bandwidth of the memory is much slower this
speed will only be reached when all instructions and data are in cache. The system has

Figure 8.3: Simplified structure of the SoC showing parts relevant for code execution.

a two-level memory hierarchy, with a level-1 instruction and data cache and external
SDRAM. The cache has 8 words per cache line and 4 sets of 64 cache lines each,

CHARACTERIZATION OF THE LAYERS 105

resulting in 8kB for instruction and data cache separately. The SDRAM memory and
controller have a maximum bandwidth of 100 MHz. Figure 8.4 distinguishes external
and internal latencies. Internal latencies are between the CPU core and the SDRAM
controller, external latencies are between SDRAM controller and the external memory.
In the case of a cache miss, whole cache lines are fetched at once, which leads to
an additional transfer time from memory of 8 memory clock cycles. The CPU-core
includes a five stage execution pipeline, the third stage is the execution stage.

Figure 8.4: The time for fetching an instruction varies depending on cache setting and
availability in cache.

Equation (8.1) is a simple formula for the time it takes to execute a piece of code.

Texec = Ni · Tcpu · CPI (8.1)

where
Ni Number of instructions in piece of code
Tcpu One CPU cycle 1

fclk

CPI Average cycles per instruction.

The formula can be further refined by specifying the averageCPI more accurately.
When instructions and data are available in the cache, theCPI of that instruction will be
equal to the one specified in the data sheet of the CPU. Depending on the instruction,
it will take 1 to 3 CPU cycles. A branch, for example, typically takes 3 clock ticks
because the contents of the pipeline becomes invalid. When the cache does not contain
either the instruction or the data (or both), the CPU will be stalled until it is available.
Fetching from memory is slower, because the memory bus is slower, with a factor
Ndiv, than the CPU clock. Accessing the memory results in an additional latency; this
latency includes amongst others the so-called CAS-latency and is in totalNlat memory
cycles. Formula (8.1) can be refined by splitting the instructions,Ni, in instructions
that are in cache,Nfast, and instructions that are not in cache,Nslow.

Texec = Nfast · Tcpu · CPI + Nslow · Tmem · (Nlat + Npenalty) (8.2)

where
Tmem One Memory cycleTmem = Tcpu ·Ndiv

Ndiv Factor between memory and CPU speed

106 MODELING OF PERFORMANCE

cache setting measured time [CPU cycles]
normal 815 to 3.9k
flushed 3.9k
off 18k

Table 8.1: Measured execution time for 800 NOPs with different cache settings.

The penalty time,Npenalty, will be explained later on. In order to measure those
(combinations of) latencies, 800 individual instructions (eg NOPs) are executed mul-
tiple times. This program can be run with different settings of the cache. When the
cache is on, eventually all instructions will hit in the cache. This results in a hit rate of
100 %. When the cache is flushed before the execution of the program, all the instruc-
tions have to be fetched again (8 at a time, so 100 fetches) from memory. Effectively,
this results in a hit rate of 87.5 %. When the cache is disabled, it needs to fetch all
instructions (800 times) from the memory separately. This corresponds with a hit rate
of 0 %. The resulting execution times for the different situations are measured and
listed in Table 8.1.

Figure 8.5 shows how the instructions are fetched and executed for different settings
of the cache. It is shown that executing instructions is done parallel to transferring
them from memory to cache. When all fetches hit in the cache (1 in Figure 8.5), an
instruction is executed every CPU clock, there are no latencies. In the case that the
fetch initially misses, the instruction is fetched together with 7 other instructions (2).
As soon as the first one is in the cache, it can be executed (3), the latency is 23 CPU
cycles. The next sequential instruction can only be executed when it is transferred from
memory that is why it is 1 memory clock cycle (2 CPU clocks) later. When the next
instruction results in a cache miss, it is still necessary to complete the transfer of all
8 words before fetching of the next words takes place (4), in this case the effective
latency adds up to 38 CPU cycles. In the case that the cache is disabled, a word is
always fetched from memory before it can be executed (5), the delay is always 23 CPU
cycles.

From the measurements and equation (8.2), it follows that the latency,Nlat, is
23 CPU cycles (or 11 memory cycles).Npenalty is used to deal with the differ-
ent effective latency in the case that not everything is in cache. If the hit rate is1

8 ,
only one instruction is executed while 8 have been fetched, the penalty in that case is
8 · Tmem − 1 · Tcpu. However, if the hit rate is78 , the penalty is8 · Tmem − 7 · Tcpu,
because those 7 CPU cycles were effectively used to execute 7 instructions in parallel
with transfers from memory to cache. In general:Npenalty = 8 ·Ndiv − 8 · HR, with
HR the hit rate.

Note that it depends largely on the type of instructions what the averageCPI is.
For example, instructions are only executed efficiently if the code is sequential without
branches. A branch instruction flushes the pipeline and has to wait for the cache line to
be filled entirely. For now, the effect of the 5-stage pipeline is neglected: an instruction
is assumed to be executed when it is available.

CHARACTERIZATION OF THE LAYERS 107

Figure 8.5: Timing for fetching and executing instructions with caches disabled and
enabled.

Measurement method

For all the timing measurements, an on-chip timer has been used. This timer has a res-
olution of 270 ns. From a few tests of reading the timer register, it has been concluded
that the accuracy of the timing method is 200 ns (40x 200MHz-cycles).

Assumptions

In order to simplify the formula, many assumptions were made. These assumptions
are important because if they do not hold or cannot be neglected, the formula does not
hold and needs adaption. The most important assumptions are:

• Extra latencies caused by the SDRAM are deemed irrelevant. For example
switching banks in the memory chips results in higher latencies, but data and
code have their own memory banks, and most code is assumed to be very local,
reducing jumps over bank boundaries and over SDRAM rows that are 256 words
long.

• The pipeline of the CPU does not stall, this means no branches (sequential code)
and no instructions that have to wait for each others data. When this is not the
case, the averageCPI will increase, but also the penalty will be different.

108 MODELING OF PERFORMANCE

8.4.2 Characterization of the RTOS

The RTOS, VxWorks, provides a scheduler that activates and deactivates tasks based on
their priority. The scheduler is invoked periodically by a timer and sometimes by tasks
through system calls like suspend and semTake. Every time the scheduler is invoked,
it has to determine which task to run next and this involves context switching: store
the state of the previous task and load the state of the new task. Typically, a profiler
like WindView does not show this overhead: it only shows when a task ‘ends’ and
apparently the next task immediately starts. With two tasks, like in Figure 8.7, it is
possible to measure the task switching time. Figure 8.6 shows this graphically: two
tasks exist that both run periodically, the timer is read before the suspension of task 1
and after the suspension of task 2, which runs at a lower priority. As soon as the main
task suspends, task 1 will resume, the cache flush is performed, the timer is read and
task 1 is suspended, after which the previously suspended task 2 resumes.

Figure 8.6: To measure the task switching time, we use two tasks that execute sequen-
tially with a cache flush before the switch.

The results of the measurements are shown in Table 8.2. Typically a task-switch
will take between 1.6 (best-case) to 20 (worst-case)µs, when caches are enabled and
depending on whether the code between the task-switches messes up the cache a lot.
According to Table 8.2, a task switch with cache disabled takes 10k CPU cycles. 10k
divided by 23 cycles per instruction (see Figure 8.5) is 430 fetches, both instructions

/ * High priority * / / * Low priority * /
void task1(void) void task2(void)
{ {

while(1) while(1)
{ {

CACHEFLUSH; taskSuspend();
READ_TIMER(startTime); READ_TIMER(endTime);
taskSuspend(); }

} }
}

Figure 8.7: Example of code used for measuring the task switching time.

CHARACTERIZATION OF THE LAYERS 109

cache settings Tsw

[CPU cycles] [µs]
normal 320 to 1.6k 1.6 to 8
flushed 2.8k to 4.0k 14 to 20
off 9.4k to 10k 47 to 51

Table 8.2: Measured task switch time for different cache settings.

and data. Best case 320 CPU cycles are needed, which means that it mostly runs from
cache!

Caching effects by context switching

When a task is interrupted by another task, the current content of the cache is typically
worthless: different code will be executed. First the scheduler of the RTOS and then the
next scheduled task will be executed by the processor; the cache needs to be ‘refilled’
with relevant contents. Knowing the size of the cache it is possible to estimate the
worst-case effect. At most 256 cache lines must be refilled, which gives an overhead
of 39 CPU cycles per line:256 · 39 · 5ns = 50 µs. Therefore, it can be argued that
penalty caused by the pre-emption of a task is 50µs.

8.4.3 Characterization of the middle ware: RoseRT

Approximately the same measurement as done for VxWorks with the context switch
can be done for RoseRT. Instead of tasks, capsules are considered that send a mes-
sage (an integer) to each other, see Figure 8.8. Before sending the message with
messageOut.signal1(0).send() and after receiving it withMessageIn , a
time stamp is taken.

Figure 8.8: Two capsules that send messages to each other.

The scheduling of capsules and messages is done by the RoseRT runtime system,
which is linked together with the application code. It can be chosen to make a phys-
ical RTOS thread for each capsule, or to map them both on the same physical thread.
Depending on this choice, the overhead is different, as shown in Table 8.3.

110 MODELING OF PERFORMANCE

Physical threads Cache Latency
one normal [6, 37]µs

flushed [33,43]µs
separate normal [28, 67]µs

flushed [82, 98]µs

Table 8.3: ‘Overhead’ of sending a message between capsules in different configura-
tions.

8.4.4 Characterization of the application

Formula (8.2) can be refined more by taking the hit rates of the caches into account, as
in formula (8.3).Npenalty has been replaced by its value depending on the hit rate.

Ni · ((19 · Tmem − 8 · Tcpu · (1−MRi)) · (1−MRi) + CPI · Tcpu · (1−MRi))+
Nd · ((19 · Tmem − 8 · Tcpu · (1−MRd)) · (MRd))

(8.3)
where

Ni number of instruction fetches
Nd number of data fetches
Tmem memory clock cycle time
Tcpu cpu clock cycle time
MRi cache miss rate for instructions
MRd cache miss rate for data

Therefore, a piece of code (program) can be characterized by values forMRi, MRd,
Ni, Nd, andCPI. The values forTmem andTcpu are hardware characteristics. For an
existing application, the cache miss rate can be measured by executing the code and
measure the execution time with caches enabled and again with caches disabled for
both data and instruction cache separately. That will result in 3 measurements, obtain-
ing 3 equations for the parameters. Unfortunately, there are 5 independent variables.
However, it is possible to determine the set of possible solutions.

The measurements for three cache settings were performed for a part of the soft
real-time control code. After analysis, it turns out that there are 3 - 5 more instruction
fetches than data fetches. Furthermore, the miss rate for instructions is between 0 and
5 % and for data between 0 and 18 %. Figure 8.9 shows the relation for different values
of theCPI. The values near to 0 % can be confidently neglected, soprobablythe values
will be around 3 % miss rate (Ni = 7.7M) for instruction fetches and a data cache miss
rate of 10 % (Nd = 1.8M).

Usage of RTOS and middle ware

The overhead of the RTOS is mainly due to task switches; during a task switch, the
scheduling function is executed. There are at least two task switches every 2 ms be-

CHARACTERIZATION OF THE LAYERS 111

Figure 8.9: Miss rates of data and instruction cache as function of each other, actual
value must be on this line, all based on measurements.

cause of the hard real-time task. Furthermore there are several other tasks, typically
leading to 1500 task switches per second. This number hardly depends on the printing
speed. The reason is that after the periodic task always another task is called. One
task switch takes worst case 20µs, the overhead by task switches is therefore at most
1500 · 20 = 30 ms per second, or 3 %.

The overhead of the middle ware is characterized in terms of message overhead.
The amount of messages during a print job was measured (typically, this can be done
on the target platform if available, but just as well on a simulation on the host). The
number of RoseRT-messages per page is 210. Of these messages, 120 are internal in a
thread and 90 are between threads, causing extra overhead. With the help of Table 8.3,
the maximum overhead caused by the messages is calculated to be120 · 43 + 90 · 98 =
14ms per page. Suppose the printer has a speed of 60 pages per minute, then the
overhead is at most 1.4 %.

Additional influence of cache

As explained earlier, due to task switches, the cache is spoiled which makes the inter-
rupted task less efficient. In this system, an interrupt occurs every 2 ms, flushing the
cache. When a cache is spoiled, it will take at most 50µs to refill all cache lines and
make the interrupted task run at full speed again. In this case, the harm done by this
flushing is thereforeat most500 · 50 = 25 ms per second, thus 2.5 % CPU time. This
is the effect of periodic interruption on the soft real-time tasks.

112 MODELING OF PERFORMANCE

Speed cpu,mem Estimated time Measured time
(CPI=1.0) (CPI=1.5)

200,100 107 ms 107 ms 108 ms
100,100 137 ms 161 ms 159 ms
200,50 184 ms 160 ms 178 ms
180,60 162 ms 148 ms -
160,80 134 ms 134 ms -

Table 8.4: Predicted and measured execution time at different clock speed configura-
tions.

8.4.5 Validation

In the previous section, formula (8.3) was shown that claims to predict the execution
time of an application based on a few measurements on the bare level. With these
characterizations, the effect of changing hardware parameters can be estimated. It has
been shown already that the effects of task switches and messages can be neglected,
although the effect of the parameter changes can also be calculated for them. The
effects of four additional hardware platforms are considered (see Table 8.4): the same
SoC but with other clock rates for CPU and memory. For two configurations, the
measurements are also done for validation. For the configurations of 180 MHz CPU
and 60 MHz memory bus, and 160 MHz CPU and 80 MHz memory bus, no validation
is done, only a prediction. The latencies of the memories are kept the same number
of clock ticks for all configurations. Table 8.4 shows the measurement results and the
corresponding predictions from equation (8.3).

It is clear that the correctness of the answer depends highly on theCPI. During the
previous analysis, a method to correctly estimate theCPI has not been considered, but
it turns out to be very relevant for the prediction of the execution time.

8.5 Conclusions

In the problem formulation we stated that we wanted to come up with a simple model
to estimate the performance of the embedded control software. In the following sec-
tions some formulas and measurements have been given. As was already said in the
problem statement, one of the most important aspects of making a model or a formula,
is the insight gained from the formulation. Making a model forces the engineer to
be explicit and to quantify and measure relevant aspects, like for example the number
of task switches. This is exactly what can be concluded from the case study: insight
was gained, but a simple formula that can accurately predict performance on a chosen
platform is not yet available. Additionally, the following is concluded:

• A method has been proposed to create a model to estimate the performance of
an embedded software application. It is proposed to do simple measurements at

CONCLUSIONS 113

each layer. In the particular case, the overhead that can be expected by RTOS
and middle ware is limited, it is only a few percent. When going to a higher
printing speed, only the middle ware introducesadditionaloverhead, but it will
only become significant at very high printing speeds.

• The method to link application performance to hardware characteristics does
provide a lot of insight in the processor workings. It also gives insight in esti-
mates of characteristics of the application, like cache miss rates and number of
instructions. However, the validation shows that especially theCPI is a crucial
parameter that has not been addressed thoroughly enough yet.

• In this particular case it has been shown that the overhead introduced by using
messages of RoseRT is not very much, approximately 2 % of the total. The same
argument holds for the time ‘lost’ in context switches. However, in new cases
these aspects must definitely be measured and calculated again, it is the only way
to be sure.

Furthermore, we like to make the following remarks and recommendations:

• When moving to another platform than the current ARM9, the application itself
is not going to change much. However, the execution times will differ. Take for
example a Pentium processor. The execution speed of the core is much higher
than of the ARM, a factor 10, 2 GHz instead of 200 MHz. The memory bus is
typically faster with respect to possible sustained throughput, typically 400 MHz.
However, the latency of the memory is not less, it might be even more because
of the complexity of a Pentium board, there is a bridge between processor and
memory, which will increase the latency. On the other hand, a Pentium has a
large L2 (even L3 cache) in which very large parts of the code can reside. The
chance that these caches have a miss are very small. Anyway, what needs to be
done are the micro-measurements, to get a feeling for the latencies and speeds
of the processor board. The effect of the different caches has to be measured and
taken into account, this means that it is necessary to estimate the cache misses
for all three caching levels.

• There are numerous ‘details’ that influence the execution time of a piece of code.
Some of them are parameters of the formulas and can be varied to study the
effects. But other things like compiler flags are not in the formulas, but they
do influence the execution time. It is important to carefully keep track of all of
them, to make themexplicit. It would be a good idea to generate a list of relevant
parameters to consider. An engineer can then take this list and pick the relevant
items for his particular problem.

• Even if information about latencies and bandwidths is available in data sheets or
given by another designer, it is worthwhile to do a few measurements. This will
give a better ‘feeling’ and forces to validate the implicit model.

114 MODELING OF PERFORMANCE

Chapter 9

Virtual printer modeling

Author: K.J. Klein Koerkamp

9.1 Introduction

From a customer perspective, print quality is an important aspect of a printer. This
was already discussed in Chapter 3 where print quality was identified as one of the key
drivers of printers. In order to improve the print quality of Océ’s printers, it is important
to know what the effect of the properties of a printer is on the resulting print quality.
Such knowledge would support taking decisions in an early phase of development of
new printers. Virtual printer models have been developed to gain insight in the complex
relations between technology variables such as resolution, dot size, ink colors, et cetera,
and print quality. Another goal of the use of virtual printer models is to predict what
the print quality of new printer concepts will be. Often it costs a considerable amount
of effort to design and manufacture a test-setup to test new ideas for a part of a printer.
With the models the working and the effect on the print quality of this part can easily
be evaluated. The virtual printer models can be viewed as ‘plug-ins’ (step 3b) of the
high level method discussed in Chapter 2.

The framework for linking technology variables of a printer to the final print quality
is given in Figure 9.1

The elements of the image quality circle are:

• Technology variablesare the properties of a printer that are chosen during the
design of a printer, such as the type of image processing, resolution, speed, dot
sizes, ink colors, et cetera.

• Physical image parametersare the properties of a print that can be measured,
such as optical density, dot positions, gloss, et cetera.

115

116 VIRTUAL PRINTER MODELING

Figure 9.1: The image quality circle

• Customer perceptionsare the perceived image quality aspects of images. Exam-
ples are color rendition, sharpness, detail visibility, text quality, area uniformity,
et cetera.

• Customer image qualityis the overall quality number a customer would assign
to a print.

These elements are connected through a series of models:

• System modelsdescribe the behavior and the working of a printer.

• Visual modelsdescribe how prints are perceived by humans and how the per-
ceived attributes depend on the physical image parameters.

• Image quality modelsdescribe how the different perceived attributes contribute
to the overall image quality. This is often market and application dependent.

The virtual printer models that have been developed are system models that de-
scribe how the technology variables of a printer can be linked to physical image pa-
rameters of the final print. They simulate the behavior of a printer with certain settings,
and the output is an image which represents the light reflection of a print. Currently at
Océ there are no good visual models or image quality models. Linking physical image
parameters to customer perceptions is done in the same way as is done with real prints:
by a suitable measurement application or by visual assessment. Customer perceptions
are linked to customer image quality by Océ’s market experts or customer visits.

Océ has two color print technologies: direct imaging process (DIP) and inkjet. The
printing process of these technologies is completely different. As a consequence, two
different models have been developed to describe the process. Each model consists
of several modules which describe the different process parts of a printer, and which

VIRTUAL DIP PRINTER 117

can be changed or improved independently. In this way experts of each process part
can contribute to the model themselves by improving or adapting a module using their
specific knowledge, without having to know much about other process parts. A project
leader is needed to keep an overview over the different parts of the model. By develop-
ing the models in such a multi-disciplinary way, the virtual printer models have become
a valuable developing tool, which can simulate printers with a high degree of accuracy.

The outline of this chapter is as follows. An overview of both virtual printer models
will be given in the next two sections. After that some examples will be given of how
the virtual printer models are used in industrial practise. This chapter will be finished
with conclusions about the working of the virtual printer models and their benefit for
printer development.

9.2 Virtual dip printer

Before describing the DIP printer model, first a description of the basic working of the
printing process will be given.

9.2.1 DIP printing technology

From 2001, Océ successfully applies the unique DIP printing technology in its Color
Production Systems (CPS). A global representation of the DIP process is shown in
Figure 9.2.

Figure 9.2: Schematic representation of the DIP-printing process

Seven color toner images are developed in seven direct imaging (DI) units, which
each comprise of a supply roller, a development sleeve and a DI-drum. After develop-
ment on the DI- drum surface, each single color toner image is transferred to the central
intermediate drum. Finally, the total image is transferred and fused to paper in a single
step applying pressure and heat. These steps will now be explained in more detail.

The first step is the development of the toner images in the DI-units. This process
is illustrated in Figure 9.3.

The supply roller continuously develops toner particles on the surface of the DI-
drum. The rotating DI-drum transports the toner particles towards the toner assembly
in the development nip (the space between the development sleeve and the DI-drum). In

118 VIRTUAL PRINTER MODELING

Figure 9.3: Schematic representation of the DI development process

the development nip two things can happen. The DI-drum consists of circumferential
electrodes, tracks, which can be switched individually to a voltage of 0 V or 40 V.
When a track has a voltage of 0 V, toner particles that enter the development nip on this
track are magnetically pulled from the DI-drum to the development sleeve. They are
transported back to the supply roller. In this way no toner is developed on this track.
Whenever a track is switched to a voltage of 40 V, the electrical force on the toner
particles on this track towards the DI-drum is larger than the magnetic force towards
the development sleeve and the toner particles are not pulled from the DI-drum towards
the development sleeve. In this situation, toner particles are developed on the DI-drum
track. By switching the voltages of each track at the right moment, a toner image
can be developed on the DI-drum. The axial and tangential resolutions of this image
are determined by the track pitch and the timing of the print voltage per track. These
resolutions are typically 600 dpi and 2400 dpi respectively.

Toner particles are always developed in clusters, because the size of a toner particle
is much smaller than the width of a track. To develop a cluster, a track is switched to
a voltage of 40 V for some period of time. The track will however not instantly be
completely covered by toner particles. The distance needed to achieve full coverage
is called edge sharpness. In Figure 9.4 it is shown how the toner-coverage cov(x) in
the process direction x follows the print voltage V(x) for a cluster of toner particles
with length a. Here the average toner-coverage profile is shown. The coverage profile
of a single printed cluster would not look so smooth. Especially at the edges of a
cluster there is much variation in the coverage. The length of the printed cluster is
always larger than a. The extra length∆a is called line broadening. The shape and the
variations in the shape of the individual clusters determine the final print quality to a
large extend. A CCD-recording of developed cluster of toner particles on the surface
of the DI-drum is also shown in 9.4.

After development, the seven color toner images are subsequently transferred from
the surface of each DI-drum to the intermediate drum. Due to the adhesion forces on
the toner particles, toner particles can not be transferred on top of other toner particles
that were already transferred by other DI-units. This is illustrated in Figure 9.5: toner
particles will only be transferred to ‘empty’ areas on the intermediate surface.

Finally, the full-color mono-layer toner image is transferred and fused (‘trans-
fused’) from the intermediate drum onto paper. By applying heat and pressure, the
toner particles are melted and pressed into the paper (see Figure 9.5).

VIRTUAL DIP PRINTER 119

Figure 9.4: A print voltage signal on a track (left) is transformed into an average toner-
coverage profile (middle). To the right, a CCD-recording of a developed cluster of
toner particles on the surface of the DI-drum is shown.

Figure 9.5: Left a schematic representation of the transfer principle, right a schematic
representation of the transfer and fuse process

9.2.2 DIP printer model

The DIP virtual printer model is a system model that describes the working of the DIP
printing process. The model consists of five main modules as illustrated in Figure 9.6:
image processing, development, transfer, transfuse and the optical model. The five
different modules of the model can be changed or replaced independently. The data
flow between the modules consists of seven color bitmaps containing toner-coverage
values per pixel. The final output of the model is a bitmap with color values for each
pixel.

The digital image is processed by the image processing in exactly the same way as
is done in real printers. The image processing generates an image for each DI-drum.
This image contains the voltage level (0 or 40 V) for each track at each (discrete)
moment of time.

In the development module the toner-coverage on the 7 DI-drums are simulated. A
statistical model is used to predict coverage variations due to the complex interactions
in the development nip. From measurements on clusters of toner particles on DI-drums,
it is known that the front and back edge sharpness and the line broadening of the av-
erage coverage profile of a cluster are independent of the addressed cluster length a.
The average values and the variations of these parameters are measured on a test-setup
for a certain printer configuration, i.e. for different magnetic knife types, development

120 VIRTUAL PRINTER MODELING

Figure 9.6: Flowchart of the DIP-printer model showing the different modules

sleeve speeds and toner types.
Now, it will be shown how this statistical model is implemented to calculate the

toner-coverage profile of a single cluster. Usually a cluster has a length of several
pixels (time moments). The coverage prediction process for pixel 2 within a cluster
with a total length of 7 pixels is represented in Figure 9.7.

Figure 9.7: Statistical coverage selection process from average coverage profiles, to
standard deviation, to normal distribution, to selected coverage profile representing
toner-coverage per pixel on the surface of a DI-drum

First, the average coverage profile of the cluster is calculated, leading to an average
coverage for each pixel within the cluster. The average coverage profile of a developed
cluster is approximated by a trapezium profile, with the front and back edge sharpness
and the line broadening as input parameters. Subsequently, the coverage variation is
determined as depicted in Figure 9.7(b). Then, the corresponding normal distribution
is calculated as illustrated in Figure 9.7(c). From this distribution a coverage cov∗(2)
is taken for pixel 2, which represents the fraction of the area of the pixel that is covered
with toner particles. The end result after evaluation of all pixels within a cluster is a
coverage profile for the evaluated cluster (depicted in Figure 9.7(d)). For each of the
seven colors, a bitmap is filled with coverage values representing toner-coverage for all

VIRTUAL DIP PRINTER 121

pixels on the surface of each DI-drum. The development module has been validated by
comparing simulations with measured cluster coverage profiles on the DI-drum surface
using a high speed CCD camera. An example of such a validation result is shown in
Figure 9.8. It is shown that the assumed statistical model with the front and back edge
sharpness, the line broadening and the standard deviations of these values as input,
is sufficient to predict the coverage profiles and the coverage variations of clusters in
good agreement with the measured coverage profiles and coverage variations.

Figure 9.8: Validation of the simulation of toner development on the surface of the
DI-drum

The development module also incorporates a similar statistical model to simulate
the coverage profiles in the axial direction arising from the transitions from track to
track.

In the transfer module of the model, the seven bitmaps with coverage data are
transferred to the intermediate drum in the order as applied in the printer. Because the
black toner image is the first to be transferred, the probability that toner particles are
transferred from a pixel on the DI-drum to a corresponding destination pixel on the
intermediate surface is 100 percent. However, the transfer probability per pixel of the
following color toner images depends on the toner-coverage that is already present at
the destination pixel, i.e. the sum of previously transferred toner-coverage. Other input
parameters regarding this module are color-to-color registration errors and variations
in transfer efficiency.

In the transfuse module, toner particles are considered to be homogeneous spheres
which are pressed into a disc-shape during transfuse. This results in a coverage in-
crease and a layer thickness decrease. In general, the coverage increases with about
33 percent, depending on the toner and paper type and the transfuse pressure and tem-
perature. This module’s output are seven bitmaps containing coverage values and layer
thickness for each toner color on the paper.

122 VIRTUAL PRINTER MODELING

To translate toner-coverage to color values, a spectral color prediction model is used
[90]. This optical model is based on the combination of ray-tracing, Mie scattering and
Monte Carlo simulations. It is applied to determine the color values of each pixel in the
simulated print as a function of light source, toner ingredients, layer thickness, media
type and toner area coverage. The model addresses effects as optical dot-gain, gloss
and fluorescence. The output of the model is equivalent to an image that would be
obtained by a perfect scan of the simulated print.

9.3 Virtual inkjet printer

Also for this model, first a description of the inkjet printing process will be given.

9.3.1 Inkjet printing technology

An inkjet printer contains a carriage that moves from left to right and from right to left
over the paper. After each pass, a stepper motor moves the sheet of paper a certain
distance. In this way, the carriage scans over each part of the sheet of paper. The
carriage contains four printheads, one for each color (cyan, magenta, yellow and black).
Each printhead contains an array of nozzles: the openings out of which drops can be
jetted. These drops have a typical diameter of about 30µm. An image is printed at a
certain resolution of for example 600 dots per inch (dpi). This means that the image is
divided into pixels of 42.3µm (600 per inch). A drop can be jetted into each pixel. The
drop size is fixed. Different shades of colors are printed by varying the amount of pixels
in which a drop is jetted. Each pixel can contain more than one drop, but maximally one
drop of each color. Image processing algorithms determine which colors are printed in
each pixel. Due to variations in the jet speed or jet angle, drops can reach the paper at
not exactly the right place. Drop placement errors and drop size variations determine
the final print quality to a large extend. The shape of a dot on paper depends on the
type of paper, the type of ink and the presence of other drops in the neighborhood.

9.3.2 Inkjet printer model

This model consists of four main modules as illustrated in Figure 9.9: image process-
ing, drop positioning, fuse and the optical model. Also here the digital original image
can be any full-color file on a PC and the image processing is exactly the same as in
real printers. As before, the four different modules of the model can be changed or
replaced independently. The final output of the model is a bitmap with color values for
each pixel.

The image processing does the color management for the printer and calculates
an optimal dot pattern for the printed image. Based on these desired drop positions,
the movement of the paper and the movement of the carriage, the image processing
generates a file which contains the moments each nozzle should jet a drop.

VIRTUAL INKJET PRINTER 123

Figure 9.9: Flowchart of the inkjet printer model showing the different modules

The drop positioning module simulates the exact movement of the paper and the
carriage, and calculates a flight path for each drop when it is jetted. The model includes
paper step errors, printhead alignment errors and nozzle jet errors (jet timing, jet angle,
jet speed, complete nozzle failure), which can all lead to drop positioning errors.

