
Lúıs Fernando Arcaro

INCREASING THE RELIABILITY AND
APPLICABILITY OF MEASUREMENT-BASED

PROBABILISTIC TIMING ANALYSIS

Tese submetida ao Programa de Pós-Graduação
em Engenharia de Automação e Sistemas para a
obtenção do Grau de Doutor em Engenharia de
Automação e Sistemas.
Orientador: Prof. Dr. Rômulo Silva de Oliveira

Florianópolis

2019

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Arcaro, Luís Fernando
 Increasing the Reliability and Applicability of
Measurement-Based Probabilistic Timing Analysis /
Luís Fernando Arcaro ; orientador, Rômulo Silva de
Oliveira, 2019.
 245 p.

 Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós
Graduação em Engenharia de Automação e Sistemas,
Florianópolis, 2019.

 Inclui referências.

 1. Engenharia de Automação e Sistemas. 2.
Sistemas de Tempo Real. 3. Análise Temporal
Probabilística Baseada em Medições. 4.
Confiabilidade. 5. Aleatorização Temporal. I.
Oliveira, Rômulo Silva de. II. Universidade Federal
de Santa Catarina. Programa de Pós-Graduação em
Engenharia de Automação e Sistemas. III. Título.

À minha famı́lia.
Ao Bibinho.

AGRADECIMENTOS

Agradeço inicialmente a meus grandes pais, Lourenço e Izabel,
pela vida, pela motivação e pela segurança familiar que permitiram
minha dedicação à formação acadêmica. À minha irmã, Katia, pelos
cuidados, pelos valiosos ensinamentos, e pela companhia durante toda
nossa vida. À minha parceira de toda hora, Vanessa, pela companhia,
paciência e compreensão no nosso movimentado dia-a-dia. Ao meu
cunhado, Guilherme, por ser membro ativo e presente na nossa famı́lia
e pela ótima companhia regada a cerveja e café. Aos nossos bichinhos,
Mini (Bibi), Blu e Horácio, pela alegria que representam em nossas
vidas. Ao meu orientador e exemplar profissional, Rômulo, agradeço
grandemente pelo trabalho realizado e pela paciência em me orientar
ao longo dos últimos seis anos. À minha irmã de doutorado, Karila,
por compartilhar todas as dificuldades e glórias da pós-graduação – foi
e continua sendo ótimo trabalhar com você! À minha também irmã
de Belém, Rejane, pela grande amizade e pelos valiosos ensinamentos
que levarei certamente para a vida toda. Aos amigos Jonatas, Carol e
Wilson, pela amizade que permanece forte apesar da distância e dos
compromissos. Aos amigos Alexandre, Flávio, Leonardo Assis, Leonardo
Martins, Sidney e Thayse Christine, pela companhia diária dentro e
fora da universidade e pelas discussões aleatórias regadas a chimarrão e
café. Ao hermano colombiano Carlos González Aguilera, pela grande
amizade e pelo boné do Cusco Voador. À amiga gaúcha Stephanie, pelos
chimarrões e conversas sobre esse e outros gauchismos. Aos amigos
e ciclistas incansáveis Carlise e Ruan, pelas trips insanas envolvendo
grandes distâncias, inclinações, e cercas elétricas. Aos amigos Priscila,
Guilherme e Gael, pelos fantásticos cafés com bolo e conversa. Aos
demais amigos e colegas do PPGEAS, da Sala dos Doutorandos e além,
por serem como uma grande famı́lia que adora café, biscoito, cerveja e
churrasco. Aos professores do PPGEAS, pelo conhecimento e experiência
compartilhados incansavelmente ao longo dos cursos. E, finalmente mas
com igual importância, a todas as pessoas que não citei explicitamente,
mas que participaram de alguma forma desses seis anos de aprendizado
acadêmico, profissional e principalmente existencial. Obrigado!

Lúıs Fernando Arcaro

RESUMO

Conforme a complexidade das arquiteturas computacionais aumenta para
melhorar desempenho ou reduzir custos, o uso de processadores modernos
em Sistemas de Tempo Real (STRs) é prejudicado cada vez mais pelo
surgimento de efeitos temporais que dificultam a obtenção de limites
confiáveis e precisos para os Worst-Case Execution Times (WCETs) de
tarefas. A Análise Temporal Probabiĺıstica Baseada emMedições (ATPBM)
visa determinar limites probabiĺısticos de WCET (i.e. pWCETs) aplicando
a Teoria de Valores Extremos (TVE) sobre medições de tempos de execução,
e é portanto promissora no tratamento da complexidade de hardware
no projeto de STRs. Processadores temporalmente aleatorizados foram
recentemente propostos para tornar o comportamento temporal de
sistemas computacionais mais facilmente analisável através de ferramental
probabiĺıstico, e são projetados substituindo informações internas
determińısticas ou especulativas por números (pseudo-) aleatórios.
A pesquisa cujos resultados são apresentados nesta tese produziu
contribuições em duas frentes distintas. Em primeiro lugar, foram
propostos e aplicados métodos para avaliar a confiabilidade dos pWCETs
produzidos pela ATPBM, baseados na coleta de grandes amostras de
tempos de execução e na comparação (1) dos pWCETs com os maiores
tempos de execução observados, e (2) das densidades de excedência dos
pWCETs com seus valores esperados. Essas avaliações indicaram que
modelos probabiĺısticos da TVE projetados para gerar margens mais
precisas podem muitas vezes levar a subestimativas de pWCETs, e
recomendou-se então que modelos sobrestimadores devem ser utilizados
para obter-se pWCETs mais confiáveis. Em segundo lugar, avaliou-se a
hipótese de que técnicas de escalonamento aleatorizado podem beneficiar a
análise temporal de tarefas executadas em pipelines multithread através da
ATPBM, por levarem os tempos de execução produzidos a atenderem às
premissas básicas de aplicabilidade da técnica. Para tal, foram considerados
tanto (A) um escalonador puramente aleatório, quanto (B) um escalonador
aleatorizado capaz de limitar os efeitos temporais da interferência entre
threads, sem comprometer sua analisabilidade pela ATPBM, através de
um mecanismo de regulação de elegibilidade baseado em créditos.

Palavras-chave: Sistemas de TempoReal. Análise Temporal Probabiĺıstica
Baseada em Medições. Confiabilidade. Aleatorização Temporal.

RESUMO EXPANDIDO

Introdução
Sistemas de Tempo Real (STRs) são sistemas computacionais sujeitos
tanto a requisitos de natureza lógica quanto de natureza temporal, ou
seja, seus resultados precisam não apenas estar logicamente corretos
mas devem também ser gerados respeitando prazos (deadlines) estritos.
Tais sistemas são classificados de acordo com a criticalidade de seus
requisitos temporais. A ausência de corretude temporal em STRs
cŕıticos pode resultar em consequências catastróficas, tanto do ponto de
vista econômico quanto no sentido de poder causar a perda de vidas.
Garantias precisam ser fornecidas, portanto, de que seus deadlines não
serão perdidos – mesmo no pior caso. O Worst-Case Execution Time
(WCET) de tarefas de software representa o tempo mais longo que a
plataforma-alvo de hardware pode possivelmente levar para executá-las.
O WCET de uma tarefa varia em função de múltiplos fatores que
precisam ser levados em conta para a determinação de seu valor exato,
o que geralmente prova-se extremamente complexo, ou para estabelecer
limites superiores confiáveis para seu valor. Especialmente em relação
a STRs cŕıticos, estimativas de WCET precisam ser seguras, i.e. o
valor real nunca deve ser subestimado, e razoavelmente apertadas, i.e.
sua sobrestimação deve ser minimizada a fim de reduzir o desperd́ıcio
de recursos. A determinação de limites para WCETs é geralmente
realizada através de métodos estáticos, que empregam análises conjuntas
detalhadas do software e do hardware, ou baseados em medições, que
analisam amostras do tempo efetivamente consumido para executar a
tarefa analisada na plataforma-alvo. Este trabalho desenvolve-se no
contexto da Análise Temporal Probabiĺıstica Baseada em Medições
(ATPBM), que visa determinar limites probabiĺısticos para os WCETs
de tarefas que compõem STRs. Esses limites, conhecidos como
pWCETs, são compostos de um valor-limite e de uma probabilidade
associada à excedência desse valor em qualquer execução da tarefa.
A aplicação da ATPBM baseia-se na análise estat́ıstica dos maiores
tempos de execução produzidos pelas tarefas, medidos quando de sua
execução na plataforma de hardware real sob condições adequadas. A
principal ferramenta atualmente utilizada pela ATPBM é a Teoria de
Valores Extremos (TVE), um ramo da estat́ıstica destinado a estimar a
probabilidade de eventos extremos raros. Através do ajuste de modelos
estat́ısticos aos maiores valores observados de uma variável associada a

um determinado fenômeno, a TVE é capaz de determinar margens de
segurança com probabilidades arbitrariamente baixas de excedência.
No contexto da ATPBM, a TVE é promissora para a determinação
de estimativas de pWCET associadas a probabilidades de excedência
comparáveis, ou até mesmo mais baixas, que aquelas associadas a
outros tipos de falha que precisam ser levadas em consideração no
projeto de STRs cŕıticos (e.g. falhas estruturais). A aleatorização
temporal em hardware foi proposta recentemente como um meio para
projetar processadores cujo comportamento temporal é influenciado
por leis probabiĺısticas, podendo assim facilitar a análise temporal
de STRs através de métodos baseados em ferramentas estat́ısticas
como a ATPBM. O prinćıpio básico da aleatorização temporal é
a substituição de informações tipicamente especulativas utilizadas
para tomar ações que influenciam o tempo de execução de tarefas
por números (pseudo-)aleatórios. Consequentemente, a aleatorização
temporal também desacopla parcialmente o comportamento temporal do
hardware do histórico de execução, mitigando o surgimento sistemático
de padrões patológicos associados a tempos de execução extremos.
Apesar de não fornecer garantias quanto à analisabilidade dos tempos
de execução produzidos, processadores temporalmente aleatorizados
frequentemente mostram-se adequados para análise através da ATPBM.

Objetivos
Esta tese possui dois objetivos: (A) investigar métodos emṕıricos
para evidenciar ou contra-provar a confiabilidade de estimativas de
pWCET produzidas utilizando a TVE no contexto da ATPBM, e
(B) investigar abordagens para o projeto de pipelines multithread
temporalmente aleatorizados adequados para a aplicação da ATPBM.
Mais especificamente, a tese a ser demonstrada em (A) é que a
confiabilidade das estimativas de pWCET produzidas utilizando a
ATPBM pode ser avaliada utilizando grandes amostras de validação
e comparando seu comportamento com expectativas em relação à
delimitação (bounding) dos maiores valores e das densidades de cauda
observadas, e em (B) é que aleatorização temporal pode ser utilizada
para permitir a utilização de pipelines multithread em STRs por
produzir tempos de execução adequados à aplicação da ATPBM.

Contribuições
Duas principais contribuições são fornecidas neste trabalho. Em
primeiro lugar, foi realizada uma avaliação emṕırica da confiabilidade
de estimativas de pWCET produzidas com base na ATPBM através

da TVE utilizando grandes amostras de validação (por exemplo, de
tamanho 108), considerando diferentes abordagens para aplicação
da TVE e realizando um grande conjunto de replicações utilizando
diferentes condições e métodos. A confiabilidade das estimativas
de pWCET foram avaliadas com base na efetiva delimitação (1)
dos maiores tempos de execução observados e (2) das densidades
de excedência das caudas das distribuições emṕıricas de tempos de
execução observadas em amostras de validação. Em segundo lugar,
foi avaliada a hipótese de que técnicas de escalonamento aleatorizado
de threads podem beneficiar a aplicação da ATPBM em múltiplas
tarefas executadas simultaneamente em pipelines multithread (neste
trabalho foi considerado apenas o caso dual-thread). Para isso, foram
avaliados tanto (1) um escalonador puramente aleatório, que leva ao
atendimento dos requisitos da ATPBM mas que não balanceia atrasos
devido a interferências, e (2) um escalonador capaz de limitar os efeitos
temporais de pior caso da interferência entre threads, utilizando para
isso um mecanismo de regulação de elegibilidade baseado em créditos.

Considerações Finais
Esta tese fornece contribuições relevantes no contexto da ATPBM,
tanto por avaliar e aumentar a confiabilidade de seus resultados quanto
em relação à introdução de aleatorização no ńıvel de hardware para
facilitar sua aplicação. Em particular, os métodos de avaliação de
confiabilidade propostos mostraram que a ATPBM precisa que seus
modelos probabiĺısticos sejam utilizados de forma que as estimativas
de pWCET potencialmente superestimem (e não apenas estimem)
os máximos tempos de execução possivelmente observáveis. Além
disso, o trabalho apresentado explorou caminhos originais de pesquisa
envolvendo multithreading, uma técnica que é frequentemente evitada
no projeto de STRs por potencialmente (1) levar a grande pessimismo
na estimação de WCETs através de métodos estáticos, ou (2) requerer
que garantias temporais sejam fornecidas apenas para uma thread, cuja
execução é geralmente priorizada. Pode-se portanto considerar que o
trabalho apresentado fornece contribuições relevantes que aumentam a
aplicabilidade confiável da ATPBM, também promovendo portanto sua
usabilidade na análise temporal de STRs cŕıticos.

Palavras-chave: Sistemas de TempoReal. Análise Temporal Probabiĺıstica
Baseada em Medições. Confiabilidade. Aleatorização Temporal.

ABSTRACT

As the complexity of computer architectures grows in order to improve
performance and/or to reduce costs, the use of modern processors in
the design of Real-Time Systems (RTSs) is increasingly hampered by
the emergence of timing effects that challenge determining reliable
and tight bounds for tasks’ Worst-Case Execution Times (WCETs).
The Measurement-Based Probabilistic Timing Analysis (MBPTA)
technique aims determining probabilistic WCET bounds (i.e. pWCETs)
by applying Extreme Value Theory (EVT) on tasks’ execution time
measurements, and is hence promising in handling hardware complexity
issues within RTSs’ design. Hardware-level time-randomized processors
were recently proposed as a means to cause computing systems’ timing
behaviour to become more easily analysable through probabilistic
tools, and are designed replacing deterministic or speculative internal
information with (pseudo-)random numbers. The scientific research
whose outcomes are presented in this thesis produced contributions on
two distinct fronts. In first place, we proposed and applied methods
for evaluating the reliability of pWCET estimates produced using
MBPTA, based on collecting large execution time samples and then
comparing (1) the pWCETs against the largest observed execution
times, and (2) pWCETs’ exceedance densities against their expected
values. These evaluations led us to conclude that EVT probabilistic
models intended to yield more precise bounds may often lead to pWCET
underestimations, and we hence recommended that upper-bounding
models should instead be used for deriving pWCETs with increased
reliability. In second place, we evaluated the hypothesis that randomized
scheduling techniques can benefit the timing analysis of tasks executed
on multithread pipelines through MBPTA, by causing the yielded
execution times to meet the technique’s basic application requirements.
For that, we considered both (A) a scheduler that employs a purely
random policy, and (B) a randomized scheduler capable of limiting
the timing effects of inter-thread interference, without compromising
analysability, by using a credit-based eligibility regulation mechanism.

Keywords: Real-Time Systems. Measurement-Based Probabilistic
Timing Analysis. Reliability. Time-Randomization.