The fuse module simulates the ink coverage on paper, based on the drop positions
that were calculated by the drop positioning module and the specified dot shape. Exam-
ples of different dot shapes are shown in Figure 9.10. In this module also interactions
between drops can be specified. These interactions can cause drops to coalesce, which
can have a severe impact on the print quality.

Figure 9.10: Electron microscope images of different dot shapes of ink on paper and
the simulated dot shapes

The optical model simulates the interaction of light with the ink and paper. It
includes optical effects such as surface reflection, absorption and scattering of light in
the ink and paper, lateral light diffusion in the paper, optical dot gain and fluorescence

124 VIRTUAL PRINTER MODELING

of the paper. The optical model calculates an XYZ color value for each pixel in the
simulated print as a function of light source, ink reflection and scatter spectra, layer
thickness, media type and ink coverage. Also for this model the output is equivalent to
an image that would be obtained by a perfect scan of the simulated print.

9.4 Using the models

In this section two examples will be given of research that has been carried out with
the virtual printer models.

9.4.1 Addition of grey toner

It was supposed by product developers that the addition of an extra DI-unit with grey
toner in the DIP printing process should increase the print quality. The contrast between
grey toner and white paper is less than between black toner and white paper, which
should result in less visible noise (color variations with a high spatial frequency). Also
more shades of grey can be made, which increases detail visibility. To investigate this
hypothesis, the addition of an extra DI-unit with grey toner was simulated with the
virtual DIP printer model. Also the image processing was changed in order to make
use of the extra toner color. The results of the simulation are shown in Figure 9.11.

Figure 9.11: Part of an image (left) printed with only black toner (middle) and with
grey and black toner (right). The real size of the images is approximately 8 mm

From the images it can be observed that the addition of an extra DI-unit with grey
toner does indeed result in less visible noise and a better visibility of details. However,
some contouring appears at certain shades of grey, which might be reduced by improv-
ing the image processing algorithms. Another drawback of adding an extra DI-unit are
the extra costs which make the printer more expensive.

The virtual DIP printer model was able to predict the increase in print quality of
adding a DI-unit with grey toner, and show the need for improved image processing.
This prevented the need of having to build a printer with eight DI-units instead of seven

USING THE MODELS 125

and the manufacturing of a special grey toner, which would have cost significantly more
effort.

9.4.2 Resolution and number of drop sizes of an inkjet printer

For an inkjet printer that was to be developed at Océ, it had to be decided what the
resolution should be. This printer would use printheads that were able to jet up to three
different drop sizes from each nozzle. An experiment was performed to see how the
print quality depended on the resolution and the number of drop sizes for this printer.
Printed images with four different resolutions and different numbers of drop sizes were
simulated. In Figure 9.12 a part of two of these images is shown.

Figure 9.12: Part of an image printed at 400 dpi with one drop size (left) and at 800 dpi
with three drop sizes (right). The real image size is approximately 8 mm

A psychophysical experiment was carried out in which observers were asked to rate
the print quality aspect ‘detail visibility’ of each of the simulated images. The setup
and data processing of the experiment were carried out in the way that is prescribed
in [38]. The results of the experiment are shown in Figure 9.13. The results show that
with the use of two drop sizes the print quality increases significantly compared to the
use of only one drop size. The use of a third drop size increases the print quality only
slightly, especially at resolutions above 600 dpi. At resolutions higher than 600 dpi
the print quality does not improve significantly, while the print speed would decrease
due to the extra pixels that have to be addressed. Based on these results a resolution of
600 dpi with two drop sizes was chosen for the printer.

In this case the virtual inkjet printer model was used to derive printer specifications
for an inkjet printer in an early phase of development. These results would otherwise
only have been obtained when the development of the printer would have been almost

126 VIRTUAL PRINTER MODELING

Figure 9.13: Rated print quality (detail visibility) as function of printer resolution and
number of drop sizes

completed. By that time many (irreversible) design choices would already have been
made.

9.5 Conclusions

Virtual printer models have been developed which can be used to simulate printed
images of Océ’s two color printing technologies (DIP and inkjet). The output of the
models is an image that is equivalent to an image that would be obtained by a perfect
scan of the simulated print. The virtual printer models consist of modules, which each
represent a process part of a printer. The modules can be improved or replaced inde-
pendently. Experts of each process part have contributed to the development of each
module. By developing the models in such a multi-disciplinary way, the virtual printer
models have become a valuable developing tool, which can simulate the effect of the
properties of a printer on the final print quality with a high degree of accuracy.

The virtual printer models are used to:

• gain a better understanding of the impact of technical variables of a printer on
the resulting print quality

• predict the potential print quality improvement of printer concepts that would
cost considerable effort to design, manufacture and test in reality.

• derive design specifications for (parts of) printers in an early phase of the devel-
opment process.

CONCLUSIONS 127

The usefulness of the models for these purposes has been demonstrated for various
design cases, such as:

• the increase in print quality that can be achieved with the use of an extra DI-unit
with grey toner

• the impact of the resolution and the number of drop sizes on the print quality of
an inkjet printer.

128 VIRTUAL PRINTER MODELING

Chapter 10

Using stepper motors in printers

Authors: J. Stolte, A. Veltman, P.P.J. van den Bosch and E.H. van de Waal

10.1 Introduction

In printers stepper motors can serve as a variable speed actuator for pinchers. Tradition-
ally DC-motors with a rotational encoder are used because these motors are powerful
and very easy to control. Due to their low total system cost stepper motors pose an
interesting option to replace the DC-motors, even in spite of some disadvantages.

The dynamic behavior of stepper motors was unclear and confusing at the moment
that the decision was taken to consider stepper motors as serious alternative. The fact
that they can suffer from badly damped oscillations and even instability was acknowl-
edged, but not understood. During the project this has been investigated, and this chap-
ter shortly deals with the various topics designers should consider when implementing
stepper motors as an actuator in any system.

10.2 Stepper motor (dis)advantages

Using stepper motor brings a number of advantages.

• Stepper motors are inexpensive because no incremental encoders are needed to
track the rotor angle. For small motors the cost of an accurate encoder is greater
than the cost of the motor itself such that savings are significant.

• In case a simple controlling scheme is used, the hardware needed to control
stepper motors is both simple and inexpensive. In this case a feedback loop is
not present.

129

130 USING STEPPER MOTORS IN PRINTERS

• Stepper motors are very robust. They are not equipped with brushes that suffer
from wear. The motor is not damaged if it stalls since the current will not increase
dramatically.

Although the advantages of stepper motors are clear, they also suffer from some
disadvantages. The most important ones for this application are:

• When driven in open-loop stepper motors are badly damped. Dynamic oscilla-
tions take a long time to decay, and for some controllers the motor will even be
unstable at certain frequencies. This will be discussed in Section 10.5.2.

• The number of rotor teeth is typically large to increase the angular resolution.
Disadvantage of having a high number of rotor teeth is that for higher rotational
frequencies the motor produces a lot of emf voltage which needs to be overcome
by the driver.

• Stepper motors have a low efficiency (typically 10-15%). Since stepper motors
usually have a large phase resistance, large ohmic losses occur.

10.3 Stepper motor types

There are three main stepper motor types. Firstly, the variable reluctance motor uses a
toothed rotor made of iron. Due to this rotor shape the magnetic reluctance varies with
the rotor’s angular position, and when a field is applied the rotor will try to settle in a
position of minimal reluctance.

The permanent magnet type uses a magnet as rotor. The magnet generates a mag-
netic field which interacts with the current in the phase coils due to Lorentz’ law. This
interaction means the rotor will try to settle the rotor in a position where the fields
are aligned. This type is essentially the same as a synchronous motor with fixed rotor
current, but will generally have more pole pairs.

The third motor type is the hybrid stepper motor, which is a combination of the
variable reluctance type and the permanent magnet type. It uses a toothed magnet
rotor, which produces torque in the same way as the permanent magnet type, but has
toothed stator and rotor to decrease the step size. In this way it combines the desirable
aspects of both motor types. The hybrid motor is by far the most common motor type,
and therefore this book will only consider the hybrid stepper motor.

Permanent magnet and hybrid type stepper motors have two options for their wiring
schemes. Firstly there are the bipolar wound motors, which require the current through
the coils to reverse polarity to reverse the field polarity. Secondly there are unipolar
motors in which each phase actually consists of a pair of coils which are wound in
opposite directions. In this case the field can be reversed by using the same current
polarity through the other coil. The advantage is that less complicated hardware is
needed as only positive currents are required. Disadvantage is that only half the coil
volume is effectively in use at any given time.

STEPPER MOTOR MODELING 131

10.4 Stepper motor modeling

Stepper motor phases are generally modeled as an inductance with a series resistance.
This basic model is shown in Figure 10.1. The basic model does not cover effects like
magnetic saturation, eddy currents and phase cross linkage. Since the model captures
the modern hybrid stepper motor dynamics fairly well, there is no need to include these
effects into the model. A notable exception is the skin effect, which will be discussed
in Subsection 10.4.1

L

uemf_

Ri

+

u

-

Figure 10.1: Electrical equivalent model of one phase of a stepper motor. The basic
model only includes phase resistance, inductance and emf voltage generated by the
motor. There are no cross-phase effects modeled.

The equations governing the basic model are given as equation (10.1) - (10.4):

Lα
diα
dt

= uα −Rαiα + pλω sin(pθ) (10.1)

Lβ
diβ
dt

= uβ −Rβiβ − pλω cos(pθ) (10.2)

J
dω

dt
= −pλiα sin(pθ) + pλiβ cos(pθ)−Bω − Tload (10.3)

dθ

dt
= ω (10.4)

wherei [A] is the phase current,u [V] is the phase voltage,ω [rad/s] is the rotor
angular speed andθ [rad] is the rotor angle. The specific motor parameters are given
by R [Ω] for phase resistance,L [H] for phase inductance,J [kgm2] for total rotat-
ing inertia,p [-] for the number of rotor teeth,λ [Nm/A] for magnet strength andB
[Nms/rad] for viscous friction parameter. The motor can also be subjected to a load
and/or disturbance torque which is represented byTload [Nm].

Note that the number of rotor teethp actually acts as kind of internal gearbox which
increases both the emf voltage and the torque. This implies the number of rotor teeth
can also be viewed as scaling the motor constant. To produce one full mechanical
revolution of the rotor the phase voltages and currents makep cycles. It is therefore
useful to distinguish between the electrical frequency/angleωe, θe and the mechanical
frequency/angleωm, θm. These are interrelated byωe = pωm andθe = pθm.

132 USING STEPPER MOTORS IN PRINTERS

10.4.1 Skin Effect

The skin effect is the most important non-modeled phenomenon. The skin effect dic-
tates that for increasing frequency the current is pushed to the outside of a conductor.
Even within the normal operating range of the motor the skin effect causes a significant
increase in the phase resistance, and a significant decrease in phase inductance. For the
NMB K404 of the Minebea Corporation a graph of phase resistance and inductance is
shown in Figure 10.2.

0 1 2 3 4 5

x 10
4

0

0.002

0.004

0.006

0.008

0.01

0.012
Phase Inductance of Minebea K404

pω (rad/s)

In
du

ct
an

ce
 (

H
)

0 1 2 3 4 5

x 10
4

0

50

100

150
Phase resistance of Minebea K404

pω (rad/s)

R
es

is
ta

nc
e

(Ω
)

Figure 10.2: Results of skin effect in the Minebea K404 hybrid stepper motor on phase
inductance and resistance. The time constant L/R becomes roughly 25 times smaller.

If the stepper model needs to be quantitatively accurate for a high frequency range
the skin effect needs to be included into the model. This can be achieved by making
the phase resistance and inductance parameters a function of frequency. Including
the skin effect only serves model accuracy, and makes no fundamental difference in
the modeling of the motor. Because models including skin effect become much less
transparent the models in this chapter do not include skin effect, but could be easily
adapted for it.

10.4.2 IRTF simulation model

In many analyses of stepper motors some kind of coordinate transformation is applied
such that the electrical quantities are viewed in a rotating system. The voltages and
currents in the stepper motor phases can be seen as vectors, which rotate along with

STEPPER MOTOR MODELING 133

the rotor. During steady state rotation the voltage and current vectors can be viewed as
constant, which greatly simplifies analysis.

A new stepper motor model is proposed, based on the Ideal Rotating TransFormer
(IRTF) concept presented in [116]. The IRTF models the stator circuit, the rotor circuit
and the motor mechanics separately, which means it has an inherent coordinate trans-
formation. Since the stator consists of two orthogonal phases the stator flux/current
can be represented as a vector in two dimensions. The rotor is represented by a fixed
permanent magnet which is rotated over the rotor angle. The IRTF is shown in Figure
10.3, and the equations governing it are given by:

������

�����	

�	
���
��

���	�

������

���	�

����

�����

���	�

������

���	��

������

����

�����

����

�����

����	�

������

����	�

Figure 10.3: IRTF block model. The IRTF realizes a coordinate transformation be-
tween the rotor and stator coordinate systems. Motor current and flux are represented
as vectors, which are rotated back and forth over the rotor angle by the IRTF.

~ΨR = e−jpθ~ΨS (10.5)
~IS = ejpθ~IR (10.6)

T = ~IR × ~ΨR = −~IS × ~ΨS (10.7)

where the~ΨR represent the magnetic flux in the system represented as a vector.
The superscriptR means the vector is defined in the rotor coordinate system, while
superscriptS refers to the stator coordinate system.T is the torque produced by the
motor.

The IRTF concept can be used to model any electric machine. The stepper mo-
tor model based on the IRTF is elucidated in Figure 10.4. It can be shown that the
IRTF stepper motor model is mathematically equivalent to the basic model presented
as (10.1)-(10.4), It is merely a novel, more clear implementation of the basic model.

Each implementation has it’s own specific advantages. We prefer a model based on
the IRTF concept for several reasons:

• The IRTF model is close to physical reality. Apart from the phase voltages and

134 USING STEPPER MOTORS IN PRINTERS

�
�

�����

��	
�

�	
�

�������������
�
������������

��	
�

�	
�

������������
��
��������

�
������������

�
�����������

�

�����������������

�

����������������

�
�

����

��

�

�������������
��
��������

��

�

������������
�
������������

��

���������
�
�
�

�
�

� !

�������

������

���"��

�"��

���#
�

���"��

�"��

����"��
�

$%$

&

��������

$%$
� ��'
������

(

������&��������

�

������)��������

Figure 10.4: Simulink implementation of the IRTF stepper motor model.

currents, the IRTF model also includes the magnetic flux in the motor’s phases.
All these quantities can be individually measured and influenced.

• Detent torque, skin effect, saturation or phase cross-coupling are relatively easy
to include due to the explicit availability of all stepper motor variables.

• The model is flexible in handling all kinds of scenarios. It remains valid for all
wave shapes and rotor positions/speeds. Stalling behavior for instance is easily
and accurately modeled.

10.5 Stepper motor control

Driving stepper motors can be done in various ways, which are all slight variations of
the same principle. Since it is economically attractive to drive stepper motors without
the use of an encoder, they are usually driven in open loop. However, the dynamic be-
havior of stepper motors in open loop is poor, due to the inherently low damping in the
system. In closed loop stepper motors can be actively damped, but this requires knowl-
edge of the rotor angular position/speed. This knowledge can be obtained through the
use of an encoder (expensive hardware), or with an observer based on measuring the
emf voltage produced by the motor (high software load).

In this section the general idea of driving stepper motors is demonstrated. Next,
various ways of implementing stepper motor drivers are given in order of increasing
complexity (and performance).

10.5.1 General stepper motor driving

Stepper motors are offered (quantized) rotating vectors of voltage or current. The motor
will rotate to match the angle of the input vector. For a hybrid stepper motor which is

STEPPER MOTOR CONTROL 135

subjected to a static current, the behaviour is drawn schematically in Figure 10.5. In
this picture the motor is shown to have only one pole pair (p = 1) for sake of simplicity.

S

N

S

N

SN

S

N

SN

S

N

S

N

SN

S

N

i
b

i
a

�
I

Figure 10.5: Schematic representation of a stepper motor with both phases excited.
The phase currentsia andib create a magnetic field in the stator. When taken together
they can be viewed as the current vectorI. The permanent magnet generates it’s own
magnetic field, which is represented by the flux vectorλ. In the drawn situation the
flux and current vectors are aligned, which means that no torque is generated and the
system is in rest.

If one of the phases in Figure 10.5 is excited with reversed polarity, the input vector
is rotated over 90 degrees. Due to this rotation there is now a mismatch between the
alignments of the magnetic field generated by the current and the magnetic field gen-
erated by the permanent magnet in the rotor. This mismatch causes a torque which in
turn causes the rotor to start rotating in the direction of good alignment. When the rotor
is settled again the motor is said to have made one full step. A typical rotor movement
when a full step is applied to the input is shown in Figure 10.6. Sequentially making
full-steps in the same direction will cause the stepper motor to keep rotating and this
way of driving stepper motors is called full-stepping.

S

N

S

N

NS

0 0.05 0.1 0.15 0.2 0.25
0

20

40

60

80

100

120

140

160

180

200

220
Making a full step

Time (s)

A
ng

le
 (

de
g)

Figure 10.6: Making a full step. The horizontal phase is reversed in polarity, which
causes a 90 degree rotation. In the right figure the rotor angle is shown as a function of
time.

136 USING STEPPER MOTORS IN PRINTERS

Note that the voltage waveforms offered to the motor phases in full-stepping mode
are square waves. The waveforms of the two phases are identical but shifted over a
quarter of a period. These square waves can be viewed as a quantized version of sinu-
soidal waves. Since the overshoot and settling time of one step are proportional to the
step angle it is beneficial for the dynamic behavior of stepper motors to make smaller
steps. Figure 10.7 shows the input signals for half-stepping1 and 16-micro-stepping,
which is in essence corresponds to sampling the sinusoidal signals more often.

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Time

P
ha

se
 e

xc
ita

tio
n

Excitation types

Full−Stepping
Half−Stepping
Micro−Stepping

Figure 10.7: Phase excitation waveform for different excitation options.

If smooth rotation is desired, it can be profitable to make even smaller steps. This
practice is called microstepping, and drivers dividing full-steps into up to 256 micro-
steps are widely available. Using a PWM generator to directly control the phase volt-
ages/currents, even smoother waveforms can be made.

10.5.2 Open loop voltage control

The most inexpensive way of controlling the stepper motor is through open loop voltage
control. No measurement of any kind is needed, just put the revolving voltage vector
according to the stepping method directly onto the phases. If the voltage amplitude
is increased for higher frequencies, the steady state current can be kept approximately
equal to the motor’s nominal current. For varying load torques, the actual steady state
currents will differ slightly from the nominal case.

The stability of this control scheme has been studied analytically through lineari-
sation and inspection of the system’s four eigenvalues. This analysis revealed in this
scheme oscillations are not only damped by the viscous friction, but also by the change
in current caused by the emf voltage produced by the motor. The downside is that
the additional damping depends on frequency, and for higher frequencies it actually
becomes negative which causes the system to become unstable [63].

1Note that in practice half-stepping is often implemented with only+1,−1 and0 phase excitation. In
this case the hardware is simpler, but the motor torque will not be constant.

STEPPER MOTOR CONTROL 137

A
va

il
a

b
le

 T
o

rq
u

e

Rotating Frequency

Dynamic

Instability

Mechanical

Resonance

Figure 10.8: Schematic representation of available torque as a function of frequency,
when using open-loop voltage control.

In Figure 10.8 the practical dynamic instability region is shown. The frequency
at which this instability actually occurs is lower-bound bypω = R/L. For low total
rotating inertia, the frequency of instability will actually be significantly higher [109].
There is another dip in the available torque, which corresponds to the motor’s mechan-
ical resonance frequency which is discussed below.

10.5.3 Open loop current control

Only slightly more difficult to implement is open loop current control. In this scheme
the motor is offered a (quantized) rotating current vector instead of a voltage vector.
Since the available torque is directly proportional to the phase current, this method is
often preferred.

It is important to realize that, since stepper motor phases are inductive loads, true
current control is never possible because inductances do not allow for discontinuities
in the current. In practice voltage-choppers are used to control the phase currents. At
higher frequencies, the voltage available will not be sufficient to produce the desired
current. If this is the case, the stepper motor controller essentially becomes an open
loop voltage controller as described in Subsection 10.5.2.

Because the current controller forces a certain current through the phases the differ-
ential equation for current of the stepper motor model becomes irrelevant. As a result
the fourth-order system is reduced to a second order mechanical system. A side effect
is that there is now no influence of the emf-voltage generated by the motor on the motor
dynamics. Therefore the emf-voltage does not generate any additional damping term
like with open loop voltage control. As a result the system will not become unstable,
but will also not have the beneficial damping effect at lower frequencies.

The damping of the resulting second order system can be found by looking at the
system poles, which are given in (10.8). The negative real value of the system poles
is directly proportional to the viscous friction coefficientB. Therefore having a low
friction parameter is very bad for damping of oscillations in the system, even though
it would be desirable for high speed performance and efficiency considerations. As-

138 USING STEPPER MOTORS IN PRINTERS

suming thatB2 ≈ 0, the part under the square root gives rise to a natural frequency,
which is dependent on the load torque. In most practical situations this dependence can
be neglected as well and the mechanical resonance frequency can be approximated by

fn ≈ 1
2π

√
p2λI

J .

s =
−B ±

√
B2 − 4pJ

√
(pλI)2 − T 2

load

2J
(10.8)

Because the motor is very badly damped at the natural frequency, exciting this
frequency too much should be avoided. When the motor is driven at or near it’s natural
frequency the motor will quickly lose synchronization and stall. This dip in available
torque is the same as the mechanical resonance in Figure 10.8 except it is worse for
current control. However, for current control the dynamic instability region is gone.

Due to the wide use of this control scheme, a number of workarounds for me-
chanical resonance have been devised. They include the use of inertial dampers, addi-
tional electronics and flexible mounting rings. All of these have in common that they
selectively dissipate energy from oscillations at or around the mechanical resonance
frequency.

10.5.4 Closed loop control

So far only open loop control options have been considered. These schemes have in
common that they force some revolving input signal on the phases, and it is assumed
that the rotor revolves in synch with the input. The main problem with the open loop
concept is that the motor can be badly damped, or even become unstable. Should the
stepper motor lose synchronization, the controller will not even notice it which is quite
undesirable.

In contrast, if the rotor angular position/speed are known to the controller it can
use this information to improve control performance. By slightly changing the angle
or amplitude of the applied control vector the controller can stabilize the system if it is
unstable, and greatly improve the damping.

Much effort has gone into closed loop control of stepper motors, which has lead
to various controller designs [126, 34, 1]. Recently, a proposal was made by Yang
[126] for active damping current control based on an observer which showed excellent
results. The simulated effect of adding a controller on system damping is shown in
Figure 10.9.

Of course, adding an observer and a controller implies additional software and
hardware costs when compared to the open loop control options.

10.5.5 Observer

To close the control loop the stepper motor needs to be aware of the rotor angle/speed.
Classically this information would be gathered from a mechanical sensor. But since

STEPPER MOTOR CONTROL 139

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
7.9

7.95

8

8.05

8.1

R
ot

or
 F

re
qu

en
cy

 (
H

z)
Effect of torque disturbance on rotor frequency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
7.9

7.95

8

8.05

8.1

Time (s)

R
ot

or
 F

re
qu

en
cy

 (
H

z)

open−loop

controlled

Figure 10.9: Simulated effects of a small torque disturbance on the stepper motor
speed. Open-loop the system is badly damped, which can be improved by adding a
controller.

using an encoder significantly increases the total system cost, other means of gaining
this information have been developed using the emf voltage. By measuring the phase
voltages and currents the emf voltage generated by the motor can be reconstructed
[126, 104].

Looking at the differential equations for the phase currents (10.1) and (10.2) it can
be seen the emf-vector holds information about the rotor angle (in the phase), and about
the rotor speed (in the amplitude). By tracking the emf-vector an accurate estimation
of the rotor position and speed can be made under the condition that the rotor speed
does not change too fast and the speed is not too low.

The magnitude of the emf-vector is directly proportional to the rotational speed of
the rotor. That implies that at low speeds the motor it is difficult to reconstruct the actual
rotor angle and speed. Fortunately the worst behavior of instability for voltage control,
and the resonance frequency for current control generally occur at higher frequencies.

Another downside is that reconstructing the emf-voltage and computing an an-
gle/speed estimation means the computational demand of the system will rise signifi-
cantly.

140 USING STEPPER MOTORS IN PRINTERS

10.6 Conclusions

Hybrid stepper motors are suited as low cost actuators. The low cost and high robust-
ness make them an interesting option. Some care needs to be taken with what motor
to take, and with what control concept to drive it. Although very closely related each
method has its own points of attention.

Except for the skin effect, the tested stepper motors can be accurately modeled
using a simple model. For simulation purposes a model has been developed based on
the Ideal Rotating TransFormer (IRTF) concept. The most important advantages of
the model are good visibility of system variables, and high flexibility in implementing
different control scenarios.

There are several options available for implementation of stepper motor control.
Firstly, the size of the steps offered to the motor can be varied. Smaller step size re-
quires more complicated hardware, but offers smoother rotation. Secondly, the control
concept needs to be chosen. Open-loop voltage control is very easy to implement, but
leads to instability at high frequencies. Open-loop current control does not suffer from
instability but causes a badly damped natural frequency in the system. Closed loop
control solves the dynamic problems but is more expensive to implement as it needs
knowledge about rotor angle/speed.

It is to be expected that with the proper control stepper motors will replace DC-
motors in printers with preservation of performance.

Chapter 11

Simulating the environment of
embedded software

Author: J.J.M. Hooman

11.1 Introduction

The development of mechatronic systems requires the involvement of several disci-
plines, such as electrical engineering, mechanical engineering, and software engineer-
ing. Although these disciplines are tightly coupled in the considered mechatronic sys-
tems, their development was traditionally a rather sequential, mono-disciplinary, pro-
cess. Typically, first the mechanical part was designed, next the hardware infrastructure
was fixed, and finally the embedded software had to be developed.

This approach can create large problems, especially for the software engineers.
For instance, choices about the placements of sensors (and implicitly the timing of
interrupts), control rates, control delays, execution platform, et cetera, have a strong
influence on the complexity of the software. Moreover, usually many implicit assump-
tions are made, which first become visible at system integration. This easily leads to
non-optimal solutions and long development cycles.

To improve this situation, aiming at a shorter time-to-market, there is a clear trend
towards concurrent engineering where disciplines work in parallel and, for instance,
software is developed before the mechanical part has been finalized completely. This,
however, requires techniques to test embedded software before its environment is ready.
Moreover, it is important to synchronize design decisions and identify problems during
early stages of multi-disciplinary development.

To detect problems as early as possible, all disciplines make heavy use of models.
Moreover, mono-disciplinary modeling is often supported by tools that allow some

141

142 SIMULATING THE ENVIRONMENT OF EMBEDDED SOFTWARE

form of execution or simulation. Lacking, however, are methods which combine mod-
els and tools of different disciplines. This chapter addresses the question whether
models can be used to simulate and to test embedded software in combination with
a simulation of its environment. We describe three related research activities within the
Boderc project and the application in the context of Océ.

The software at Océ is modeled using the UML-based CASE tool Rose RealTime
(currently renamed to Rose Technical Developer) of IBM Rational [64]. Rose Real-
Time, henceforth called RoseRT, supports the ROOM methodology [105] for the soft-
ware development of real-time reactive systems. The tool allows the generation of code
for a particular target platform.

The Matlab/Simulink [106] tool of The Mathworks is used at Océ to model the
mechanical layout of a printer and to experiment with, for instance, the shape and the
length of the paper path, the placement of motors and sensors, and the paper speed. A
successful example is the so-called Happy Flow model, as described in Chapter 6.

Given the current tool support at Océ, the focus of this chapter is on modeling in
RoseRT and Simulink. These tools are presented briefly in Sections 11.2 and 11.3,
respectively. Next, we discuss, in chronological order, three approaches that have been
investigated within Boderc to simulate embedded software in its environment:

• Section 11.4 presents the coupling of the tools RoseRT and Simulink, to obtain
simultaneous simulation – also called co-simulation – of models from different
disciplines. This research has been performed by Nataliya Mulyar, Ladislau
Posta and Jozef Hooman.

• Section 11.5 discusses a framework where a specific part of the Océ software
(viz., the real-time control part which has to be executed in a periodic way) is
integrated into Simulink using the Simulink toolbox TrueTime. This framework
has been developed by Zhaorui Yuan and Peter van den Bosch.

• Section 11.6 adapts the framework of Section 11.5 by replacing Simulink by a
simulation in C++ which has been developed by means of RoseRT. This work
has been carried out by Sebastiaan van der Hoest and Lou Somers.

Finally, Section 11.7 contains concluding remarks.

11.2 RoseRT

RoseRT is a UML-based CASE tool for the development of complex reactive software.
Typically, a UML model in RoseRT consists of a number of active objects, also called
capsules, which communicate by sending and receiving messages via ports. Messages
may have different priorities. The behavior of a capsule is modeled by means of sub-
capsules or a state diagram. Transitions in a state diagram are triggered by the reception
of messages or time-outs. Actions on a transition may change local variables, send
messages, or set timers.

SIMULINK 143

Given a complete model, the RoseRT tool can generate code, based on a so-called
Service Layer which provides an abstraction of the underlying execution platform. The
Service Layer provides general services, e.g. it contains controllers, which are respon-
sible for queuing and delivering messages among capsules. The timing service of the
Service Layer provides the model developers with general-purpose timing facilities
based on both absolute and relative time. The implementation of the Service Layer de-
pends on the target platform on which the program should run. Hence, the precision of
the timing service depends on the granularity of the timing supported by the underlying
operating system.

RoseRT supports two ways to validate its UML models. The first possibility is to
execute the model, i.e. the generated code. The second way is to execute the model
step-by-step, where a step is associated with processing the next message of the highest
available priority. A step terminates when all actions that are a consequence of this
message have been performed. In the second way, timers are running independently
from the steps, and – compared to the first way – time-out events may occur at different
moments in an execution trace. In general, model validation is mainly intended to
check the response to events and is not suitable to guarantee timing behavior. However,
because of time-outs, the reactive behavior of a system may also depend on timing.