LIST OF FIGURES

Figure 1 Block Maxima (BM) approach . 42

Figure 2 Peaks Over Threshold (POT) approach 43

Figure 3 Hypothesis tests’ decision approaches 49

Figure 4 KS test p-value distribution comparison 49

Figure 5 Quantile plot comparison . 50

Figure 6 Platform illustration . 64

Figure 7 Raw data histogram . 65

Figure 8 I.i.d. tests’ p-values. 65

Figure 9 BM artefacts . 66

Figure 10 POT artefacts . 66

Figure 11 pWCET derivation process . 67

Figure 12 Synthetic samples’ distributions . 87

Figure 13 ε probability analysis . 92

Figure 14 Real-hardware sample applicability evidence 93

Figure 15 Real-hardware pWCET HWM reliability. 95

Figure 16 pWCET HWM reliability for ξ = − 1
2 96

Figure 17 pWCET HWM reliability for ξ = − 1
4 97

Figure 18 pWCET HWM reliability for ξ = − 1
8 98

Figure 19 pWCET HWM reliability for ξ = 0 99

Figure 20 pWCET HWM reliability for ξ = + 1
8 100

Figure 21 pWCET HWM reliability for ξ = + 1
4 101

Figure 22 pWCET HWM reliability for ξ = + 1
2 102

Figure 23 Real-hardware pWCET density reliability. 104

Figure 24 pWCET density reliability for ξ = − 1
2 106

Figure 25 pWCET density reliability for ξ = − 1
4 107

Figure 26 pWCET density reliability for ξ = − 1
8 108

Figure 27 pWCET density reliability for ξ = 0 109

Figure 28 pWCET density reliability for ξ = + 1
8 110

Figure 29 pWCET density reliability for ξ = + 1
4 111

Figure 30 pWCET density reliability for ξ = + 1
2 112

Figure 31 EQMAE-based threshold selection plots 114

Figure 32 Simple pipeline design . 120

Figure 33 Pipeline design . 124

Figure 34 bsort PRS maxima analysability analysis 130

Figure 35 bs PRS maxima analysability analysis 131

Figure 36 cnt PRS maxima analysability analysis 131

Figure 37 cover PRS maxima analysability analysis 131

Figure 38 PRS class timing dominance analysis 132

Figure 39 PRS behavioural timing dominance analysis 134

Figure 40 PRS typical scenario slowdown analysis 136

Figure 41 IRS credit consumption traces . 141

Figure 42 bsort IRS maxima analysability analysis 142

Figure 43 bs IRS maxima analysability analysis 142

Figure 44 cnt IRS maxima analysability analysis 142

Figure 45 cover IRS maxima analysability analysis 143

Figure 46 IRS class timing dominance analysis 144

Figure 47 IRS behavioural timing dominance analysis 145

Figure 48 IRS typical scenario slowdown analysis 147

Figure 49 Applicability evidence for bsort on DPCpArrr 181

Figure 50 Applicability evidence for bsort on DPArptdm 182

Figure 51 Applicability evidence for insertsort on DPCpArrr 183

Figure 52 Applicability evidence for insertsort on DPArptdm 184

Figure 53 Applicability evidence for bs on DPCpArrr 185

Figure 54 Applicability evidence for bs on DPArptdm 186

Figure 55 Applicability evidence for expint on DPCpArrr 187

Figure 56 Applicability evidence for expint on DPArptdm 188

Figure 57 Applicability evidence for fdct on DPCpArrr 189

Figure 58 Applicability evidence for fdct on DPArptdm 190

Figure 59 Applicability evidence for crc on DPCpArrr 191

Figure 60 Applicability evidence for crc on DPArptdm 192

Figure 61 Applicability evidence for matmult on DPCpArrr 193

Figure 62 Applicability evidence for matmult on DPArptdm 194

Figure 63 Applicability evidence for fir on DPCpArrr 195

Figure 64 Applicability evidence for fir on DPArptdm 196

Figure 65 Applicability evidence for fibcall on DPCpArrr 197

Figure 66 Applicability evidence for fibcall on DPArptdm 198

Figure 67 Applicability evidence for cnt on DPCpArrr 199

Figure 68 Applicability evidence for cnt on DPArptdm 200

Figure 69 pWCET HWM reliability for bsort on DPCpArrr 201

Figure 70 pWCET HWM reliability for bsort on DPArptdm 201

Figure 71 pWCET HWM reliability for insertsort on DPCpArrr 202

Figure 72 pWCET HWM reliability for insertsort on DPArptdm 202

Figure 73 pWCET HWM reliability for bs on DPCpArrr 203

Figure 74 pWCET HWM reliability for bs on DPArptdm 203

Figure 75 pWCET HWM reliability for expint on DPCpArrr 204

Figure 76 pWCET HWM reliability for expint on DPArptdm 204

Figure 77 pWCET HWM reliability for fdct on DPCpArrr 205

Figure 78 pWCET HWM reliability for fdct on DPArptdm 205

Figure 79 pWCET HWM reliability for crc on DPCpArrr 206

Figure 80 pWCET HWM reliability for crc on DPArptdm 206

Figure 81 pWCET HWM reliability for matmult on DPCpArrr . 207

Figure 82 pWCET HWM reliability for matmult on DPArptdm . 207

Figure 83 pWCET HWM reliability for fir on DPCpArrr 208

Figure 84 pWCET HWM reliability for fir on DPArptdm 208

Figure 85 pWCET HWM reliability for fibcall on DPCpArrr 209

Figure 86 pWCET HWM reliability for fibcall on DPArptdm 209

Figure 87 pWCET HWM reliability for cnt on DPCpArrr 210

Figure 88 pWCET HWM reliability for cnt on DPArptdm 210

Figure 89 pWCET density reliability for bsort on DPCpArrr 211

Figure 90 pWCET density reliability for bsort on DPArptdm 211

Figure 91 pWCET density reliability for insertsort on DPCpArrr 212

Figure 92 pWCET density reliability for insertsort on DPArptdm212

Figure 93 pWCET density reliability for bs on DPCpArrr 213

Figure 94 pWCET density reliability for bs on DPArptdm 213

Figure 95 pWCET density reliability for expint on DPCpArrr . . . 214

Figure 96 pWCET density reliability for expint on DPArptdm . . . 214

Figure 97 pWCET density reliability for fdct on DPCpArrr 215

Figure 98 pWCET density reliability for fdct on DPArptdm 215

Figure 99 pWCET density reliability for crc on DPCpArrr 216

Figure 100 pWCET density reliability for crc on DPArptdm 216

Figure 101 pWCET density reliability for matmult on DPCpArrr 217

Figure 102 pWCET density reliability for matmult on DPArptdm 217

Figure 103 pWCET density reliability for fir on DPCpArrr 218

Figure 104 pWCET density reliability for fir on DPArptdm 218

Figure 105 pWCET density reliability for fibcall on DPCpArrr . . . 219

Figure 106 pWCET density reliability for fibcall on DPArptdm . . . 219

Figure 107 pWCET density reliability for cnt on DPCpArrr 220

Figure 108 pWCET density reliability for cnt on DPArptdm 220

Figure 109 crc PRS maxima analysability analysis 223

Figure 110 expint PRS maxima analysability analysis 223

Figure 111 fdct PRS maxima analysability analysis. 223

Figure 112 fibcall PRS maxima analysability analysis 224

Figure 113 fir PRS maxima analysability analysis 224

Figure 114 insertsort PRS maxima analysability analysis 224

Figure 115 janne complex PRS maxima analysability analysis 224

Figure 116 matmult PRS maxima analysability analysis 225

Figure 117 ns PRS maxima analysability analysis 225

Figure 118 prime PRS maxima analysability analysis 225

Figure 119 PRS class timing dominance analysis 226

Figure 120 PRS class timing dominance analysis 227

Figure 121 PRS behavioural timing dominance analysis 228

Figure 122 PRS behavioural timing dominance analysis 229

Figure 123 PRS typical scenario slowdown analysis 230

Figure 124 PRS typical scenario slowdown analysis 231

Figure 125 crc IRS maxima analysability analysis 232

Figure 126 expint IRS maxima analysability analysis 232

Figure 127 fdct IRS maxima analysability analysis 232

Figure 128 fibcall IRS maxima analysability analysis 233

Figure 129 fir IRS maxima analysability analysis 233

Figure 130 insertsort IRS maxima analysability analysis 233

Figure 131 janne complex IRS maxima analysability analysis 233

Figure 132 matmult IRS maxima analysability analysis 234

Figure 133 ns IRS maxima analysability analysis 234

Figure 134 prime IRS maxima analysability analysis 234

Figure 135 IRS class timing dominance analysis 235

Figure 136 IRS class timing dominance analysis 236

Figure 137 IRS behavioural timing dominance analysis 237

Figure 138 IRS behavioural timing dominance analysis 238

Figure 139 IRS typical scenario slowdown analysis 239

Figure 140 IRS typical scenario slowdown analysis 240

LIST OF TABLES

Table 1 MBPTA results . 68

Table 2 PRS maximum slowdown . 135

Table 3 PRS typical slowdown . 137

Table 4 IRS maximum slowdown. 146

Table 5 IRS typical slowdown . 148

Table 6 Raw dataset analysis . 150

Table 7 BM timing analysis . 151

Table 8 POT timing analysis. 152

Table 9 Schedulers’ hardware complexity/cost 153

LIST OF ACRONYMS

AD Anderson-Darling

ALU Arithmetic Logic Unit

BM Block Maxima

BTB Branch Target Buffer

CAN Controller Area Network

CASR Cellular Automata Shift Register

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

EDM Exceedance Density Metric

EQMAE Estimated Quantiles’ Mean Absolute Error

EVT Extreme Value Theory

FIFO First-In First-Out

FPU Floating-Point Unit

FPGA Field-Programmable Gate Array

FSB Front-Side Bus

GMLE Generalized Maximum Likelihood Estimation

GEV Generalized Extreme Value

GP Generalized Pareto

IoT Internet of Things

HWM High Water Mark

IEEE Institute of Electrical and Electronics Engineers

I/O Input/Output

IP Intellectual Property

IRS Interference-Regulated Scheduler

ISA Instruction Set Architecture

KS Kolmogorov-Smirnov

LB Ljung-Box

LFSR Linear Feedback Shift Register

LRU Least Recently Used

MBDTA Measurement-Based Deterministic Timing Analysis

MBPTA Measurement-Based Probabilistic Timing Analysis

MIPS Microprocessor without Interlocked Pipeline Stages

MLE Maximum Likelihood Estimation

NoC Network-on-Chip

PC Program Counter

PCI Peripheral Component Interconnect

PRNG Pseudo-Random Number Generator

POT Peaks Over Threshold

PRS Purely Random Scheduler

pWCET Probabilistic Worst-Case Execution Time

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RF Register File

RR Round-Robin

RTS Real-Time System

SDTA Static Deterministic Timing Analysis

SPTA Static Probabilistic Timing Analysis

TDM Time Division Multiplexing

TRNG True Random Number Generator

WCEP Worst-Case Execution Path

WCET Worst-Case Execution Time

WW Wald-Wolfowitz

CONTENTS

1 INTRODUCTION . 33
1.1 MOTIVATION. 37
1.2 OBJECTIVES . 38
1.3 CONTRIBUTIONS. 39
1.4 DOCUMENT ORGANIZATION . 40
2 EXTREME VALUE THEORY 41
2.1 APPLICATION APPROACHES . 41
2.2 MODEL FITTING . 44
2.3 BM BLOCK SIZE SELECTION . 44
2.4 POT THRESHOLD SELECTION . 45
2.5 APPLICABILITY REQUIREMENTS 46
2.5.1 Applicability Statistical Tests . 47
2.5.2 Applicability Plots . 50
2.5.3 Conclusion . 51
3 MEASUREMENT-BASED PROBABILISTIC

TIMING ANALYSIS . 53
3.1 APPLICATION . 54
3.2 APPLICABILITY REQUIREMENTS 55
3.3 SAMPLE SIZE . 57
3.4 MODEL FITNESS . 57
3.5 EXECUTION PATHS . 58
3.6 TEMPORAL ISOLATION . 59
3.7 RELATED WORK . 61
3.8 APPLICATION EXAMPLE . 63
3.9 CONCLUSION . 68
4 TIME-RANDOMIZED PROCESSORS 69
4.1 RELATED WORK . 71
4.2 CACHE MEMORIES . 72
4.3 BRANCH PREDICTORS . 75
4.4 BUS ARBITERS . 76
4.5 NETWORKS-ON-CHIP . 77
4.6 RANDOMNESS SOURCES . 78
4.7 CONCLUSION . 79
5 pWCET RELIABILITY EVALUATION 81
5.1 RELATED WORK . 81
5.2 EXPERIMENT DESIGN. 83
5.2.1 Real-Hardware Samples . 84

5.2.2 Synthetic Samples . 85
5.3 EXPERIMENT OBJECTIVES . 87
5.3.1 pWCET HWM Reliability . 87
5.3.2 pWCET Density Reliability . 87
5.4 THE PROBABILITY OF REJECTING A RELIABLE

pWCET. 90
5.4.1 HWM-based method . 91
5.4.2 EDM-based method . 91
5.5 APPLICABILITY EVIDENCE . 92
5.6 pWCET HWM RELIABILITY . 94
5.6.1 Real-Hardware Samples . 94
5.6.2 Synthetic Samples . 95
5.7 pWCET DENSITY RELIABILITY . 103
5.7.1 Real-Hardware Samples . 103
5.7.2 Synthetic Samples . 104
5.8 EQMAE-BASED POT THRESHOLD SELECTION 113
5.9 RECOMMENDATIONS . 114
5.10 CONCLUSION . 117
6 EVALUATING RANDOMIZED SCHEDULING

ON MULTITHREAD PIPELINES TO BENEFIT
MBPTA. 119

6.1 PIPELINING . 119
6.2 MULTITHREADING . 121
6.3 MULTITHREAD PIPELINE DESIGN 123
6.4 MAXIMUM INTERFERENCE SCENARIO 125
6.5 EVALUATION METHOD. 126
6.6 PURELY RANDOM SCHEDULER (PRS) 130
6.6.1 Evaluation . 130
6.6.1.1 Maxima Analysability . 130
6.6.1.2 Class Timing Dominance . 131
6.6.1.3 Behavioural Timing Dominance . 133
6.6.1.4 Interference Balancing . 133
6.6.1.5 Typical Scenario Slowdown . 134
6.7 INTERFERENCE-REGULATED SCHEDULER (IRS) . . 138
6.7.1 Thread States . 138
6.7.2 Inter-Thread Interference Detection 138
6.7.3 Credit-Based Schedulability Regulator 139
6.7.4 Evaluation . 141
6.7.4.1 Maxima Analysability . 142
6.7.4.2 Class Timing Dominance . 143
6.7.4.3 Behavioural Timing Dominance . 143

6.7.4.4 Interference Balancing . 144
6.7.4.5 Typical Scenario Slowdown . 146
6.8 TIMING ANALYSIS COMPARISON 148
6.9 IMPLEMENTATION EFFORT . 153
6.10 CONCLUSION . 153
7 FINAL REMARKS . 155
7.1 GENERAL CONSIDERATIONS . 157
7.2 PUBLICATIONS. 159
7.3 FUTURE WORK . 159
7.4 ACKNOWLEDGEMENT . 160

REFERENCES . 161
APPENDIX A -- pWCET Reliability Evaluation . . 181
APPENDIX B -- Evaluating Randomized Scheduling
on Multithread Pipelines to Benefit MBPTA. 223
APPENDIX C -- Experimentation Platforms 243

33

1 INTRODUCTION

Real-Time Systems (RTSs) are computer systems that are subject
both to logical and temporal requirements, which means the produced
results must not only be correct from a logical point of view but must
also be generated at the correct time. Applications with real-time
requirements are becoming increasingly common and greatly vary in
size, complexity and criticality, ranging from the simple embedded
controllers for household appliances to complex and critical avionics
systems, for example. RTSs are classified according to the criticality of
their temporal requirements. In critical or hard real-time systems, the
lack of timing correctness may result in catastrophic consequences, both
from the economic point of view and in the sense of potentially causing
the loss of life. In non-critical or soft real-time systems the temporal
requirements describe the desired behaviour, but if not met they do not
invalidate the results nor have catastrophic consequences, although the
application’s utility is significantly reduced (LIU, 2000).

The temporal requirements to which RTSs are subject are
expressed in terms of the deadlines in which the results must be
generated. For critical RTSs it is necessary to build strong evidence
that these deadlines are not missed, and for this purpose schedulability
tests are often employed that demonstrate they are met even in the
worst-case scenario. These tests are based on temporal parameters
that are either imposed upon the tasks by the operation context, for
example their periods Ti and deadlines Di, or that must be derived
from the software and hardware that implement them, such as their
maximum execution times Ci – which are estimated considering tasks
are executed continuously and exclusively on a single-core processor
–, and their response times Ri – determined by taking into account
interference such as the concurrent execution of other tasks, the use of
resource locks (e.g. semaphores), and the occurrence of release jitter
(e.g. due to disabled interrupts) (LIU, 2000; WILHELM et al., 2008).

The Ci parameters, also known as the tasks’ Worst-Case
Execution Times (WCETs), represent the longest time possibly taken
by the target hardware platform to execute the software that implements
them. A task’s WCET varies depending on a multitude of factors that
must be taken into account for the determination of its exact value,
which can be extremely complex, or for establishing reliable bounds for
it. Especially when related to critical RTSs, the WCET estimates must
be safe, i.e. the real value must never be underestimated, and should

34

be tight, i.e. its overestimation must be minimized in order to reduce
resource wasting. The methods employed in deriving these estimates
must be (1) sound, to allow providing reliable guarantees, (2) efficient,
to be useful in practical environments, and (3) as precise as possible
regarding the yielded results. The determination of WCET bounds is
usually performed through methods that fit one of the following classes,
although hybrid approaches are also increasingly common (LIU, 2000;
WILHELM et al., 2008, 2009; ABELLA et al., 2015):

• Static methods are based on a detailed analysis of the task’s
code taking into account the architecture of the hardware platform
in which it will be executed, thus generally leading to large efforts
and/or computational costs but also to results known to be safe
(WILHELM et al., 2008; CAZORLA et al., 2013a).