11.3 Simulink

A Simulink model is represented graphically by means of a number of interconnected
blocks. Lines between blocks connect block outputs to block inputs. Blocks may have
states, which may consist of a discrete and a continuous part. The output of a block
is computed by an output function, based on its input and its current state and time.
Similarly, an update function calculates the next discrete state. A derivative function
relates the derivatives of the continuous part of the state to time, the current values of
the inputs, and the state.

During the simulation of a Simulink model, the outputs, inputs and states are com-
puted at certain time points. The successive states of a system are computed by a so-
called solver, a Simulink-specific program. Since no solver is suitable for all models,
there are several types of solvers. The solvers use numerical integration to compute the
continuous states of a system from the state derivatives specified by the model. Each
solver uses a different integration method, allowing the selection of the most suitable
method for a particular model. The amount of time between successive time points at
which the states and outputs are computed is called the step size. This step size depends
on the type of the solver used, the characteristics of the Simulink model, the accuracy
required, and the existence of discontinuities in the model.

144 SIMULATING THE ENVIRONMENT OF EMBEDDED SOFTWARE

11.4 Coupling RoseRT and Simulink

The general aim of the work described in this section is to support multi-disciplinary
development by combining modeling tools from different disciplines. Given the Océ
context, we have implemented a coupling between RoseRT and Simulink. As an exam-
ple, our coupling allows the combination of a continuous model of a physical dynami-
cal system in Simulink with an event-driven control algorithm in RoseRT, as depicted
in Figure 11.1.

Simulation model
in Simulink

Embedded control
as Rose−RT model

feedback
signal

control
signal

Figure 11.1: Example of the combination of models

By establishing a proper notion of co-simulation, one can for instance investigate
the effect of changes in the control strategy or the mechanical lay-out on the software.
Vice versa, it allows an analysis of the impact of software delays on global system be-
havior. Realizing the desired tool coupling is far from trivial. The two main challenges
are: (1) Conceptual correctness; the coupling should be such that the simultaneous
simulation of models in both tools gives meaningful results – in particular, there must
be a common notion of simulation time. (2) Technical implementation; the coupling
software should be properly designed to allow, for instance, a change to another UML
tool without too much effort.

In Subsection 11.4.1 we give the most important design decisions of the tool cou-
pling and the main concepts of the implementation. Subsection 11.4.2 contains an
evaluation of the coupling. More details can be found in [60].

11.4.1 Design decisions of the coupling

Notion of time

The most important decision concerns the notion of time to be used in the simulation.
Observe that the timing of RoseRT is strongly coupled to the timing service of the op-
erating system of the platform on which the model is running. Moreover, as described
in Subsection 11.2, timing is not respected in the step-by-step execution. Hence, we

COUPLING ROSERT AND SIMULINK 145

concluded that RoseRT does not offer a proper notion of simulation time and decided
to use the notion of simulated time of Simulink instead. The alternative is to use a
separate, independent, notion of time, but this would also require new implementations
of solvers, redoing a lot of work on functionality already available in Simulink.

Observe that actions on transitions in a RoseRT model may involve large computa-
tions and the computation time of transitions cannot always be neglected. For instance,
when a new set point is computed, the computation delay may have an observable
impact on the controlled object. Hence, the user has to specify the duration of transi-
tions in the RoseRT model and these software delays have to be taken into account in
the Simulink model. E.g. a set point computed in the RoseRT model should only be
used in Simulink after a proper delay which reflects the computation time. Note that
the specified durations of transitions express assumptions on the execution time of the
generated code on the target platform.

Summarizing, the implementation of the tool coupling has to ensure that the timing
service used by the RoseRT is obtained from the simulation time of Simulink. For
instance, time-outs generated by timers in the RoseRT model should correspond to the
simulated time in Simulink. Moreover, it has to be ensured that Simulink uses data
from RoseRT after the specified software delay.

Global architecture of the coupling

Another decision taken is the global architecture of the coupling. Instead of a tight
coupling, we decided to use a more loosely coupled architecture by introducing a third
component called Multidisciplinary Coupling Tool (MCT), as shown in Figure 11.2.
Observe that each tool contains an add-in, which is responsible for the communication
with the MCT component.

By introducing such an MCT interface, the modeling tools do not need to know
about each other and it becomes much easier to change one of the tools. For instance,
to switch to another UML-based CASE tool. The MCT component consists of three
interfaces: a Remote Control Interface, a Data Interface, and a Timing Interface.

• The Remote Control Interface allows starting, stopping and controlling the exe-
cution of the RoseRT model in step-by-step mode (arrow 4 in Figure 11.2). This
functionality can be accessed by the MCT Simulink add-in (arrow 7).

• The Data Interface serves as a storage for data exchange between the RoseRT
and Simulink models, including the timing delays associated with the execution
of transitions in RoseRT (arrows 5 and 8).

• The Timing Interface keeps track of the simulation time. It represents an inter-
mediate clock, which is updated with the value of the Simulink simulation time
(arrow 9) and which is regularly sampled (before a step in RoseRT is executed)
by the Timers of the Simulated Target Operating System (arrow 6).

146 SIMULATING THE ENVIRONMENT OF EMBEDDED SOFTWARE

Timing interface

Rose-RT

Simulated Target
Operating System

Memory Files Timers

IPC Threads

Services Library

Rose-RT Model

Original
Rose-RT

model

MCT
Rose-RT

add-in

Frame Log Timing

Communication State machine

Matlab

Matlab Kernel

 Simulink Library

Solvers

Simulink Model

MCT
Simulink
add-in

MCT

Remote
control
interface

Data
interface

1

2

3 6
7

9

4

5 8

7

10

11

12

Original
Simulink
model

Timing
interface

Figure 11.2: Combining models

11.4.2 Evaluation of the coupling

We realized a first prototype of a coupling between RoseRT and Simulink, which was
to our knowledge the first coupling between a UML tool and Simulink. A few simplifi-
cations have been made to obtain a first prototype quickly. For instance, only one timer
is allowed in the UML model. In principle, the approach is very generic and can be
used for arbitrary applications. It nicely exploits the visualization possibilities of both
tools, although step-wise simulation is rather slow.

Related is the work on the High Level Architecture (HLA) [35], a general-purpose
architecture for the coupling of simulation tools. However, HLA cannot be used for
our purpose, because the RoseRT tool does not include a simulation mode with a well-
defined notion of simulation time, as required by the HLA framework. Recently, Tele-
logic [110] announced a combination of the UML tool Rhapsody and Simulink.

A disadvantage of our current approach is that the user has to specify the duration
of transitions. These numbers are often not known and difficult to estimate, see for
instance Chapter 8. Then a sensitivity analysis with respect to software delays can still
be useful. A problem for the use at Océ is that there are no suitable Simulink models
available that can be coupled to RoseRT models easily. For instance, the Happy Flow
model of Chapter 6 abstracts from many details of motors and sensors, including the
interface to the software.

INTEGRATING SOFTWARE IN SIMULINK USING TRUETIME 147

11.5 Integrating software in Simulink using TrueTime

An alternative approach to couple embedded software and its environment has been
realized using TrueTime [113], a Simulink toolbox. Similar to the previous section, the
environment is simulated using Simulink and the software runs in the simulated time
of Simulink. However, instead of simulating the RoseRT model, the generated C-code
is used and simulated by means of TrueTime. With TrueTime it is easy to simulate
multiple processors, and the toolbox includes simulated communication, interrupts and
I/O functions.

Another important difference is that the goal is not to produce a generic coupling
tool, but to test a specific part of the Océ software, namely the real-time control soft-
ware for the paper path of a printer. This piece of software has to run in a strictly
periodic way, reading sensors and controlling motors at a specific frequency and is
scheduled in a time-sliced way. Hence, actions should have a duration shorter than
the time slice, and for this application it is assumed that the duration of actions can be
neglected, using duration zero.

11.5.1 Overview of the TrueTime approach

The general approach is depicted in Figure 11.3, showing the three main parts:

Simulation model
(sheet logic in
Simulink)

Embedded control
(Rose−RT code
called by TrueTime)

Visualization
(animation)

sensor
data

velocities
accelerations

Figure 11.3: Testing framework based on TrueTime

• A Simulink ‘sheet logic’ model of the paper path lay-out, keeping track of the
positions of papers as a function of time. Abstractions are made of the complete
physical behavior of sheets. For instance, to improve simulation speed, motors
are not modeled; it is assumed that the requested speed profile is directly present
on the pinches.

• The control part, which is based on the code generated from a RoseRT model.
This code is called by TrueTime with the requested frequency. The IO-layer with
hardware drivers has been replaced by drivers that interact with the model.

148 SIMULATING THE ENVIRONMENT OF EMBEDDED SOFTWARE

• A visualization part which, for instance, animates the sheet movements in the
paper path.

11.5.2 Evaluation of the TrueTime approach

The framework based on TrueTime has been used in a project at Océ. With this sim-
ulation framework, embedded software can be tested without physical lab prototypes,
which enables parallel development of mechanical parts and software. It has been ob-
served that the simulation framework indeed reduces the software development time.
Moreover, it turns out that the framework can also be used for debugging and under-
standing lab model prototypes.

A disadvantage of the approach is that an optimal usage of the framework requires
some Matlab/Simulink skills. E.g. when debugging an application, a lot of useful in-
formation can only be obtained by an experienced Matlab/Simulink user. Moreover, at
the early stages of development (when this kind of tool support would be most useful),
there are frequent changes in the lay-out of the paper path. This implies frequent up-
dates of the Simulink ‘sheet logic’ model, which is difficult for software engineers and
makes their progress dependent on the availability of Simulink experts. Note that this
also holds for the approach of Section 11.4.

11.6 Replacing Simulink by a software-based simula-
tion

To overcome the problem mentioned in Subsection 11.5.2, we consider an approach
which aims at improving the usability and maintainability of the testing framework de-
scribed above by software engineers. Therefore, Matlab/Simulink has been replaced
by a software-based simulation which can be developed with the standard software en-
gineering tool at Océ, namely RoseRT. Initially, this was done using capsules (active
classes), but to increase the speed of the simulation, avoiding message passing over-
head, these have been replaced by passive classes from which C++ code is generated.
More details can be found in [59].

Similar to the TrueTime approach, the C++-based simulation has been developed
to test the same hard real-time part of the Océ software. In the C++ simulation, a fixed
time step is used, but the step size can be adapted depending on the required accuracy.
Since the aim is to simulate interactions of the software with sensors and actuators, also
motors are included. As in Section 11.5, execution times are neglected and assumed to
be zero. The output of the simulation is visualized by means of an animation.

11.6.1 Evaluation of the software-based simulation

The software-based simulation environment has been used in an Océ project, where it
became the default simulator for software testing. Based on feedback from Océ em-

CONCLUDING REMARKS 149

ployees, a few features were added such as the possibility to run multiple test cases
automatically. A disadvantage of the framework is that it is rather mono-disciplinary
and there is a danger that the simulation environment diverges from the actual mechan-
ical design. Hence, it is important to have a common configuration file for the paper
path lay-out, including types of motors and sensors, which is used by all disciplines.

11.7 Concluding remarks

We have shown three approaches that simulate the environment of embedded software.
The tool coupling of Section 11.4 provides a general framework to combine and sim-
ulate a RoseRT model with a Simulink model of its environment. Visualization is
obtained by the graphical possibilities of both tools. Section 11.5 aims at testing a spe-
cific part of the Océ software, namely the embedded real-time control part with time-
sliced scheduling. TrueTime has been used to embed the code generated by RoseRT in
Simulink. Visualization has been obtained by dedicated animations of the paper flow.
Application at Océ was successful and reduced the development time. To improve the
usability and maintainability of the framework by software engineers, Simulink has
been replaced by a software simulation in C++, as described described in Section 11.6.

Moving from Simulink to C++-based simulation increases the risk that models of
different disciplines are inconsistent. On the other hand, experience at Océ shows that
especially the animation possibilities increase multi-disciplinary communication and
cooperation. It provides a common view which is useful to discuss observed problems
and the consequences of changes.

150 SIMULATING THE ENVIRONMENT OF EMBEDDED SOFTWARE

Chapter 12

Evaluating embedded system
architectures

Authors: M.H.G. Verhoef and J.J.M. Hooman

12.1 Introduction

In this chapter, we investigate several techniques that can be used to evaluate perfor-
mance properties of embedded system architecture such as latency, throughput and
resource utilization. We focus on these properties because they play a significant role
in the selection of a suitable embedded architecture. The challenge is to decide, at
design time, how to distribute functionality on a proposed embedded architecture, or,
how to select suitable architecture parameters, such that required performance targets
and cost levels are met. Typical questions that are raised at design time are: (i) does
the architecture meet the performance requirements of all applications (ii) how robust
is the architecture with respect to changes in application or architecture parameters and
(iii) is it possible replace components in the architecture by cheaper, less powerful,
components to save cost while maintaining the required performance targets? We will
focus on the first question here, by applying four techniques to a case study. The aim
of the experiment is to better understand the capabilities and limits of each method and
to determine the value of the predictions derived from each model.

First, we describe a small case study that was inspired from industrial practice in
Section 12.2. Then, in Sections 12.3 – 12.6, we introduce the modeling techniques.
We present the results gained from the case study in Section 12.7 and we discuss the
lessons learnt from our experiments.

151

152 EVALUATING EMBEDDED SYSTEM ARCHITECTURES

12.2 The In-Car Radio Navigation case study

12.2.1 Description of the system

In this chapter, we study the design of an in-car radio navigation system. Such an info-
tainment system typically executes several concurrent software applications that share
a common, and often distributed, hardware platform. We consider only a small subset
of the in-car radio navigation system for our comparison, characterized by three clus-
ters of functionality: the man-machine interface (MMI), navigation (NAV) and the radio
(RAD). Three applications are executed by the system concurrently;ChangeVolume,
AddressLookupandReceiveTMC. Each application is independent and composed of
functions provided by the three clusters mentioned earlier. Each application is de-
scribed by a UML sequence diagram that is augmented with performance data. For
example, theChangeVolumeapplication is presented in Figure 12.1. In addition, infor-
mation is provided on the priority of tasks and messages and the scheduling methods
used on each resource1.

 : User
 : MMI : Radio

keyPress()

SetVolume()

HandleKeyPress()

AdjustVolume()

NoticeAudibleChange()

UpdateScreen()

32 events
per second
(at most)

4 bytes
32x second

GetVolume()

NoticeVisualChange()

4 bytes
32x second

V
o

l
K

2
V

 (
K

e
y
p

re
s
s
 t
o

 V
is

u
a

l)
 d

e
la

y
 <

 2
0

0
 m

s
e

c
 a

n
d

V
o

l
A

2
V

 (
A

u
d

ib
le

 t
o

 V
is

u
a

l)
 d

e
la

y
 <

 5
0

 m
s
e

c

Execution time estimates
HandleKeyPress() 1E5 instructions
AdjustVolume() 1E5 instructions
UpdateScreen() 5E5 instructions

Figure 12.1: Augmented UML sequence diagram for “ChangeVolume”

Each application has individual requirements that need to be met and the question
is whetherall requirements can be satisfied when a particular architecture is chosen.
Example deployment proposals are shown in Figure 12.2. We concentrate on Architec-

1Not shown here, a full description can be found athttp://people.ee.ethz.ch/∼leiden05/.

THE IN-CAR RADIO NAVIGATION CASE STUDY 153

ture (a) in the remainder of this chapter. We will investigate whether the combination
ChangeVolumeand ReceiveTMCand the combinationAddressLookupand Receive-
TMC meet the system-level requirements for this architecture.

22 MIPS

11 MIPS113 MIPS

72 kbps

MMI

NAV RAD

(a)

22 MIPS

11 MIPS113 MIPS

72 kbps

MMI

NAV RAD

(b)

57 kbps

22 MIPS260 MIPS

72 kbpsNAV

RAD

130 MIPS113 MIPS

72 kbpsNAV RADMMI

MMI

(c) (d)

260 MIPS

RAD

MMI

NAV

(e)

Figure 12.2: Alternative system architectures to explore

12.2.2 Environment of the system

In order to analyze the proposed embedded architecture, we also need to characterize
the so-calledworkload that the environment imposes onto the system. In this case
study, we simply describe how often each application is invoked. We can abstract away
from the complexity of the environment (which might be another embedded system) by
describing the stimuli as a(p, j, d, o)-tuple. Thep parameter describes the period of the
stimulus,j describes the jitter,d the minimal inter arrival time ando the offset for the
start of the first period. Most stimuli arrival patterns can be described or approximated
by this approach, including burst and sporadic behavior. The relationship between
the parameters is graphically depicted in Figure 12.3. The(p, j, d, o)-tuple basically
defines thetime intervalin which a stimulus will occur. This model can be enriched
with a stochastic variable which defines the distribution of the event within that interval.

Figure 12.3: Workload definition using the(p, j, d, o)-notation

154 EVALUATING EMBEDDED SYSTEM ARCHITECTURES

12.3 Modular Performance Analysis

Modular Performance Analysis (MPA) was developed by Thiele et al at ETH Zürich
(see [111, 29]). MPA belongs to the class of so-called deterministic queuing theories.
These models can be solved analytically (without simulation). Systems are modeled
as a set of hierarchical queuing networks, as shown in Figure 12.4 for the combination
ChangeVolumeandReceiveTMC. The workload of the system is described by a pair
of interval bound functions (α), the so-called lower and upperarrival curvesαl and
αu. Suitable arrival curves can be constructed for any(p, j, d, o)-tuple. These curves
describe the respective bounds on the number of events that are to be handled by the
system for any given interval size. The available resource capacity (β) is characterized
by a pair of lower and upperservice curvesβl andβu. These curves describe the bounds
on the available capacity of the resource for any given interval size. Each component
in Figure 12.4 delivers a pair of output arrival curves describing the event rates after
this processing step and a pair of output service curves which describe the remaining
capacity.

CPU1 BUS CPU3CPU2

Change Volume

Receive TMC

MMI NAV RAD

α

α

β ββ β

Figure 12.4: Example MPA queuing network for Architecture (a)

Analysis of the network provides us with answers to propagation delay and resource
usage for each component individually as well as end-to-end. In addition, the backlog
(the number of outstanding events which corresponds to maximum queue size needed)
can be determined for each component. MPA provideshard bounds to all these prop-
erties, which makes it suitable to analyze hard real-time systems. But these bounds
arenot necessarily tight. Because the method works in the time interval domain, some
information is lost in the transformation which may lead to pessimistic results. For
example when a phase shift exists between two otherwise independent event streams.
However, evaluation of an MPA network is very fast (typically a few seconds at most)

SYMBOLIC TIMING ANALYSIS FOR SYSTEMS 155

which supports the interactive nature of the design process. An open source implemen-
tation of MPA in Java for Matlab/Simulink is available fromhttp://www.mpa.ethz.ch.
A detailed treatment of MPA and this case study is provided in [121].

12.4 Symbolic Timing Analysis for Systems

Symbolic Timing Analysis for Systems (SymTA/S) was developed by Ernst and Richter
and co-workers at the University of Braunschweig. Tool support is further developed
at the SymtaVision company. It is a performance and timing analysis tool based on
formal scheduling analysis techniques and symbolic simulation. It supports model-
ing of heterogeneous architectures, complex task dependencies, context aware analysis
and combines optimization algorithms with sensitivity analysis for rapid design space
exploration.

The tool provides a graphical user-interface to enter the model. Tasks can be (re-
)assigned to resources by drag-and-drop. The environment is modeled by connecting
event generators to the initial tasks. Properties of each entity in the model can be
changed easily by means of pop-up menus, for example to modify the(p, j, d, o)-values
of the event generators. Incompatible interface connections or requirements that are not
met after analysis are made visible to the user graphically, by changing the color of the
entity in the diagram that caused the error.

Evaluating a model is quick, typically in the order of a few seconds to a minute. The
tool computes the local optimum per resource using classical formal scheduling analy-
sis techniques like, for example, rate monotonic analysis. The values obtained for each
resource are used to feed a symbolic simulation step where system-level values are de-
rived. Using optimization strategies, this process is repeated automatically until some,
user defined, property is reached. Like MPA, SymTA/S gives hard but not necessarily
tight results, which is primarily caused by the abstractions introduced in the model.
SymTA/S is available, as a commercial product, fromhttp://www.symtavision.com.

12.5 Timed Automata and UPPAAL

The timed automata language [4] is a general purpose notation used to describe timed
systems. An automaton consists oflocationsand transitions. Time can be modeled
by introducingclocksas state variables. Clockinvariantscan be added to a location.
The transitions define how those locations can be reached starting from some initial
location. Transitions can be labeled withguards, for example to specify for which
clock or state value(s) a transition is enabled. This technique is useful for our purpose
mainly because of the expressiveness offered.

The UPPAAL model checker [11] is used to analyze the timed automata model.
UPPAAL was developed by Yi and Larsen et al at Uppsala and Aalborg University
respectively. UPPAAL provides a graphical user-interface to compose and edit timed
automata models. A simulator is provided to animate the specification. The model

156 EVALUATING EMBEDDED SYSTEM ARCHITECTURES

checker performs a symbolic exhaustive search over the state space in order to ver-
ify some user-defined property. If the property does not hold, a counter example is
automatically generated which can be visualized and animated.

Hendriks showed in [57] that it is indeed possible to model our case study using
timed automata. The principle idea of the model is that system resources are either
idle or performing some task, i.e. computation or transferring data. Resource activity
is modeled as a location. Transitions are defined from theidle (initial) location to each
of the activity locations and vice-versa. The outgoing transitions are guarded by a
counter which represents the number of outstanding requests for a particular activity.
The counters are used to model the interaction between the different resources. When
such a transition is taken, one is allowed to stay in the target location for the amount of
time that corresponds to the user-defined maximum execution time of that task. When
this time is reached, a transition back to theidle state is taken. Pre-emption of tasks
can also be modeled and template automata are defined to describe the environment of
the system.

The system model is constructed by composing a network of timed automata from
the resource and environment automata described above. UPPAAL is then asked to
verify whether a certain response time is within the set of reachable states of the model.
By using a binary search approach manually, the exact best and worst-case response
times can be determined. Evaluation of the model is in the order of minutes if the
state space is tractable; the values then found are hardand tight. Tractability however,
is mainly determined by the amount of non-determinism in the model. For example,
when two event streams have an average period which is orders of magnitude apart, the
state space explodes even though the model of the system is very small and simple. In
this case, the model checker will not be able to find an answer in an acceptable amount
of time. UPPAAL is available for free download fromhttp://www.uppaal.com.

12.6 Parallel Object-Oriented Specification Language

The Parallel Object-Oriented Specification Language (POOSL) is a general purpose
specification language which lies at the core of the Software/Hardware Engineering
(SHE) system-level design method. POOSL was developed by Voeten and Van der
Putten et al at the Technical University Eindhoven [95]. The language contains a set of
powerful primitives to formally describe concurrency, distribution, synchronous com-
munication, timing and functional features of a system into a single, high-level, exe-
cutable model. Its formal semantics is based on timed probabilistic labeled transition
systems. The SHE method is accompanied by two tools, SHESim and Rotalumis.
SHESim is a graphical environment intended for incremental specification, modifica-
tion and validation of POOSL models. Rotalumis is a high-speed execution engine,
enabling fast evaluation of system properties by means of simulation. A more elabo-
rate discussion on POOSL can be found in Chapter 13.

De Hoon constructed a model of our case study in [40] using this technique. Eval-
uation of this model is in the order of minutes to hours, depending on the property to

RESULTS AND DISCUSSION 157

analyze. Despite the fact that the simulator conforms to the formal semantics of the
language, no guarantee can be given that the model is completely covered during sim-
ulation. Exact best- and worst case values are not necessarily found during analysis,
i.e. the bounds found by the simulator arenot hard. Exhaustive analysis techniques are
available but have not yet been implemented into tools. These exhaustive analysis tech-
niques are subject to the state-space explosion problem, just like UPPAAL. However,
POOSL is able to describe and analyze the nominal (average) behavior of the system
and complex system - environment interactions, for example involving timing depen-
dencies between input stimuli. POOSL is well-suited for analysis of soft real-time sys-
tems. The tools are available for free download fromhttp://www.es.ele.tue.nl/poosl/.

12.7 Results and discussion

The case study was modeled using several techniques but the question is: How do the
answers found during analysis relate? Consider for example the system-level response
time for each of the applications in the case study. Based on the properties of the
techniques themselves, we would expect to find results as depicted in Figure 12.5.
MPA and SymTA/S provide hard but not necessarily tight bounds for these values. The
approximations inherent to these methods may yield conservative results. Simulation
based techniques, such as POOSL, also do not provide tight bounds because the model
is not guaranteed to be fully covered, which may lead to results that are too optimistic.
Timed automata can find hard and exact bounds within a user-defined accuracy, but
only if the state space remains tractable. Tractability is, however, not a given fact.
Although it is fairly easy to inspect timing aspects using timed automata, it is very hard
to analyze the resource usage per resource. The only guarantee we have is that none
of the resources is over-allocated. The other three methods in comparison do provide
more detailed resource usage information and almost for free.

Figure 12.5: A general comparison of results found

Modeling comes at a price, there is a clear trade-off between abstraction and accu-
racy. How much effort do I need to invest in order to get a result on time and within
a certain error margin? Can we determine this error margin at all a priori? Both MPA
and SymTA/S are methods that are clearly tailored to support early life-cycle decision
making. Models are easy to construct and evaluate. Suitable levels of automation are
available for design exploration and sensitivity analysis. As we learned from addi-

158 EVALUATING EMBEDDED SYSTEM ARCHITECTURES

tional experiments at Océ, not reported in detail here, their weakness is support for
time dependent input stimuli. If these are dominant in your system, evaluation of mod-
els using these techniques typically leads to results that have little value when making
design decisions.

Building timed automata and POOSL models by comparison involves significantly
more work than MPA and SymTA, although modeling templates were developed to
overcome this problem in part (see [44, 57]). Furthermore, analysis takes more time
and is in general not guaranteed to lead to results. In the case of timed automata, expert
knowledge may be required to modify the model such that tractability is achieved.
However, the models built with these techniques can be described in much greater
detail if needed, for example to deal with time dependent input stimuli, but obviously
at the cost of model analysis efficiency. POOSL can provide feedback on the nominal
(average) system behavior while the other three techniques can only investigate the
performance bounds.

Table 12.1 provides an overview of the analysis results for the worst-case response
time of all applications deployed on architecture (a) in Figure 12.2. The abbreviations
K2A andA2V mentioned in the table refer to the system-level performance require-
ments of theChangeVolumeapplication shown in Figure 12.1. The models were eval-
uated against pure periodic environment stimuli with an unknown offset between the
two event streams. This situation enables a fair comparison of the results because it
can be suitably analyzed by all techniques.

XXXXXXXXXXRequirement
Tool

Uppaal POOSL SymTA/S MPA

TMC + Volume 381.63 366.94 382.09 390.09
TMC + Address 239.08 234.26 253.30 265.85
K2A (Volume + TMC) 27.72 27.71 27.72 28.16
A2V (Volume + TMC) 41.80 41.78 41.80 42.24
Address + TMC 79.08 78.90 79.08 84.07

Table 12.1: Worst-case response time results (in msec)

The parameters in the case study were chosen such that theChangeVolumeapplica-
tion always has the highest priority on all resources. Because fixed priority pre-emptive
scheduling is used on all resources, this application gets access to the resource as soon
as it is required. This is why the last three rows of the table contains almost identical
results for each method. In fact, we can calculate it by hand and we find the same
values, which demonstrates the validity of the results found by the tools. When we
compare the first two columns, we see that the POOSL results are indeed slightly more
optimistic than the values found by UPPAAL. This is due to the fact that there are in-
finitely many possible values for the offset. In this particular case, UPPAAL was able
to handle this property symbolically. It is also clear that both SymTA/S (third column)
and MPA (fourth column) are slightly more conservative than UPPAAL, as expected.

Comparing the analysis results showed us that each technique introduces hidden

CONCLUSION 159

assumptions and approximations of its own. To our surprise, the initial results didnot
conform to the expectation illustrated in Figure 12.5. A discussion was started on the
meaning of the results, to gain more insight. Apart from a better problem understand-
ing, this also included improving the case study specification, discovering subtle mod-
eling errors and even bugs and limitations in the (prototype) analysis tools. Table 12.1
is the result ofseveral iterationsdue to this debate.

12.8 Conclusion

We have investigated four state-of-the-art techniques for performance analysis. We
showed how they relate by means of an experiment. More results are available, for
example using QOSA [17] and VDM++ [117]. We also performed measurements on a
real system which are not yet considered here. However, our aim was not to be exhaus-
tive in our survey. Many other existing techniques have not been considered and only a
single case study was used for comparison. Neither did we attempt to determine what
the “best” method is, since this is very context dependent. Many qualities influence
failure or success. However, in conclusion, we do argue that in-depth knowledge of
the application domain, the method used and awareness of the limitations of the tools
areequally importantcritical success factors. This seems obvious, but in practice it is
hardly ever the case that all three aspects are covered to the same extent. The small
experiment has clearly demonstrated that it does pay off to use more than one method.
Weaknesses in the models will be exposed by comparing the models and the analysis
results. The models, the tools and the analysis results should not be taken for granted.

AcknowledgmentsWe wish to thank Ernesto Wandeler, Simon Perathoner, Kai Richter,
Martijn Hendriks, Menno de Hoon, Egor Bondarev, Peter Gorm Larsen and Erik Oos-
terom for their contribution to this survey.

160 EVALUATING EMBEDDED SYSTEM ARCHITECTURES

Chapter 13

Model-driven design of
real-time systems

Authors: O. Florescu, J.P.M. Voeten and H. Corporaal

The main purpose of engineering models is to help engineers understand the inter-
esting aspects of a future system, before getting to the expense and trouble of actually
building it. Traditional forms of engineering (e.g. mechanical engineering, electrical
engineering) have a well-developed modeling methodology and their use of models is
generally recognized as a useful and effective technique. However, software engineer-
ing, and particularly real-time embedded software, is still an emerging discipline. It is
used for increasingly complex systems and its modeling techniques are neither mature
nor reliable yet. Nevertheless, software models have a unique and remarkable advan-
tage: they could be used to automatically generate executable programs for particular
platforms. Starting with a simplified and highly abstract model, which must cover for
both timeliness and functionality (e.g. architecture structure, concurrency, communi-
cation), refinements should be carried on until a complete specification is obtained,
including all the details necessary in the final product, and from which adequate com-
puter tools can generate an implementation. Mathematical techniques must assist each
step from this trajectory from software model to its implementation to guarantee the
correctness of the final system and its compliance to the requirements.

To support the model-driven development of software systems, the Unified Mod-
eling Language (UML) [87] has been adopted as a standard facility for constructing
models of object-oriented software. UML has proven to be suitable for modeling func-
tional aspects of a system and there are defined extensions to it to provide a standard-
ized way of denoting timing aspects for real-time systems [88]. Nevertheless, appli-
cation of mathematical analysis techniques remains complicated due to the difficulty
of relating formal techniques to UML diagrams [61]. Moreover, due to the lack of a
standard formal semantics, a clear relation between the properties of a UML model and

161

162 MODEL-DRIVEN DESIGN OF REAL-TIME SYSTEMS

of its generated implementation cannot be established. Hence, properties of the system
implementation cannot be predicted from the model.

Highlevel
POOSL
Model

Analysis, design
space exploration,

changes

Library of
modelling
patterns

Application
& Platform

Model

Detailed
POOSL
Model

C++
Implementation

automatic
generation

refinements

automatic
synthesis

Figure 13.1: Model-driven design approach

The Parallel Object-Oriented Specification Language (POOSL) [52], which lies
at the core of a system-level design method called Software/Hardware Engineering
(SHE), is a mathematically defined modeling language that contains a set of power-
ful primitives to formally describe timing, concurrency, probabilistic behavior, (syn-
chronous) communication and other functional features of a system into a single ex-
ecutable model. Its semantics is based on timed labeled transition systems, which
guarantees a unique and unambiguous interpretation of POOSL models. Due to its
formal semantics, POOSL is suitable for specification and verification of correctness
and analytical computation of performance for real-time systems. Based on the con-
cepts of this language, we have developed a library of modeling patterns, from which
we can automatically generate the POOSL model of a system, even in early stages of
the design trajectory, as shown in Figure 13.1. Such a model is amenable to analysis,
design space exploration and trade-offs, based on which decisions for changes and/or
refinements can be made. When all the necessary details are in the model, automatic
generation of C++ implementation that preserves the properties of the model is real-
ized.

In this chapter, we will show that a model-driven design approach, based on POOSL
and its related techniques, is able to yield, in a fast way, correct implementations of
real-time systems that satisfy their requirements. The following subsections present
the steps of this approach. Section 13.1 describes the modeling and analysis phases,
whereas Section 13.2 discusses the automatic synthesis of C++ implementation. An
educational case study is presented in Section 13.3, and conclusions are drawn in Sec-
tion 13.4.

MODELS AND ANALYSIS FOR REAL-TIME SYSTEMS 163

13.1 Models and analysis for real-time systems

Complex real-time embedded systems are usually comprised of a combination of hard-
ware and software components that are supposed to synchronize and coordinate differ-
ent processes and activities. From early stages of the design, many decisions must be
made to guarantee that the realization of such a complex machine meets all the func-
tional and non-functional (timing) requirements. To properly deal with such issues,
system models are built and analyzed to predict the properties of the final realization
and to find the most suitable hardware platform that enables the system to meet the
requirements.

13.1.1 Real-time properties

One of the purposes of real-time systems analysis is the verification of itsproperties.
These properties are related to (observable) actions of interest that must occur at certain
moments in time. Such properties can be formalized using temporal logics, like for
example Metric Temporal Logic (MTL) [71].

Due to its amenability to mathematical analysis techniques, as a modeling lan-
guage, POOSL is a good candidate for building real-time systems models. The timing
semantics of a POOSL model is based on a two-phase execution model [85]: the state
of the system changes either by asynchronously executing simultaneous atomic actions
based on the interleaving semantics, without passage of time (phase 1), or by letting
time pass synchronously for all the components of the system when no action can be
performed (phase 2). As soon as an action becomes available, the first phase is re-
sumed. Such a model assumes an abstract notion of time, calledmodeltime.

Based on such a model, the behavior of the system is considered to be the set of all
the possible sequences of actions together with the time stamps at which they occur.
These sequences are called timed action sequences. Their analysis reveals if there is
any deadlock and if the system exhibits certain real-time properties. The behavior of a
system satisfies a real-time (observable) property expressed as a temporal logic formula
if and only if all possible timed action sequences in the behavior of the system satisfy
that property. In other words, for the type of properties that we are considering in this
work, the corresponding observable action of interest occurs in all sequences and at the
same time stamp.

In order to establish a relation between timed action sequences in a model and in
an implementation, a notion of observable distance between two different timed action
sequences that have the same sequence of observable actions was introduced in [41].
This distance represents the largest deviation between the time stamps of corresponding
observable actions. Two timed action sequences whose distance between them is equal
to ε are calledε-close. When one of the sequences satisfies an observable real-time
propertyP , namely that a certain observable action occurs in an interval[t1, t2], the
other timed action sequence satisfies a weakening of this property up to2 · ε. Thus,
the observable action of interest occurs in the second timed action sequence in a larger

164 MODEL-DRIVEN DESIGN OF REAL-TIME SYSTEMS

interval,[t1−2·ε, t2+2·ε]. This result was mathematically proved in [62] and, based on
it, a property preserving code generation mechanism was conceived and implemented
(see Section 13.2).

13.1.2 Design space exploration

Another purpose of system models analysis is to find the most suitable hardware plat-
form that enables the satisfaction of all the requirements of the system, like real-time
properties, cost, et cetera. Often, some of these requirements are in contradiction with
each other, like fastest response, which typically implies an expensive platform, and
low cost. Exploration of the design space and design trade-offs must be made in order
to find a good balance.

One of the approaches for performing systematic design space exploration is the
Y-chart scheme, introduced in [69]. This scheme makes a distinction between ap-
plications (the required functional behavior) and platforms (the infrastructure used to
perform this functional behavior). Although we are concerned only with the realization
of the software part of a real-time system, the hardware part must also be taken into
account in the analysis in order to predict the behavior of the system as a whole and the
impact each part may have on the others. Moreover, as real-time systems are typically
reactive systems, meaning that there is a continuous interaction with the outside world,
in [43] we added the model of the environment to the Y-chart scheme, as depicted in
Figure 13.2. The design space can be explored by evaluating different mappings of the
application onto platforms, under certain behavior of the environment.

Application
model

Platform
model

Mapping

Analysis

Modify
application

Modify
platform

Modify
mapping

Environment
model

Figure 13.2: Y-chart scheme for design space exploration

As the components of real-time embedded systems usually have common charac-
teristics, like tasks, computation/communication resources, we have developed a li-
brary of modeling patterns (also called templates) that can be used to automatically
generate and easily modify models of the same or of a similar system. These patterns
were conceived based on design experience from several case studies (see [44, 40, 39],
and Chapter 8) and they are presented in Table 13.1. This table shows the Y-chart
component to which each of these patterns belongs, the name of the pattern and its
parameters. A brief explanation of the patterns is given below, whereas more details
can be found in [42].

MODELS AND ANALYSIS FOR REAL-TIME SYSTEMS 165

Y-chart Part Pattern Name Parameter Names
Application PeriodicTask period (T) latency (l)

Model deadline (D) iterations
BCload loadDistribution
WCload

AperiodicTask deadline (D) latency (l)
BCload loadDistribution
WCload

Platform Resource initial latency throughput
Model Scheduling scheduling policy

Environment Environment arrival stream lower bound (l)
Model upper bound (u)

Table 13.1: Modeling patterns

The application model of a system is described as a collection of real-time tasks,
each characterized by the deadline, the load (which represents a certain distribution
between a best-case and a worst-case value of the number of instructions that the task
needs to execute at each activation), and the latency of task activation. Based on the
type of activation request, tasks can be periodic (time-driven), being activated at reg-
ular intervals equal to the task periodT which becomes a parameter of the pattern, or
aperiodic (event-driven), waiting for the occurrence of a certain event.

Reference
Time

Activation
request

BEHAVIOUR

Ready for
execution

Deadline

release
jitterlatency

Starts
execution output

jitter

Figure 13.3: Real-time task parameters

In the task model, we are able to take into account three types of uncertainties, as
shown in Figure 13.3, which are explained in [42]. The classical real-time scheduling
theory [27] can compute the release jitter and, to some extent, the output jitter, but
without taking into account neither possible variations nor dependencies on the input
data. Moreover, the activation latency, which is caused, for example, by the delays
between the occurrence of an event in the environment and the trigger of a sensor, is
ignored. In our modeling approach, we are able to take these aspects into account and,
hence, the designer is able to check if, under different circumstances, the behavior of
the system still meets the critical deadlines for the control of the physical components
that ‘run’ relative to the reference time.

Another part of the Y-chart scheme is the platform model which consists of (com-
putation and/or communication) resources that can uniformly be characterized by an

166 MODEL-DRIVEN DESIGN OF REAL-TIME SYSTEMS

initial latency and a throughput, and the scheduling policies that handle the concurrent
requests. According to some desired mapping, the mapping stage of the Y-chart is real-
ized by connecting tasks to resources using POOSL channels. The environment, which
can be characterized by an event stream with a certain distribution of arrival between
an upper and a lower bound, triggers the behavior of the tasks and expects a reaction
from the system at certain moments in time.

By specifying the necessary modeling patterns, from the ones presented in Ta-
ble 13.1, together with their parameters, the complete model of a system is automati-
cally generated, as shown in Figure 13.1, and can be validated. For each configuration
specified and generated, during the execution of the model, the resources schedulers
may report if there are tasks that missed their deadlines. Furthermore, based on the
POOSL formal semantics, it can be detected if there is any deadlock in the system. If
all the deadlines are met and there is no deadlock, then the corresponding platform is a
good candidate that meets the system requirements. In case of soft real-time systems,
where a certain deadline miss ratio is allowed, the analysis of the model can handle and
record tasks with multiple active instantiations that have missed their deadlines. The
percentage of deadlines missed can be monitored and checked against the requirements
if, according to this criterion, the underlying platform is suitable. The analysis of the
model can also provide the release jitter, the output jitter and the number of instances
each task has active at the same time.

Moreover, such models can be used to estimate the time-deviation the implementa-
tion will exhibit from the model when the code is generated on the platform. As actions
in the semantics of the model are timeless, no matter how fast the platform is, a time-
deviation will appear between model and implementation. If the designer considers the
time-deviation to be too large and hence the properties would be weakened too much
in the implementation, this time-deviation needs to be accounted for in the model, as
shown in [43].

13.2 Synthesis for real-time

As mentioned in the previous section, a real-time system can be viewed as a set of
timed action sequences. Moreover, both the model and the realization of a system are
viewed as such sets. Hence, to obtain an implementation of a system which preserves
the properties analyzed in its model, two things must be achieved: (i) to generate only
traces which are included in the set of timed action sequences of the model; (ii) to make
the corresponding traces in the model and in the implementation to beε-close.

In this section, we briefly present a model synthesis approach based on the concepts
of POOSL language that was implemented in a tool called Rotalumis-RT. The data
part of a model, which refers to the information that is generated and exchanged by
the active components of the system, is directly translated into C++ code. To obtain a
trace that has the same sequence of observable actions as in the model, for the process
part, representing the active components, process execution trees (PETs) [15] were
adopted. The state of each process is represented by a tree structure, where each leaf is a

EDUCATIONAL CASE STUDY 167

statement and internal nodes represent compositions of their children. The correctness
of PETs with respect to the semantics of the POOSL language was formally proved
in [51]. Details about PETs implementation and behavior can be found in [15].

Using a proper design time annotation of the model to distinguish between ob-
servable and unobservable actions, during the evolution of the system, PETs can send
observable action requests, unobservable action requestsand/ordelay requeststo a
PET scheduler. The PET scheduler, whose behavior is described by the algorithm in
Figure 13.4, asynchronously grants all eligible atomic observable actions. When no
observable action is eligible, one unobservable action request is granted, and then the
observable action requests list is checked again. When no action request of any kind is
available, time passes synchronously for all PETs until some action becomes eligible
again. As a result, the generated implementation exhibits exactly the same behavior as
the model, if interpreted in model time domain. On the other hand, since the progress of
model time is monotonically increasing, which is consistent with the progress of phys-
ical time, the action order observed in model time domain is consistent with that in
physical time. To obtain the same (or similar) quantitative timing behavior in physical
time as in model time, the PET scheduler tries to synchronize model time with physical
time during the running of the implementation. This ensures that the execution of the
implementation is always as close as possible, under the given circumstances, to a trace
in the model with respect to the observable distance between timed action sequences.

PETSCHEDULER()
list observableActions;
list unobservableActions;
list delays;
while truedo
while observableActions.notEmpty()do

observableActions.getAsynchronously()–>grant();
if unobservableActions.nonEmpty()then

unobservableActions.getAsynchronously()–>grant();
continue;

else
if delays.nonEmpty()then

modelTime = modelTime + delays.getFirst()–>amountOfTime();
/* synchronisation between model and physical time*/
wait_until physicalTime == modelTime;
continue;

else
DEADLOCK();
return .

Figure 13.4: The PET scheduler

13.3 Educational case study

To illustrate the steps of the model-driven design approach described in the previous
sections, we considered the control of a motion system made of two devices running in
parallel as a case study (see Figure 13.5). Such a system is representative, for example,

168 MODEL-DRIVEN DESIGN OF REAL-TIME SYSTEMS

for the control of a part of a printer where several motors must be controlled concur-
rently. The control algorithms that ensure stability of the system were designed by
control engineers. The goal of this experiment was the application of the SHE model-
driven design method for the development of the real-time system that is able to control
correctly these devices.

sensors signal

actuator signal

actuator signal

actuator
writing

sensor
reading

Figure 13.5: The setup of the case study

An analysis model of the motion system is shown in Figure 13.6. The software part
of the system is made of two parallel aperiodic event-driven tasks,MotorController_1
andMotorController_2, which are mapped onto a singleProcessor resource, whereas
the environment consists ofMotor_1 andMotor_2. The code shown in Figure 13.6 is
the POOSL model for eachMotorController. The methodcontrolAlgorithm mod-
els the actual control algorithm for a motor that has been designed by control engineers.
The deadlineD was set to1ms for the first motor, and to2ms for the second motor.

To ensure the stability of the control of the two motors system, two required real-
time properties must be satisfied by the application part of the system. For the first
motor, the messageactuatorOutput mustalwaysbe sent between0.9 and1.1ms after
the messagesensorInput is received. For the second motor, the property that needs
to be satisfies is that the messageactuatorOutput mustalwaysbe sent between1.9
and2.1ms after the messagesensorInput is received. As the model is very simple,
assuming that the execution time of the control algorithm of each device on the given
processor is0.4ms, we could manually check that for the first motor the message to
the actuator is sent after1ms, whereas for the second motor, after2ms, which means
that the model satisfies the required real-time properties. Moreover, assuming that
a communication operation takes0.01ms, we estimated a time-deviation of0.04ms
between model and implementation, because there are at most four communication
operations that occur at the same model time.

To enable automatic generation of an implementation of the application part, a syn-
thesis model was developed. In this model, the environment and the platform parts
were removed and all the communication with the environment was replaced with a
synthesizable interface. The model presented in Figure 13.7 shows how the commu-
nication with the environment model was replaced with calls to thereadSensor and
writeActuator methods from a data class called DAS - Data Acquisition System. This
data class provides only virtual methods for the synthesis model. Its actual implemen-

EDUCATIONAL CASE STUDY 169

Motor_1
sensor actuator

MotorController_1
in out

Environment

AperiodicTask()()
 in ? sensorInput(data);
 par
 controlAlgorithm(data)()
 and
 delay D
 rap;
 out ! actuatorOutput(data);
 AperiodicTask()().

Motor_2
sensor actuator

MotorController_2
in out

cpu cpu

Processor
tasks

Figure 13.6: Model of the system case study

tation for the communication with the real motors via a special device that can be seen
in Figure 13.5 is provided by Rotalumis-RT in C++ code. The implementation of the
interface should not be blocking because its timing behavior can affect the deviation
between model and implementation.

MotorController_1 MotorController_2

AperiodicTask()()
 [obs] DAS readSensor(data);
 par

[uobs] controlAlgorithm(data)()
 and
 delay D
 rap;
 [obs] DAS writeActuator(data);
 AperiodicTask()().

Figure 13.7: Synthesis model of the system

We have labeled each action in the model such that Rotalumis-RT could identify
which is considered observable or unobservable. Actions like reading from the sen-
sor and writing to the actuator are observable activities of the system, whereas the
control algorithm computation is unobservable from outside the system. During sev-
eral hours of continuous behavior, the maximum obtained observable distance between
model and the generated implementation was0.042ms. This value is larger than the

170 MODEL-DRIVEN DESIGN OF REAL-TIME SYSTEMS

estimation from the model because of the overhead of the operating system that was
running on the computer on which the synthesis of the model was realized. Thus the
properties satisfied by the implementation are that the communication with the first
motor takes place in an interval[0.916, 1.084]ms and for the second motor within
[1.916, 2.084]ms, which fulfills the requirements. Hence, the real-time system pre-
sented as case study could be developed in a model-driven fashion that ensured the
satisfaction of the system requirements.

13.4 Conclusions

In this chapter, we have presented a model-driven design approach for real-time sys-
tems based on a formally defined modeling language named POOSL. For the analysis
stage of this approach we rely on the mathematical definition of the language. We
have developed a library of modeling patterns that enable automatic construction of
the model. Moreover, we have presented a mechanism for automatic code generation
that enables the preservation of the properties analyzed in the model. An educational
case study shows the application of each of the steps of this model-driven design ap-
proach and the results that we have obtained. As future work, we aim at improving
the synthesis step such that it can be applied to more complex systems that may even
incorporate time-intensive computations.

Chapter 14

Time-varying delays in control

Authors: M.B.G. Cloosterman, N. van de Wouw, W.P.M.H. Heemels and H. Nijmeijer

14.1 Introduction

During high-tech systems design, the different couplings between the domains of me-
chanics, electronics and software have to be considered. In these couplings conflicts
exist in the domain-specific properties and requirements. Similar to Chapter 16, this
chapter deals with the coupling between control engineering and real-time software
design that is apparent in many high-tech systems. Here, the focus is on the latency
and jitter, which is inevitable in the software implementation of a controller and affect
the performance of the controlled system (plant), e.g. a motor in the paper path of a
printer. From a control point of view, time-delay, consisting of the combination of both
the latency and jitter, which includes computation times, communication delays and
probably a reaction time of the sensors or actuators, is an undesired phenomenon that
should be kept as small as possible. In control engineering, it is well known [46] that
these time-delays can degrade the performance of the controlled system and can even
cause instability of this system. In practice, in many motion control applications the
time-delay is assumed to be negligible compared to the chosen sample-frequency or it
is assumed to be constant. From a software point of view, latency and jitter can not
be avoided, and even worse, can not be predicted accurately [27, 42]. It is known that
latency and jitter are affected by various aspects that are related to the software and its
hardware, such as caches, pipelines, the characteristics of the software architecture and
the chosen communication network, e.g. a CAN-bus or ethernet [86]. In general, the
combination of latency and jitter results in time-variations in the moment of actuation
of the controlled system, when compared to the sample moment of the measurement
being used in the feedback. This contradicts the general assumption on zero or constant

171

172 TIME-VARYING DELAYS IN CONTROL

time-delays that is often made in control design. Schematically, this conflict between
the disciplines is depicted in Figure 14.1(a).

In this chapter, we describe a first step to incorporate effects from software in the
control design and vice versa by considering time-varying delays, instead of a design
based on the general assumption that the time-delay is constant or even zero. Schemat-
ically, this connection is depicted in Figure 14.1(b). Now, in the coupling between
control and software the demands on the maximum time-delay, for which a certain per-
formance can be guaranteed, can be compared to the achievable latency and jitter in
the software implementation. As depicted in Figure 14.1(b), the opposite direction is
possible as well. Such a viewpoint allows us to make explicit the consequences of the
design choices in one domain on the performance or requirements in the other domain,
thereby allowing for a more integrated design trade-off process.

(a) (b)

Figure 14.1: Schematic view of the coupling between real-time software and control
engineering: (a) traditional viewpoint, (b) our viewpoint with mutual consideration of
requirements.

In the literature, different examples are available where the time delays are taken
into account during the controller design. A general approach is described in the field
of Networked Control Systems (NCSs) [58], [127], [131]. In NCSs, the controller
is coupled to the controlled system (physical plant) with sensors and actuators over a
real-time network, as is depicted in Figure 14.2 [131]. Additionally, the information
flows are given by dotted lines. Advantages of an NCS are that by using distributed
elements, flexible architectures are obtained. In a copier/printer example, as used in the
Boderc project, this might result in the use of one processor that computes the control
actions for the different motors in the paper path, instead of using dedicated CPUs for
each motor separately. A disadvantage is that all control-related data, i.e. measurement
data and actuator data from different plants, and other data, such as software error no-
tifications are sent over the same communication network. The transmission of these
data causes time-delays, due to the waiting time until the network is empty and due
to the transmission time of the network. Even worse, loss of data occurs in practice,
because data packets may never arrive at the controller or actuator. Despite of these
disadvantages NCSs have been used in different areas [112, 58], such as mobile sen-
sor networks, remote surgery, automated highway systems, unmanned aerial vehicles,

INTRODUCTION 173

robotic manipulators and teleoperation.

Figure 14.2: A typical NCS setup and information flows [131].

From literature, some results are known that describe the decrease of the perfor-
mance for increasing delays. In [12], a simulation example is used to show that the
use of a network in the control loop, changes the behavior of the controlled system.
In their example, the influence of some network parameters on the step response (a
specific transient performance measure [46]) is determined. The variable parameters
are the network bit-rate (speed), the presence of disturbance traffic and its relative pri-
ority. This results in a different time-delay that has to be taken into account during the
controller design. Their results are given in Figure 14.3, which shows that too small
network speeds (cyan line, 10 kBps) or low priorities (blue line, p10) on the control sig-
nal result in an unacceptable decrease of the performance. Therefore, the latency and
jitter need to be considered during controller design to a priori guarantee performance
in the face of such delays. Other examples, where the influence of the time-delay on
the system performance is investigated, are presented in e.g. [28, 75, 86, 112].

In the previous example, the decrease of the performance is obvious, but still the
system is stable. A more dramatic result can be obtained if the variation in the time-
delay destabilizes the NCS. Examples showing this effect are rare. In Section 14.3,
we show that an NCS may become unstable for time-varying delays, varying within
a bounded set; even when the NCS with any constant delay taken from this set is
asymptotically stable. A similar example was also shown in [124].

14.1.1 Problem description

In the remaining of this chapter, we focus on the effects of time-varying delays on
the stability of a control system. To avoid the occurrence of the destabilizing effect
of time-varying delays in practice, two methods to determine the robust stability of
an NCS are described. Here, robustness refers to robustness with respect to uncertain
time-varying delays taken from a bounded set. For the sake of simplicity, first methods

174 TIME-VARYING DELAYS IN CONTROL

Figure 14.3: Several simulations of a setpoint control problem for a motor with differ-
ent fieldbuses settings [12]. Inset: zoomed portion of the curve.

for time-varying delays upper-bounded by the sample-time of the control algorithm are
obtained. The next step is to extend these methods for larger variations in the time-
delay.

14.2 Basic NCS model

Different models for NCSs are available in literature. Roughly, they can be distin-
guished in discrete-time [54, 7, 124] and continuous-time descriptions [120, 130, 84].
A short description and comparison of the different models can be found in [31].

The model used in the remaining of this chapter is based on the description of an
NCS, proposed in [7]. The NCS is depicted schematically in Figure 14.4. It consists of
a continuous-time plant and a discrete-time controller that receives information from
the plant only at the sampling instantstk = kh (with h the constant sample-time). In
the model, also the computation timeτ c

k and networked induced delays, i.e. sensor-
to-controller delaysτ sc

k and controller-to-actuator delaysτ ca
k are taken into account.

Similar to [7], the sensor acts in a time-driven fashion and the controller and actuator
(including the zero-order-hold (ZOH) in Figure 14.4) act in an event-driven fashion.
’Time-driven’ refers to acting at the sampling instants and ’event-driven’ refers to act-
ing only if new information is available. Under these assumptions, in combination
with a controller that is independent of the time-delays, and the assumption that vacant
sampling does not occur(τ sc

k < h) all delays can be represented by a single delay
τk := τ sc

k + τ c
k + τ ca

k , which is taken into account in the discrete-time control sig-

BASIC NCS MODEL 175

nal uk [86, 124]. The sampling instantstk are determined by the time-driven sensor
output. Moreover, we assume that the total time-delayτk is smaller than the constant
sample-timeh: τk < h. The continuous-time model of the NCS can then be given by:

ẋ(t) = Ax(t) + Bu∗(t)
u∗(t) = uk, for t ∈ [kh + τk, (k + 1)h + τk+1),

(14.1)

with A andB the continuous-time system and input matrices, respectively,x(t) ∈ Rn

the state,t ∈ R the time,τk the delay at sampling momentk, anduk ∈ R the delayed
discrete-time input. For the sake of simplicity, we assume that we measure the entire
state, i.e.yk = xk, at the sampling instants.

Figure 14.4: Schematic overview of the networked control system.

The discretization of (14.1) on the sampling instantstk = kh (the sampling mo-
ments) gives the discrete-time NCS model, which forms the basis of our analysis:

xk+1 = eAhxk +
∫ h−τk

0

eAsdsBuk +
∫ h

h−τk

eAsdsBuk−1. (14.2)

This equation is only valid at the sampling instantstk, where the state is given by
xk := x(tk) and the related control action byuk. In this work, we adopt a linear static
state feedback law and the reference input of the feedback controller is assumed to
be zero (rk = 0 in Figure 14.4), which results in the control lawuk = −Kxk. The
closed-loop NCS model is then given by:

xk+1 = eAhxk −
∫ h−τk

0

eAsdsBKxk −
∫ h

h−τk

eAsdsBKxk−1. (14.3)

Now, by defining the state of the closed-loop NCS model byξk =
(
xT

k xT
k−1

)T
, we

obtain the following state-space model, givenτmax ∈ [0, h]:

ξk+1 = Ã(τk)ξk, τk ∈ [0, τmax], (14.4)

with Ã(τk) =

(
eAh −

∫ h−τk

0
eAsdsBK −

∫ h

h−τk
eAsdsBK

I 0

)
, andξk ∈ R2n. Note

that in (14.4) arbitrary time-varying delays, upper-bounded byτmax ≤ h, are ac-
counted for.

176 TIME-VARYING DELAYS IN CONTROL

14.3 A motivating example

Before analyzing stability of NCSs with time-varying delays, an example is given to
show the effect of time-variation in the delay on the stability of the controlled system.
For the sake of simplicity, in this section, we assume periodic variation of the time-
delay.

The example is in the context of the document printing domain, see Chapter 1.
In general, a paper path, consisting of pinches (rollers), driven by motors, is used to
transport a paper through the printer. In this example, the motor controllers share
the CPU-time of one processor, which is connected to the motors and sensors via a
communication network resulting in unpredictable time-varying delays in the control
loop. We zoom in on one single motor driving one pinch, as depicted in Figure 14.5.
Still, the controller is connected to the motor via the network. In the motor-pinch
model, the motor is assumed to behave ideally, the coupling between motor and pinch
is assumed rigid and slip between the paper and pinch is neglected, which gives (see
also [24]):

ẍs =
nrP

JM + n2JP
u, (14.5)

with JM = 1.95 · 10−5 kgm2 the inertia of the motor,JP = 6.5 · 10−5 kgm2 the
inertia of the pinch,rP = 14 mm the radius of the pinch,n = 0.2 the transmission
ratio between motor and pinch,xs the sheet position andu the motor torque.

Figure 14.5: Schematic overview of the motor-pinch example

The continuous-time state-space representation of (14.5), where the delays are ac-

counted for in the discrete-time inputuk is given by (14.1), withA =
(

0 1
0 0

)
,

B =
(

0
nrP

JM+n2JP

)
andx(t) =

(
xs(t)
ẋs(t)

)
. Adopting a feedback controller of the form

uk = −Kxk, with K =
(
K1 K2

)
, the integrals inÃ(τk) of (14.4) can be computed,

A MOTIVATING EXAMPLE 177

which yields:

Ã(τk) =

1− 1

2α2K1b h− 1
2α2K2b τkβK1b τkβK2b

−αK1b 1− αK2b τkK1b τkK2b
1 0 0 0
0 1 0 0

 , (14.6)

with b = nrP

JM+n2JP
, α = h− τk, andβ = 1

2τk − h.

If the delayτk is constant, and smaller than the sample-timeh, the stability of
system (14.4), with (14.6) can be determined by checking if the eigenvalues ofÃ(τk)
are inside the unit circle [7]. We consider this system with a sample-timeh = 1 ms,
and two possible constant delays:τa = 0.2 ms andτ b = 0.6 ms. A linear feedback
gainK =

(
50 11.8

)
results in a stable system for both constant delaysτa andτ b,

as is illustrated by the upper plot of Figure 14.6. The eigenvalues of the matrixÃ(τa)
areλ1 = 0.996, λ2,3 = −0.097 ± 0.539i, andλ4 = 0. The eigenvalues of̃A(τ b) are
λ1 = 0.996, λ2,3 = 0.203± 0.927i, andλ4 = 0. Moreover, the NCS of (14.4), (14.6)
is stable for any constant delayτ chosen from the interval[0, τ b]. This is illustrated in
Figure 14.7, where the region between the red lines represents the stabilizing controller
gainsK2 for constant delaysτmax andK1 = 50. Note that one red line is close to
K2 = 0.

Figure 14.6: Time behavior of system (14.4), (14.6) for: (upper figure) constantτa =
0.2 ms,τ b = 0.6 ms, and (lower figure) the alternating sequenceτa, τ b.