– Deterministic: Static Deterministic Timing Analysis
(SDTA) comprises the traditional static timing analysis
methods, in which WCET bounds are derived by jointly
analysing the task’s code and an abstract but temporally
trustworthy model of the hardware on which it will be
executed. Such methods typically provide safe results by
considering or being conservative regarding every possible
execution condition, but (1) hardware model abstractions
that are often necessary to ensure computational feasibility
can lead to large WCET overestimations, and (2) even small
changes in the processor architecture may require large
efforts to properly adjust the hardware models employed
in the timing analysis. Moreover, such methods generally
lack composability characteristics needed for handling large
systems that use modern processors (WILHELM et al., 2008).

– Probabilistic: Static Probabilistic Timing Analysis (SPTA)
determines probability density functions for timing events
of the underlying hardware platform through a careful
analysis of their behaviour, and progressively combines
them through convolution operations in order to obtain
upper-bounding densities for the execution of instruction
sequences. This leads to reliable results, since the global
density function is known to be valid as long as the local
ones are, but potentially leads to large computational efforts
for the analysis of complex applications, even if executed on
simple processor architectures (ABELLA et al., 2014).

35

• Measurement-based methods perform the analysis of
measurements of the task’s execution times taken on the target
hardware platform, which significantly reduces the hardware
architecture analysis efforts but requires the determination of
safety margins to account for possibly unmeasured effects.

– Deterministic: Measurement-Based Deterministic Timing
Analysis (MBDTA) analyses the task’s code and execution
environment for determining the inputs that are expected
to exercise the Worst-Case Execution Paths (WCEPs),
i.e. execution paths that are candidate to produce the
WCET. Measurements are then taken on the target
hardware to obtain these paths’ execution times, whose low
variability is expected to provide reasonable confidence that
their real WCETs are not far from the measured values.
Since the conditions for the occurrence of the task’s real
WCET are generally very hard to predict and reproduce,
margins typically still need to be added to the maximum
measured time in order to attain higher safety in relation
to unwitnessed timing effects. On top of that, acceleration
hardware elements capable of inducing worst-case timing
effects that are hardly observable (e.g. cache memories)
must be avoided or used with care (ABELLA et al., 2014).

– Probabilistic: Measurement-Based Probabilistic Timing
Analysis (MBPTA) produces probabilistic WCET estimates,
i.e. WCET estimates associated to non-null but sufficiently
small exceedance probabilities, by fitting statistical models
to measurements of the analysed task’s maximum execution
times (CUCU-GROSJEAN et al., 2012). Such methods can in
principle produce bounds with confidence levels that can
be high enough even for systems requiring certification,
but for that proper evidence must be supplied that the
task’s measured execution times (1) are representative
regarding the task’s worst possible timing behaviour, (2)
meet the requirements of the employed statistical tools, and
(3) present maxima that in fact adhere to the probability
distributions used. This poses strict requirements both
on the measurement collection process and on the timing
behaviour of the hardware platform used (COLES, 2001;
CAZORLA et al., 2016; KOSMIDIS et al., 2016).

36

This work focuses on the Measurement-Based Probabilistic
Timing Analysis (MBPTA) technique, which targets determining
probabilistic bounds for the WCETs of tasks that compose RTSs. These
bounds, known as Probabilistic Worst-Case Execution Times (pWCETs),
are composed of both a limiting value and an associated probability
that the value is exceeded at any individual execution of the task. The
application of MBPTA is based on the statistical analysis of the tasks’
maximum execution times, measured while they are executed on the
real target hardware platform under carefully determined conditions
(CAZORLA et al., 2013a, 2016). The main tool currently employed
by MBPTA is Extreme Value Theory (EVT), a branch of statistics
designed to estimate the probability of rare extreme events. Through
the adjustment of statistical models to the largest values observed for
the outcomes of a target phenomenon, EVT is capable of determining
values expected to be exceeded with a maximum probability that can
(in principle) be set to arbitrarily low values (COLES, 2001; CUCU-

GROSJEAN et al., 2012). Within MBPTA, EVT is promising in enabling
the determination of pWCET estimates associated with exceedance
probabilities comparable, or even lower, than those associated to other
kinds of failures that must be considered in designing critical RTSs (e.g.
structural failures) (CAZORLA et al., 2016).

Time-randomization at hardware level was recently proposed as
a means for designing processors whose timing behaviour is influenced
by probabilistic laws, hence potentially improving RTSs’ timing
analysability through methods based on statistical frameworks – such as
MBPTA. The main principle of time-randomization is the replacement
of speculative information typically employed in taking actions that
influence execution times with (pseudo-)random numbers. Consequently,
time-randomization also partially decouples hardware elements’ timing
behaviour from execution history, mitigating the systematic emergence
of pathological patterns that could lead to extreme execution times
(TRILLA et al., 2017b; AGIRRE et al., 2018). Time-randomization
have been recently applied in related work, e.g., for designing cache
memories (KOSMIDIS et al., 2013a), bus arbiters (JALLE et al., 2014) and
Networks-on-Chip (NoCs) (SLIJEPCEVIC et al., 2016, 2017a). Despite no
guarantees on execution times’ analysability can be effectively provided
(LIMA; DIAS; BARROS, 2016), time-randomized processors often prove
suitable to be used in the context of MBPTA (CAZORLA et al., 2013a;
KOSMIDIS et al., 2016; CAZORLA et al., 2016).

The determination of strict bounds for the WCETs of RTSs’ tasks,
with the objective of guaranteeing that their timing constraints are met,

37

is becoming increasingly challenging as computer architectures evolve.
This is so either due to the large effort and complexity of modelling
modern processors’ constructive details for applying static methods
(WILHELM et al., 2008) or due to difficulties in reliably associating
variable execution times with tasks’ worst-case behaviour through
measurement-based techniques (KOSMIDIS et al., 2016). At the same
time, many modern applications – such as autonomous cars and devices
composing the so-called Internet of Things (IoT) – are emerging which
tend to increase the demand for computer architectures capable of
delivering processing capacity with both scalability and affordable timing
analysability characteristics. In this context, the associated application
of MBPTA and of hardware-level time-randomization techniques is
promising in enabling the timing analysis of RTSs’ tasks executed on
complex computer processors, for which traditional methods would
potentially produce pessimistic results, by abstracting constructive
details of the underlying hardware (KOSMIDIS et al., 2016).

1.1 MOTIVATION

Static WCET analysis techniques have known limitations
regarding the complexity of processor architectures that can be handled
in feasible time, for inherently lacking of composability characteristics.
The continuous introduction of increasingly complex acceleration
hardware elements in processors, mainly for improving performance, is
resulting in architectures which are far from being analysable through
static methods. Even a small set of such elements can cause static
timing analysis to become intractable, due both to the complexity
of modelling their behaviour (especially when different elements are
combined) and to the computational efforts demanded by the analysis.
The introduction of multi-core processors have especially contributed in
making static analysis infeasible in modern architectures: the existence
of shared hardware elements and the uncertainty regarding the
behaviour of tasks lead to a situation in which either (1) unrealistically
pessimistic cases must be assumed, inducing pessimism that can be
large enough to negate a significant fraction of the processing capacity
(NÉLIS; YOMSI; PINHO, 2016; KIM et al., 2016), or (2) all possibilities
must be tested, which easily proves intractable (WILHELM et al., 2008;
LIU; REINEKE; LEE, 2010; CULLMANN et al., 2010).

At the same time, industry has an increasing demand for WCET
analysis, which is often met by either (1) employing simpler architectures

38

to which timing analysis is safe and feasible (e.g. for critical systems),
or (2) relying on measurements taken on a “bad-case” environment
added with safety margins defined based solely on experience (e.g. for
non-critical systems) (CAZORLA et al., 2016).

There is a strong tendency that the market of processors targeting
RTSs will witness a fast demand increase during the next years, which is
especially true assuming the autonomous cars’ and IoT devices’ markets
keep growing. Whenever this speculation proves right, so will grow
the demand for increased processing capacity, and for affordable and
reliable timing analysis of tasks executed on such processors (KINNAN,
2009; NÉLIS et al., 2014; SAIDI et al., 2015). In this scenario, the timing
analysis solutions currently employed in the industry tend to prove not
applicable, since (1) simple processors generally do not allow large sets
of tasks being integrated into single hardware platforms, and (2) the
pessimism of multi-/many-core processors’ analysis through traditional
methods tends to prove unacceptable (KIM et al., 2016).

These trends point out that, in a near future, complex hardware
platforms will be necessary for executing modern RTSs in order to cope
with their increasing processing demands, and that therefore MBPTA
approaches will possibly play an important role in enabling industry to
derive WCET bounds in a safe and cost-effective manner. Still, there
are many open questions associated with the fundamental requirements
that must be met in collecting and analysing measurements for applying
MBPTA, and especially regarding how reliable are the pWCET
estimates it is capable of yielding. Time-randomization is a candidate
technique to leverage timing analysability on increasingly complex
processors, for being promising in benefiting MBPTA application.

Considering the mentioned open questions and design opportunities,
this thesis tackles MBPTA-related issues in two fronts: (A) performing
empirical evaluations of the reliability of pWCET estimates derived
through MBPTA, and (B) evaluating the suitability for MBPTA of
processors equipped with randomly-scheduled multithread pipelines.

1.2 OBJECTIVES

The objectives of this thesis are twofold: (A) investigating
empirical methods for evidencing or counter-proving the reliability
of pWCET estimates produced using EVT within MBPTA, and (B)
investigating approaches for designing time-randomized multithread
pipelines suitable for the application of MBPTA. More specifically,

39

the thesis to be demonstrated within (A) is that the reliability of
pWCET estimates produced using MBPTA can be evaluated using large
validation samples and comparing their behaviour against expectations
on the bounding of maximum values and of tail densities, and within
(B) is that scheduling-level time-randomization can be employed to
enable the use of multithread pipelines on RTSs – a design often regarded
as harmful to static timing analysis – by causing yielded execution times
to meet the applicability requirements of MBPTA.

1.3 CONTRIBUTIONS

The main contributions provided in this work are twofold:
Firstly, we perform an empirical evaluation of the reliability of

pWCET estimates produced based on MBPTA through EVT using
large validation samples (e.g. of size 108), considering distinct EVT
application approaches and performing a large set of replications using
different conditions and methods. We evaluate pWCET estimates’
reliability based on the effective upper-bounding of large validation
samples’ (1) maximum observed execution times and (2) densities of
execution time empirical distributions’ tails. These contributions are
covered in the following published papers:

SILVA, K. P.; ARCARO, L. F.; OLIVEIRA, R. S. de. On Using
GEV or Gumbel Models when Applying EVT for Probabilistic WCET
Estimation. In: Real-Time Systems Symposium 2017 (RTSS’17).
IEEE, 2017. p. 220–230.

ARCARO, L. F.; SILVA, K. P.; OLIVEIRA, R. S. de. On the
Reliability and Tightness of GP and Exponential Models for Probabilistic
WCET Estimation. ACM Transactions on Design Automation of
Electronic Systems (TODAES), ACM, v. 23, p. 39:1–39:27, 2018.

ARCARO, L. F.; SILVA, K. P.; OLIVEIRA, R. S. de. A
Reliability Evaluation Method for Probabilistic WCET Estimates
based on the Comparison of Empirical Exceedance Densities. In:
Brazilian Symposium on Computing Systems Engineering
2018 (SBESC’18) – Work-in-Progress. IEEE, 2018.

Secondly, we evaluate the hypothesis that randomized thread
scheduling techniques can be used to benefit the application of MBPTA
to multiple tasks simultaneously executed on multithread pipelines
(in this work we consider only the dual-thread case). For that, we
evaluated both (1) a purely random scheduler, that leads the MBPTA

40

basic requirements to be met but that does not balance delays due
to interference, and (2) an interference-regulated scheduler capable of
limiting the worst-case timing effects of inter-thread interference, by
employing a credit-based eligibility regulation mechanism. The following
paper was submitted covering these contributions:

ARCARO, L. F.; SILVA, K. P.; OLIVEIRA, R. S. de. On
Using Randomized Scheduling on Multithread Pipelines for Benefiting
Probabilistic Timing Analysis. ACM Transactions on Embedded
Computing Systems (TECS), ACM. Submitted on January 14, 2019.

1.4 DOCUMENT ORGANIZATION

The rest of this document is organized as follows. Chapter 2
introduces EVT, the statistical framework that provides the theoretical
foundation used in state-of-the-art MBPTA. Chapter 3 presents details
on MBPTA and its applicability, together with a step-by-step example
of how it is used to obtain pWCET estimates. Chapter 4 deepens the
related concepts and presents state-of-the-art hardware elements used in
the design of time-randomized processors. Chapter 5 presents our first
major contribution, that consists of empirical reliability evaluations of
pWCET estimates produced using MBPTA. Chapter 6 introduces our
second major contribution, an evaluation of a processor that employs a
randomly-scheduled multithread pipeline for benefiting the application
of MBPTA. Finally, Chapter 7 presents final remarks associated with
the outcomes of the research presented in this thesis.

Appendixes A and B contain additional plots associated with
the evaluations presented in Chapters 5 and 6, respectively. Details of
the hardware elements that were developed during the herein described
research are presented in Appendix C.

41

2 EXTREME VALUE THEORY

The Extreme Value Theory (EVT) statistics branch was initially
designed for predicting from a probabilistic point of view the occurrence
of unusual extreme events, by modelling the behaviour of the highest
deviations observed for measurements associated to phenomena of
interest (COLES, 2001). Throughout the years it has been applied in
a variety of areas in which environmental variability is inherent and
extreme events are expected to be rare but can have significant or
even catastrophic impact. Among them we highlight insurance, in
which relatively rare events can cause large losses, and civil engineering,
where designs must resist forces that are unpredictable in the long
term. In such areas, variability is known to exist, generally cannot
be controlled, and determining safety margins is a necessary but
challenging task, since information taken from the typical environment
is not necessarily representative regarding extreme cases’ deviations
(COLES, 2001; BEIRLANT et al., 2004; HAAN; FERREIRA, 2006). There
is a relatively common criticism on EVT with respect to the fact it
extrapolates information obtained from random variables’ observed
behaviour to estimate the probability of unobserved events. Such
criticism is yet not easily defeatable, but (1) areas in which EVT is
typically employed require such extrapolations to be made, and (2)
there are no alternative frameworks available yet which are capable
of replacing EVT based on stronger arguments (COLES, 2001). This
chapter provides an overview of EVT’s key aspects. Please refer to
(COLES, 2001; HAAN; FERREIRA, 2006) for further information.

2.1 APPLICATION APPROACHES

The application of EVT is based on fitting extreme value
probability distributions to the maximum values observed in samples of
the variable to be analysed (COLES, 2001). Two approaches can mainly
be used for choosing the maximum observed values that are effectively
analysed through EVT, which are known as the Block Maxima (BM)
and the Peaks Over Threshold (POT) approaches.

The Block Maxima (BM) approach (HANSEN; HISSAM; MORENO,
2009; GUMBEL, 2012) is based on the Fisher-Tippett-Gnedenko theorem
(FISHER; TIPPETT, 1928), which states that the maximum value of a
sample may only converge in distribution to one of Fréchet (heavy
upper tail), Gumbel (exponentially decreasing upper tail), or Weibull

42

(bounded upper tail) extreme value distribution families, regardless
of the source population distribution (LU et al., 2012). Therefore, as
depicted in Figure 1, when BM is employed the collected data sample
is divided into blocks (i.e. sub-samples) containing b measurements
each, from which only the maximum observed value is kept for analysis’
next steps. We highlight that the convergence of block maxima to the
mentioned distributions is not guaranteed to be observable, and thus
adherence evidence must always be supplied for supporting the EVT
applicability argument (LIMA; DIAS; BARROS, 2016). Moreover, the task
of determining the block size (b) to be used is not straightforward, and
can prove critical in obtaining maxima that adhere to EVT models
(LIMA; DIAS; BARROS, 2016; ABELLA et al., 2017). A decision on which
of the Fréchet, Gumbel or Weibull distributions better describe the
observed blocks’ maxima distribution must also be taken, whereas one
must either know a priori which of them will better fit the analysed
dataset – which closely depends on the application scenario –, or try
fitting all three and choose the one that best adjusts (COLES, 2001). The
Generalized Extreme Value (GEV) distribution (MISES, 1936), whose
cumulative distribution function is shown in Equation 2.1, combines
the three families into a single one. It has three parameters (location µ,
scale σ and shape ξ), and is capable of behaving exactly as the original
ones depending on the value of its shape parameter, hence simplifying
the fitting process by avoiding the need to manually choosing the most
suitable of the three models. On top of that, GEV allows uncertainty
regarding which model is more suitable to represent a certain dataset to
be expressed as confidence intervals for its shape parameter’s estimates
(COLES, 2001; FARANDA et al., 2011; LIMA; DIAS; BARROS, 2016).

Figure 1: Block Maxima (BM) approach

(a) Maxima selection (b) Model fitting

GEVCDF =

{

exp(−(1 + ξ x−µ
σ)−1/ξ) if ξ 6= 0,

exp(−exp(−x−µ
σ)) if ξ = 0.

(2.1)

43

On the other hand, the Peaks Over Threshold (POT) (BEIRLANT

et al., 2004) method has its foundations on the Pickands-Balkema-
de Haan theorem (BALKEMA; HAAN, 1974), which states that the
behaviour of a sample’s values that exceed a large threshold τ can
be well approximated through the Generalized Pareto (GP) distribution
(PICKANDS, 1975). As illustrated in Figure 2, when the POT approach
is used a value for the threshold τ must be carefully chosen, and
only observed values that exceed this threshold are retained to be
used in the analysis. The GP model, whose cumulative distribution
function is shown in Equation 2.2, is capable of modelling different
distribution tails depending on the values assigned to its scale (σ) and
shape (ξ) parameters. Negative shape values lead GP to represent
bounded tails (e.g. that have a maximum value), while positive ones
cause it to model heavy asymptotic tails (e.g. whose density decreases
polynomially). The Exponential distribution is a special case of GP
with shape ξ = 0, and models unbounded tails whose asymptotic density
decreases exponentially (ABELLA et al., 2017). Similarly to GEV within
BM, confidence intervals on the GP shape parameter enable expressing
uncertainty regarding the value that best represents the modelled tail’s
behaviour. Also analogously to BM with respect to block sizes, different
threshold values (τ) can lead to maxima with distinct model adherence
characteristics (SANTINELLI et al., 2014).

Figure 2: Peaks Over Threshold (POT) approach

(a) Maxima selection (b) Model fitting

GPCDF =

{

1−
(

1 + ξ x−τ
σ

)−1/ξ
if ξ 6= 0,

1− exp(−x−τ
σ) if ξ = 0.

(2.2)

44

2.2 MODEL FITTING

Several methods are available for fitting maxima distributions
to collected data (GILLELAND; RIBATET; STEPHENSON, 2013), among
which we highlight Quantile regression (HANSEN; HISSAM; MORENO,
2009), Maximum Likelihood Estimation (MLE) (COLES; DIXON,
1999; COLES, 2001; EDGAR, 2002), Generalized Maximum Likelihood
Estimation (GMLE) (MARTINS; STEDINGER, 2000), and L-moments
(HOSKING, 1990). The mentioned fitting approaches present different
computational costs, for instance quantile regression is based on fast
numeric expressions (EDGAR, 2002) and MLE employs a relatively fast
optimization process, while L-moments requires estimating parameters’
confidence intervals through a bootstrap approach that may take long
to complete (MARTINS; STEDINGER, 2000). They also have different
applicability characteristics, for example quantile regression is only
applicable to the Gumbel distribution (HANSEN; HISSAM; MORENO,
2009), MLE is known to have convergence problems when ξ < −0.5 and
cannot be used when ξ < −1 (SMITH, 1985), and GMLE was shown
to perform better than L-moments and MLE only for shape values
−0.4 ≤ ξ ≤ 0 (MARTINS; STEDINGER, 2000). The results presented
in this thesis were mainly produced using the L-moments method
for fitting the GEV and GP distributions, and the MLE method for
fitting the Gumbel and Exponential distributions. However, most of the
experiments performed throughout our work were replicated using other
methods, in order to support the generality of the drawn conclusions.

2.3 BM BLOCK SIZE SELECTION

While using the BM approach for applying EVT, a critical
decision that must be taken is the size of the blocks to be used
(SANTINELLI et al., 2014). Small block sizes produce relatively large
maxima samples, possibly leading to higher representativeness at this
level, but with each block containing only several measurements the
tail modelling can be hampered due to convergence to the raw sample.
On the other hand, large blocks produce smaller maxima samples,
which can poorly represent the underlying population, but with each
block containing numerous measurements the population maxima is
potentially better characterized. Particularly, the employed block size
directly affects the tightness (pessimism) of the produced safety margins
and the capability of rare events being properly characterized by EVT

45

(SANTINELLI et al., 2014). Related works suggest using an iterative
approach for determining the block size based on the results of goodness-
of-fit tests, for instance by starting with the full sample (i.e. b = 1) and
incrementing it until tests pass (i.e. good fitting is achieved) (LU et al.,
2011), or by starting with e.g. b = 100 and doubling it until test results
are accepted (HANSEN; HISSAM; MORENO, 2009). The results we present
in this thesis were mainly produced using measurement blocks of size
50, but most of the experiments we have performed were replicated
using larger block sizes (i.e. 100, 200 and 400), in order to support the
generality of the achieved conclusions.

2.4 POT THRESHOLD SELECTION

When the POT approach is employed within EVT it becomes
necessary determining the threshold τ whose exceeding peak values
are to be fitted to the GP distribution. This is a critical decision,
since different thresholds can lead to adjusted models that largely
differ in terms of how well the tail of the distribution is represented
and, consequently, can also lead to statistical inference outcomes that
disagree by significant amounts (LIU; BEHNAM; NOLTE, 2013; ABELLA

et al., 2017; SANTINELLI; GUET; MORIO, 2017). The POT threshold
is determined in (LIU; BEHNAM; NOLTE, 2013) through an analysis of
stability based on (1) the estimates of the GP distribution shape for a
set of candidate thresholds, and (2) the shape of the GEV distribution
fitted to the measurements’ maxima selected through the BM approach.
The same task is performed in (SANTINELLI; GUET; MORIO, 2017) by
maximizing confidence levels associated to the p-values produced by
statistical hypothesis tests of (A) model matching through the Cramer
von Mises test (LAIO, 2004) and (B) of long-range independence or
extremal independence (EMBRECHTS; KLÜPPELBERG; MIKOSCH, 2013).
In (ABELLA et al., 2017) the threshold is selected such that its exceeding
tail is likely to present shape equal or lower than zero, based on a
coefficient of variation analysis, being therefore reliably upper-bounded
through the Exponential model. Several other threshold selection
methods are available, as described in (SCARROTT; MACDONALD, 2012).

In this work we evaluate an alternative approach, in which we
select the threshold value that minimizes – in relation to the other
candidate thresholds – the Estimated Quantiles’ Mean Absolute Error
(EQMAE) (WILLMOTT; MATSUURA, 2005) of the GP model fitted to
the exceeding peaks. The EQMAE is given by 1

n

∑

|x̂i − xi|, where xi

46

and x̂i are the n values that exceed the considered threshold and the
n quantiles estimated through the GP model fitted to the exceeding
peaks, respectively. Similarly to (SANTINELLI; GUET; MORIO, 2017), we
only consider threshold candidates between the sample’s 60% and 99%
quantiles, for both (1) restricting the search to the sample’s tail and (2)
avoiding too high thresholds being chosen. Through this approach we
are effectively selecting, based on a quantitative criterion, the adjusted
model that best approximates the observed data tail’s quantiles in
comparison to other threshold candidates. Since the main argument on
using the GP model for applying POT refers to best representing the
sample’s tail shape (SANTINELLI; GUET; MORIO, 2017) and EVT in fact
targets deriving estimates on distribution tails’ quantiles, we consider
the evaluated selection approach is prone to adequately fit the purpose.

2.5 APPLICABILITY REQUIREMENTS

EVT applicability is subject to a set of requirements to which
proper meeting evidence must be supplied in order to support the
reliability of the yielded results. The most basic assumption EVT
makes is that the outcomes of the variable of interest associated to
the analysed phenomenon can be deemed independent and identically
distributed. In other words, the observed values must (1) not strongly
influence the probability or enable predicting the occurrence of other
outcomes, and (2) adhere all to a same distribution of probabilities
(COLES, 2001; KOSMIDIS et al., 2014). The independence requirement
was relaxed in (LEADBETTER; LINDGREN; ROOTZÉN, 1983), by showing
that dependence between variables can be admitted – to a certain extent
– as long as stability and stationarity characteristics are consistently
observable, i.e. as long as no strong changes in mean and variance are
observed along measurements (COLES, 2001). A further requirement is
that the environment in which the analysed variable’s measurements
are collected must be maximally representative regarding the conditions
in which extreme values are expected to be produced. This requirement
can be considered unmeaningful in certain application contexts, such
as sea level prediction, but meeting it can prove essential and quite
challenging in fields such as the one addressed in this thesis (KOSMIDIS

et al., 2016). It imposes that any controllable factors influencing the
analysed variable’s outcomes being set such that extreme events become
maximally likely to be observed during the sampling process (ABELLA et

al., 2014). More details on the specific context in which EVT is applied

47

throughout this work, i.e. for the determination of bounds for the
Worst-Case Execution Times (WCETs) of Real-Time Systems (RTSs)’
tasks, will be covered in detail in Chapter 3.

2.5.1 Applicability Statistical Tests

The mentioned EVT requirements demand proper statistical tests
being performed in order to evidence that the collected data do not
present characteristics that harm its basic assumptions. Statistical
hypothesis tests are based on a null hypothesis H0, which is assumed
to be true unless sufficient evidence is found to refute it, and an
opposite alternative hypothesis H1, which is accepted if and only if H0 is
rejected through proper evidence. Hypothesis tests are subject to type
I and type II errors, associated respectively to false negative and false
positive results regarding the null hypothesis. A statistical hypothesis
test produces a p-value that is associated with the probability of its
statistical summary yielding a result that is as far or further from the
expected assuming H0 holds as that obtained in the collected sample
(a type I error) (WASSERSTEIN; LAZAR, 2016). Such errors are typically
controlled through the determination of a limit α to the probability
of false negatives (type I errors), known as significance level, whose
value is typically kept between 0.05 and 0.01 (ABELLA et al., 2014). As
illustrated in Figure 3(a), by comparing a test’s yielded p-value with α

one can take the decision of rejecting the null hypothesis is p < α or
not rejecting it if p ≥ α, with a confidence level given by γ = 1−α that
is hence typically between 95% and 99%.

Measured values’ independence can be evidenced using the Wald-
Wolfowitz (WW) and the Ljung-Box (LB) statistical tests. The WW or
runs test, which tests the observed values’ randomness null hypothesis,
classifies the observed values as (H)igher or (L)ower than the sample
median and then examines the normality of the lengths of the “runs”
(i.e. H or L contiguous sequences). The application of the test is
expected to yield p-values higher than α, thus indicating that there
is no strong evidence that the data is generated by a non-random
process (SANTINELLI et al., 2014; SLIJEPCEVIC et al., 2014). The LB
test has as H0 the absence of non-null correlations (trends) between
observations, and is based on the detection of autocorrelations between
each observed value and an arbitrary number of following measurements
in a time series (i.e. lags). Its application is therefore also expected to
produce p-values higher than the target significance level, indicating

48

that there is no strong evidence that the collected measurements present
dependences (LJUNG; BOX, 1978; SANTINELLI et al., 2014; KOSMIDIS et

al., 2016). Similarly, identical distribution can be evidenced through
the Kolmogorov-Smirnov (KS) and the k-sample Anderson-Darling
(AD) statistical tests. The KS test has the null hypothesis that the
observations follow the same distribution, and produces a p-value that
is related to the distance between the empirical distributions of the
assessed samples. Therefore, its application is expected to produce
p-values higher than α, indicating that there is no strong evidence that
the tested samples were drawn from different distributions (ABELLA et

al., 2014; KOSMIDIS et al., 2016). The k-sample AD test is available in
two versions that mainly differ by the employed empirical distribution
function: one adjusts for possibly different sample sizes and the second
focuses on tail differences. Similarly to the KS test it also tests the
identical distribution hypothesis, and its application is expected to
produce p-values higher than α (SCHOLZ; STEPHENS, 1987).

As mentioned, statistical tests can lead to erroneous conclusions
with a certain probability, which is typically controlled through the
use of a significance level α. Erroneous results can occur due to the
variability that is inherent to the analysed data, since it can lead –
possibly but improbably – to samples that present characteristics that
counter-evidence the null hypothesis by chance (e.g. highly correlated
values). For cases in which small samples are necessary, tackling this
characteristic may require increasing the sample size in order to also
increase confidence in tests’ results. Since in this work we are capable of
collecting large samples (e.g. of size 106), we address it by applying the
statistical tests to a set of randomly chosen segments of the analysed
data. Single-sample tests such as WW and LB are independently
applied over such segments, while two-sample tests such as KS and
AD are applied on independently chosen segment pairs. As depicted
in Figure 3(b), statistical tests’ results are presented in the form of a
box and whisker plot that highlights the 0%, 5%, 50%, 95% and 100%
quantiles, i.e. the minimum, the median, the maximum, and the 5%
and 95% quantiles, of the p-values obtained for each test. Conclusions
are then drawn with increased confidence based on the obtained results’
distributions, considering the employed statistical hypothesis tests are
known to produce p-values approximately uniformly distributed in the
range [0, 1) (or with tendency to high values) when H0 in fact holds
(MARSAGLIA; TSANG, 2002). The null hypothesis is only rejected when
the yielded p-values present a clear tendency to low values.

49

For instance, we present a comparison of the results of the KS
test on two samples of one million values each. Figure 4(a) presents
the p-values obtained using samples drawn from distributions known to
be identical, while Figure 4(b) shows the test’s results when one of the
samples is shifted by a relatively small amount for inducing distribution
difference. Despite both tests generated similar minimum and maximum
outcomes, an approximately uniform p-value distribution is observed
for the first test while the second presents a clear tendency to small
values. Such behaviour should be enough for rejecting the identical
distribution hypothesis for the second test. We highlight, however, that
the results observed for the first test cannot be considered a proof, but
should instead be faced as evidence, that the null hypothesis holds for
the evaluated data (WASSERSTEIN; LAZAR, 2016).

Figure 3: Hypothesis tests’ decision approaches

1

0 1

p-values'

distribution

Reject H0 Accept H0

(a) Using significance level

1

0 A

Reject H0

Accept H0

B

.5

(b) Using box and whisker plot

Figure 4: KS test p-value distribution comparison

Statistical test

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n

0.2

0.4

0.6

0.8

KS

(a) Identical distributions

Statistical test

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n

0.2

0.4

0.6

0.8

KS

(b) Different distributions

50

2.5.2 Applicability Plots

Besides statistical tests, plots are also employed for evidencing
EVT applicability and supporting the decision on accepting or rejecting
the outcomes of collected data maxima analysis. Probability and
quantile comparison plots are used for evaluating how well an adjusted
probability distribution (e.g. GEV or GP) fits a maxima sample (either
blocks’ maxima or peaks over a threshold), in order to point out whether
the EVT idealized model can be confidently used for inferring over
unobserved behaviour. These plots are created by sorting the sample
data x1, x2, . . . xn in ascending order, and plotting n points (F (xi),

i
n+1)

for probability plots or (F−1(i
n+1), xi) for quantile plots – where F and

F−1 are the cumulative distribution function and the quantile function
of the adjusted distribution, respectively. Good fitting in probability
and quantile plots is evidenced by the comparison points being disposed
over or randomly distributed around and close to the identity line (i.e.
y = x), meaning that the sampled values are compatible with those
expected if the fitted distribution indeed represents the collected data.
If, otherwise, significant systematic discrepancies are observed, the
collected data maxima must be deemed not likely to be adherent to
the adjusted distribution and consequently the analysis results cannot
be considered trustworthy (COLES, 2001). We highlight, however, that
further handling by e.g. increasing sample size or changing maxima
selection parameters can often lead to distinct characteristics with
respect to model fitness. We present in Figure 5(a) a quantile plot with
significant model discrepancies, while Figure 5(b) shows a quantile plot
with an apparently acceptable fitness behaviour.