However, the system becomes unstable if the delays occur in an alternating se-
quence (τa, τ b, τa, τ b, ...), as is shown in the lower plot in Figure 14.6. The instability

178 TIME-VARYING DELAYS IN CONTROL

of this periodic system can be obtained from the eigenvalues of the matrixÃ(τ b)Ã(τa)
[54], which are:λ1 = 0.992, λ2 = −1.012, λ3 = 0, andλ4 = −0.267.

In many practical situations, this periodic stability test is too limited. The use of the
network results in variations in the time-delay, which are in general not periodic (see
e.g. [86]).

14.4 Robust stability

As shown in the previous section, time-varying delays may result in instability. If, for
a given controller, we can determine the maximum amount of time-delay (both latency
and jitter) that is allowed, while still guaranteeing stability, this value can be used in
the coupling between control and software designs.

A lot of research is performed on the stability of NCSs, recently. For the discrete-
time models, stability results for constant and periodic time-delays are described in [54]
and [7]. A thorough discussion of relevant stability results for time-varying delays can
be found in [31]. General overviews of stability for NCSs are contained in [112, 127]
and [131].

We propose a different approach here that is based on a direct convex embedding of
the discrete-time NCS description in an uncertain system [32], which guarantees sta-
bility for the original system directly. This convex over-approximation of the discrete-
time NCS model of (14.4) is using the concept of interval matrices. Based on this
over-approximation the feasibility of the following Linear Matrix Inequalities (LMIs):

P = PT > 0
ĀT PĀ− P < 0, ∀Ā ∈ Ā,

(14.7)

with

Ā := {Ā ∈ R2n×2n : āij = qij or āij = rij , i, j = 1, 2, ..., 2n}, (14.8)

with āij the(i, j)th element ofĀ, qij = minτ∈[0,τmax] ãij(τ) and
rij = maxτ∈[0,τmax] ãij(τ) the minimum and maximum value of the(i, j)th element
ãij(τ) of Ã(τ), respectively, guarantees the robust asymptotic stability of the net-
worked control system for any time-varying delayτk ∈ [0, τmax], with 0 ≤ τmax ≤ h.
Here, the matrixÃ(τ) is equal to (14.4). A numerical disadvantage of this approach
is the possibly large number of LMIs (2

m
2 , with m = 22n, andn the dimension of

the continuous-time system matrixA in (14.1)) that need to be checked for stability.
We describe an improvement in [31], where a convex overapproximation, based on
the Jordan canonical form of the continuous-time matrixA in (14.1), is used. Here,
both the number of LMIs (2n) and the conservatism of the method are reduced. For
both methods, the region for which we can guarantee stability, based on the LMIs, is
given in Figure 14.7. For small time-delays, both our methods do not seem overly
conservative, compared to the stability region for constant delays (region between the
red lines). For larger delays, it is obvious that the improvement based on the Jordan

ROBUST STABILITY 179

canonical form (blue line) gives less conservative results than the ones based on (14.7)
(magenta line). Additionally, the green line in Figure 14.7 represents the combination
of the time-delaysτa = 0.2 andτ b = 0.6, as used in the motivating example of Sec-
tion 14.3. Clearly, as expected, this combination is located in the region for which no
stability could be proven based on both previously described methods.

Figure 14.7: Stabilizing controller gainsK2 for time-varying delays in the interval
[0, τmax] based on the concept of interval matrices [32] (method 1) and based on the
Jordan canonical form [31] (method 2), for constant delays equal toτmax and the
controller gain used in the example of Section 14.3 (K1 = 50, h = 1 ms).

Of course, with our methods we only guarantee stability. Performance aspects,
such as the real-time transient behavior (settling-time, overshoot) in Figure 14.3 and
the effect of disturbances on the steady-state tracking error are not taken into account
in the above described methods, but are part of future research. Moreover, we have
no idea whether the maximum allowed time-delayτmax (latency and jitter) is indeed
achievable in the software implementation, but this value can be used in the discussion
with real-time software engineering. The method proposed in Chapter 13 is useful to
predict the amount of latency and jitter that is introduced in the implementation of the
real-time software model on a certain architecture. Their software model is chosen such
that it satisfies given real-time properties, such as the maximum time between the start
and end of a control computation. Also some other methods that are presented in Chap-

180 TIME-VARYING DELAYS IN CONTROL

ter 12 can be applied to estimate the latency and jitter that occur for a given software
model. If the real-time software implementation is already available, another method
is to obtain practical values by performing measurements on the implementation.

14.5 Large delays

Previously, only results for time-varying delays within the sample-interval are de-
scribed. In many applications, delays larger than the sample-time or package loss
occur. The model of Section 14.2, contains only delays that are allowed to take values
in the interval[0, h], with h the sample-time. In [7], an extension for larger, but con-
stant delays is presented. A more general discrete-time model for time-varying delays
larger than the sample-time, based on the previous model, is proposed in [128]. Here,
additional parameters are introduced to describe whether or not a control signal, e.g.
uk or uk−1 in (14.2), is active in the current sampling interval. The number of active
control signals in each interval is variable, due to the variation in the time-delays larger
than one sampling interval. In [31], the previously described robust stability results are
adapted such that they can be applied to a system that is faced with these larger delays.
The increase of the number of variable parameters, due to the different number of con-
trol signals that can be active, results in an increase of the number of LMIs that have
to be checked for robust stability. The number of these LMIs depends on the ratio be-
tween the maximum delayτmax and the sample-time. For a more detailed description
of this stability test and the obtained stability results the reader is referred to [31].

14.6 Conclusions and future work

In this chapter we discussed one particular aspect of the coupling between software
and control designs: the latency and jitter that can not be avoided in the real-time soft-
ware implementation but affect the performance and stability of the controlled system.
Examples are presented that illustrate the deteriorating effect of such delays on the per-
formance and the stability of the physical system. From a control point of view, these
effects are analyzed and incorporated in the controller design. Therefore, the admissi-
ble latency and jitter, for which robust stability of the physical control system can be
guaranteed, can be determined. These values need to be compared to the worst-case
values of the latency and jitter, that can be derived from experiments or estimated based
on the models explained in Chapter 12 and Chapter 13.

Based on the results for large delays, the influence of package loss can be analyzed,
because the effect of package loss seems similar to the occurrence of time-delays that
can be smaller and larger than the sample-time. This can be explained by the fact that
the actuator will keep its most recent input until new data arrives, if a package is lost.
Additionally, the results for package loss and time-varying delays, which may be larger
than the sample-time, need to be combined to obtain a complete overview of the effect
of the communication network on the stability of the control system.

CONCLUSIONS AND FUTURE WORK 181

Besides the effects on the stability, the effects on the performance are of inter-
est. One particular aspect, is the real-time transient behavior, e.g. settling-time and
overshoot, as presented in Figure 14.3. Another aspect is to analyze the influence of
disturbances, such as measurement noise, on the steady-state tracking error between
the reference signal and the output signal of the physical control system.

182 TIME-VARYING DELAYS IN CONTROL

Chapter 15

Sheet feedback control in a
printer paper path

Authors: B.H.M. Bukkems, J.J.T.H. de Best, M.J.G. van de Molengraft, W.P.M.H.
Heemels and M. Steinbuch

15.1 Introduction

The design of a reliable sheet handling mechanism is a central issue in the development
of today’s cut sheet printer paper paths. An example of such a paper path is shown in
Figure 15.1. Sheets enter this paper path at the Paper Input Module (PIM) and are
transported to the Image Transfer Station (ITS) where the image is printed onto the
sheet at high pressure and high temperature. After the print has been made, sheets can
either re-enter the first part of the paper path for back side printing or they can go to
the finisher (FIN). The transportation of sheets is done via pinches. A pinch is a set of
rollers consisting of two parts: one part that is actuated by a motor and one part that
is used to apply sufficient normal force to prevent the sheet from slipping. As can be
seen from Figure 15.1, pinches can be driven either individually or grouped together in
sections.

One of the objectives of the printer’s sheet handling mechanism is to accurately
deliver sheets to the ITS. Each sheet must synchronize with its corresponding image
with respect to both the ITS entry time and the constant printing velocity to achieve a
high printing quality. One way to realize the desired printing quality is using a high
precision mechanical design. An alternative approach is to exploit the power of closed-
loop sheet control. In this approach, the tolerances on the mechanical parts of the paper
path are allowed to be larger and less effort and money have to be put in constructing
a very stiff frame and drive train, since robustness against disturbances and parameter

183

184 SHEET FEEDBACK CONTROL IN A PRINTER PAPER PATH

uncertainties in the mechanical design is achieved by sheet feedback control. To realize
a sheet feedback control system, the sheet position has to be known. This can, for
example, be realized by adding position sensors, possibly in combination with model-
based observer techniques.

Figure 15.1: Schematic representation of a paper path.

As discussed in Chapter 6, besides the sheet reference profiles, the Happy Flow
model also generates motor profiles that have to be tracked to realize these desired
sheet profiles. Furthermore, the model takes into account requirements on motor char-
acteristics and motor control algorithms. Hence, sheet schedules and information on
motor dynamics and control are combined in one model. By introducing sheet feed-
back control, a decoupling can be made: the Happy Flow model will generate the sheet
reference profiles, whereas the sheet control module will handle setpoint generation for
the controlled motor dynamics, based on the actual sheet tracking error. The decou-
pling might lead to an increase in the design space for the sheet schedules, due to the
decreasing number of details in the Happy Flow model.

Known results on sheet feedback control can be found in [73], [30], [97]. However,
robustness against perturbations and disturbances is not explicitly taken into account in
these control designs. The approach we propose is a model-based sheet feedback con-
trol design procedure in combination with a performance analysis to predict the effect
of parameter perturbations. To synthesize controllers for the sheet tracking problem,
we formulate the system in terms of its error dynamics. Experiments will show that
a good tracking behavior has been obtained, also in case of parameter uncertainties
present in the paper path.

The remainder of this chapter is organized as follows: in Section 15.2, the system
under consideration will be discussed in more detail and the problem statement will
be given. In Section 15.3, we will discuss the controller design method for the paper
path system, together with the performance analysis in case of parameter perturbations.
In Section 15.4, we will present the experimental setup that has been used to validate
the proposed control design approach in practice. The validation experiments will be
presented in Section 15.5, and conclusions and recommendations will come at the end.

SHEET FEEDBACK CONTROL PROBLEM 185

15.2 Sheet feedback control problem

In this chapter, the focus will be on sheet feedback control design in a basic paper path,
shown in Figure 15.2. By considering this basic version, the essence of the control
problem becomes clear. As a result, the switching nature of the system, caused by the
consecutive changing of the driving pinch, naturally arises in the control design and a
structured design approach can be proposed. Since we consider the motion of sheets
only when they are in the paper path, the PIM and FIN are not taken into account. The
considered paper path consists of three pinches (P1, P2, andP3) only, each of which
is driven by a separate motor (M1, M2, andM3, respectively). The locations of the
three pinches in the paper path are represented byxP1, xP2, andxP3, respectively.
These locations are chosen such that the distance between two pinches is equal to the
sheet lengthLs, so the sheet can only be in one pinch at the same time. No slip is
assumed to occur between the sheet and the pinches and the coupling between the
pinches and motors is assumed to be infinitely stiff (i.e. kinematic). The mass of the
sheet is assumed to be zero, which simplifies modeling of the sheet dynamics. The
sheet position, defined asxs, is assumed to be measured.

Figure 15.2: Schematic representation of the printer paper path.

We adopt a hierarchical, cascaded control structure for the sheet feedback control
design. This control layout consists of low level motor control loops and a high level
sheet control loop for tackling disturbances and uncertainties at the motor level and at
the sheet level, respectively. The control goal we adopt for the basic paper path case
study is the design of high level feedback controllers (HLCs) that track the desired sheet
reference trajectory. Regarding this reference motion task, possible choices are abso-
lute reference tracking control (ARTC) and inter-sheet spacing control (ISSC) [73],
[30]. In this chapter, the first option is chosen, considering the eventual possible imple-
mentation in an industrial paper path as the one shown in Figure 15.1. Since this type
of paper paths is often equipped with a registration unit where sheets are stopped for
correction of their orientation and lateral position, implementing ISSC would lead to a
standstill of all upstream sheets when a sheet is in the registration unit. Furthermore, a
large inter-sheet spacing error between the sheet in the registration unit and its down-
stream neighbor will occur, leading to large control actions, i.e. large motor reference
velocities. To avoid these undesired phenomena, ARTC is used and it is required that
sheets are able to track a second-order sheet reference trajectoryxs,r, generated by the
Happy Flow model.

186 SHEET FEEDBACK CONTROL IN A PRINTER PAPER PATH

The closed-loop linear motor dynamics in the Laplace domain can be represented
by

ΩMi(s) = Ti(s)ΩMi,r(s), i ∈ I, (15.1)

with Ti(s) the complementary sensitivity function of controlled motori, which maps
the input of the low level closed-loop system (the motor reference velocityωMi,r(t),
with Laplace transformΩMi,r(s), s ∈ C), to its output (the actual motor velocity
ωMi(t)). Furthermore,I = {1, 2, 3} represents the index set of sheet regions. Since
the bandwidth of the low level control loops is required to be significantly higher than
the bandwidth of the high level control loop [108], we can assume perfect tracking
behavior of the controlled motors, i.e.,Ti(s) = 1, ∀i ∈ I.

Under the assumption of ideal behavior in the low level control loops, the inputsui

of the high level sheet dynamics will be directly generated by the HLCs. This is shown
in Figure 15.3, which represents the block diagram of the control system at hand. Since
at each time instant the sheet is only driven by one pinch, the input of the sheet dynam-
ics will change when the sheet arrives at the next pinch. This switching behavior can
be easily captured in the piecewise linear (PWL) modeling formalism. The sheet ve-
locity is derived from the motor velocities via straightforward holonomic kinematic
constraint relations that describe the relation between motor velocity and pinch veloc-
ity, and pinch velocity and sheet velocity, respectively. The nominal high level sheet
model, i.e. the sheet model without parameter uncertainties and disturbances, is:

ẋs = Biu for xs ∈ Xi, i ∈ I, (15.2)

with the input matricesBi defined asB1 =
[

n1rP1 0 0
]
, B2 =

[
0 n2rP2 0

]
,

andB3 =
[

0 0 n3rP3

]
, respectively. In these definitions,ni represents the trans-

mission ratio between motori and pinchi andrPi represents the radius of the driven
roller of pinchi. Furthermore,u is the column with inputs of the high level sheet dy-

namics:u =
[

ωM1 ωM2 ωM3

]T
. The partitioning of the state space into the three

regions is represented by{Xi}i∈I ⊆ R. Here,X1 = {xs|xs ∈ [xP1, xP2)},
X2 = {xs|xs ∈ [xP2, xP3)}, andX3 = {xs|xs ∈ [xP3, xP3 + Ls)}.

15.3 Control design and performance analysis

In this section, we present the controller synthesis method for the PWL sheet model
(15.2), together with the performance analysis in case the paper path parameters are
perturbed. Since we are dealing with a tracking problem, the system is formulated
in terms of its tracking error dynamics. In contrast to the formulation of linear mod-
els in the error domain, the formulation of the PWL sheet flow model in error space
yields a discontinuous model of the error dynamics. More specifically, the resulting
model consists of both flow conditions, describing the dynamics in each regime, and
jump conditions, describing the error dynamics at the switching boundaries. The flow
conditions can be represented as follows [24]:

q̇ = Fq + Giµ for
(
xs,r −

[
1 0

]
q
)
∈ Xi, i ∈ I. (15.3)

CONTROL DESIGN AND PERFORMANCE ANALYSIS 187

Figure 15.3: Block diagram of the total control system.

In this notation, the state vectorq is defined asq =
[

es ės

]T
, with es = xs,r − xs

the sheet tracking error and the control inputµ is defined asµ = u̇. The system

matrix is defined asF =
[

0 1
0 0

]
, whereas the input matrix is defined asGi =[

03×1 −BT
i

]T
. On the other hand, the jump conditions can be represented as

q+ =
[

1 0
0 1

]
q− +

[
0T

Bk −Bk+1

]
u(ts), k ∈ K, (15.4)

with q−(ts) :=
[

es(t−s) ės(t−s)
]T

andq+(ts) :=
[

es(t+s) ės(t+s)
]T

the state
vector just before and after the switching timets, respectively. Furthermore,K =
{1, 2} represents the index set indicating the possible switches between regimek and
k + 1. Hence, the complete model of the open-loop sheet dynamics in error space is
given by the flow conditions (15.3) and the jump conditions (15.4).

Given this notation in error space, the controller synthesis can be carried out. For
controlling the piecewise linear flow dynamics in error space (15.3) in combination
with the jump conditions (15.4), we propose a control law that is based on state feed-
back of the error dynamics:

µ = −Kq. (15.5)

Substitution of (15.5) into (15.3) yields the closed-loop flow dynamics in error space:

q̇ = (F −GiK) q for
(
xs,r −

[
1 0 0

]
q
)
∈ Xi, i ∈ I. (15.6)

The closed-loop jump conditions can be derived by substitution of the control law to be
implemented, derived from (15.5), into the open-loop jump conditions (15.4), yielding

q+(ts) =
[

1 0
Bk+1(k + 1)K(k + 1, 2)−Bk(k)K(k, 2) 1

]
q−(ts)+

+
[

0
Bk+1(k + 1)K(k + 1, 1)−Bk(k)K(k, 1)

] ∫ ts

t0
es(τ)dτ, k ∈ K.

(15.7)

188 SHEET FEEDBACK CONTROL IN A PRINTER PAPER PATH

Given the total closed-loop error dynamics (15.6)-(15.7), Lyapunov-based stability
analysis is combined with feedback controller synthesis for the PWL system at hand
via the formulation of a set of Linear Matrix Inequalities (LMIs) that can be solved
efficiently using commercially available software [50].

In case parameter uncertainties are present, the high level PWL sheet flow model
becomes:

ẋs = (Bi + ∆Bi) u for xs ∈ Xi, i ∈ I, (15.8)

where∆Bi is the constant uncertainty term of thei-th subsystem. In this model, this
term can represent, for example, an uncertainty in the transmission ratio between motor
i and pinchi or an uncertainty in the radius of the driven roller of pinchi. Based on this
sheet flow model, the closed-loop flow and jump conditions can be derived in analogy
with the derivation presented above. Based on the closed-loop jump conditions, the
effect of the perturbations of the system parameters on the jumps inės can be predicted.
As an example, the following holds forė(t+s) in casees(t−s) = 0 andė(t−s) = 0,

ės(t+s) =
(
−Bk(k)∆Bk+1(k+1)+Bk+1(k+1)∆Bk(k)

Bk+1(k+1)(Bk(k)+∆Bk(k))

)
ẋs,r, k ∈ K, (15.9)

with ẋs,r the sheet reference velocity. Hence, from (15.9) it can be concluded that the
controller gains do not influence the jump inės, since this jump is fully determined by
the system parameters. For more detail, the reader is referred to [26].

15.4 Experimental setup

To experimentally validate the proposed control design approach, we use the paper
path setup depicted in Figure 15.4. As can be seen in the figure, the setup consists of
a PIM and a paper path with five pinches. In our experiments, only the second, third,
and fourth pinch will be used. For the sake of notation, in the remainder of this chap-
ter we will refer to these pinches as pinch 1, pinch 2 and pinch 3, respectively. Each
pinch is connected to a motor via a gear belt. The nominal transmission ratios between
the motors and pinches aren1 = 0.49, n2 = 0.47, andn3 = 0.5, respectively, and
the pinch radii are14 · 10−3 m. The motors are 10 W DC motors, driven by power
amplifiers with built-in current controllers. The angular positions of the motor shafts
are measured using optical incremental encoders with a resolution of 2000 increments
per revolution. Both the amplifiers and the encoders are connected to a PC-based con-
trol system. This system consists of a Pentium 4 host computer running RTAI/Fusion
Linux and Matlab/Simulink and three TUeDACS USB I/O devices [80]. The sheets
are guided through the paper path via thin steel wires and their position is measured
using optical mouse sensors, which are directly connected to the host computer via
USB. Since these mouse sensors are incremental displacement sensors, they cannot be
directly used for absolute sheet position measurement. However, using a dedicated cal-
ibration strategy in combination with an online data processing procedure, we can still
use the mouse sensors in the sheet feedback control loop.

EXPERIMENTAL RESULTS 189
i

i
“bb˙F

ig˙photo˙setup˙04˙sm
all˙tem

p”
—

2006/11/9
—

12:53
—

page
1

—
#

1
i

i

i
i

i
i

Optical

Mouse

sensors

PIM

P1
P2

P3

M1

M2

M3

Figure 15.4: The experimental paper path setup.

15.5 Experimental results

15.5.1 Control design results

Based on the nominal values of the paper path parameters, presented in the previous
section, the controller synthesis has been carried out, yielding the following controller
gains:

K = 1 · 105

 −2.3 · 105 −9.9 · 103

−2.4 · 105 −1.0 · 104

−2.2 · 105 −9.6 · 103

 . (15.10)

To study the system performance in case of uncertain system parameters, the transmis-
sion ratios between the motors and pinches can be varied in the experimental setup.
More specifically, the implemented transmission ratios aren1 = 0.49, n2 = 0.53, and
n3 = 0.49, i.e. the ratios of the second and third subsystem deviate from the nominal
values. The performance analysis discussed in Section 15.3 showed that the jumps in
ės will be in the order of4 · 10−2 ms−1. Since all subsystems are stable, the resulting
sheet tracking error will be quickly controlled towards zero.

15.5.2 Low level motor control

In this subsection, the low level control of motor 1 and its influence on the high level
sheet dynamics is discussed. Although not shown, similar results are obtained for
motors 2 and 3.

In the design procedure of the sheet feedback controllers we assumed perfect track-
ing behavior of the controlled motors, i.e. we assumed an infinite bandwidth of the
motor control loops. Furthermore, we assumed an infinitely stiff coupling between
the pinches and the motors. In a practical environment, however, these assumptions
do not hold. Moreover, a digital implementation will cause a delay in the loop which
will limit the attainable bandwidth. Based on identified motor dynamics, PID feedback

190 SHEET FEEDBACK CONTROL IN A PRINTER PAPER PATH

controllers have been designed using loop shaping techniques [46]. The controller pa-
rameters are tuned such that a bandwidth of 50 Hz has been realized. This can be seen
in Figure 15.6, which depicts the Frequency Response Function (FRF) of the loop gain.
Here, the bandwidth is defined as the frequency at which the 0 dB line of the open-loop
FRF is crossed.

The rubber belt that connects the motor with the driven roller of the pinch has a
limited stiffness, as can be observed from Figure 15.5, which shows the FRF of the
transmission between motor 1 and pinch 1. It can be seen that the assumption on
the infinite stiff coupling between motor and pinch only holds for frequencies up to
approximately 100 Hz. In this frequency range, the measured transmission ratio coin-
cides with the nominal transmission ratio of0.49 (≈ −6.3) dB. For higher frequencies,
the flexibility becomes dominant.

i
i

“bb˙Fig˙FRF˙ENC˙m1˙ENC˙l1˙temp” — 2006/9/5 — 15:34 — page 1 — #1 i
i

i
i

i
i

10
0

10
1

10
2

10
3

−30

−20

−10
−6.3

0

10

M
a
g
n
it

u
d
e

[d
B

]

10
0

10
1

10
2

10
3

−200

−100

0

100

200

P
h
a
se

[◦
]

Frequency [Hz]

Figure 15.5: FRF of the transmission between motor 1 and pinch 1 (solid), and the
nominal transmission ratio (dashed)

Given the high level sheet model and the HLCs, together with the controlled motor-
pinch dynamics, the loop gain of the first subsystem can be derived. This loop gain is
the transfer function from the sheet tracking error to the actual sheet position. The
FRF of this loop gain is also shown in Figure 15.6. It can be seen that a bandwidth of
approximately 10 Hz has been realized. This is a factor of 5 lower than the bandwidth
of the motor control system, as required in a cascade control structure [108]. Further-
more, the phase lag at 10 Hz is approximately 90◦. From this we can conclude that the
first subsystem is stable.

In the control design procedure for the regulation of the PWL error dynamics, sta-
bility was proven for the case of perfect low level motor behavior. However, we want
to apply the calculated controller (15.10) also in practical cases where we have to deal
with non-ideal low level behavior, and still guarantee that the overall switched system

EXPERIMENTAL RESULTS 191

is stable. The stability of this switched system can be analyzed a posteriori by mak-
ing a PWL model of the combined high level sheet dynamics and the controlled motor
dynamics. After transformation of this model to the error domain and closing the loop
using the HLCs (15.10), stability can be analyzed.

i
i

“bb˙Fig˙FRF˙H˙OL˙M1˙TOTAL1˙temp” — 2006/9/5 — 15:34 — page 1 — #1 i
i

i
i

i
i

10
0

10
1

10
2

10
3

−80

−40

0

40

80

M
a
g
n
it

u
d
e

[d
B

]

10
0

10
1

10
2

10
3

−200

−100

0

100

200

P
h
a
se

[◦
]

Frequency [Hz]

Figure 15.6: FRF of the loop gain of the first motor control loop (black) and the FRF
of loop gain of the first subsystem, including low level control (gray).

15.5.3 Validation results

In the experimental validation of the control design, the focus is on the performance
of the system in case of parameter perturbations. For the sheet motion task, a constant
velocity of0.3 ms−1 is chosen that has to be tracked throughout the entire paper path.
The corresponding sheet reference motionxs,r is therefore a ramp function. Since no
feed-forward control input has been used, all three pinches are standing still until a
sheet enters the first pinch. Due to the difference between the initial reference velocity
and the actual initial velocity, the sheet error starts increasing when the sheet enters
the first pinch, as can be seen in Figure 15.7. However, this error is decreased quickly
by the sheet controller in the first regime. Furthermore, it can be seen that the error
increases when the sheet enters pinches two and three. Since the sheet tracking error
is the input of the HLCs at all times, as can be seen in Figure 15.3, pinches two and
three will already have a nonzero initial velocity when the sheet enters these pinches.
Hence, the increase in tracking error is due to the deviation of the transmission ratios
with respect to the nominal values. Also these increases are controlled towards zero
quickly.

The response obtained from simulation is also depicted in Figure 15.7. It can be
seen that there is a close match between the experimentally obtained sheet tracking

192 SHEET FEEDBACK CONTROL IN A PRINTER PAPER PATH

error and the one obtained in simulation. This close match justifies the assumption on
ideal low-level motor dynamics in the controller synthesis approach.

i
i

“bb˙Fig˙sheet˙error˙temp” — 2007/3/6 — 14:21 — page 1 — #1 i
i

i
i

i
i

0 0.5 1 1.5 2 2.35
−1

0

1

2

3

4

5
x 10

−3

← in pinch 1 → ← in pinch 2 → ← in pinch 3 →
S
h
ee

t
tr

a
ck

in
g

er
ro

r
[m

]

Time [s]

Figure 15.7: Experimentally obtained sheet tracking error (blue), together with the one
obtained in simulation (red).

15.6 Conclusions and future work

In this chapter, a model-based control design approach for sheet feedback control in
a printer paper path has been presented. Based on a simple sheet flow model with
few details, sheet feedback controllers have been designed. The use of cheap optical
mouse sensors as sheet position sensors has enabled the practical validation of the
control design. Experiments show that a stable closed-loop system has been obtained,
of which the responses can be predicted very well using the model. The approach
opens an opportunity in industrial applications to use less expensive mechanics with
larger tolerances, and still to achieve the desired printing quality. Current research
focusses on the applicability of the approach in an industrial environment. Special
attention will be on control design for cases in which pinches are coupled into sections,
driven by one motor, and cases in which more than one pinch can influence the sheet
motion. Preliminary results on these topics look promising, yielding the possibility to
apply the approach on a realistic paper path as the one shown in Figure 15.1.

Chapter 16

Event-driven control

Authors: J.H. Sandee, W.P.M.H. Heemels and P.P.J. van den Bosch

16.1 Introduction

Control algorithms are indispensable for the proper functioning of many high-tech ap-
plications. For instance in a copier, where many controllers can be found controlling
motors in the paper path driving the rollers, in the scanner driving an array of sensors to
scan the media, or in the finisher, where paper trays are moved to the right position to
catch the sheets of paper. Next to controlling motors, controllers are applied for various
other purposes in the copier. One example is temperature control at the location where
the image is fused onto the sheet. Also controllers can be found that are not controlling
a physical element of the copier, but for instance take care of synchronized timing over
the multiple processors in the system.

These control algorithms are typically executed on a real-time software processing
platform, under strong real-time conditions to guarantee their required control perfor-
mance. The major cause of these imposed conditions is that most controller design
methods are based on the requirement that the controller sample moments are uni-
formly distributed over time, i.e. having fixed sample intervals. As a consequence,
control engineers pose strong, non-negotiable requirements on the real-time implemen-
tations of their algorithms. This is illustrated in Figure 16.1, which depicts the control
algorithm as a package that is thrown over a brick wall to the software department that
has to implement and test the algorithm.

There are various issues that make the implementation of controllers difficult on
embedded platforms with limited resources. These issues result in importanttrade-offs
that affect both the control performance (i.e. tracking, stabilization, disturbance rejec-
tion, et cetera) and the software performance (i.e. processor load, response times, et
cetera) and have to be dealt with in the system design. Typical trade-offs are for in-

193

194 EVENT-DRIVEN CONTROL

Control department Software departmentControl department Software department

RequirementsRequirements

Algorithm

design

Algorithm

design

TestingTesting

Software

design

Software

design

Figure 16.1: ...control engineers pose strong, non-negotiable requirements on the real-
time implementation of their algorithms...

stance found in the selection of the sample frequency for the control algorithms. The
higher the sample frequency is chosen, the better the control performance generally is
that can be obtained. But when increasing the sample frequency, the processor load
rises, for the simple reason that it takes time to execute the control algorithm compu-
tations. High processor loads can be a real problem in applications where processing
power is limited. Another typical trade-off is found in quantization. Quantization is
often caused by the limited resolution of sensors, but also the software implementa-
tion and communication mechanisms can be important reasons. When a controller is
implemented on a specific platform we have to deal with a limited resolution for the
representation of variables. This is caused by the limited word length. Depending
on the processor, calculations will cost more time for bigger word lengths. There-
fore, increasing the word length is an advantage for the control performance because
of reduced quantization, but might as well be a disadvantage because of the increased
computation time. For communicating data over a network with limited capacity, the
same reasoning applies.