Figure 5: Quantile plot comparison

24900 25000 25100 25200 25300

2
4
9
5
0

2
5
0
5
0

2
5
1
5
0

2
5
2
5
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(a) Bad fitting

46000 46100 46200 46300 46400 465004
6
0
0
0

4
6
1
0
0

4
6
2
0
0

4
6
3
0
0

4
6
4
0
0

4
6
5
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) Good fitting

51

2.5.3 Conclusion

EVT is a branch of statistics that have traditionally been applied
to a variety of areas as a mean for determining safety margins with low
exceedance probability, supported by a reasonably strong underlying
rationale, thus providing increased confidence in comparison with the
definition of such margins based solely on experience. However, its
applicability is subject to requirements related e.g. to the environment
in which measurements are taken and to the behaviour of observed
variables’ outcomes. It thus requires proper evidence, e.g. statistical
tests and comparison plots, being supplied to support the arguments
that the obtained data can be analysed through statistical frameworks
and that the adjusted extreme value models properly represent their
maxima behaviour. For more information on EVT, please refer to
(COLES, 2001), which presents an accessible introduction to the subject
considering a number of distinct application scenarios.

52

53

3 MEASUREMENT-BASED PROBABILISTIC TIMING
ANALYSIS

Measurement-Based Probabilistic Timing Analysis (MBPTA) is
a recently proposed timing analysis technique that intends determining
probabilistically reliable WCET bounds for RTSs’ tasks, through
the statistical analysis of execution time measurements using EVT.
Consequently, WCET bounds produced by MBPTA – known as
Probabilistic Worst-Case Execution Times (pWCETs) – are composed
of both an upper-bounding value and a probability that the value is
exceeded at any individual execution of the task (ABELLA et al., 2014).
From the MBPTA perspective, temporal failures on computing systems
are seen as just another kind of fault that must present very low
occurrence probability in critical RTSs, and add up, e.g., to mechanical
and structural failures. For instance, if an aircraft is designed to present
a structural failure with a maximum probability of 10−9 per hour of
operation, it should be sufficient guaranteeing that the computing
system that controls it also conforms to this same maximum failure
probability. The rationale behind it is that the effort on guaranteeing
the control computing subsystem will never fail is not worth, since
the system itself may fail with non-null probability due to a variety of
unrelated reasons (CAZORLA et al., 2013a, 2016).

The probability distributions employed by EVT for modelling
analysed data (execution times, in the case of MBPTA) present a right
tail with decreasing slope, i.e. execution time values’ probabilities
are expected to decrease as they grow further from the mean
value (COLES, 2001). Witnessing such behaviour in the frequency
distribution of a task’s maximum observed execution times gives
reasons to believe that pathological values, i.e., execution times that
largely exceed the maximum observed ones, should be associated
to extremely or even negligibly low probabilities (CAZORLA et al.,
2013a). The role of EVT within MBPTA is extending this intuition,
by modelling through extreme value distributions (e.g. GEV or GP)
the probabilistic behaviour of execution time samples’ maxima. This
enables determining WCET bounds that are expected to be exceeded
with maximum probabilities that can be set to arbitrarily low values
(e.g. 10−15), depending on the reliability level required by the target
application (COLES, 2001; CAZORLA et al., 2016).

Intuitively, MBPTA application only makes sense if the measured
execution times’ maxima can in fact be reliably modelled (or upper-

54

bounded) using the probability distributions employed by EVT due to
the very nature of the execution environment. In this case, the model
fitting process can be considered to merely estimate the parameters of
the extreme value distribution that best approximates the underlying
probabilities associated to the measured execution times’ maxima.
However, a clear distinction between probabilities and frequencies must
be made at this point. Probabilities are associated to the occurrence of
phenomena outcomes, and are hardly explicit and hence generally not
known beforehand, while the observation of a phenomenon’s outcomes
provides instead a sample of their frequencies, whose means (densities)
converge to the associated probabilities as samples grow. Frequencies
can hence only be regarded as evidence of the observed phenomenon’s
probabilistic behaviour, and should not be assumed to directly reflect
the underlying probabilities. Moreover, the confidence a sample gives
with respect to the population characteristics is proportional to its
size, and therefore full confidence could only be achieved by researching
the population – which is impossible for execution times. It follows
that MBPTA uses EVT to infer on the behaviour of the (unknown)
underlying execution time population, by extrapolating the limited
information provided by the maxima observed on small samples (COLES,
2001; CAZORLA et al., 2013a; SANTINELLI et al., 2014; LIMA; DIAS;

BARROS, 2016; GUET; SANTINELLI; MORIO, 2016).
Time-randomized processors are designed using (pseudo-)random

numbers to replace internal information that, in traditional processors,
are typically determined based on deterministic or speculative laws
(e.g. bus arbitration and cache line replacement). This may benefit
MBPTA application by causing hardware elements’ latencies to be
partially decoupled from execution history and from co-executing tasks’
behaviour, and execution times to present variability characteristics that
make their maxima more easily modellable through EVT (KOSMIDIS et

al., 2016). This subject will be more thoroughly covered in Chapter 4.

3.1 APPLICATION

The application of MBPTA through EVT is done by (1)
collecting a sample of the target task’s execution times, (2) evidencing
that the collected data is analysable through EVT, (3) selecting the
maximum observed values to be employed in the rest of the analysis, (4)
fitting an adequate extreme value distribution to the selected maxima,
(5) producing evidence that the fitted model properly represents

55

the statistical behaviour of the maximum observed times, and (6)
determining through the adjusted model the pWCET value expected
to be exceeded with a maximum probability that is sufficiently low in
the application context (COLES, 2001; CAZORLA et al., 2016).

In step (1) it is necessary to (A) determine the size of the sample
to be collected, such that it is large enough to characterize the execution
times’ behaviour but as small as possible for minimizing analysis efforts,
while (B) guaranteeing that it is either representative or pessimistic with
respect to the task’s worst-case timing behaviour. In step (2) statistical
tests are used to evidence that the data is adequate to be analysed
through EVT, as described in Section 2.5.1. In step (3) the maximum
values to be analysed are selected through either the BM or the POT
approach, as of Section 2.1. Assuming BM is used in step (3), in step
(4) a distribution of the GEV family is fitted to the selected maxima.
On the other hand, if POT is employed in step (3) a distribution of the
GP family should be used in step (4). In step (5), plots and statistical
tests can be used to evidence that the adjusted distribution properly
models the maxima behaviour, as of Sections 2.5.1 and 2.5.2.

3.2 APPLICABILITY REQUIREMENTS

As mentioned in Chapter 2, EVT fundamentally requires the
analysed phenomenon outcomes to be modellable as a random variable
that can be deemed independent and identically distributed. In the
context of MBPTA, this means that the observed execution times should
be such that (1) can be all deemed to come from the same distribution
of probabilities, and that (2) the observation of any particular outcome
does not affect the probability of others being observed. It is important
to highlight, however, that the independence property required for
MBPTA does not necessarily need to apply for every instruction’s
execution latency, and is instead expected to be observable for the
effectively measured instruction sequences (LU et al., 2012; ABELLA et

al., 2013). Consequently, individual instruction instances can present
dependencies such as those induced via data (KOSMIDIS et al., 2013)
and control flow (i.e. execution paths) (CUCU-GROSJEAN et al., 2012),
without compromising the statistical independence required for MBPTA
application (KOSMIDIS et al., 2014). Recent works on the area also claim
that it is sufficient for obtaining reliable pWCET estimates through EVT
that the collected execution times are stationary, i.e. present constant
variance and autocovariance properties over time, and that therefore the

56

existence of limited dependency – even between individual measurements
– should not be considered to compromise MBPTA applicability (CUCU-

GROSJEAN, 2013; GUET; SANTINELLI; MORIO, 2016).
As also mentioned in Chapter 2, a further requirement to apply

EVT in the context of MBPTA is that the conditions under which
execution times are collected must be either representative or pessimistic
in relation to those expected in the environment in which the system
is intended to operate. In other words, the timing behaviour of the
application at analysis time must be guaranteed either to exactly match
or to upper bound its timing behaviour at deployment time, which can
be done either (1) deterministically, e.g. by inducing worst-case latencies
being yielded during measurement collection, or (2) probabilistically,
e.g. by causing latencies equal or higher than those expected at
deployment time to be probabilistically predominant (GRIFFIN; BURNS,
2010; CAZORLA et al., 2013b; KOSMIDIS et al., 2016).

This poses further requirements on the measurement process and
on the timing behaviour of the underlying hardware, by requiring e.g.
the hardware state to be reset, randomized or carefully prepared before
taking measurements, and/or hardware elements being configured
to forcedly yield worst-case latencies at analysis time (PETTERS,
2002; CUCU-GROSJEAN et al., 2012; ABELLA et al., 2014). Please refer
to (GRIFFIN; BURNS, 2010; MELANI; NOULARD; SANTINELLI, 2013;
SANTINELLI et al., 2014; LIMA; DIAS; BARROS, 2016; GUET; SANTINELLI;

MORIO, 2016) for further discussions regarding the requirements
associated with MBPTA’s practical applicability.

When applying MBPTA, we make the following efforts to
produce execution times that meet its fundamental requirements: (1)
the hardware state (e.g. of cache memories) is reset before taking
measurements (CAZORLA et al., 2013b; KOSMIDIS et al., 2016), (2)
time-randomized hardware elements capable of reducing dependencies
are employed (e.g. cache memories) (CAZORLA et al., 2013a), and
(3) data-dependent variable-latency hardware elements (e.g. the
employed Arithmetic Logic Unit (ALU) design) are induced to produce
the worst-case latency during measurements (KOSMIDIS et al., 2016).
Independence is expected to be provided by applying (1) and (2), i.e.
clearing and/or randomizing hardware elements’ state, while identical
distribution is expected by applying (1) and (3), i.e. using exactly the
same execution environment across measurements. Proper statistical
tests, such as those presented in Chapter 2, are employed for evidencing
that these properties are effectively achieved (ABELLA et al., 2014).

57

3.3 SAMPLE SIZE

Determining the size of the samples employed in any statistical
analysis is a critical task, since small samples potentially provide
limited representativeness of the analysed phenomenon’s populational
behaviour, while collecting large ones may lead to infeasible costs.
In the context of MBPTA, determining the sample sizes which are
necessary for deriving reliable pWCET estimates is an open problem,
because the representativeness of execution time samples is limited by
multiple factors such as the variability induced both by the underlying
hardware and by the measured task’s control flow. The employed
sample must be big enough for the effect of relatively rare timing
events being individually captured, and also for suitably evidencing
the smaller probabilities associated to a sufficient amount of their
combinations (ABELLA et al., 2014). One possible approach for iteratively
determining sample sizes was proposed in (CUCU-GROSJEAN et al.,
2012), which suggests initially taking N + Ndelta measurements and
increasing N of Ndelta observations on every iteration, until the models
adjusted to increasingly larger samples converge and goodness-of-fit
tests’ results prove acceptable. When applying MBPTA we deal with the
problem of determining the sample sizes to be used by either collecting
relatively large samples (e.g. of size 50000), or by evaluating experiments’
results as sample sizes are increased within reasonably wide ranges (e.g.
from 150 to 5000). Collecting samples whose sizes are beyond a few
hundred to several thousand measurements may easily represent an
undesirably large effort, especially when large applications composed
of numerous and complex software tasks are to be analysed. Moreover,
replications using larger sample sizes yielded no different conclusions
for the evaluations we have performed in this work.

3.4 MODEL FITNESS

Achieving execution times that properly fit EVT probability
distributions can be more or less challenging depending at least (1) on
the timing behaviour of the underlying hardware platform, which is in
general benefited by the introduction of random variability sources (see
Chapter 4); (2) on the task’s execution path(s) effectively measured,
which can generate widely or even arbitrarily different execution time
distributions; and (3) on the input data to which the tasks are subject
during measurement collection, not only because of their effect on

58

control flow but also due to internal operations’ latency (e.g. ALU
multiplication and division) (CUCU-GROSJEAN et al., 2012; KOSMIDIS et

al., 2016; LIMA; DIAS; BARROS, 2016; LESAGE; LAW; BATE, 2018). On
top of that, absolute proof on the adherence of sampled data to EVT
distributions is hard (if not impossible) to be provided, since (1) samples
with good or bad fitting characteristics can always occur by chance –
despite their occurrence probability quickly decreases as their size is
increased –, and (2) processors’ timing variability is inherently not fully
compatible with the statistical models to which they are expected to
fit – e.g. due to clock-cycle discreteness (COLES, 2001; GRIFFIN; BURNS,
2010). When applying MBPTA we evaluate model fitness using quantile
and probability comparison plots, as described in Section 2.5.2.

3.5 EXECUTION PATHS

The number of possible execution paths found in computer
programs, even ones that perform simple tasks, grows extremely fast
as control flow structures – especially loops – are nested. Determining
the one(s) among such a multitude of execution paths are capable of
generating the task’s real WCET is a hard task, to which divide-and-
conquer approaches are typically employed in static timing analysis
(WILHELM et al., 2008). Within MBPTA, handling the existence of
different execution paths in obtaining measurements that can be deemed
representative regarding tasks’ worst-case timing is still an open problem.
The execution path problem is also directly related with the input data
definition issue, since the effectively exercised execution paths mainly
depend on the inputs used during the collection of measurements for
applying MBPTA (LESAGE; LAW; BATE, 2018; GIL et al., 2017).

The simplest approach considered in the literature for determining
input data for MBPTA is based on randomization, causing every possible
input – and hence every feasible execution path – to have a non-null
probability of being chosen on every execution. It leads, however, to
representativity issues related to the effective measurement of execution
paths that lead to the highest possible execution times (LU et al., 2012;
ABELLA et al., 2014; LIMA; DIAS; BARROS, 2016). An alternative approach
named Path Upper Bounding (PUB) is presented in (KOSMIDIS et al.,
2014b), which creates a modified version of the analysed task in which
all execution paths are padded (added with instructions) to present
a timing behaviour that probabilistically upper-bounds all alternative
paths. The Extended Path Coverage (EPC) technique (ZICCARDI

59

et al., 2015; MEZZETTI et al., 2017) tackles the issue by making the
measurements probabilistically path-independent, by padding their
distributions considering positive effects the paths leading to individual
basic blocks could have possibly caused through a time-randomized
cache memory. Despite guaranteeing estimates’ reliability for multi-path
tasks, PUB finds limited applicability to systems requiring certification
for changing the task’s code, and EPC leads to pWCETs subject to
overestimations for employing conservative padding.

Since we do not intend addressing the execution path problem
within MBPTA, we employ benchmarks with input data fixed such that
only a single long execution path is exercised. By employing single-path
measurements and causing functional units with data-dependent timing
behaviour (e.g. ALUs) to always yield maximum latency, we effectively
remove the timing effects induced by tasks’ inputs and exclusively
capture the variability that arises from the hardware platform behaviour.
The reasons for which we do so are twofold: (1) for creating nearly-ideal
MBPTA application conditions according to the current maturity level
of the technique, and (2) for evaluating the behaviour of the developed
time-randomized hardware elements (see Chapter 4) in the absence of
noise from other timing variability sources.

3.6 TEMPORAL ISOLATION

Most of the hardware elements that induce temporal effects on
single-core processors which are hard to be predicted through static
analysis methods aim to increase performance and/or utilization (e.g.
cache memories and dynamic pipelines), or to reduce costs (e.g. Dynamic
Random Access Memory (DRAM) memories) (WILHELM et al., 2008).
In multi-core processors the effects found in single-core ones are also
present, and add up to others that stem from hardware resources which
are shared, for example (1) to reduce cost and/or energy consumption
(e.g. buses and memories), or (2) for communication purposes (e.g.
shared memories) (ČAKAREVIĆ et al., 2009). These elements cause
different kinds of temporal effects: the reduction of execution times
by acceleration elements – found both in single- and in multi-core
processors –, and the increasing of execution times due to contention
on the access to shared hardware elements – common in multi- but also
found in single-core processors, e.g. when Direct Memory Access (DMA)
controllers are used. Other examples of hard-to-predict timing effects
are (A) timing anomalies (LUNDQVIST; STENSTRÖM, 1999; GEBHARD,

60

2010), that occur when local fast execution cases cause the global
execution time to increase instead of decreasing (a counter-intuitive
non-compositional effect), and (B) interference between cores that speed
up others’ execution (e.g. by fetching useful memory words into shared
cache memories) (REINEKE et al., 2006; NOWOTSCH; PAULITSCH, 2012;
REINEKE; WILHELM, 2014; SHAH; HUANG; KNOLL, 2014).

Particularly, timing effects that arise from shared resources in
multi-core processors not only affect the executed tasks’ execution
times, but also make them dependent on the behaviour of other tasks
executed on the same processor. In such scenarios, a slight change in
any of the tasks’ behaviour can cause others to temporally behave in
a significantly different manner, thus potentially invalidating WCET
bounds previously derived due to temporal interference. When such
inter-task temporal effects occur due to architectural characteristics, the
employed processor is said not to provide temporal isolation to the tasks
executed on it. Accounting for these effects using static approaches
often proves intractable even for relatively simple hardware platforms,
and must in general be handled through conservative assumptions that
often induce severe pessimism on WCET bounds (WILHELM et al., 2008;
CULLMANN et al., 2010; SCHLIECKER; ERNST, 2010; KOTABA et al., 2013).