When considering the trade-offs between software and control engineering, an ob-
vious step forward would be to have design methods for control algorithms that take
the requirements of the software implementation into account. Researchers in software
and control engineering are becoming increasingly aware of this need for an integrated
scientific and technological perspective on the role that computers play in control sys-
tems and that control can play in computer systems [102]. The research presented in
this chapter focusses on reducing the gap between both disciplines (Figure 16.2), by
relaxing one of the most stringent conditions that control engineers impose: a fixed

INTRODUCTION 195

Control department Software departmentControl department Software department

RequirementsRequirements

Algorithm

design

Algorithm

design

TestingTesting

Software

design

Software

design

Figure 16.2: ...a step towards reducing the gap between software and control engineer-
ing...

sample frequency.
We propose control algorithms that do not require that sample moments are uni-

formly distributed over time. We claim that this enables the engineers to make better
trade-offs in order to achieve a better overallsystem performance. By not requiring
equidistant sampling, one could for instance vary the sample frequency over time and
therefore choose to dynamically schedule the control algorithms in order to optimize
over processor load. Another option is to design the controller such that it responds
faster to acquired measurement data with which quantization effects and latencies are
reduced considerably.

These controllers we callevent-drivencontrollers, as it is anevent, rather than
the progression of time, that triggers the controller to perform an update. The classical
controllers that perform equidistant sampling we calltime-driven. For time-driven con-
trollers it is the autonomous progression of time that triggers the execution of actions.

Research hypothesis
Event-driven control is an improvement over traditional time-driven control to
achieve a better overallsystem performance, by relaxing one of the most strin-
gent conditions that control engineers impose: a fixed sample frequency.

The work presented in this chapter is part of the published PhD-thesis: ‘Event-
driven control in theory and practice - trade-offs in software and control performance’
[100].

196 EVENT-DRIVEN CONTROL

Figure 16.3: Thesis cover of [100].

16.2 Event-driven control

To illustrate the difference between time-driven control and event-driven control, take
the example of a mailman delivering packages to customers [66]. In the time-driven
situation every customer uses the wall clock to check the door for a new package every
5 minutes. When no package has arrived, they can resume their work. In the event-
driven situation the mailman rings the doorbell of the specific customer who he has to
deliver a package. This customer opens the door and accepts the package. The other
customers can continue their work without being interrupted. This example clearly
illustrates one of the possible benefits of event-driven control, which is a reduction of
the work load, as customers do not have to open their doors unnecessarily. In a control
application this is translated to a reduction of, for instance, the communication bus load
and processor usage. From a controlperformancepoint of view, the real advantage of
event-driven control is the reduced response times. When a package is delivered, the
customer is alerted and can open the door immediately. In the time-driven situation it
may take up to 5 minutes after delivery until customers take action to it.

The aim of event-driven control is to create a balance between the control per-
formance and other system aspects. Event-driven control can for instance reduce the
processor load, while maintaining a high control accuracy, by only computing control
updates when the measured signal deviates significantly from the reference signal, or
only when new measurement data comes available. Also sensor resolutions can be
reduced considerably, by designing the controller such that it specifically deals with
the event-based nature of the sensor. These reduced sensor resolutions have clear cost
price advantages.

In the thesis [100], two event-driven control schemes are presented, that have been
successfully applied in the printer case study. The first one uses an (extremely) low
resolution encoder to measure the angular position of a motor. The event-driven con-
troller is designed such that actuation is performed right after the detection of an en-
coder pulse. In this way, the controller can use theexactposition measurement, and

SENSOR-BASED EVENT-DRIVEN CONTROL 197

is not affected by the quantization errors of the encoder. Moreover, the controller can
respond fast to measurement data. When the motor is not running at constant velocity,
the updates are not equidistant in time. It is therefore not possible to use the classical
design methods which all assume that updates are equally spaced in time. We can how-
ever apply variants of classical design methods if we define our models of the plant and
the controller in the (angular) position domain instead of the time domain, as proposed
in [55]. This idea is based on the observation that the encoder pulses arrive equally
spaced in the position (spatial) domain. By applying this event-driven controller, we
not only decrease the encoder resolution - and therefore the system cost price - but
also the average processor load, compared to the conventional controller. This was ac-
complished without degrading the control performance, with respect to the originally
applied controller.

The focus of the second type of event-driven controller is to obtain a high con-
trol performance on the one hand and realizing a reduction of the resource utilization
(processor load, communication bus load) on the other. This is realized by updating
the controller only when the (tracking or stabilization) error is larger than a threshold
and holding the control value if the error is small. Already in 1962, the need for such
controllers was addressed [37], but few research has been spent in this subject since.
We aim particularly at a mathematical analysis of such controllers to start building an
event-based system theory. The proposed controller is furthermore experimentally val-
idated to research the real benefit in terms of processor load reduction and not only the
number of control updates.

In [100] event-driven control is explained in more detail with various theoretical
and practical examples. In this chapter we will consider one particular example of
event-driven control in more detail, as applied in the printer case study. This example
is based on the first proposed event-driven control scheme to accurately control a motor
based on a low resolution encoder.

16.3 Sensor-based event-driven control

To keep the system cost price limited, our aim is to use low resolution encoders for the
control of motors. However, now the quantization errors become significant when ap-
plying time-driven control and are not negligible anymore. To still achieve satisfactory
control performance, this requires an adjustment to conventional control algorithms to
deal with this low-resolution encoder signal, as these algorithms assume continuous
sensor read-out.

Most applied and researched solutions that deal with noisy and low resolution sen-
sor data use an observer-based approach to estimate the data atsynchronouscontroller
sample moments, based onasynchronousmeasurement moments [13, 22, 49, 53, 72,
93, 76, 119]. In these solutions, the continuous-time plant is translated into a discrete-
time model which is time-varying, depending on the time between successive measure-
ment instants.

A completely different approach has been taken in [55], in which a simple control

198 EVENT-DRIVEN CONTROL

brushless

DC-motor

image
sheet

TTF belt

fuse

roll

masterbelt

Figure 16.4: Schematic representation of the printing process.

structure is presented for the control of a slave motor in master-slave combinations,
that does not suffer from the added complexity of an observer. The control structure
is an asynchronous control scheme in which the control updates are triggered by the
slave position measurement (encoder pulse). The idea of the asynchronous controller
is based upon the observation that at an encoder pulse the position isexactlyknown and
thus there is no need for an observer as in the before mentioned approaches. However,
as the velocity of the motors vary over time, both measurement and control updates
are not equidistant in time. This requires a completely new design paradigm for these
event-driven controllers. We have applied a similar controller structure as proposed in
[55] and extended the controller analysis and design techniques to accurately control
a brush-less DC-motor in the printer that drives the TTF-belt to control the motion of
images through the printer (Figure 16.4), on the basis of a very low resolution Hall
encoder.

The brush-less DC-motor that is driving the TTF-belt is modeled by the second-
order model

θ̇(t) = ω(t)
ω̇(t) = 1

J [(−k2

R −B)ω(t) + k
Ru(t)− d(t)]

(16.1)

whereθ(t) [rad] is the angular position of the motor axis,ω(t) is its angular velocity
[rad/s], u(t) the motor voltage[V] andd(t) the disturbance torque[Nm] at timet ∈ R.
The motor parameters are obtained from data sheets of the motor manufacturer: the
motor inertia (including the load inertia)J = 1.83 · 10−4 kgm2, the motor torque
constantk = 0.028 Nm/A, the motor resistanceR = 1.0 Ω and the motor damping
B = 3.0 · 10−5 Nms/rad.

As presented in [100] we can apply variants of classical design methods, if we
define our models of the plant and the controller in the spatial (angular position) domain
instead of the time domain. This idea is based on the observation that the Hall pulses
arrive equally spaced in the spatial domain, as the Hall sensors have an equidistant
distribution along the axis of the motor. To use this reasoning, we first have to transform
the motor model as given in Equation (16.1) to an equivalent model in which the motor
angular position is the independent variable. After that, the controller design can be
performed using classical control theory.

SENSOR-BASED EVENT-DRIVEN CONTROL 199

The motor model is transformed to the spatial domain via the following relation:

dθ

dt
(t) = ω(t) ⇒ dt

dθ
(θ) =

1
ω(θ)

, (16.2)

whereω(θ) denotes the angular velocity of the motor andt(θ) denotes the time, re-
spectively, at which the motor reaches positionθ. Under the assumption thatω(t) 6= 0
for all t > 0, a one-to-one correspondence betweenθ andt exists and an interchange
of their roles is possible. Note thatω(t) 6= 0 is valid under normal operating conditions
for the considered example, as the motor does not change direction.

Using (16.2) we obtain the motor model in the spatial domain:

dt
dθ (θ) = 1

ω(θ)
dω
dθ (θ) = 1

J [− d(θ)
ω(θ) − (k2

R + B) + k
R · u(θ)

ω(θ)]
y(θ) = t(θ)

(16.3)

whered(θ) andu(θ) denote the disturbance torque and the motor voltage, respectively,
at motor positionθ. Interestingly, the outputy(θ) of this new representation is now
the timet(θ) at which the motor reaches positionθ. To consider the disturbanced
as a function of the angular positionθ is an advantage for many controller designs,
as disturbances are often coupled to the angular position, instead of time. Examples
can be found in bearings, axes, rolls, traveling sheets of paper, et cetera, that all rotate
at a multiple of the velocity of the motor. When the motor velocity decreases, all
frequencies of the disturbances decrease with the same factor.

We can now apply classical control design methods to design a controller for this
non-linear plant model. The details of the procedure can be found in [100]. The anal-
ysis of the control performance is carried out in the spatial domain. As a result, the
measures that we obtain from analysis are also in this spatial domain. For instance
the bandwidth of the controller, which is defined as the frequency up to which dis-
turbances are sufficiently suppressed, is not expressed inHz anymore, but inrad−1.
Furthermore, we do not aim at obtaining a certain settling time but settlingdistance.
These measures can give very valuable information about the control performance, as
these spatial measures directly couple to the print quality.

To validate the controller analysis and synthesis, we compared the designed event-
driven controller with the originally used hybrid controller. In the hybrid control
scheme the actuator signal is updated at a constant rate (i.e. synchronous in time)
but measurements are done asynchronously in time. Each moment a new Hall pulse is
detected, a time-stamp is taken. At each synchronous control update, this time-stamp
is used to estimateω andθ at the control update times from the asynchronous measure-
ments. Both the event-driven controller and the hybrid controller are implemented on
a complete prototype document printing system (as the one shown in Figure 1.6). The
motor model (16.3) was matched with this prototype system. Therefore, the controller
parameters obtained from the analysis could be applieddirectly to control the TTF belt
in the prototype.

200 EVENT-DRIVEN CONTROL

2 3 4 5 6 7
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

time [s]

po
si

tio
n

er
ro

r
[r

ad
]

Figure 16.5: Experiment hybrid controller with 12 PPR encoder and sample freq. 250
Hz.

2 3 4 5 6 7
3.6

3.65

3.7

3.75

3.8

3.85

time [s]

po
si

tio
n

er
ro

r
[r

ad
]

Figure 16.6: Experiment event-driven controller [100, Eq. 4.22] with 1 PPR encoder.

CONCLUSIONS 201

The experimental results for both controllers are given in Figures 16.5 and 16.6.
These figures show the position error during printing over 5 seconds (after start-up).
In this period, 5 sheets are printed at a speed of 80 pages per minute. Comparing the
results in Figures 16.5 and 16.6 we observe similar control performance for the hybrid
controller and the event-driven controller. For the control performance we mainly con-
sider the deviation from a steady-state position error during printing, as only deviations
from a constant position error will be visible in the print quality. From the figure we
see that the maximum deviation from a constant position error varies for both con-
trollers within a range of±0.15 rad, as was required. However, keep in mind that the
event-driven controller operates with an encoder with a resolution that is a factor 12
lower than used for the hybrid controller. Furthermore, the hybrid controller runs at
a (constant) control sample frequency of 250 Hz and the event-driven controller at a
much loweraveragefrequency (approximately 62 Hz). The errors caused by the sheet
passings can be distinguished in both figures, although there are more disturbances (at
different frequencies) acting on the system as can be seen from the measurement data.

Comparing the processor load for both controller algorithms, it is shown in [100]
that the event-driven controller reduces the load with a factor 6 compared to the hybrid
controller implementation, for the considered situation.

16.4 Conclusions

Event-driven control is presented in the research hypothesis as a control design method
to achieve a better overall system performance, compared to classical time-driven ap-
proaches, by relaxing one of the most stringent conditions that control engineers im-
pose: a fixed high sample frequency. System performance has to be understood in the
sense of the combination of aspects that are influenced by the controller implementa-
tion. These are in particular: control performance (in terms of tracking, stabilization
and disturbance rejection), software performance (in terms of processor load), amongst
other aspects like communication bus load and system cost price.

In this chapter we considered one particular event-driven controller, which shows
that by relaxing the equidistant sampling constraint, event-driven controllers can re-
spond faster to changing conditions. The update of the proposed controller is triggered
by new sensor data that comes available, which are the individual pulses of an encoder
in the considered case. This means that theexactposition measurement is used, instead
of some estimation with a non-zero measurement error, which opens up the possibil-
ity to achieve high control performance, while operating with cheap, low resolution
sensors. The controller tuning, for this fundamentally different controller compared
to classical time-driven controllers, was performed by transforming the system equa-
tions from the time domain to the spatial domain. In the spatial domain, the encoder
pulses, and therefore the controller triggering, occur equidistantly spaced. In this way,
we are able to write the control problem as a synchronous problem such that classical
control theory can be applied to design and tune the controller. The resulting control
performance measures are also expressed in the spatial domain, such that we obtain

202 EVENT-DRIVEN CONTROL

the bandwidth in the spatial frequency and aim at settling distances instead of (classi-
cal) settling times. When disturbances are also acting in the spatial domain - which is
often the case - it can easily be determined how these disturbances are rejected. The
proposed event-driven controller was experimentally validated in the printer where a
one pulse per revolution encoder is used to accurately control the motion of images
through the printer in the case study. By means of experiments on a prototype printer
we have shown that with the event-driven controller a similar control performance can
be achieved, compared to the originally applied hybrid controller in combination with
a 12 pulse per revolution encoder. Furthermore, it was investigated that the processor
load for the controller was reduced up to a factor 6.

Chapter 17

Design trajectory and
controller-plant interaction

Authors: P.M. Visser, J.F. Broenink and J. van Amerongen

17.1 Introduction

In the design process of a system various simulations and experiments should be per-
formed to study the behavior of the system, to analyse the system performance and
to make design decisions. As virtually all high-tech systems are multi-disciplinary in
nature the modeling and simulation methods must deal with interaction between the
various disciplines to support the system design. It is important to bring the disciplines
together in an early design stage in order to avoid severe problems at the system inte-
gration phase that cause delays and additional design effort (see the Boderc research
hypothesis in Chapter 1).

In this chapter a system design trajectory is proposed that facilitates the design steps
from initial models to final realization. The system (or part of the system) is considered
to be composed of three components: the plant, the input/output (I/O) interface and the
controller as depicted in Figure 17.1.

Figure 17.1: System scope

203

204 DESIGN TRAJECTORY AND CONTROLLER-PLANT INTERACTION

The plant is a physical device that can be controlled via the input/output (I/O)
interface. For example, the paper path or a single pinch of the paper path that is driven
by a motor. For the controller we will only consider the feedback control part, which in
most modern systems is realized in software and embedded in the complete software
of the system. The reason to focus is on the feedback control instead of the complete
software is that the feedback control dominates the requirements of the hardware and
software architecture. The emphasis of the feedback controller in this chapter is on
the implementation on the control computer from the point of view of the software
discipline; the control algorithm is supposed to be given.

Figure 17.2 shows an example of such a controller-plant system. The plant con-
sidered here is a motor that drives a pinch. The controlled variable of the plant is the
angular position of the motor which can be measured by an encoder. The value of the
encoder is sampled and forms the input of the digital feedback controller. The calcu-
lated output of the controller is applied by means of pulse width modulation (PWM) to
the plant.

Figure 17.2: Controller-plant overview

The starting point of our system design trajectory consists of a running simulation
of a plant model, a digital feedback controller model and the corresponding I/O. The
plant does not have to be prototyped yet, the design trajectory can be commenced in
the early design phases.

The final realization consists of the physical plant and the digital feedback con-
troller that runs on the target. A target is a computer that is capable of computing the
control law of the feedback controller.

The expected benefit from using the proposed design trajectory for the industrial
user is a substantial reduction of the design time due to a reduction in integration effort.
Moreover, as the interaction between the disciplines is clearer from the start of the
design process, better choices can be made to improve the overall system behavior.

17.2 System design trajectory

The design trajectory depicted in Figure 17.3 proposes a systematic stepwise design tra-
jectory with the goal to obtain a less error-prone path from model to realization [118].
It is a model-driven approach in which simulations are used to check whether refine-

SYSTEM DESIGN TRAJECTORY 205

ment updates keep the model compliant with the requirements. Via various ‘in-the-loop
simulations’, the design trajectory runs from complete simulation (stage 1) to final real-
ization (stage 6). By dividing the design in multiple stages, possible errors are isolated
and can be diagnosed faster. In each stage a verification test is performed. If a verifi-
cation test fails one should locate and solve the error in the refinements with respect to
the previous stage and repeat the verification test.

Figure 17.3: System design trajectory

In Figure 17.3 the simulated-time domain (stage 1, 2 and 3) and the real-time do-
main (stage 4, 5 and 6) are separated by a dashed line. The arrows between the I/O
boxes denote the interconnections, which in the final realization stage are the connect-
ing cables. The three components (controller, plant and I/O) are surrounded by a dotted

206 DESIGN TRAJECTORY AND CONTROLLER-PLANT INTERACTION

box which is the realization ‘form’ of the components. The realization form can be the
model, the code or the real instantiation (the physical plant). The outer solid box is the
platform on which the model or code is simulated/executed. A platform is a computer
that is capable of performing the calculations required to perform the simulation or
execution. The following platforms are used:

• Simulation PC platform, a PC that is capable to execute the model simulation.

• Real-Time Simulation PC platform, a fast PC with a real-time simulator, that is
capable to simulate the plant model in real-time.

• Test platform, any commercial off-the-shelf (COTS) platform that can be used to
run the controller.

• Target platform, the platform that is used in the final realization.

The design trajectory will be explained per stage.

Stage 1

In this stage both the controller and plant are simulated in the same modeling envi-
ronment/tool on the same Simulation PC. The plant model will be simulated with a
numerical integration method to approximate the continuous-time behavior. In order to
obtain a deterministic computation time a fixed step-size numerical integration method
is chosen. This is to ensure that the plant can be simulated in real-time (stages 4 and
5). The step-size of the numerical integration method has to be chosen, among others,
to adequately handle the plant dynamics [19] (see also Section 17.3.3).

The simulation will be used to analyze the plant behavior and optimize the con-
troller. This stage can be called Model-In-the-Loop Simulation.

Stage 2

In this stage the controller model has been transformed to executable code by means
of code generation, also called synthesis export, and compilation. The controller ex-
ecutable runs simultaneously with the simulation of the plant model. The verification
test is obvious: the simulation results here should be identical to the simulation results
of stage 1.

In principle, no discrepancies are expected, because the control-laws executed in
simulation and executed in the executable should behave identical. An error that could
occur, for example, is that a different floating point library is used in the controller
model and the controller executable.

The purpose of this stage is to check that generated code yields exactly the same
results as the simulation in stage 1, i.e. that the code generation from the modeling tool
and compiler works as expected.

SYSTEM DESIGN TRAJECTORY 207

Stage 3

In this stage the controller executable and the plant model run on two separate Sim-
ulation PC’s. The controller executable runs simultaneously with the simulation of
the plant model. The interconnection between the Simulation PC’s is via digital I/O.
This implies that the I/O signals are still numbers and not yet physical signals. The
controller runs in a non-real-time environment as a task.

This stage is used to obtain a rudimentary estimation of the CPU usage, which can
be used to facilitate the choice for the target hardware. The simulation results should
be identical to stage 2.

Stage 4

In this stage both the plant and controller run inreal-timeon two separate comput-
ers: the Test platform for the controller and the RT Simulation PC for the plant. The
real-time simulation of the plant model must resemble the real plant behavior closely.
Hence, the simulated plant model must have the same interface as the real plant, re-
quiring that the I/O signals are the real physical signals. The simulated plant must be
replaceable by the real plant without any modifications of the controller.

By choosing a Test platform similar to the Simulation PC’s in the previous stages,
only the migration of the nature of time is verified here. Since in stage 1, a fixed step-
size numerical integration method was chosen, both pieces of code generated from
the model (controller and plant) are functionally identical to stage 1 and should yield
the same simulation results. However, due to the real-time setting, no synchronized
communication between the plant and controller (which is explained in detail in Sec-
tion 17.3.3) and limited computation time, simulation results may differ compared to
those in the previous stages.

In this stage the real-time behavior of the controller can be studied and accurate pro-
cessor and memory usage can be determined in order to determine the target platform.
For example, a design trade-off can be made to accept a worse control performance
(e.g. by changing the sample frequency) or chose for a faster (more expensive) target.
Depending on the trade-off one should return to a previous stage to analyse the effect.

Although the target platform is not necessarily used for the controller, this stage can
be considered as Hardware-in-the-loop-Simulation since various COTS Test platforms
can be used to support the selection of the final target platform. The constraints posed
by the target system are dealt with in the next stage.

Stage 5

In this stage the target platform replaces the test platform at the controller side. The
transformation to this stage may be complicated by specific compilers and/or hardware
resource limitations. Hence, the transformation to this stage will consume more time
and should be taken after the hard real-time behavior is analyzed in the previous stage.

208 DESIGN TRAJECTORY AND CONTROLLER-PLANT INTERACTION

The verification test should show similar behavior compared to the previous stage.
Similar but not identical since the timing of the target system and the compilers used
may differ from the test platform. If the verification test is successful the real plant can
be connected.

Stage 6, the realization

In this final stage, the plant model is replaced by the real plant. Because in stage 4 the
interface of the real-time simulation of the plant model was similar to the real plant
only the cable-ends of the target system need to be connected to the real plant. The
controller and the target system are the same as in the previous stage.

Differences in the simulation results compared to the Hardware-in-the-loop-Simulation
(stage 5) are caused by the difference between the plant simulation and the real plant.

In this stage the behavior of the final system should satisfy the requirements. If
the requirements are met the design process has been successfully performed. If the
requirements are not met, one should return to a previous stages to solve the issue.

A case study in [118] illustrates the results of the design trajectory.

17.3 Controller-plant interaction

This section will illustrate that the choice of the controller implementation approach is
not strictly an implementation issue but a design issue which can have a large impact
on the overall performance of the system and influences many design disciplines.

The controller-plant interaction is explained by using diagrams. In order to keep
the diagrams readable and uncluttered the following simplifications and notational con-
ventions are used:

• The controller does not receive an event directly at the time at which it occurs
but receives the event at the next sampling moment. In implementation terms,
the I/O buffers the event until the controller reads the buffer.

• The plant is simulated with a fixed step-size ofTc. Tc(kc) is used to denote the
time of the simulated plant model at timet = kcTc.

• The sampling interval of the controller isTd. Td(kd) is used to denote the time
of the digital controller at timet = kdTd.

• The step size of the plant simulation is chosen ten times smaller than the sam-
pling interval of the digital feedback controller (Td=10Tc). This choice is ex-
plained in Section 17.3.3.

CONTROLLER-PLANT INTERACTION 209

17.3.1 Controller implementation approaches

The approach that is most common in practice is time-driven control. In time-driven
control there are two different control approaches [7, pages 328-330], which are de-
picted in Figure 17.4. The valuesTAD andTDA are the analog to digital and digital
to analog conversion times, which are assumed to be constant. The valueTComp is the
computational time required to compute the control signal. The computational time
will vary and is denoted withTComp(kd).

Figure 17.4: Control implementation approaches

The behavior of both approaches is as follows:

• ‘sample-compute-actuate’: a sample is taken on timet = Td(kd) and used to
compute the control signal which is applied ont = Td(kd)+TAD+TComp(kd)+
TDA. In this approach the control signal is applied with a varying time delay
since the computational time could vary. The time between two control updates
is periodic with jitter(Td + TComp(kd + 1)− TComp(kd)).

• ‘sample-actuate-compute’: the control actuate signal fort = Td(kd) is computed
with the sample taken att = Td(kd − 1) and applied atTd(kd) + TAD + TDA.
In this approach the control signal is applied with a fixed time delay equal to
the sampling interval (Td) plus the conversion times (TAD + TDA). The time
between two control updates is periodic (Td).

In both approaches there is a time delay between the moment a sample is taken and
the moment the control signal is applied. To avoid issues in the final realization (stage
6) the time delay should explicitly be taken into account at the start of the design (stage
1). Therefore, the example controller-plant system of Figure 17.2 is extended with the
addition of a time delay depicted in Figure 17.5 to deal with the control implementation
approach. In the sample-compute-actuate approach, the time delay isTComp(kd). In
the sample-actuate-compute approach, the time delay isTd.

17.3.2 Interaction in a simulated-time simulation

The interaction in case of simulated-time simulation (stage 1, 2 and 3) is depicted in
Figure 17.6. On the left side the sample-compute-actuate interaction is depicted and
on the right side the sample-actuate-compute interaction is depicted.

210 DESIGN TRAJECTORY AND CONTROLLER-PLANT INTERACTION

Figure 17.5: Controller-plant system with time delay

Figure 17.6: Simulated-time interaction

The main observation is that the control signal for a signal sampled at timeTc(0)
will be applied atTc(1) < t < Tc(10) in case of sample-compute-actuate (varying
delay) and exactly atTc(10) in case of sample-actuate-compute (fixed delay).

In the simulated-time both the controller and the plant are synchronized by the
modeling environment which prevents the occurrence of drift (Td(1) = Tc(10)).

To accurately model the varying time delay (caused by using a computer to im-
plement the control law) in the sample-compute-actuate approach, one needs detailed
knowledge about the final target on which the controller will run. The delay can be es-
timated by analyzing the time that the instructions of the control algorithm (e.g. PID)
will take on the target. A maximum time may be chosen if it can be determined that
the varying delay does not hamper the control performance. Simulation can be used to
study the impact of the varying delay.

In case of the sample-actuate-compute approach the delay is fixed to a unit delay
(Td). This requires no knowledge of the target and a proper controller design is able to

CONTROLLER-PLANT INTERACTION 211

deal with such a fixed time delay.
From a system point of view the sample-actuate-compute approach is preferred.

The approach allows a predictable design since no knowledge is required of the target,
which may not be chosen at the start of the design process. In systems were the ‘best’
obtainable control performance is required and costs are of secondary importance, the
sample-compute-actuate approach may be preferable. In such a system the varying
delay will be small with respect to the sampling interval (Td), since a high performance
computer is used for computing the control algorithm.

For both approaches the target has to be chosen fast enough to compute the control
algorithm in time.

17.3.3 Interaction in a real-time simulation

The interaction in case of real-time simulation (stage 4 and 5) is shown in Figure 17.7.
On the left side the sample-compute-actuate interaction is depicted and on the right side
the sample-actuate-compute interaction is depicted. The computation time is strictly
coupled with real-time, denoted with squares.

Figure 17.7: Real-time interaction

In real-time simulation there is no synchronization of time between the simulated
plant model and the controller. Opposed to thesimulated-timesimulation, the con-
troller will not wait for the plant to calculate its output and vice versa. In the simulated-
time domain computing a second in simulation may take 10 seconds of computation
time. In the real-time domain computing a second in real-time simulation must take less
(or equal) than a second. As a consequence of the asynchronous behavior the time may
drift (Td(1)6=Tc(10)). The asynchronous behavior is caused by fact that the controller

212 DESIGN TRAJECTORY AND CONTROLLER-PLANT INTERACTION

and the simulation of the plant model run on separate computers with separated clocks.
The impact on the simulation results caused by this asynchronous interaction depends
on the clock drift and the step-size of the plant simulation. Clock synchronization e.g.
by hard-wiring is not ‘allowed’ because the idea of Hardware-in-the-Loop simulation
is that the simulated plant can be replaced with the real plant without any modifications.
The error caused by this asynchronous interaction is at least one numerical integration
step (Tc). Hence, decreasing the step-size (Tc) of the plant simulation will decrease the
error caused by the asynchronous interaction. A ratio of at least10Tc≥Td is advised.

The real-time simulation results for the sample-actuate-compute approach will be
similar to the simulated-time simulation results if the target is fast enough to compute
the controller output in time. The results will not be identical because of the asyn-
chronous interaction.

The simulation results for the sample-compute-actuate approach may differ from
the simulated-time simulations. This is the case when the estimated time for the com-
putational delay (used in stages 1,2 and 3) is not the same as the actual time that is
required for the computation in the real-time simulations. If the control performance
is not satisfactory, one has to adjust the estimated computational time in one of the
previous simulated-time stages.

17.4 Conclusions and discussion

In this chapter we presented a systematic stepwise design trajectory to obtain a less
error-prone path from model to final realization. For two common control implementa-
tion approaches the controller-plant interaction was discussed and indicated how they
should be handled within the design trajectory.

In the design trajectory simplifying assumptions were made on the controller-plant
interaction. Future work will focus on removing these assumptions. In particular, in the
controller-plant interaction the events were only received by the controller at the sample
moments. This is a limitation as many reactive systems need to deal with events at the
moment they occur. Hence, the next step is to deal with events, both in the simulated-
time simulations and the real-time simulations, in a realistic manner. When events can
be taken into account the stepwise refinement trajectory can be extended from time-
driven (synchronous) control to event-driven (asynchronous) control as discussed in
Chapter 16.