Within MBPTA the absence of temporal isolation between
cores is also a harmful characteristic, because guaranteeing that
measurements were taken (from a single core) under interference
conditions that match or upper-bound those expected at deployment
time is not straightforward. Since interference between cores don’t only
induce jitter but can cause execution times to vary significantly (BUI et

al., 2011; KOTABA et al., 2013; CULLMANN et al., 2010), they potentially
also cause measurements to present different distributions depending on
other cores’ behaviour, hence possibly compromising the fulfilment of
the main EVT requirements. Therefore, temporal isolation absence is a
characteristic that must be properly handled when tasks executing on
multi-core platforms are to be analysed through MBPTA, which can be
done e.g. (1) through temporally isolated resource sharing (AKESSON

et al., 2011; PANIĆ et al., 2015), (2) by padding pWCETs with the
worst-case interference (CAZORLA et al., 2016; KOSMIDIS et al., 2016), or
(3) by guaranteeing measurements effectively capture the worst possible
effects of interference (SLIJEPCEVIC et al., 2014).

61

3.7 RELATED WORK

The seminal works about using EVT probabilistic models to
attempt solving the WCET problem are (BURNS; EDGAR, 2000; EDGAR;

BURNS, 2001; EDGAR, 2002; PETTERS, 2002). They covered aspects
such as (1) the basic concepts associated with probabilistic WCET
analysis, (2) the higher adequacy of extreme value models in comparison
with approximations based on more traditional distributions (e.g.
Normal), and (3) considerations regarding the analysis of multi-path
and concurrently executed tasks. The use of EVT was first mentioned
explicitly in (HANSEN; HISSAM; MORENO, 2009), when maxima selection
was introduced as a means of modelling execution time distributions’
tails and goodness-of-fit tests were used for evidencing that the
employed statistical model in fact represents the analysed data
behaviour. In (GRIFFIN; BURNS, 2010) the realism of applying EVT to
execution times was questioned, due to issues such as their inherent
non-continuity and possible absence of statistical independence and
identical distribution. Restrictions were then proposed, in order to
ensure EVT’s basic assumptions are observable in analysed execution
times, by suggesting e.g. (A) measured tasks’ inputs being restricted
to the subset likely to produce the largest possible execution times
(i.e. exercise the longest execution paths), and (B) the hardware state
being reset before measurements for ensuring independence. Later,
(CUCU-GROSJEAN et al., 2012) introduced one of the first attempts
to apply EVT-based MBPTA similarly to the approach used in most
of recent works. For that, methods to tackle critical issues were
proposed, such as determining sample sizes in an automated manner,
and further discussions regarding the use of time-randomized processors
and the analysis of multi-path tasks were presented. Deeper studies
on the basic requirements of EVT, and their practical impact on its
use for determining trustworthy WCET upper bounds, were then
presented in (CUCU-GROSJEAN, 2013; ABELLA et al., 2013; CAZORLA

et al., 2013b; MELANI; NOULARD; SANTINELLI, 2013). With that,
MBPTA’s requirements and limitations, often related to execution
times’ independence and identical distribution characteristics, were
more thoroughly understood. Since then, MBPTA became increasingly
promising in enabling the timing analysis of complex modern systems.

Recent works were developed that (1) assessed MBPTA’s
practical feasibility (WARTEL et al., 2013; ABELLA et al., 2014; CONMY

et al., 2015; GUET; SANTINELLI; MORIO, 2016), (2) evaluated pWCET
estimates with respect to reliability and accuracy aspects (LESAGE

62

et al., 2015; SANTINELLI; GUET; MORIO, 2017), (3) analysed the use
of generalized extreme value distributions (e.g. GEV or GP) to more
precisely model execution times (LIMA; DIAS; BARROS, 2016), (4)
tackled the representativity issue considering e.g. the execution path
coverage problem (LAW; BATE, 2016; LESAGE; LAW; BATE, 2018) and
multi-mode tasks (GUET; SANTINELLI; MORIO, 2017), (5) evaluated the
application of probabilistic timing analysis on traditional processors and
systems (KOSMIDIS et al., 2013a; PANIĆ et al., 2015, 2017; FERNANDEZ;

CAZORLA; ABELLA, 2018; SILVA et al., 2018), (6) supported deriving
reliable pWCETs based on mixture execution time distributions
(ABELLA et al., 2017), (7) underlined timing analysis reproducibility
and execution time samples’ representativity as fundamental properties
for MBPTA’s use (MAXIM et al., 2016), (8) discussed the effects of
uncertainty sources of different nature in pWCET estimates (DAVIS;

BURNS; GRIFFIN, 2017), (9) proposed hardware designs that expose
and increase the observability of events affecting variable execution
times for benefiting MBPTA (CAZORLA et al., 2017), (10) highlighted
requirements and practices that can be considered critical for obtaining
reliable pWCET estimates through MBPTA (MILUTINOVIC et al., 2017),
and (11) summarized related open problems (GIL et al., 2017).

Assessments of MBPTA’s results were conducted e.g. (I) through
its use for the analysis of real airspace applications executing on time-
randomized processors (WARTEL et al., 2013; CONMY et al., 2015), (II) by
comparing the required efforts and results with those of static techniques
under different hardware configurations (ABELLA et al., 2014), and (III)
by introducing frameworks for evaluating results e.g. through statistical
tests and fuzzy logic (GUET; SANTINELLI; MORIO, 2016). Estimates’
reliability and accuracy were evaluated, e.g., by (I) comparing pWCETs
with the real WCETs of synthetic tasks running on a controlled abstract
platform (LESAGE et al., 2015), (II) assessing the results of stationarity,
independence, identical distribution and model matching statistical
hypothesis tests (SANTINELLI; GUET; MORIO, 2017), and (III) comparing
the values and exceedance densities of large validation samples’ maxima
against pWCET estimates (see Chapter 5). Numerous recent works also
covered the application of randomization at both software (BENEDICTE

et al., 2016a; CROS et al., 2017) and hardware (KOSMIDIS et al., 2016)
levels, in order to benefit MBPTA application (see Chapter 4).

With respect to data selection for MBPTA application, initial
works (BURNS; EDGAR, 2000; EDGAR; BURNS, 2001; EDGAR, 2002;
PETTERS, 2002) proposed adjusting the Gumbel distribution to raw
execution time measurements. The BM approach was brought to use

63

in the area by (HANSEN; HISSAM; MORENO, 2009), hence leading to
improved applicability for not requiring raw execution times to follow
any specific distribution – and requiring instead maxima convergence to
extreme value distributions. To our knowledge, the POT method was
first mentioned in related works in (LIU; BEHNAM; NOLTE, 2013), which
evaluated its application for determining response time (i.e. latency)
bounds for message transmissions on a Controller Area Network (CAN).
Several posterior works (SANTINELLI et al., 2014; GUET; SANTINELLI;

MORIO, 2016; SANTINELLI; GUET; MORIO, 2017) proposed and assessed
novel approaches for diagnosing and applying EVT through POT
to derive pWCET estimates. Challenges and potentialities on POT
application to the problem are highlighted in (SANTINELLI et al., 2014),
by using measurements taken from highly complex modern processors.
A generalized version of EVT based on the POT approach, which
relaxes some requirements of the classical methodology for increasing
its applicability, was proposed in (GUET; SANTINELLI; MORIO, 2016)
and extended in (SANTINELLI; GUET; MORIO, 2017).

Two recent research projects funded by the European Union,
namely PROARTIS (CAZORLA et al., 2013a) and PROXIMA (DAVIS et

al., 2014; CAZORLA et al., 2016), targeted developing and promoting the
use of MBPTA in industrial and safety-critical systems. The knowledge
produced within the PROARTIS and PROXIMA projects was one of the
main background references used in this thesis. Preliminary outcomes
of the research presented in this thesis were shown in (SILVA; ARCARO;

OLIVEIRA, 2017; ARCARO; SILVA; OLIVEIRA, 2018b, 2018a).

3.8 APPLICATION EXAMPLE

In this section we present a detailed tutorial on the application of
MBPTA, using and execution time sample obtained from a well-known
benchmark executing on a real time-randomized processor.

The employed time-randomized hardware platform, illustrated
in Figure 6, is composed of two cores featuring a 5-stage in-order
pipeline that implements the 32-bit MIPS I Instruction Set Architecture
(ISA). Each core is directly connected to private and separate data and
instruction caches which are 512-byte 4-word line 2-way set-associative,
and implement a write-through and a purely-random replacement policy.
The instruction and data caches are connected through shared buses to
the respective instruction and data memory controllers.

64

Figure 6: Platform illustration

Algorithm 3.1 presents the code of the benchmark task we have
employed, which consists of a sorting algorithm (bubble sort). The
task’s inputs are fixed such that its longest execution path in terms of
the number of elementary operations is exercised, which consists of an
array of integer numbers sorted in decreasing order.

Algorithm 3.1: Bubble sort benchmark

boolean s ;
i n t 1 6 t e l ;
i n t 1 6 t i l ;
i n t 1 6 t t ;
i n t 1 6 t [1 0] sa = { 10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 } ;
main {

f o r (e l ; = 0 ; < 10) {
s = f a l s e ;
f o r (i l ; = 0 ; < (10−1)) {

i f (sa [i l] > sa [i l + 1]) {
t = sa [i l] ;
sa [i l] = sa [i l + 1] ;
sa [i l + 1] = t ;
s = true ;

}
}
i f (s == f a l s e) {

break ;
}

}
}

A sample of 50000 execution times was collected while the
selected benchmark task was executed on the proposed time-randomized
hardware platform, whose size is hence much larger than those desirable

65

for MBPTA’s practical application (CUCU-GROSJEAN et al., 2012).
Figure 7 presents the histogram of the yielded execution times, in which
one can observe that (1) the values concentrate around a single mode,
and that (2) values’ frequencies (and hence possibly their probabilities)
smoothly decrease as they grow further from the mean. Despite these
observations do not enable concluding whether the observed maxima
can be analysed using EVT, they provide evidence that the collected
data do not present characteristics that require special handling – such
as the presence of mixture distributions (ABELLA et al., 2017).

Figure 7: Raw data histogram

Value

F
re

q
u
e
n
c
y

46000 46200 46400 46600

0
5
0
0

1
0
0
0

1
5
0
0

It is necessary to provide evidence that the collected measurements
fulfill the basic EVT applicability assumptions, namely independence
and identical distribution. For that, we present in Figure 8 the p-values
yielded by applying the AD, KS, LB and WW statistical hypothesis
tests on 100 random segments of 1000 measurements each – as presented
in Chapter 2. Based on the approximately uniform distribution obtained
for the tests’ p-values we conclude, with high confidence, that the basic
EVT requirements are acceptably met.

Figure 8: I.i.d. tests’ p-values

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

66

The next step consists of building the maxima samples that will
be effectively analysed through EVT and adjusting proper extreme
value models to them, for what we consider both the BM and the
POT approaches. We present in Figure 9 the artefacts associated
to EVT analysis through BM, which consist of (a) an histogram of
the highest values observed on blocks of 50 measurements, and of (b)
quantile and (c) probability comparison plots associated with the GEV
model adjusted to the selected maxima. Similarly, Figure 10 presents
the artefacts associated to the POT analysis, which consist of (a) an
histogram of the observed values that exceed the threshold selected
through EQMAE minimization (see Section 2.4), and of (b) quantile
and (c) probability comparison plots associated with the GP model
adjusted to the maxima. From these artefacts’ analysis one can perceive
that the collected sample’s maxima present acceptable fitness to both
models, since no systematic divergence is observable from the expected
statistical behaviour in quantile and probability comparison plots. We
highlight that, in the presence of bad fitness characteristics, further
handling – such as adjusting the BM block size or using an alternative
POT threshold selection approach – could lead to different results.

Figure 9: BM artefacts

Value

F
re

q
u
e
n
c
y

46350 46400 46450 46500 46550 46600

0
5

1
0

1
5

2
0

2
5

3
0

(a) Maxima histogram

46400 46450 46500 465504
6
3
5
0

4
6
4
0
0

4
6
4
5
0

4
6
5
0
0

4
6
5
5
0

4
6
6
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) Quantile comparison

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a
l
p
ro

b
a
b
ili

ti
e
s

(c) Probability comparison

Figure 10: POT artefacts

Value

F
re

q
u
e
n
c
y

46450 46500 46550 46600

0
2
0

4
0

6
0

8
0

1
0
0

(a) Maxima histogram

46450 46500 46550

4
6
4
5
0

4
6
5
0
0

4
6
5
5
0

4
6
6
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) Quantile comparison

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a
l
p
ro

b
a
b
ili

ti
e
s

(c) Probability comparison

67

At this point one can consider, with relatively high confidence,
that the models adjusted to the collected data maxima can be used for
deriving pWCET estimates. As illustrated in Figure 11, this is done
by determining the value of the analysed variable, i.e. execution time,
above which the integral of the upper tail of the fitted distribution’s
probability density function (in grey) is equal to or lower than the
estimates’ desired maximum exceedance probability (HANSEN; HISSAM;

MORENO, 2009; SANTINELLI et al., 2014).

Figure 11: pWCET derivation process

(a) GEV family model (BM) (b) GP family model (POT)

We present in Table 1 a summary of the results obtained from
the application of MBPTA on the collected execution time sample.
We highlight that (1) these results can be considered valid only
for the single execution path of the task that was exercised during
measurements (MILUTINOVIC et al., 2017), and that (2) in line with this
thesis’ contributions presented in Chapter 5, results are also shown
using the Gumbel and Exponential models in replacement to GEV and
GP for applying EVT through BM and POT, respectively.

68

Table 1: MBPTA results
Raw execution time sample (x)

Size length(x) = 50000
Mean mean(x) = 46281.80296
Minimum min(x) = 46002
Maximum max(x) = 46612

Standard deviation sd(x) = 69.75512

Block Maxima sample (bm) analysis
Block size b = 50

Mean mean(bm) = 46439.219
Minimum min(bm) = 46359
Maximum max(bm) = 46612

Standard deviation sd(bm) = 31.78732
GEV model (95% confidence intervals)

Location µ ≈ 46425.69579 with 46423.78977 < µ < 46427.54063
Scale σ ≈ 27.48491 with 26.05929 < σ < 28.93545
Shape ξ ≈ −0.0934 with −0.14031 < ξ < −0.04868

pWCET (10−5) ≈ 46619 with 46573 < pWCET (10−5) < 46683

pWCET (10−10) ≈ 46685 with 46602 < pWCET (10−10) < 46829

pWCET (10−15) ≈ 46708 with 46608 < pWCET (10−15) < 46912
Gumbel model (95% confidence intervals)

Location µ ≈ 46424.29238 with 46422.50362 < µ < 46426.08115
Scale σ ≈ 27.31963 with 26.04845 < σ < 28.5908

pWCET (10−5) ≈ 46738 with 46722 < pWCET (10−5) < 46756

pWCET (10−10) ≈ 47053 with 47022 < pWCET (10−10) < 47085

pWCET (10−15) ≈ 47367 with 47322 < pWCET (10−15) < 47414

Peak Over Threshold sample (pot) analysis
Mean mean(pot) = 46281.80296
Minimum min(pot) = 46002
Maximum max(pot) = 46612

Standard deviation sd(pot) = 69.75512
GP model (95% confidence intervals)

Threshold τ = 46387
Scale σ ≈ 35.60811 with 33.89807 < σ < 37.34064

Shape ξ ≈ −0.17267 with −0.21427 < ξ < −0.13269

pWCET (10−5) ≈ 46564 with 46532 < pWCET (10−5) < 46608

pWCET (10−10) ≈ 46589 with 46544 < pWCET (10−10) < 46656

pWCET (10−15) ≈ 46592 with 46545 < pWCET (10−15) < 46666
Exponential model (95% confidence intervals)

Threshold τ = 46387
Scale σ ≈ 30.36507 with 29.32701 < σ < 31.40313

pWCET (10−5) ≈ 46736 with 46725 < pWCET (10−5) < 46749

pWCET (10−10) ≈ 47086 with 47062 < pWCET (10−10) < 47111

pWCET (10−15) ≈ 47435 with 47400 < pWCET (10−15) < 47472

3.9 CONCLUSION

State-of-the-art Measurement-Based Probabilistic Timing
Analysis (MBPTA) techniques apply statistical techniques, such as
EVT, on measurements of RTSs’ tasks’ execution times for producing
WCET estimates with known exceedance probability. In this chapter
we presented the main aspects that must be taken into consideration
for applying MBPTA, together with an overview of works recently
developed on the subject and a practical example of its use, considering
the application of EVT through both BM and POT approaches.

69

4 TIME-RANDOMIZED PROCESSORS

Traditional processors’ timing behaviour is generally dictated
by deterministic laws built upon, e.g., recent execution history or
speculations with respect to future activity. The design of such hardware
is focused on achieving the smallest possible mean execution times,
and therefore put no effort on making WCETs more easily analysable
(NOWOTSCH; PAULITSCH, 2012). On the other hand, time-randomized
processors were recently proposed, e.g., for better fitting the needs
of timing analysis techniques that employ probabilistic tools, such as
MBPTA. These processors replace, by design, internal information that
are typically deterministic or speculative with (pseudo-)random numbers
with known distribution (usually uniform). This causes hardware
elements’ latencies to be partially decoupled from execution history
and from co-executing tasks’ behaviour, and execution times to present
variability characteristics that make their maxima more easily modellable
through EVT (CAZORLA et al., 2013b; KOSMIDIS et al., 2016). Although
the application of hardware-level time-randomization does not guarantee
execution times to be analysable through EVT (LIMA; DIAS; BARROS,
2016), it was shown to often lead to execution times that better meet
its basic requirements (KOSMIDIS et al., 2016).

The results yielded by EVT for WCET analysis are expected
to be reliable if the collected execution time sample (1) sufficiently
covers high-latency timing events and captures their most probable
combinations, (2) presents frequencies that are representative with
respect to the probabilities associated to the observed execution
times, and (3) produces maxima distributions that fit the probabilistic
models employed by EVT. Whenever high-latency timing events are
associated to sufficiently low probabilities, small samples can lead EVT
to produce optimistic pWCET estimates for not properly characterizing
the system’s worst-case temporal behaviour. Probabilities associated
to such events should hence be within observable ranges (e.g. 10−3 or
higher), for both their individual and combined effects being captured
by EVT (ABELLA et al., 2014). Suppose, for instance, that the execution
time of a certain code segment depends on the combination of only
two independent timing events e1 and e2, whose exact occurrence
probabilities Pe1 and Pe2 are only known to be equal (i.e. Pe1 = Pe2).
In this case, a certain low probability of observing the segment’s
WCET, e.g. PWCET = 10−10, would only occur if the individual events’
probabilities were at most Pe1 = Pe2 ≤

√
PWCET = 10−5. A large

70

sample could hence prove necessary for ensuring representativeness
regarding the timing effects of the individual events, and especially of
their combinations. However, if a third timing event e3 was introduced,
it would be enough for all three having occurrence probabilities
Pe1 = Pe2 = Pe3 ≤ 3

√
PWCET for the assumed WCET probability being

achieved. A much smaller sample could then prove sufficient to capture
the effects of the individual events and of some of their combinations. In
general, Pei =

n
√
PWCET applies to the combination of n independent

events of equal probability for achieving the target WCET probability
PWCET . It follows that, as the number of events that influence
execution time grows, their worst-case combination quickly becomes
a rare event – even if each of them is associated with relatively high
probabilities. Despite time-randomized processors cannot eliminate
the possibility of large execution times being produced, they benefit
MBPTA at least by (A) weakening or eliminating dependence between
timing events that influence execution times, and (B) potentially making
the WCET rare enough to be hardly observable during the entire life
cycle of a system for depending on long chains of (pseudo-)random
events (CAZORLA et al., 2016; KOSMIDIS et al., 2016).

Besides benefiting probabilistic WCET analysis through EVT,
hardware-level randomization is also capable of introducing interesting
properties on RTSs. For instance, it is capable of (A) mitigating the
possibility of hardware characteristics being exploited to systematically
induce pathological execution times, (B) smoothing performance
variation in comparison with traditional designs as system parameters
vary, (C) mitigating hardware aging effects, and even (D) improving
systems’ characteristics associated with safety and security issues
(TRILLA et al., 2016, 2017a, 2017b, 2018). Consequently, randomization
is also potentially capable of allowing certification standards (e.g.
automotive) to treat software timing faults as random, which would
avoid rigorous proof processes they must currently undergo for being
considered systematic faults (AGIRRE et al., 2018).

Time-randomization can only be implemented for hardware
elements whose temporal behaviour is capable of being randomized
without affecting the provided functionalities, or for elements that
perform purely speculative functions – such as cache memories or branch
predictors. Whenever time-randomization is not feasible for a certain
element, it is necessary to determine whether its latency variability
depends or not on input data, since in the positive case different
execution time distributions could be produced depending on employed
tasks’ inputs. Non-randomizable hardware elements’ data-dependent

71

latencies must be either (A) ensured to present exactly the same
distribution at analysis and at deployment time, granting measurements
with representativeness regarding the deployment-time environment,
or (B) upper-bounded either deterministically or probabilistically,
thus increasing reliability at the cost of tightness for assuming the
worst-case latency often/always occurs. Another possible solution is
padding (i.e. augmenting) measurements based on knowledge regarding
the worst-case number of variable-latency operations performed and
their maximum latency. The main advantage of this approach is its
applicability to commercial processors, while as disadvantages we
highlight the pessimism introduced and the effort to analytically derive
the maximum number of operations performed by the analysed task
(CAZORLA et al., 2013b; ABELLA et al., 2014; KOSMIDIS et al., 2016).

4.1 RELATED WORK

To our knowledge, the application of randomization techniques
at hardware level for increasing timing analysability through statistical
methods was first suggested in (PETTERS, 2002). The proposal was
that the hardware state affecting execution times should be preferably
set to the worst case, but if this cannot be done (e.g. for cache
memories) it should be randomized before taking measurements.
Posterior works, such as (QUIÑONES et al., 2009; CUCU-GROSJEAN et

al., 2012), extended the approach by proposing randomization with
the introduction of (pseudo-)random number generators at hardware
level for both mitigating cache-related performance anomalies and
benefiting timing analysis. Several hardware elements with randomized
timing behaviour were proposed in existing literature, for instance (1)
cache memories with randomized placement/replacement (KOSMIDIS

et al., 2013a), (2) bus arbiters based on random policies (LAHIRI;

RAGHUNATHAN; LAKSHMINARAYANA, 2001; JALLE et al., 2014), and (3)
Networks-on-Chip (NoCs) with probabilistic forwarding (SLIJEPCEVIC

et al., 2016, 2017a). Time-randomized cache memories employ policies
that randomly determine, e.g., (1) the mapping between memory
addresses and the cache lines in which they should be stored, and/or
(2) the cache lines to be evicted upon misses (KOSMIDIS et al., 2013a).
Randomized bus arbitration policies may choose the next client
to be served, e.g., (1) based solely on the value of pseudo-random
numbers (LAHIRI; RAGHUNATHAN; LAKSHMINARAYANA, 2001), or (2)
by randomly permuting a fixed non-work-conserving schedule (JALLE et

72

al., 2014). Randomized NoCs can, e.g., randomly choose which among
the data flits available at the routers’ inputs should be forwarded to the
output(s) (SLIJEPCEVIC et al., 2016), or schedule flits’ forwarding in a
randomly permuted order (SLIJEPCEVIC et al., 2017a). A more thorough
discussion regarding hardware-level changes capable of benefiting
MBPTA’s application is presented in (KOSMIDIS et al., 2014).

Recent works were developed aiming, e.g., (1) improving time-
randomized hardware elements by providing lower cost, complexity
and/or energy consumption (KOSMIDIS et al., 2014a), (2) implementing
time-randomization on hardware elements other than those previously
proposed (SLIJEPCEVIC, 2017), and (3) addressing randomized cache
memory issues associated e.g. to pathological replacement patterns
(BENEDICTE et al., 2018) and to representativeness (MILUTINOVIC;

ABELLA; CAZORLA, 2017; MILUTINOVIC et al., 2018). Several recent
works targeted the development and evaluation of a probabilistic variant
of the LEON3 processor, which is currently employed in aerospace
systems in its traditional form, with the objective of leveraging
probabilistic timing analysis for critical systems (HERNANDEZ et al.,
2015; KOSMIDIS et al., 2016; FERNANDEZ et al., 2017).

4.2 CACHE MEMORIES

Caches are fast temporary memories that store instructions
and/or data that were recently or will probably be accessed soon by the
processor, in order to reduce the impact of using large but relatively
slow RAM memories (e.g. DRAMs) with fast processors. Cached
memory subsystems retrieve sets of neighbour words that contain those
requested by the processor, instead of separately fetching single words
at each request, and store these sets into cache memories’ lines. If
a word belonging to a previously retrieved line is accessed later, the
cache memory serves it immediately instead of fetching it from the
main memory, causing accesses to cached words to present significantly
lower latency in comparison to non-cached ones (GONZALEZ; LATORRE;

MAGKLIS, 2010). This affects both data and instructions access times
and, consequently, also affects execution times (WILHELM et al., 2008).
Since cache memories are generally much smaller than RAM memories,
whenever a new cache line must be stored a previously inserted one may
need to be discarded (evicted), which requires a replacement policy –
e.g. First-In First-Out (FIFO) or Least Recently Used (LRU) – to be
used (JACOB; NG; WANG, 2008). Specific characteristics of how objects

73

are allocated and/or accessed in memory can cause the number of cache
misses to systematically increase in a pathological manner, reducing
performance and ultimately leading to execution times comparable
to those expected if no cache memories were used at all (WILHELM

et al., 2008). Predicting or detecting such effects is a hard task that
may even require considering all possible scenarios, which is in general
computationally infeasible, thus posing severe difficulties in deriving
static bounds for the WCETs of tasks executed in hardware platforms
that employ cached memory subsystems (QUIÑONES et al., 2009).

To our knowledge, (QUIÑONES et al., 2009) was the first work
to propose the use of randomized cache memories to benefit WCET
probabilistic analysis, despite a similar design was proposed much
earlier for reducing cache miss rates’ sensitivity to data placement
(SCHLANSKER; SHAW; SIVARAMAKRISHNAN, 1993). Randomized
variants can be implemented for both the placement and the replacement
policies employed by cache memories. The placement policy defines the
set in which memory blocks are to be stored, and the replacement policy
defines which blocks are to be evicted when new ones must be stored. A
simple randomized replacement policy can be implemented by choosing
the line to be evicted in the target set based on a pseudo-random
number (CUCU-GROSJEAN et al., 2012). A novel random replacement
policy is proposed in (BENEDICTE et al., 2018), which avoids pathological
patterns that are observable when purely random replacement is used
by replacing the lines within cache sets in a randomly permuted order.
Placement policy randomization requires the use of a proper address
hashing function that randomly maps memory block addresses to cache
sets, ideally in a homogeneous pattern to avoid pathological allocation
cases (e.g. all addresses to a single set) (KOSMIDIS et al., 2013a;
HERNANDEZ et al., 2016). A random placement policy of relatively low
hardware complexity is presented in (KOSMIDIS et al., 2013a, 2014a),
which supports both set-associative and directly-mapped arrangements
and whose performance is comparable to that of traditional designs.
It uses a hash function based on randomized rotation operations, for
producing a homogeneous mapping of addresses to cache sets, using for
that multiplexers and XOR gates disposed in multiple levels. Another
random placement approach was proposed in (HERNANDEZ et al., 2016),
which uses a hash function based on the permutation of address bits.
The approach is claimed to better exploit spatial locality, by avoiding
conflicts between addresses that belong to a same cache segment,
and was shown to present lower latency and area costs in relation to
alternative designs. An evaluation of cache memories with randomized

74

placement and replacement policies is presented in (ANWAR, 2016).
Time-randomized caches improve probabilistic timing analysis

techniques’ applicability by causing hits/misses to be driven mainly by
probabilistic laws (ABELLA et al., 2013), hence making the probability of
any particular eviction pattern being observed (including pathological
ones) extremely low (CAZORLA et al., 2013a). As mentioned, randomized
caches also decouple execution times from execution history, thus
also reducing the risk of both cache-induced performance anomalies
and strong dependencies between execution times (QUIÑONES et al.,
2009). Further decoupling between timing behaviour and execution
history can be achieved using evict-on-access time-randomized cache
memories, which randomly evict lines on every access, at the cost
of performance reduction due to unnecessary evictions (CAZORLA et

al., 2013a). Moreover, instruction and data time-randomized cache
memories can be used both in multi-level and in unified configurations,
without compromising or rising the cost of probabilistic timing
analysis techniques (KOSMIDIS et al., 2013b). With respect to shared
configurations, it was shown in (KOSMIDIS et al., 2013b) that the
only information needed for bounding the interference to which a
task is subject through a shared time-randomized cache is the reuse
distance, i.e. the maximum number of accesses performed between two
consecutive accesses to particular memory addresses. Based on that, a
shared cache design was proposed in (SLIJEPCEVIC et al., 2014) that
limits temporal interference by delaying misses’ servicing such that the
frequency of inter-core evictions is limited to a fixed threshold. This
threshold can then be defined and enforced such that the application’s
timing behaviour during execution times’ measurement probabilistically
upper-bounds the one expected at deployment time.

Certain characteristics of time-randomized caches can be
considered harmful when employed in critical RTSs (REINEKE, 2014),
and therefore proper handling is necessary while collecting execution
time measurements (MEZZETTI et al., 2015) for guaranteeing the
obtained pWCETs are reliable. It was also shown in (LIMA; DIAS;

BARROS, 2016) that execution times’ statistical behaviour with respect
to EVT modelling can degrade depending on time-randomized caches’
sizes. On top of that, there are use patterns that can lead to pathological
temporal behaviour when time-randomized cache memories are used
under certain environments, e.g. when the cache associativity is smaller
than the number of addresses which are (pseudo-)randomly mapped
to cache sets (ABELLA et al., 2014). To tackle such issues (ABELLA et

al., 2014) proposed a mean to detect their presence, and suggested

75

decreasing cache memories’ sizes during measurement collection for
increasing the chance of effectively measuring such patterns’ effects.
For determining sample sizes needed to provide representativeness with
respect to cache-related timing events, (A) (MILUTINOVIC; ABELLA;

CAZORLA, 2016, 2017) introduced a simulation-based method to search
for instruction and data cache placements that potentially lead to
pathological behaviour at deployment time, (B) (BENEDICTE et al.,
2016b) proposed a technique to compute the exact probabilities of
cache-related events considering objects’ allocation in memory, and
(C) (MILUTINOVIC et al., 2018) proposed jointly applying the Path
Upper-Bounding (PUB) technique (KOSMIDIS et al., 2014b) and an
address conflict analysis (MILUTINOVIC et al., 2017) on multi-path tasks.

4.3 BRANCH PREDICTORS

Branch prediction mechanisms are designed to reduce the
number of pipeline flushes, i.e. instruction sequences’ reloads, by
loading the “most probable” execution path of the program into the
pipeline after branch instructions’ execution (GONZALEZ; LATORRE;

MAGKLIS, 2010). Their use significantly reduces the execution time of
instruction sequences containing branches, since a reasonable amount
of pipeline flushes is avoided, but there is no such mechanism able
to correctly predict all branch targets – causing execution times to
vary (WILHELM et al., 2008). Branch predictors may be either static,
if branches are predicted based on static information (e.g. always
taken), or dynamic, if information regarding (mis)prediction history is
stored and used to improve future predictions. Some dynamic branch
predictors employ buffers known as Branch Target Buffers (BTBs)
to store such information, which largely improve their prediction
accuracy but make branch instructions’ execution times dependent on
the previously executed ones’ results (GONZALEZ; LATORRE; MAGKLIS,
2010; TANENBAUM; AUSTIN, 2012). These buffers are subject to effects
similar to those found in cache memories in relation to the prediction
of their content, hence making their analysis through static methods
considerably challenging (WILHELM et al., 2008). For time-randomized
platforms, branch prediction can be implemented with low hardware
cost by considering the value of a single pseudo-random bit for choosing
whether to predict branches as taken or not taken (BALL; LARUS, 1993).