Chapter 18

Impact, lessons learned and
conclusions

Authors: G.J. Muller and W.P.M.H. Heemels

18.1 Introduction

The Boderc project started in 2002 and ended in 2006, implying that a total of 5 years
of research is represented by the findings of this book. In this last chapter, we will look
at four different aspects, namely

• the summarized project results,

• the research approach: industry-as-laboratory,

• the lessons learned in process and organization,

• the impact and spin-off,

after which we present the final conclusions of the book.

18.2 Project results

The previous chapters described the specific research outcomes of the Boderc project.
In this section we summarize the results and position them in the design pyramid, see
Figure 18.1. It shows that the ordering of the Boderc symposium book is top-down.
Moreover, it indicates that the results are reasonably well distributed over the different
abstraction levels. A first rough ordering was already indicated in Figure 1.9. Most

213

214 IMPACT, LESSONS LEARNED AND CONCLUSIONS

PhD-theses are connected to the existing scientific body of knowledge, a level of de-
tail that goes beyond the bottom of the pyramid due to the current academic standards.
However, the continuous pull towards multi-disciplinary knowledge has resulted in sev-
eral theses that range from detailed scientific up to a certain level of multi-disciplinary
design.

n
u
m

b
e
r

o
f

d
e
ta

ils

100

101

106

105

104

103

102

107

legend

mono-

disciplinary

multi-

disciplinary

system

n

result, see

chapter n

Boderc book

PhD subjects
6

3

2

5

4

6'

HF

7
8

9
10

11

Figure 18.1: The project results positioned in the level of abstraction pyramid

The system-level reasoning used in the Boderc project was bundled in the Boderc
method, that consists of a high-level framework, where more specific plug-ins are used
to make it concrete and practical. The reasoning method as depicted graphically in
Figure 2.7 was extracted in hindsight from the experience gained during the modeling
activities. It collects more or less the general way of working that was observed in the
project.

Submethods

Boderc explored a few submethods as system level plug-ins: the key drivers technique,
threads-of-reasoning, and budget-based design (Chapters 3, 4 and 5, respectively). The
key driver models for past as well as for future projects were highly appreciated by the
industrial partner. The key driver method couples the main customer objectives to the
technical requirements for the system and provides overview in the relationships be-
tween them. The submethod of threads-of-reasoning was used internally in the project,
to relate industrial needs to (potential) research questions and modeling efforts. The
value of these threads is the positioning of work and the relation between a local explo-
ration and the more global context. Budget-based design was used mainly for power

PROJECT RESULTS 215

considerations for a printer. However, we derived general guidelines (a method) on
how to setup budgets and use them in a supportive manner for design purposes.

System-level models

The industrial appreciation of research results is a source of inspiration for further re-
search, as can be seen by the results on kinematic modeling (Happy Flow) as discussed
in Chapter 6. To learn from this successful industrial model, we identified the success
factors of this particular model in Chapter 6. This should form a stepping stone to
arrive at clear guidelines on how to set up effective models in an industrial context.
In other domains with similar kinematic problems, like in mailing systems, there is
already a strong interest in the particular model. The success of (the type of models
as) the Happy Flow model created a demand for developing a similar type of mod-
els for thermo- and power-modeling (Chapter 7), which is an ongoing activity within
Océ. Other ‘system-level’ models are also considered in Chapter 8 and 9. Chapter 8
focussed on how to evaluate the overall control architecture in terms of response times,
CPU load, etc. Chapter 9 described models that are related to printing quality. New
printer technologies were assessed via ‘virtual’ printer models with respect to their
printing quality.

Detailed modeling

The study of stepper motors in Chapter 10 has a somewhat less system-level flavor as
the before mentioned plug-ins. Océ Technologies had important reasons to replace the
DC motors by stepper motors. For this purpose, Chapter 10 investigates the possibili-
ties and impossibilities of stepper motors and aims at building a profound understand-
ing of stepper motors that lead to practical design rules.

Also the work of the PhD students was stretched more to the multi-disciplinary
design domain (see Figure 18.1) than in conventional research at universities.

• Chapter 12 provided an overview of techniques for state-of-the-art performance
analysis for embedded real-time system architectures. Based on these experi-
ences, an indication was given which method is used best under which circum-
stances to successfully support the decision making process for the architecture.

• Chapter 13 presented a model-driven design approach for real-time systems.
This approach enables the analysis of real-time systems and allows automatic
software code generation from the model that preserves the properties analyzed
in the model.

• Chapter 14 takes a control engineering view on the controlled system and reduces
the real-time software behavior to a model consisting of a varying time-delay.
This chapter proposed analysis methods and techniques for the synthesis of con-
trollers that are robust against these time-varying delays (i.e. jitter and latencies
caused by computation and communication).

216 IMPACT, LESSONS LEARNED AND CONCLUSIONS

• For the control design of the drives of the paper transport system, Chapter 15 pro-
posed a hierarchical control paradigm based on supervisory control is proposed.
A systematic analysis and design procedure based on low-level controllers for
the motors in combination with high-level sheet control was proposed.

• Chapter 16 described the design and application of event-driven control, which
allows for a varying sample time in controllers. Event-driven control can have
major benefits with respect to resource utilization like processor and communi-
cation load, while still maintaining a good control performance.

• In Chapter 17, a systematic design trajectory was proposed for the combination
of real-time controllers and physical / mechanical processes. A design path was
indicated in which stepwise the original (simulation) models of both plant and
controller are replaced by their real implementations.

Chapter 11 discussed ways to simulate real-time embedded software together with
its environment, being of a physical / mechanical nature. One approach, Software-in-
the-Loop, is now used at Océ as a way to early test the functionality of paper path
control software. This leads to faster feedback and design cycles and therefore better
products.

The above indicates that several activities were carried out that connect more de-
tailed knowledge (mono-disciplinary models) with multi-disciplinary design choices
(system level models). This is indispensable for the design process as outlined in the
overall Boderc method. One specific example (‘schoolbook example’) was already dis-
cussed in Chapter 2. In the above mentioned work, successful multi-disciplinary results
were achieved, based on a more detailed understanding. Primary value of these activi-
ties is to enable the multi-disciplinary reasoning, without the need to cope continuously
with all details.

18.3 Industry-as-Laboratory research approach

The intention of the industry-as-laboratory approach, as also discussed in Chapter 1, is
twofold:

• to better connect academic research to industrial needs and to focus on results
with industrial feasibility.

• to unfreeze industrial participants from contemporary constraints and to be per-
ceptive for unconventional techniques.

The reward for this investment is that academic researchers obtained triggers for new,
industrially relevant research directions and that industrial engineers were stimulated to
try out multi-disciplinary models and design methods in actual development projects.
Examples of the former are event-driven control design in Chapter 16 and the evalua-
tion of embedded systems architecture in Chapter 12 to mention just two. Examples

INDUSTRY-AS-LABORATORY RESEARCH APPROACH 217

of the latter include the tool coupling ideas as described in Chapter 11, the use of key
drivers in Chapter 3, budget-based design in Chapter 5 and many others. Especially,
the fact that researchers at Océ could work in copier development projects without
having to contribute to the development project directly, was very beneficial. These
researchers obtained the exploratory freedom to try new techniques and methods on
actual industrial problems without the tight time-to-market constraints that the devel-
opers themselves are faced with.

The research created useful industrialmodelson one hand, and did benefit the ad-
vancement of multi-disciplinarymethodson the other. As an example, the success
of the Happy Flow model (Chapter 6) had a direct effect on reducing the effort and
time needed to design the paper transport system and the print job scheduling. At the
methodological level, Happy Flow was used to identify properties that effective indus-
trial design models should satisfy. From these properties, guidelines can be derived on
how to build successful industrial models. Also the making of actual budget models
in the project (Chapter 5) was successful in itself, but resulted also in a more method-
ological view upon the use of budgets.

Along the lines of the industry-as-laboratory research approach, we will evaluate
the original research hypothesis against the findings in the Boderc project. The research
hypothesis of Boderc (see Chapter 1) was formulated as

The product creation lead time will be reduced significantly by the use of
multi-disciplinary models during the early product development phases.

The question arises whether or not the research hypothesis is true and if it is true,
what possible evidence is brought by the results of the Boderc project, as described in
this book. A very strong ‘true’ can be given, even if we only focus on the one of the
Boderc modeling activities: the Happy Flow model. Initial experience shows that sig-
nificant savings in product creation lead time. On top of this reduction in the product
creating lead time by Happy Flow, we believe that the use of the other Boderc mod-
els, like the virtual printer models, the heat flow modeling, the investigation in stepper
motors, the evaluation of embedded system architectures, to mention a few, reduce the
product creation time even further. Computations were not made to assert the econom-
ical value of these and other Boderc modeling activities. However, considering the
broad use of the models within Océ, we conjecture that they must have a positive effect
on the reduction of the product creating time, as otherwise developers and engineers
would not have embraced them.

As the developed models predict the performance and consequences of specific
design choices more accurately than previous state-of-the-practice models, uncertainty
and risks are reduced for later stages. This means that less conservative designs become
feasible resulting in better products. For instance, the Happy Flow enabled a better
prediction of the paper transport systems and as such smaller printers could be built.

218 IMPACT, LESSONS LEARNED AND CONCLUSIONS

18.4 Lessons learned in process and organization

Of course, the development of model-based design methodologies for high-tech sys-
tems cannot be solved by one project like Boderc. Boderc made one proposal for a
design methodology based on the experience obtained. Although a first step has been
made, additional projects are needed to doresearchon methods. These additional
projects must apply the researched methodology in different settings, and re-evaluate
the hypothesis. The industry-as-laboratory approach has a long term character:

• Each industrial application requires significant time and effort to understand the
necessary domain specific knowledge.

• Multiple industrial applications are required to support methodological conclu-
sions.

For the benefit of future large-scale industrial research projects, we will collect
our lessons learned in the Boderc project. This is especially important as Boderc is
innovative in the process model that it uses for performing research.

Tension between mono-disciplinary academia and multi-disciplinary industry

The tension in this type of project is between the need for depth for mono-disciplinary
academic partners and the need for short term industrially applicable and multi-disciplinary
results of the industrial partners. The tension is most severe for students pursuing
their PhD degree, as they are typically defending it within mono-disciplinary facul-
ties. As a consequence, this tension is visible in the positioning of the subjects of the
PhD-students, as shown in Figure 18.1. The required scientific depth pulls the stu-
dents downward into the mono-disciplinary field. However, as can be observed there
are some PhD results that stretches over several orders in the design pyramid. This
is a clear benefit of a project like Boderc: the eye towards industrial applicability and
system-level design is more profound in the Boderc (sub)projects than in the traditional
research at universities. However, towards the end of the project the PhD students re-
tracted more and more towards their own individual work on the PhD thesis, which is
understandable on one hand, but caused disintegration of the project team on the other.

To value system-level research more at PhD level, an opportunity lies in creating
the possibility of receiving a PhD degree in ‘multi-disciplinary or system engineering
schools’ that go beyond the traditional engineering faculties as often encountered at
universities.

Duration of the project

If we consider the development of the project members from mono-disciplinary to-
wards multi-disciplinary, then we see that we needed at least two years for this growth.
When we started we expected that this growth would take only one year. This means
that we need more time for the total project than the 4 years as originally planned.

LESSONS LEARNED IN PROCESS AND ORGANIZATION 219

After two learning years at least two years of exploration and application are needed,
followed again by at least one year of consolidation. A total project duration of 5 to
6 years would solve this problem, at least if we target for the original level of multi-
disciplinary methods. However, this clashes with the need for short-term usable results
as is often desirable from an industrial point of view.

Multi-disciplinary curriculum

Another solution to reduce the long learning phase could be the educational part of the
PhD students. The first year was typically filled with mono-disciplinary classes within
their own domain as this is customary for the PhD students in general. For future
projects we recommend to create a multi-disciplinary curriculum for the PhD-students
working in ESI projects. This would give the project members basic knowledge of
other design disciplines. As a consequence, we expect that they (better) oversee conse-
quences of design choices for other disciplines. Building a common multi-disciplinary
device in the first year would also be a good means to learn cross-disciplinary think-
ing. The purpose of such a curriculum is twofold. First, a faster learning curve in the
multi-disciplinary industrial setting and secondly, scientific results that fit higher in the
design pyramid of Figure 18.1. Ideally we would like PhD students with a T-shaped
thesis: sufficient depth in the mono-discipline, the vertical part of the T, connected to
the multi-disciplinary problem, the horizontal ledger of the T.

Clear initial problem statement

Another remedy for the long learning phase is to have a clear problem statement at
the beginning of a project. In the beginning of the Boderc project we started with
mainly a collection of industrial problems that were faced during the final integration
of a high-tech system, where the (sub)designs of the disciplines meet. We still had
to extract the problem statement approach from these symptoms. We anticipated that
the integration problems were caused by design decisions in the early design phases
of which the consequences were not considered thoroughly across disciplines. From
that we inferred the problem statement. Particularly in large-scale research projects,
we recommend to prepare a sharp problem statement and approach before the project
has even started.

Project team composition

Another point of discussion is the team composition. For instance, one could question
if PhD students are the right persons of doing this type of research as they have the
requirement to write a PhD thesis. From an academic point of view, PhD students are
desirable as it forms one of the foundations of academic groups. But the requirement of
developing sufficient novel contributions in a mono-disciplinary area forms an obstacle
in obtaining system-level design techniques and models. A better balance could be
obtained by involving more postdocs in the research as a remedy.

220 IMPACT, LESSONS LEARNED AND CONCLUSIONS

The members of the carrying industrial partner (CIP, the industrial partner that in-
dicated the research problems) were typically young researchers, which had not yet
developed their system engineering or system architecting skills extensively at the be-
ginning of the project. Also they still had to explore the application field of printers
and copiers. This resulted in the fact that domain specific knowledge was not readily
available. More experienced engineers, instead of young researchers, is a solution al-
though it is harder to unfreeze them from their project duties. Although it seems a high
investment for industry to make their key engineers available for research projects, we
believe that in the long run this would be very beneficial for all parties involved in-
cluding themselves. Typically the first industrial Boderc workshop in which the CIP
developers with more system overview were present, resulted in sharper discussion
that arrived easier at the essence of the industrial design problem. A benefit for in-
dustry is that the young researchers were confronted with academic thinking, system
level reasoning and industrial practice. These assets make them very valuable for the
industry.

The non-CIP industrial people had more industrial and system-level experience.
They turned out to be catalysts in the process of the project (especially in the begin-
ning). The non-CIP industrial people are typically allocated to the project for two
days per week. They found it hard to contribute in their part-time allocation. Part of
the available time is needed for communication and recapturing what the other project
members have been doing during their absence. The time left is not sufficient to actu-
ally build models. The project could benefit more from the existing industrial know-
how if these industrial participants would also be full-time available. In hindsight we
might have created a more balanced team in terms of experience by replacing one or
two PhD students by post docs, but also getting more senior CIP people in the project
(at more days per week).

Summary lessons learned

In summary, the lessons learned with respect to process and organization:

• Even more attention is needed for the composition of the project team, in the
balance experience-inexperienced, in the balance industrial-academic and in the
balance mono-disciplinary and multi-disciplinary.

• The industrial problem is rather broad and also the original project goal was not
really crystallized at the start of the project. This hampered the fast start of the
project. When the goal has to be discussed in the beginning of the project, it is
better to let the PhD students start later.

• Also the research topics of PhD students should be clear at the start of the project
and most importantly, should match the overall research goal. In the first year
of Boderc the PhD topics were selected, while we believe that in year two we
were better prepared to make the selection. As PhD students form a major part

BODERC IMPACT 221

of the work force and should take care of the momentum in the project, it is very
important that they contribute directly to the overall project goal.

• The project team was toodynamics and control engineeringoriented due to an
unclear initial problem formulation. It is desirable to have more disciplines in
the project team to arrive at a better balance.

• Part-time people can only be effective in a coaching role. The real research work
(exploration, application, and consolidation) requires full-time people.

• Communication across disciplinary boundaries is really very difficult, as experi-
enced throughout the project.

• It is very beneficial to provide plans for the classes that the PhD students attend
in the first year. These classes should fit the overal multi-disciplinary project
problem. In particular, some basic classes with respect to the specific application
domain and classes outside the student’s own discipline are considered valuable.

• The mix of project members in disciplines and background in the first year was
a good preparation for the first industrial Boderc workshop. A critical success
factor of this workshop was the presence of CIP engineers with system level
overview. The participants were able to iterate between system requirements
and mono-disciplinary design choices.

18.5 Boderc impact

Besides the research results described previously, Boderc made a broad impact and
resulted in various spin-off activities. We will list here several examples of its impact
and spin-off.

Academic impact:

• Six PhD students will defend their theses that include multi-disciplinary
design knowledge

• Publications in leading journals in various research fields: embedded soft-
ware engineering, control engineering, system engineering, etc. See Ap-
pendix A for an overview.

• Numerous papers and presentations at international conferences in the do-
mains of both system architecting and more mono-disciplinary engineering
disciplines like software engineering, control engineering, mechanical en-
gineering and electrical engineering. See Appendix A.

• At the Forum on Specification and Design Languages (FSDL) 2006 a Boderc
paper even won ‘The Best Paper Award.’

222 IMPACT, LESSONS LEARNED AND CONCLUSIONS

• One of the Boderc partners started a course in the curriculum of the depart-
ment of mechanical engineering of the TU/e on Embedded Motion Control
to educate mechanical engineers in the implementation aspects of embed-
ded controllers and the consequences of control algorithms on other design
disciplines. Several Boderc members acted as lecturers for this course and
in this way over 40 M.Sc. students were influenced by Boderc knowledge.
This course will be continued in the future due to its success. Also at
the universities of Nijmegen and Twente similar educational activities are
started.

• Several postgraduate students in computer science (OOTI) from the Stan
Ackermans Institute, numerous master and practical students from various
academic groups participated and interacted in the Boderc project .

• We organized 3 successful symposia with on average 100 participants each.

• Boderc initiated the ViewCorrect [21] project, an STW-project between
two academic groups participating in Boderc on tool coupling. Océ is a
partner in this project.

• One of the research fellows stayed at Océ for 6 months to interchange ideas
on system design. Sponsored by the Casimir program (dutch ministeries of
economical affairs (EZ) and education, culture and sciences (OCW)).

• Two experimental set-ups of small paper paths were built at the universities
of Eindhoven and Twente. Besides conducting research experiments, these
are also used for educational purposes.

Industrial impact:

• The industrial participants in the project learned valuable system engineer-
ing skills, both at the CIP and the other participating companies.

• The financial return on investment was already obtained with one of the
models, the Happy Flow model (Chapter 6).

• The success of the Happy Flow model resulted in the knowledge of the
type of system behavior models that are useful for product development
(see also Chapter 6). This awareness will lead to the development of more
of this type of models. The energy model mentioned in Chapter 7 is one of
them.

• The Software-in-the-Loop approach described shortly in Chapter 11 has
been proven to be successful in a prototype and has been incorporated in
the embedded software engineering process at Océ. It contributes to the
development process by enabling much faster development cycles because
of the rapid feedback it provides.

• Other Boderc modeling activities are being used or considered in Océ projects.
An example is the evaluation of event-driven control (Chapter 16) in a pro-
totype printer.

CONCLUDING REMARKS 223

• Industrial workshops and 10 user group meetings were organized to trans-
fer knowledge to Océ. This influences current and future design projects at
Océ.

• By means of ESI courses, the acquired knowledge will be spread towards
other industries in the Netherlands.

The industrial and academic outcomes of the project are such that follow-up re-
search will take place that is based on a similar process model.

18.6 Concluding remarks

Of course, a pioneering project like Boderc is based on the ‘spirit of an entrepreneur.’
With good faith we started the project. Since there was little to no experience with
research projects of this size and type, the Boderc project had a high learning char-
acter. As such, it is inevitable that there is room for improvement in the process and
organizational part. Most importantly, we have to learn from this experience for the
future.

The next generation of projects of the Embedded Systems Institute already bene-
fits from the lessons learned in Boderc, which underlines the innovative nature of the
Boderc project. Although the Boderc project may have suffered a bit from its pioneer-
ing position, we can be very satisfied with the outcomes, as described in the previous
sections of this book.

If one takes a ‘business-oriented view’ on the Boderc project, one can say that it
generated return on investment for the involved companies and academic groups that
are clearly above expectation. For the academic groups this was typically realized via
graduations of master and PhD students, published papers and the Boderc impact on
their curricula. ESI was able to attract 3 research fellows for its staff via the Boderc
project and Boderc helped to put ESI on the world map as a leading center in the area
of embedded system engineering. Océ saved a lot of design effort and time in current
and future projects due to the development of many valuable models, techniques and
methods.

Using a more ‘soft view,’ the Boderc project created a lot ofawarenessboth within
academia and industry with mutual understanding and respect for individual positions,
capabilities and strengths. The difficulties in multi-disciplinary and system-level design
became more explicit and as such created a first step in addressing them. Academia
were confronted with industrial needs, while industry learned to untangle itself occa-
sionally from the time pressure present in product development projects. This lead to
the development of models, techniques and methods that were truly relevant in indus-
trial practice. It also initiated the cooperation of all disciplines, already from the earli-
est phases of design projects. Of course, the derived methodology, understanding and
models should be refined further and validated in future projects. But all aspects taken
into account, the Boderc project made an excellent first step in developing model-based
methodologies for designing high-tech systems.

224 IMPACT, LESSONS LEARNED AND CONCLUSIONS

Appendix A

List of Boderc publications

The Boderc publications are categorized into the specific research fields they belong to.
This illustrates the impact of Boderc on various research disciplines. Within the cat-
egoriessystem engineering, control engineeringandhardware-software engineering,
we ordered the publications anti-chronologically.

System Engineering

1. Muller G.J., Heemels, W.P.M.H.
Five Years of Multi-Disciplinary Academic and Industrial Research: Lessons
Learned. Conference on System Engineering Research (CSER) 2007.

2. Verhoef, M., Larsen, P.G.
Interpreting Distributed System Architectures with VDM++- A case study. Con-
ference on System Engineering Research (CSER) 2007.

3. Bosch, P.F.A. van den, Verhoef, M., Muller G.J., Florescu, O.
Modeling of hardware software performance of high-tech systems. Seventeenth
symposium International Council on System Engineering (INCOSE) 2007, San
Diego, USA.

4. Heemels, W.P.M.H., Somers, L., Bosch, P.F.A. van den, Muller, G., Yuan, Z.,
Wijst, B. van der, and Brand, A. van den.
The use of the key driver technique in the design of copiers. In Proceedings
of the International Conference on Software and Systems Engineering and their
Applications (ICSSEA), December 5-7, 2006, Paris, France.

5. Freriks, H., Heemels, W.P.M.H and Muller, G.J., Sandee,J.H.
On the Systematic Use of Budget-Based Design. Sixteenth symposium Interna-
tional Council on System Engineering (INCOSE) 2006, Orlando, USA.

225

226 LIST OF BODERC PUBLICATIONS

6. Sandee, J.H., Heemels, W., Muller, G., Bosch, P.F.A. van den, and Verhoef, M.
Threads of reasoning: A case study in printer control. Sixteenth symposium
International Council on System Engineering (INCOSE) 2006, Orlando, USA.

7. Heemels W.P.M.H., Waal E. van de, and Muller, G.J.
A multi-disciplinary and model-based design methodology for high-tech systems.
In Proceedings of the Conference on System Engineering Research (CSER),
April 2006, Los Angeles, California.

8. Bosch, P.F.A. van den and Waal, E.H. van de.
A case study of multi-disciplinary modeling using MATLAB / Simulink and True-
Time. Fifteenth symposium International International Council on System Engi-
neering (INCOSE) 2005, Rochester, USA.

9. Muller G.J.
Do useful Multi-Domain Methods exist?In Proceedings of the Conference on
System Engineering Research (CSER), March 2005, Hoboken, USA.

Control engineering

1. Visser, P. M. and Broenink, J.F.
Controller and Plant System Design TrajectoryIn Proc. IEEE International sym-
posium on Computer Aided Control Systems Conference, CACSD 2006.

2. Cloosterman, M.B.G., Wouw, N. van de, Heemels, W.P.M.H. and Nijmeijer, H.
Robust Stability of Networked Control Systems with Time-varying Network-induced
Delays. In Proceedings of the 45th IEEE Conference on Decision and Control
(CDC), 2006, San Diego, U.S.A.

3. Sandee, J.H., Visser, P.M. and Heemels, W.P.M.H.
Analysis and experimental validation of processor load for event-driven con-
trollers. Proceedings of the IEEE Conference on Control and Applications 2006,
Munich, Germany, pages 1879-1884.

4. Heemels, W.P.M.H. and Sandee, J.H.
Practical stability of perturbed event-driven controlled linear systems. Proceed-
ings of the American Control Conference 2006 in Minneapolis, USA, pages
4379-4386.

5. Bukkems, B.H.M, van de Molengraft, M.J.G., Heemels, W.P.M.H., Wouw, N.
van de, and Steinbuch, M.
A Piecewise Linear Approach towards Sheet Control in a Printer Paper Path.
Proceedings of the American Control Conference 2006 in Minneapolis, USA,
pages 1315-1320.

6. Bukkems, B.H.M, de Best, J.J.T.H., van de Molengraft, M.J.G., and Steinbuch,

227

M.
Robust Piecewise Linear Sheet Control in a Printer Paper Path. Proceedings of
the 2nd IFAC Conference on Analysis and Design of Hybrid Systems 2006 in
Alghero, Sardinia, Italy, pages 142-147.

7. Sandee, J.H., Heemels W.P.M.H., Bosch, P.P.J. van den.
Event-driven control as an opportunity in the multidisciplinary development of
embedded controllers. Proceedings of the American Control Conference 2005,
vol. 3, Portland, 2005, pages1776-1781.

8. Bukkems, B., Sandee, J.H., Beckers, J., Yuan, Z., Wijst, B. van der.
Multi-disciplinary modelling of dynamic embedded systems. Proceedings of
Mechatronics and Robotics 2004, Aachen, Germany, pages 27, part I.

Hardware-software engineering

1. Verhoef, M., Larsen, P.G., Hooman, J.
Modeling and validating distributed embedded real-time systems with VDM++.
In Misra, J., Nipkow, T., Sekerinski, E., editors, Formal Methods (FM) 2006,
volume 4085 of Lecture Notes in Computer Science (LNCS), pages 147–162.
Springer, 2006. This paper is available on-line athttp://dx.doi.org/
10.1007/11813040_11 .

2. Florescu, O., Voeten, J.P.M., Verhoef, M., Corporaal, H.
Reusing real-time systems design experience through modelling patterns. Pro-
ceedings of the Forum on Specification & Design Languages 2006 (FDL’06),
ISBN 3-00-019710-9, pages 375-380, Darmstadt, Germany, September 2006.

3. Florescu, O., Voeten, J.P.M., Corporaal, H.
Property-preservation synthesis for unified control- and data-oriented models.
Editor Vachoux, Alain,Applications of specification and design languages for
SoCs, ISBN 1-4020-4997-8, pages 247-262, Springer, 2006.

4. Florescu, O., Huang, J., Voeten, J.P.M., Corporaal, H.
Strengthening property preservation in concurrent real-time systems. Proceed-
ings of the 12th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), ISBN 0-7695-2676-4, pages
106-109, Sydney, Australia, August 2006.

5. Florescu, O., Hoon, M. de, Voeten, J.P.M., Corporaal, H.
Probabilistic modelling and evaluation of soft real-time embedded systems. Pro-
ceedings of the Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS VI), LNCS 4017, ISBN 3-540-36410-2, pages 206-215,
Samos, Greece, July 2006.

6. Florescu, O., Hoon, M. de, Voeten, J.P.M., Corporaal, H.

http://dx.doi.org/10.1007/11813040_11
http://dx.doi.org/10.1007/11813040_11

228 LIST OF BODERC PUBLICATIONS

Performance modelling and analysis using POOSL for an in-car navigation sys-
tem. Proceedings of the 12th Annual Conference of the Advanced School for
Computing and Imaging (ASCI), ISBN 90-810849-1-7, pages 37-45, Lommel,
Belgium, June 2006.

7. Hendriks, M, Verhoef, M.
Timed automata based analysis of embedded systems architectures. In Workshop
of Parallel and Distributed Real-Time Systems (WPDRTS). IEEE, 2006. On-
line proceedings to appear. Technical report ICIS-R06003 is available on-line at
http://www.cs.ru.nl .

8. Verhoef, M.
On the use of VDM++ for specifying real-time systems. In John Fitzgerald,
Peter Gorm Larsen and Nico Plat, editors, Towards Next Generation Tools for
VDM: Contributions to the First International Overture Workshop, CS-TR 969,
pages 26–43. School of Computing Science, Newcastle University, June 2006.
This technical report is available on-line athttp://www.cs.ncl.ac.uk/
research/pubs/ .

9. Wandeler, E., Thiele, L., Verhoef, M., and Lieverse, P.
System architecture evaluation using modular performance analysis: a case
study. International Journal of Software Tools for Technology Transfer (STTT),
8(6):649–667, November 2006. This paper is available on-line athttp://dx.
doi.org/10.1007/s10009-006-0019-5 .

10. Yang Huang, Visser, P. M. and Broenink, J.F.
A Clock Synchronization Skeleton Based on RTAI. In 8th Real-Time Linux Work-
shop.

11. Florescu, O., Voeten, J.P.M., Corporaal, H.
Property-preservation synthesis for unified control- and data-oriented models.
Proceedings of the Forum on Specification & Design Languages 2005 (FDL’05),
ISSN 1636-9874, Lausanne, Switzerland, September 2005.

12. Huang, J., Voeten, J.P.M., Florescu, O. and Putten, P.H.A. van der, Corporaal, H.
Predictability in real-time system development. Editor Boulet, Pierre, Advances
in design and specification languages for SoCs, ISBN 0-387-26149-4, Springer,
2005.

13. Yuchen, Z., Orlic, B., Visser, P.M. and Broenink, J.F.
Hard Real-Time Networking on Firewire. In 7th Real-Time Linux Workshop,
2005

14. Florescu, O., Voeten, J.P.M., Corporaal, H.
A unified model for analysis of real-time properties. Proceedings of the 1st In-
ternational Symposium on Leveraging Applications of Formal Methods (ISoLa

http://www.cs.ru.nl
http://www.cs.ncl.ac.uk/research/pubs/
http://www.cs.ncl.ac.uk/research/pubs/
http://dx.doi.org/10.1007/s10009-006-0019-5
http://dx.doi.org/10.1007/s10009-006-0019-5

229

2004), TR-2004-6, pages 220-227, Paphos, Cyprus, November 2004.

15. Florescu, O., Voeten, J.P.M., Huang, J., Corporaal, H.
Error estimation in model-driven development for real-time software. Proceed-
ings of the Forum on Specification & Design Languages 2004 (FDL’04), ISSN
1636-9874, Lille, France, September 2004.

16. Visser, P. M., Groothuis, M. A. and Broenink, J.F.
FPGAs as versatile configurable I/O devices in Hardware-in-the-Loop Simula-
tion. In The 25th IEEE International Real-Time Systems Symposium, 2004

17. Visser, P. M., Groothuis, M. A. and Broenink, J.F.
Multi-Disciplinary Design Support using Hardware-in-the-Loop Simulation. In
5th PROGRESS Symposium on Embedded Systems, 2004

18. Hooman, J., Mulyar, N., and Posta, L.
Supporting model-based simulation of embedded systems by coupling tools. In
Proceedings of the 5th PROGRESS Symposium on Embedded Systems, pages
131–134. Technology Foundation STW, 2004.

19. Hooman, J., Mulyar, N., and Posta, L.
Validating UML models of embedded systems by coupling tools. In Proceedings
Workshop on Specification and Validation of UML models for Real-Time and
Embedded Systems (SVERTS). Verimag, 2004.

20. Hooman, J., Mulyar, N., and Posta, L.
Coupling Simulink and UML models. In B. Schnieder and G. Tarnai, editors,
Proceedings of Symposium FORMS/FORMATS 2004, pages 304–311, 2004.

230 LIST OF BODERC PUBLICATIONS

Appendix B

List of authors

Prof. dr. ir. J. van Amerongen
University of Twente
j.vanamerongen@utwente.nl

Ing. J.M.J. Beckers
Océ Technologies B.V.
jan.mj.beckers@oce.com

Ir. J.J.T.H. de Best
Eindhoven University of Technology
j.debest@tue.nl

Prof. dr. ir. P.P.J. van den Bosch
Eindhoven University of Technology
p.p.j.v.d.bosch@tue.nl

Ir. P.F.A. van den Bosch
Océ Technologies B.V.
peter.vandenbosch@oce.com

Ir. A. van den Brand
Centric Tsolve
adriaan.van.den.brand@TSolve.com

Dr. ir. J.F. Broenink
University of Twente
j.f.broenink@utwente.nl

Ir. B.H.M. Bukkems
Eindhoven University of Technology
b.h.m.bukkems@tue.nl

Ir. M.B.G. Cloosterman
Eindhoven University of Technology
m.b.g.cloosterman@tue.nl

Prof. dr. H. Corporaal
Eindhoven University of Technology
h.corporaal@tue.nl

Ir. O. Florescu
Eindhoven University of Technology
o.florescu@tue.nl

Ir. H.J.M. Freriks
Océ Technologies B.V.
hennie.freriks@oce.com

231

232 LIST OF AUTHORS

Dr. ir. W.P.M.H. Heemels
Eindhoven University of Technology
Embedded Systems Institute
m.heemels@tue.nl

Dr. J.J.M. Hooman
Radboud University Nijmegen
Embedded Systems Institute
jozef.hooman@esi.nl

Ir. K.J. Klein Koerkamp
Océ Technologies B.V.
koen.kleinkoerkamp@oce.com

Dr. ir. M.J.G. van de Molengraft
Eindhoven University of Technology
m.j.g.v.d.molengraft@tue.nl

Dr. G.J. Muller
Embedded Systems Institute
gerrit.muller@esi.nl

Prof. dr. H. Nijmeijer
Eindhoven University of Technology
h.nijmeijer@tue.nl

Ir. J.H. Sandee
Eindhoven University of Technology
j.h.sandee@tue.nl

Dr. ir. L.J.A.M. Somers
Océ Technologies B.V.
lou.somers@oce.com

Prof. dr. ir. M. Steinbuch
Eindhoven University of Technology
m.steinbuch@tue.nl

J. Stolte
Eindhoven University of Technology
jstolte@tue.nl

Dr. ir. A. Veltman
Eindhoven University of Technology
a.veltman@tue.nl

Ir. M.H.G. Verhoef
Chess
marcel.verhoef@chess.nl

Dr. ir. J.P.M. Voeten
Eindhoven University of Technology
j.p.m.voeten@tue.nl

Ir. P.M. Visser
University of Twente
p.m.visser@utwente.nl

Ir. E.H. van de Waal
Imtech
evert.vandewaal@imtech.nl

Ir. B. van der Wijst
Philips Applied Technologies
berry.van.der.wijst@philips.com

Dr. ir. N. van de Wouw
Eindhoven University of Technology
n.v.d.wouw@tue.nl

Dr. Z. Yuan
Océ Technologies B.V.
zhaorui.yuan@oce.com

233

Boderc partners (institutions and companies):

Chess Best, The Netherlands
Eindhoven University of Technology Eindhoven, The Netherlands

Embedded Systems Institute Eindhoven, The Netherlands
Imtech The Hague/Baarn, The Netherlands

Océ Technologies B.V. Venlo, The Netherlands
Radboud University Nijmegen Nijmegen, The Netherlands

University of Twente Enschede, The Netherlands

For more information: office@esi.nl

234 LIST OF AUTHORS

Bibliography

[1] P.P. Acarnley and P. Gibbons. Closed-loop control of stepping motors: predic-
tion and realisation of optimum switching angle.IEEE Proceedings, Part B,
129(4), 1982.

[2] I. Alexander. Towards automatic traceability in industrial practice.Proceedings
of the First International Workshop on Traceability, Edinburgh, pages 26–31,
2002.

[3] G. Altshuller. The innovation algorithm. triz, systematic innovation and techni-
cal creativity. 2000.

[4] R. Alur and D.L. Dill. A theory of timed automata.Theoretical Computer
Science, 126:183–235, 1994.

[5] D. Amyot and G. Mussbacher. Urn: Towards a new standard for the visual
description of requirements.LNCS 2599, pages 21–37, June 2002.

[6] A. Antón, J. Dempster, and D. Siege. Managing use cases during goal driven
requirements engineering: Challenges encountered and lessons learned.TR-99-
16, North Carolina State Univ, December 1999.

[7] Karl J. Åström and Björn Wittenmark.Computer Controller Systems: Theory
and Design. Prentice Hall, Upper Saddle River, New Jersey, 3rd edition, 1997.

[8] S. Baruah, D. Chen, and A. Mok. Jitter concerns in periodic task systems.Pro-
ceedings of the Eighteenth Real-Time Systems Symposium, San Francisco, CA,
pages 68–77, 1997.

[9] I. Bate and N. Audsley. Flexible design of complex high-integrity systems using
trade offs.Proc. 8th Int. Symp. High Assurance Systems Engineering, 2004.

[10] J.O. Bayer, P. Flege, R. Knauber, D. Laqua, K. Muthig, T. Schmid, Widen, and
J.M. DeBaud. Pulse: A methodology to develop software product lines.Pro-
ceedings of the symposium on software reusability, pages 122–131, 1999.

235

236 BIBLIOGRAPHY

[11] G. Behrmann, A. David, and K.G. Larsen. A Tutorial on UPPAAL. InFormal
Methods for the Design of Real-time Systems, volume 3185 ofLecture Notes in
Computer Science, pages 200–236. Springer, 2004.

[12] Matthijs H. ten Berge, Bojan Orlic, and Jan F. Broenink. Co-simulation of net-
worked embedded control systems, a CSP-like process-oriented approach. In
Proc. of joint CCA, CACSD and ISIC, pages 434–439, Munich, Germany, Octo-
ber 2006.

[13] S.S. Blackman.Multiple target tracking with radar applications. Norwood,
MA: Artech House, 1986.

[14] H. Bode. Network Analysis and Feedback Amplifier Design. Van Nostrand
Reinhold, New York, 1945.

[15] Leo J. van Bokhoven, Jeroen P.M. Voeten, and Marc C.W. Geilen. Software
synthesis for system level design using process execution trees. InProc. of 25th
Euromicro Conference, pages 463–467, 1999.

[16] L. Boltzmann. Ableitung des stefanschen gesetzes betreffend die abhängigkeit
der wärmestrahlung.Annalen der Physik und Chemie, 22, 1884.

[17] Egor Bondarev, Michel Chaudron, and Peter de With. Quality-oriented design
space exploration for component-based architectures. Technical report, Tech-
nical University of Eindhoven, Department of Mathematics and Computer Sci-
ence, February 2006.

[18] P.F.A. van den Bosch and E.H. van de Waal. A case study of multi-disciplinary
modelling using matlab/simulink and truetime.Proc. INCOSE Symposium 2005,
2005.

[19] P.P.J. van den Bosch and A.C. van der Klauw.Modeling, Identification and
Simulation of Dynamical Systems. CRC Press Inc., 1994.

[20] P.C. Breedveld.Dynamische systemen : modelvorming en simulatie met bond-
grafen. Open universiteit, The Netherlands, 1994.

[21] J.F. Broenink and J.P.M. Voeten. Viewcorrect: Predictable co-design for dis-
tributed embedded control systems.

[22] D. de Bruin and P.P.J. van den Bosch. Measurement of the lateral vehicle posi-
tion with permanent magnets. InProceedings of IFAC workshop on Intelligent
Components for Vehicles, pages 9–14, Seville, Spain, 1998.

[23] R.J.A. Buhr. Use case maps as architectural entities for complex systems.IEEE
Transactions on Software Engineering, 24, Issue 12:1131 – 1155, December
1998.

BIBLIOGRAPHY 237

[24] B.H.M. Bukkems, M.J.G. van de Molengraft, W.P.M.H. Heemels, N. van de
Wouw, and M. Steinbuch. A piecewise linear approach towards sheet control
in a printer paper path. InProc. of the American Control Conference, pages
1315–1320, Minneapolis, USA, 2006.

[25] B.H.M. Bukkems, J.H. Sandee, J.B.C. Beckers, Z. Yuan, B. van der Wijst, and
M.J.G. van de Molengraft. A case-study in multidisciplinary modeling of dy-
namic embedded systems.IEEE Conference on Mechatronics and Robotics
2004, Aachen, Germany., 2004.

[26] Björn Bukkems.Sheet Feedback Control Design in a Printer Paper Path. (To
be published), Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, The
Netherlands, 2007.

[27] Giorgio C. Buttazzo.Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Kluwer Academic Publishers, 1997.

[28] Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, and Karl-Erik Årzen.
How does control timing affect performance?IEEE Control Systems Magazine,
pages 16–30, June 2003.

[29] S. Chakraborty, S. Künzli, and L. Thiele. A general framework for analysing
system properties in platform-based embedded system designs. InProc. 6th
Design, Automation and Test in Europe, pages 190–195, 2003.

[30] Carlo Cloet.A Mechatronics Approach to Copier Paperpath Design. PhD thesis,
University of California, Berkeley, CA, USA, 2001.

[31] Marieke Cloosterman, Nathan van de Wouw, Maurice Heemels, and Henk Ni-
jmeijer. Robust control of networked control systems with uncertain time-
varying delays.DCT internal report 2006-121, 2006.

[32] Marieke Cloosterman, Nathan van de Wouw, Maurice Heemels, and Henk
Nijmeijer. Robust stability of networked control systems with time-varying
network-induced delays. InProc. of the 45th Conference on Decision and Con-
trol, San Diego, California, USA, December 2006.

[33] A. Cockburn.Writing effective use cases.Addison-Wesley, 2000.

[34] P. Crnosija. Microcomputer implementation of optimal algorithms for closed-
loop control of hybrid stepper motor drives.IEEE Transactions on Industrial
Electronics, 47(6), 2000.

[35] J. Dahmann, R. Fujimoto, and R. Weatherly. The department of defense high
level architecture. InThe 1997 Winter Simulation Conference, pages 142–149,
1997.

238 BIBLIOGRAPHY

[36] R.L. Dillon, M.E. Paté-Cornell, and S.D. Guikema. Programmatic risk analysis
for critical engineering systems under tight resource constraints.Operations
Research, 51, No. 3:354–370, 2003.

[37] R.C. Doff, M.C. Fatten, and C.A. Phillips. Adaptive sampling frequency for
sampled-data control systems.IRE Transactions on Automatic Control, AC-
7:38–47, 1962.

[38] P.G. Engeldrum.Psychometric scaling: A Toolkit for Imaging Systems. Imcotek
Press, 2000.

[39] Oana Florescu, Menno de Hoon, Jeroen Voeten, and Henk Corporaal. Perfor-
mance modelling and analysis using poosl for an in-car navigation system. In
Proceedings of the 12th Annual Conference of the Advanced School for Com-
puting and Imaging (ASCI), pages 37–45, June 2006.

[40] Oana Florescu, Menno de Hoon, Jeroen Voeten, and Henk Corporaal. Proba-
bilistic modelling and evaluation of soft real-time embedded systems. InPro-
ceedings of the Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS VI), LNCS 4017, pages 206–215, July 2006.

[41] Oana Florescu, Jinfeng Huang, Jeroen Voeten, and Henk Corporaal. Strengthen-
ing property preservation in concurrent real-time systems. InProceedings of the
12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 106–109, August 2006.

[42] Oana Florescu, Jeroen Voeten, and Henk Corporaal. Modelling patterns for
analysis and design of real-time systems. Technical Report ESR-2006-05, Eind-
hoven University of Technology, 2006.

[43] Oana Florescu, Jeroen Voeten, Jinfeng Huang, and Henk Corporaal. Error es-
timation in model-driven development for real-time software. InProceedings
of the Forum on Specification & Design Languages 2004 (FDL’04), September
2004.

[44] Oana Florescu, Jeroen Voeten, Marcel Verhoef, and Henk Corporaal. Reusing
real-time systems design experience through modelling patterns. InProceedings
of the Forum on Specification & Design Languages 2006 (FDL’06), September
2006.

[45] International Organisation for Standardization. Space systems - mass properties
control. Proposal ISO International Standard, ISO/CD 22010.

[46] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini.Feedback control
of dynamic systems. Prentice Hall, Upper Saddle River, New Jersey, USA, 2002.

[47] H.J.M. Freriks. White paper on designing with stepper motors. Technical report,
2005.

BIBLIOGRAPHY 239

[48] H.J.M. Freriks, W.P.M.H. Heemels, and G.J. Muller. On the systematic use of
budget-based design.Proceedings of 16th annual international symposium of
the INCOSE, 2005.

[49] B. Friedland. Optimum steady-state position and velocity estimation using sam-
pled position data.IEEE transactions on Aerospace and Electronic Systems,
AES-9(6):906–911, 1973.

[50] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali.LMI Control Toolbox for
Use with Matlab. The Mathworks Inc., Natick, MA, USA, May 1995.

[51] Marc G.W. Geilen.Formal Techniques for Verification of Complex Real-Time
Systems. PhD thesis, Eindhoven University of Technology, Eindhoven NL,
2002.

[52] Geilen, M.C.W. and Voeten, J.P.M. and Putten, P.H.A. van der and Bokhoven,
L.J. van and Stevens, M.P.J. Poosl.Computer Languages 27, pages 19–38,
2001. http://www.es.ele.tue.nl/poosl.

[53] T. Glad and L. Ljung. Velocity estimation from irregular, noisy position mea-
surements. InProceedings of the IFAC 9th Triennial World Congress, pages
1069–1073, Budapest, 1984.

[54] Yoram Halevi and Asok Ray. Integrated communication and control sys-
tems: Part i and ii.Journal of Dynamic Systems, Measurement, and Control,
110(4):367–381, 1988.

[55] W.P.M.H. Heemels, R.J.A. Gorter, A. van Zijl, P.P.J. van den Bosch, S. Weiland,
W.H.A. Hendrix, and M.R. Vonder. Asynchronous measurement and control: a
case study on motor synchronization.Control Engineering Practice, 7:1467–
1482, 1999.

[56] W.P.M.H. Heemels, E. v.d. Waal, and G.J. Muller. A multi-disciplinary and
model-based design methodology for high-tech systems.Proceedings of CSER,
2006.

[57] Martijn Hendriks and Marcel Verhoef. Proc. timed automata based analysis of
embedded system architectures. InWorkshop on Parallel and Distributed Real-
Time Systems, 2006.

[58] João P. Hespanha, Payam Naghshtabrizi, and Yonggang Xu. Networked control
systems: Analysis and design. To appear in theProc. of IEEE, Special Issue on
Networked Control Systems, 2006.

[59] S. van der Hoest. The development of a software-in-the-loop simulation frame-
work for testing real-time control software. Technical report, Stan Ackermans
Institute, Eindhoven, 2006.

240 BIBLIOGRAPHY

[60] J. Hooman, N. Mulyar, and L. Posta. Coupling Simulink and UML mod-
els. In B. Schnieder and G. Tarnai, editors,Proceedings of Symposium
FORMS/FORMATS 2004, pages 304–311, 2004.

[61] Jozef Hooman, Hillel Kugler, Iulian Ober, Anjelika Votintseva, and Yuri
Yushtein. Supporting uml-based development of embedded systems by formal
techniques.Software and Systems Modeling, to appear.

[62] Jinfeng Huang, Jeroen P.M. Voeten, and Marc C.W. Geilen. Real-time property
preservation in approximations of timed systems. InProc. of 1st Conference
on Formal Methods and Models for Codesign (MEMOCODE), pages 163–171,
June 2003.

[63] A. Hughes and P.J. Lawrenson. Simple theoretical stability criteria for1.8◦

hybrid motors.Int. Symp. on Stepping Motors and Systems, 1979.

[64] IBM/Rational. Rose realtime. http://www.ibm.com/.

[65] M. Jazayeri, A. Ran, and F. v.d. Linden. Software architecture for product fam-
ilies. 2000.

[66] C. Jongeneel. Klokloze chips.De Ingenieur, 117(4):52–53, 2005.

[67] D.C. Karnopp, D.L. Margolis, and R.C. Rosenberg.System Dynamics, modeling
and simulation of Mechatronic Systems. John Wiley & sons, New York, third
edition edition, 2000.

[68] G.A. Katopis and et al. MCM technology and design for the S/390 G5 System.
IBM Journal of Research and Development, 43, No 5/6, September/November
1999.

[69] Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pieter van der Wolf. An ap-
proach for quantitative analysis of application-specific dataflow architectures. In
Proceedings of the IEEE ASAP, pages 338–349, 1997. International Conference
on Application-Specific Systems, Architectures and Processors.

[70] T. Kostelijk. Misleading architecting tradeoffs.IEEE Computer, May 2005.

[71] Ron Koymans. Specifying real-time properties with metric temporal logic.Real-
Time Systems, 2(4):255–299, 1990.

[72] M. Krucinski, C. Cloet, M. Tomizuka, and R. Horowitz. Asynchronous observer
for a copier paper path. InProceedings of the 37th IEEE Conference on Decision
and Control, volume 3, pages 2611–2612, Tampa, Florida, 1998.

[73] Martin Krucínski. Feedback Control of Photocopying Machinery. PhD thesis,
University of California, Berkeley, CA, USA, 2000.

BIBLIOGRAPHY 241

[74] C. van Lamsweerde. Goal oriented requirements engineering: A guided tour.
Proc. 5th IEEE Int. Symp. on Requirements Eng., pages 249–263, August 2001.

[75] Feng-Li Lian. Analysis, Design, Modelingadn Control of Networked Control
Systems. PhD thesis, University of Michigan, Ann Arbor, USA, 2001.

[76] J.A. López-Orozco, J.M. de la Cruz, E. Besada, and P. Ruipérez. An asyn-
chronous, robust, and distributed multisensor fusion system for mobile robots.
The international Journal of Robotics Research, 19(10):914–932, 2000.

[77] M.W. Maier and E. Rechtin.The Art of Systems Architecting. CRC Press, Boca
Raton, second edition, 2002.

[78] R. Malan and D. Bredemeyer. Software architecture action guide. 2005.

[79] E. Mohammed and et al. Optical interconnect system integration for ultra-short-
reach applications.Intel Technical J. on Optical Technologies and Applications,
8, No 2, May 2004.

[80] René van de Molengraft, Bram de Kraker, and Maarten Steinbuch. Integrating
experimentation into control courses.IEEE Control Syst. Mag., 25(1):40–44,
February 2005.

[81] G.J. Muller. CAFCR: A multi-view method for embedded systems architecting;
balancing genericity and specificity.PhD thesis, Delft University of Technology,
Delft, The Netherlands, 2004.

[82] G.J. Muller. Do useful multi-domain methods exist?Conference System Engi-
neering Research (CSER), Hobroken, USA, March 2005.

[83] G.J. Muller. Industry and academia: Why practitioners and researchers are dis-
connected.Proc. INCOSE Symposium, Rochester, NY, USA., 2005.

[84] Payam Naghshtabrizi and Joao P. Hespanha. Designing an observer-based con-
troller for a network control system. InProc. of the 44th Conference on Deci-
sion and Control, and the European Control Conference 2005, pages 848–853,
Seville, Spain, December 2005.

[85] Xavier Nicollin and Joseph Sifakis. An overview and synthesis on timed process
algebras. InProc. of the Real-Time: Theory in Practice, REX Workshop, pages
526–548, London, UK, 1992. Springer-Verlag.

[86] Johan Nilsson.Real-Time Control Systems with Delays. PhD thesis, Department
of Automatic Control, Lund Institute of Technology, Lund, Sweden, 1998.

[87] OMG. Unified Modeling Language (UML) - Version 1.5. OMG document
formal/2003-03-01, Needham MA, 2003.

242 BIBLIOGRAPHY

[88] OMG. UML Profile for Schedulability, Performance, and Time Specification -
Version 1.1. OMG document formal/2005-01-02, 2005.

[89] International Council on Systems Engineering (INCOSE) Technical board.Sys-
tem Engineering Handbook. INCOSE, 2004. A “what to” guide for all se prac-
titioners.

[90] G.J.P.M. van Oosterhout. Spectral color prediction by advanced physical model-
ing of toner, ink and paper, with application to halftoned prints.Proc. ISandT’s
NIP19, pages 797–, 2003.

[91] David L. Parnas. Software engineering: An unconsummated marriage.Commu-
nications of the ACM, page 128, September 1997. This article can also be found
in Software Fundamentals,Papers by David Parnas, Addison-Wesley.

[92] R. Phaal, C.J.P. Farrukh, and D.R. Probert. Technology roadmapping - a plan-
ning framework for evolution and revolution.Technological Forecasting & So-
cial Change, 71, No 1-2:5–26, 2004.

[93] A.M. Phillips and M. Tomizuka. Multirate estimation and control under time-
varying data sampling with applications to information storage devices. InPro-
ceedings of the 1995 American control conference, volume 6, pages 4151–4155,
1995.

[94] Colin Potts. Software-engingeering research revisited.IEEE Software, Vol. 10,
No. 5:19–28, September/October 1993.

[95] P.H.A. van der Putten and J.P.M. Voeten. Specification of reactive hard-
ware/software systems - the method software/hardware engineering. 1997.

[96] QFD Institute. QFD institute.http://www.qfdi.org/ , 2000.

[97] Sudhendu Rai and Warren B. Jackson. A hybrid hierarchical control architecture
for paper transport systems. InProc. of the37th IEEE Conference on Decision
and Control, pages 4249–4250, Tampa, Florida, USA, December 1998.

[98] J.B. ReVelle.The QFD handbook. Wiley, 1998.

[99] H. Saiedian, P. Kumarakulasingam, and M. Anan. Scenario-based requirements
analysis techniques for real-time software systems: a comparative evaluation.
Requirements Eng. J., 10:22–33, 2005.

[100] J.H. Sandee.Event-driven control in theory and practice - trade-offs in software
and control performance. PhD thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands, 2006.

[101] J.H. Sandee, W.P.M.H. Heemels, G.J. Muller, P.F.A. van den Bosch, and M.H.G.
Verhoef. Threads of reasoning: A case study.Proceedings of the 16th annual
international symposium of INCOSE, 2006.

http://www.qfdi.org/

BIBLIOGRAPHY 243

[102] R. Sanz and K.-E. Årzén. Trends in software and control.IEEE Control Systems
Magazine, 23(3):12–15, 2003.

[103] A.J. van der Schaft and J.M. Schumacher. An introduction to hybrid dynamical
systems. Lecture Notes in Control and Information Sciences, page Vol. 251,
1999.

[104] S.A. Schweid and et al. Hybrid step motor position estimation from back emf.
IEEE Conf. on Control Applications, 1995.

[105] B. Selic, G. Gullekson, and P.T. Ward.Real-Time Object-Oriented Modeling.
John Wiley & Sons, 1994.

[106] Simulink. The Mathworks. http://www.mathworks.com/products/simulink/.

[107] S.T. Stanton and et al. Overlay error budgets for a high-throughput scalpel sys-
tem. Proceedings of SPIE, 3676:543–555, June 1999.

[108] George Stephanopoulos.Chemical Process Control. Prentice Hall, Englewood
Cliffs, New Jersey, USA, 1984.

[109] J. Stolte. Understanding instability in hybrid stepper motors. Technical report,
Eindhoven University of Technology, 2006.

[110] Telelogic. Combining Rhapsody and Simulink. http://www.telelogic.com/.

[111] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus
for scheduling hard real-time systems. InProc. IEEE International Symposium
on Circuits and Systems, volume 4, pages 101–104, 2000.

[112] Yodyium Tipsuwan and Mo-Yuen Chow. Control methodologies in networked
control systems.Control Engineering Practice, 11:1099–1111, 2003.

[113] TrueTime. http://www.control.lth.se/truetime/.

[114] UCM-URN. Use case maps. http://www.usecasemaps.org/index.shtml.

[115] Toronto University. Goal oriented requirements language.

[116] A. Veltman and P.P.J. van den Bosch. A universal method for modelling electri-
cal machines.Conf. on Electrical Machines and Drives, 1992.

[117] Marcel Verhoef, Peter Gorm Larsen, and Jozef Hooman. Modeling and validat-
ing distributed embedded real-time systems with VDM++. In J. Misra, T. Nip-
kow, and E. Sekerinski, editors,Proc. Formal Methods 2006, volume 4085 of
LNCS, pages 147–162. Formal Methods Europe, Springer, 2006.

[118] Peter M. Visser and Jan F. Broenink. Controller and plant system design tra-
jectory. In Proc. IEEE Int’l Symposium on Computer Aided Control Systems
Conference, CACSD 2006, pages 1910–1915, Munich, 2006. IEEE.

244 BIBLIOGRAPHY

[119] C.V. Vottis.Extracting more accurate position and velocity information from op-
tical incremental encoders. SAI/2yr Thesis, Technische Universiteit Eindhoven,
Netherlands, 2003.

[120] G.C. Walsh, H. Ye, and L. Bushnell. Stability analysis of networked control
systems. InProc. of the American Control Conference, pages 2876–2880, San
Diego, California, USA, June 1999.

[121] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System architecture eval-
uation using modular performance analysis - a case study.Intern. journal on
software tools technology transfer, 2006.

[122] P.M. Wecksten, J. Vasell, and M. Jonsson. Towards a tool for derivation of
implementation constraints.Proc. 9th IEEE Int. Conf. Engineering Complex
Computer Systems Navigating Complexity in the e-Engineering Age, 2004.

[123] R. Wieringa. Requirements engineering: problem analysis and solution specifi-
cation. ICWE, pages 13–16, 2004.

[124] Björn Wittenmark, Johan Nilsson, and Martin Törngren. Timing problems in
real-time control systems. InProc. of the American Control Conference, pages
2000–2004, Seattle, Washington, USA, 1995.

[125] Y. Yamada. Exposure tool strategy for 90nm 65nm production.Semiconductor
Fabtech, 18th edition.

[126] S-M Yang and E-L. Kuo. Damping a hybrid stepper motor with estimated posi-
tion and velocity.IEEE Transactions on Power Electronics, 18(3), 2003.

[127] T. C. Yang. Networked control system: a brief survey.IEE Proc.-Control Theory
Appl., 153 (4):403–412, July 2006.

[128] Yuequen Yang, De Xu, Min Tan, and Xianzhong Dai. Stochastic stability analy-
sis and control of networked control systems with randomly varying long time-
delays. InProc. of the 5th World Congress on Intelligent Control and Automa-
tion, pages 1391–1395, Hangzhou, China, June 2004.

[129] E. Yu and J. Mylopoulos. Why goal oriented requirements engineering.Proc.
4th Int. Workshop Req. Eng: Foundations of Software Quality, Pisa, pages 15–
22, June 1998.

[130] Mei Yu, Long Wang, Tianguang Chu, and Guangming Xie. An LMI approach
to networked control systems with data packet dropout and transmission delays.
In Proc. of the 43rd Conference on Decision and Control, pages 3545–3550,
Atlantis, Paradise Island, Bahamas, December 2004.

[131] By Wei Zhang, Michael S. Branicky, and Stephen M. Phillips. Stability of net-
worked control systems.IEEE Control Systems Magazine, 21:84–99, February
2001.

	Introduction
	A design methodology for high-tech systems
	The key driver method
	Threads of reasoning
	Budget-based design
	Effective industrial modeling: The example of Happy Flow
	Heat modeling in copiers
	Modeling of performance
	Virtual printer modeling
	Using stepper motors in printers
	Simulating the environment of embedded software
	Evaluating embedded system architectures
	Model-driven design of real-time systems
	Time-varying delays in control
	Sheet feedback control in a printer paper path
	Event-driven control
	Design trajectory and controller-plant interaction
	Impact, lessons learned and conclusions
	List of Boderc publications
	List of authors