76

4.4 BUS ARBITERS

Buses are wire sets used to transport data between multiple
subsystems within a computing system, and are used to interconnect
hardware elements such as processing cores, memories, and peripherals
(NULL; LOBUR, 2003; JACOB; NG; WANG, 2008; MURDOCCA; HEURING,
1999). Buses are often shared among multiple elements and, since
parallel bus accesses are in general not possible, simultaneous requests
must be arbitrated over time according to a certain policy in order to
be served sequentially. This causes concurrent access requests to be
delayed (contained), and therefore a shared bus access latency varies
at least due to: (1) contention delay until the bus can be accessed,
and (2) communication delay while the bus access is performed; the
former directly depends on the number of requesting devices and on
the employed arbitration policy, and the latter mainly depends on
the performed operation duration and on the bus’ characteristics (e.g.
width and speed) (DASARI et al., 2013). If the bus that connects the
processor’s core(s) to the main memory (i.e. the memory bus) is
shared, then any access to the main memory can be delayed. In fact,
many of the modern commercial processors’ cores communicate with
other elements (including the main memory) through a bus known as
Front-Side Bus (FSB). If the FSB is shared, accounting for execution
delays due to FSB access contention using static analysis methods
is hard because (1) generally very limited documentation on the bus
implementation is available for commercial hardware (FERNANDEZ;

CAZORLA; ABELLA, 2018), and (2) if the bus protocol is not designed to
be predictable (e.g. employs pipelined and/or out-of-order transactions)
then the state space may prove too large to be analysed (DASARI

et al., 2013). On top of that, peripheral buses such as Peripheral
Component Interconnect (PCI) are employed to connect a multitude
of Input/Output (I/O) devices to modern computing systems, and
often use controllers that access the memory bus to perform processor-
independent data transfers, thus potentially delaying accesses issued by
the processor by a significant amount (NULL; LOBUR, 2003; SCHÖNBERG,
2003; PELLIZZONI; CACCAMO, 2010). These characteristics induce
interference between tasks executed on the cores that access a shared bus,
and can also make their timing dependent on peripherals’ behaviour.

Time-randomized arbitration policies such as lottery bus (LAHIRI;

RAGHUNATHAN; LAKSHMINARAYANA, 2001) and random permutation
(JALLE et al., 2014) were proposed to be used in hardware platforms
targeted to probabilistic timing analysis. The lottery bus policy uses

77

pseudo-randomly generated numbers and, by taking into account the
range of the generated values, grants access to clients exclusively assigned
to each of the feasible value ranges. By properly reserving pseudo-
random values’ ranges, different service amounts can be allocated to
each client which are served in a probabilistic manner. However, since
the next client to be served is chosen in a purely random fashion, it
relies exclusively on the fast convergence of the associated probability
function to avoid starvation – i.e. starvation is possible despite being
highly improbable (LAHIRI; RAGHUNATHAN; LAKSHMINARAYANA, 2001).
The random permutation policy builds a servicing schedule which is
randomly permuted after each arbitration round, and contains at least
one time slot allocated for each client. Random permutations can be
produced based on a few pseudo-randomly generated bits, by deciding
based on each bit’s value whether to swap or not the positions of each
client (or group of clients) in the schedule. Besides inducing execution
time variability, the random permutation policy also guarantees that
every client is served at least once during every arbitration round, hence
guaranteeing starvation absence (JALLE et al., 2014). For cases in which
clients can issue bus requests of different lengths, (SLIJEPCEVIC et al.,
2017b) evaluates the introduction of credit-based regulators to grant
fairness in the access to shared hardware resources.

4.5 NETWORKS-ON-CHIP

Network-on-Chip (NoC) are network infrastructures based on
data packets’ routing that are typically used in processors to interconnect
Intellectual Property (IP) cores, i.e. proprietary reusable logic units
(e.g. processing cores). NoCs are composed of switches disposed
and interconnected according to a certain topology, network interfaces
through which data packets are sent and received by each of the IP cores,
and point-to-point links between these elements. Packets transmitted
in NoCs are split into flits (fixed-length segments) which are then
routed to the destination according to a certain policy (MURALI, 2009;
HENNESSY; PATTERSON, 2012; TSAI et al., 2012; MA et al., 2014). Due
to their network-like structure, the time required for the execution of a
transaction (transmission of a full packet) in a NoC depends on factors
such as (1) its topology and the employed routing algorithm, (2) the
number of channels and the bandwidth supported by the network, (3)
the time required by the routing elements to store and/or forward flits
or packets, and (4) the volume of packets being transmitted in the
network (KOTABA et al., 2013; BUI; CACCAMO; PELLIZZONI, 2011).

78

A NoC based on a tree topology with probabilistic forwarding that
targets all-to-one communication patterns (e.g. for memory access) is
proposed in (SLIJEPCEVIC et al., 2016). Besides scaling better to high core
counts in comparison to buses, the design enables asymmetric bandwidth
allocation for individual cores and presents small impact on average
performance due to randomization. In (SLIJEPCEVIC et al., 2017a) a
time-randomized mesh NoC based on randomized wormhole routing is
proposed, which induces probabilistic behaviour on contention times
by employing random permutation arbitration at the flit forwarding
policy (JALLE et al., 2014). It also exploits the possibility of limiting
in-flight requests, which often proves not to benefit NoCs’ worst-case
timing analysis based on traditional approaches, for reducing WCET
estimates produced through probabilistic techniques.

4.6 RANDOMNESS SOURCES

Throughout the years, random numbers found application in
many areas, targeting a huge variety of objectives (GALTON, 1890).
Numerous approaches were hence developed for the generation of random
numbers using computers, at both software (KNUTH, 1997) and hardware
levels (ALFKE, 1996), and for the assessment of characteristics they are
expected to present (MARSAGLIA; TSANG, 2002). The specific method
used for the generation of random numbers at hardware level must be
chosen taking into account the purpose to which they are going to be
employed. For instance, relatively simple pseudo-random generators may
be considered sufficient for use within optimization techniques (SARMA,
1990), but such methods are not suitable for cryptographic applications
that require highly unpredictable randomness sources (INTEL, 2012). A
very common approach for the implementation of Pseudo-Random
Number Generators (PRNGs) at hardware level is through Linear
Feedback Shift Registers (LFSRs) (ALFKE, 1996), which consist of
shift registers whose input bits are given as linear functions of their
previous states. By properly choosing LFSRs’ feedback polynomials,
PRNGs can be implemented with relatively low hardware cost and with
statistical characteristics that can be considered sufficient for fulfilling
the needs of numerous application contexts (KOETER, 1996).

Throughout this work, we mainly employ a PRNG similar to that
presented in (TKACIK, 2003), which is composed of two independent
PRNGs – a LFSR and a Cellular Automata Shift Register (CASR) –
whose results are XOR-combined to produce the effectively used pseudo-

79

random values. The approach was shown to provide improved statistical
behaviour in relation to the isolated use of either LFSRs or CASRs,
and also presents remarkably low complexity and cost with respect
to its hardware implementation. During execution the two generators
(A) are independently seeded, i.e. distinct seeds are provided for the
LFSR and the CASR, from a true randomness source, and (B) are
clocked from two independent and non-synchronized ring oscillators. As
true randomness sources, we use both (A) the RDRAND instruction,
provided by Intelr processors based on the Ivy Bridge micro-architecture
(INTEL, 2016), which outputs a stream of random numbers produced
by a hardware PRNG that is periodically seeded with the outcome of
an encryption algorithm applied on a non-deterministic thermal-noise-
based entropy source (INTEL, 2012); and (B) a True Random Number
Generator (TRNG) based on a ring of ring oscillators (BAETONIU, 2004).

4.7 CONCLUSION

Time-randomized processors were recently proposed as a means
for improving the applicability of probabilistic timing analysis for RTSs,
by partially decoupling hardware elements’ latencies from execution
history and causing execution times to present variability characteristics
that make their maxima more easily modellable through statistical tools
such as EVT. As presented in this chapter, time-randomized versions of
a number of hardware elements – such as cache memories, bus arbiters
and NoCs – are currently available. One of the main contributions
of this thesis, which will be presented in Chapter 6, consists of an
evaluation of randomized scheduling approaches on multithread pipelines
for benefiting the application of MBPTA.

80

81

5 pWCET RELIABILITY EVALUATION

In this chapter we present an empirical assessment of the use of
extreme value models on the analysis of RTSs’ execution times through
EVT, considering both BM and POT approaches. The objective of
this evaluation is detecting whether the considered EVT models can
be deemed suitable for determining pWCET estimates with respect to
the reliability of the produced results. For that we take advantage of
the possibility of collecting arbitrarily large samples of tasks’ execution
times, and assess whether the values and the densities of maxima
observed on large validation samples can be deemed compatible with
the pWCET estimates produced using extreme value models fitted to
small modelling samples. More specifically, we employ a set of large
execution time datasets (i.e. of size 108) for assessing the reliability
of pWCET estimates produced through EVT employing both the BM
approach, using the GEV and Gumbel models, and the POT approach,
using the GP and Exponential models. We make a clear distinction
between modelling samples, which are used in fitting statistical models
for applying EVT, and validation samples, much larger datasets we
use to obtain High Water Marks (HWMs) (i.e. maximum observed
execution times) and exceedance frequencies (i.e. counts of values that
exceed pWCET estimates) for evaluating the results obtained using
adjusted models. We highlight that the collection of validation samples
is not expected to be incorporated into the probabilistic timing analysis
process, due to its relatively high cost, but it is a valuable tool in
providing evidence of the overall method consistency and reliability.
The main outcome of the herein presented investigation is counter-
evidence to the reliability of the GEV and GP models for pWCET
derivation through the BM and POT approaches, respectively, and
empirical evidence of the Gumbel and Exponential models’ adequacy in
the same context for maxima tails with shape ξ ≤ 0.

5.1 RELATED WORK

Both seminal (BURNS; EDGAR, 2000; EDGAR; BURNS, 2001;
HANSEN; HISSAM; MORENO, 2009) and several posterior works (LU et

al., 2011; CUCU-GROSJEAN et al., 2012; ABELLA et al., 2014) related to
MBPTA considered that execution time distributions would present
non-heavy right tails, and hence adhere to models with exponentially

82

decreasing tails (e.g. Gumbel or Exponential). On the other hand, it
was shown in (LIMA; DIAS; BARROS, 2016) that maxima adherent to
any of the Weibull, Gumbel and Fréchet extreme value distributions
can be produced by tasks’ execution times using random input data
(LU et al., 2011). With that, the use of more flexible models, such as
GEV or GP, was suggested within MBPTA.

Increasing sample sizes with the objective of evaluating the
outcomes of probabilistic timing analysis techniques is a relatively
common practice. In (CUCU-GROSJEAN et al., 2012), samples larger than
those considered sufficient based on model convergence criteria (i.e. of
size 104) were used to evaluate the variability of pWCET estimates
derived through the BM approach. Large samples (i.e. of size 105 to 107)
are also employed (A) in (LIU; BEHNAM; NOLTE, 2013) to assess POT
results’ pessimism in comparison with those of BM, (B) in (SANTINELLI

et al., 2014) for both comparing the outcomes of BM and POT and
evaluating the impact of different BM block sizes and POT thresholds
on MBPTA results, and (C) in (ABELLA et al., 2017) to obtain HWMs
for assessing the yielded pWCET estimates’ reliability and tightness.

An assessment of pWCET estimates derived using the
POT approach is presented in (SANTINELLI; GUET; MORIO, 2017),
which associates their reliability to the results of stationarity,
independence, identical distribution and model matching statistical
hypothesis tests. Several recent works have also tackled the pWCET
reliability problem from the specific perspective of guaranteeing
representativeness regarding events associated to cache memories,
considering randomization both at hardware (MILUTINOVIC; ABELLA;

CAZORLA, 2017; MILUTINOVIC et al., 2018) and at software (BENEDICTE

et al., 2016a) levels. Recently proposed approaches for tackling important
aspects that must be taken into consideration for ensuring pWCET
estimates’ reliability are highlighted in (MILUTINOVIC et al., 2017).

In this chapter, we show that the use of GEV and GP probabilistic
models for determining pWCETs can lead to unreliable results even
under nearly-ideal conditions, and Gumbel and Exponential are hence
recommended being used instead – possibly at the cost of tightness.
Preliminary results regarding these findings were presented in (SILVA;

ARCARO; OLIVEIRA, 2017; ARCARO; SILVA; OLIVEIRA, 2018b, 2018a),
considering EVT application through both BM and POT. In line with
these suggestions, a method for deriving reliable pWCET estimates
in the presence of mixture distributions is proposed in (ABELLA et al.,
2017), which adjusts the Exponential model to execution times that
exceed a POT threshold selected such that the modelled tail is known

83

to decrease at least exponentially. In contrast with (SANTINELLI; GUET;

MORIO, 2017), our evaluations associate pWCET reliability it with
the effective upper-bounding (A) of the maximum values effectively
observed in large samples, and (B) of the empirical densities observed in
validation samples’ tails. We, however, still require the results of EVT’s
typical applicability statistical tests to prove acceptable. Moreover,
our work follows many of the directions proposed in (MILUTINOVIC et

al., 2017), e.g. by employing time-randomized hardware and causing
non-randomizable logical units to yield maximum latency, but does not
intend tackling other aspects raised in the same work, and we therefore
e.g. fix tasks’ inputs for ruling out control flow timing effects.

5.2 EXPERIMENT DESIGN

The proposed pWCET estimates’ evaluations are performed by
comparing, as modelling sample sizes are increased, (A) the maximum
values observed in large validation samples (HWMs) with the pWCET
estimates determined through EVT for exceedance probabilities of
magnitudes expected in practice (i.e. 10−15), and (B) the empirical
exceedance densities observed in large validation samples against their
expected values, considering pWCETs with exceedance probabilities’
magnitudes smaller than that of validation samples’ sizes (i.e. 10−7).

For the sake of conclusion generalization, the experiment was
multidimensionally replicated considering (A) different EVT model
fitting methods, (B) distinct modelling sample size increasing steps,
and (C) multiple execution time samples. For (A), replications were
made fitting the GEV and GP models through the MLE (SMITH, 1985),
GMLE (MARTINS; STEDINGER, 2000) and L-moments (HOSKING, 1990)
methods. Since all three produced similar outcomes, we focus on results
produced using the L-moments method. The Gumbel and Exponential
distributions were adjusted using the MLE method (EDGAR; BURNS,
2001). The determination of POT thresholds was performed using the
EQMAE minimization approach, as presented in Section 2.4, which
consists of selecting the threshold that minimizes the EQMAE metric
(WILLMOTT; MATSUURA, 2005) of the GP model fitted to the exceeding
execution time values. For (B), evaluation replications were made
with sample sizes being increased in steps of 50, 100, 200 and 400
measurements. Since all evaluated steps led to equivalent results, the
presented artefacts are those obtained using steps of size 50. We
highlight that, for the BM approach, the employed measurement block

84

sizes equal the sample size step used, while for POT evaluations the
sample size step only affects the rate by which samples grow. For
(C), large execution time samples were employed of both real nature,
i.e. containing measurements collected from real hardware platforms
executing differently behaving benchmark tasks, and of synthetic nature,
i.e. produced using pseudo-random number generators. With that,
models are evaluated on execution times (A) that were indeed produced
by real time-randomized processors, (B) that could be yielded by systems
that differ in construction and/or in complexity from those that produced
the real-hardware samples, and (C) for which the correct value of the
POT threshold is known beforehand.

5.2.1 Real-Hardware Samples

The real-hardware validation samples used in our research are
composed of execution times collected from two different versions
of a time-randomized hardware platform, both running on a Field-
Programmable Gate Array (FPGA) board at 50MHz. These platforms
employ dual-core processors with separate instruction and data RAM
memories, each accessed through a shared bus that is arbitrated
according to a randomized policy. The processing cores use simple
five-stage pipelines that implement the MIPS instruction set, which
produces latencies that vary depending on the internal pipeline
behaviour and, consequently, on the timing of other elements such as
cache memories, bus arbiters and memory controllers. A 512-byte 2-way
set-associative cache memory is used which implements the modulo
placement policy, a randomized line replacement policy (KOSMIDIS et

al., 2013a), and the write-through update policy. Time-randomization
is achieved at hardware level through a PRNG that has a single clock
cycle latency and works by XOR-combining the results of two other
independent generators (TKACIK, 2003), and is periodically seeded
using a cryptographic-quality TRNG. One of the employed hardware
platforms, to which we refer as DPArptdm, has no cache memories
and uses a bus arbitration policy that determines the next client to be
served based on a randomly permuted non-work-conserving schedule
(JALLE et al., 2014). The second platform, namely DPCpArrr , employs
one private cache memory for each core and a bus arbitration policy
that chooses the next client to be served in a purely random manner.
For more details on the hardware elements developed during the herein
described research, please refer to Appendix C.

85

The software tasks we used for obtaining the real-hardware
validation samples were bsort , insertsort , bs , expint , fdct , crc, matmult ,
fir , fibcall and cnt , all from the Mälardalen WCET Benchmarks suite
(GUSTAFSSON et al., 2010). In order to cause high execution times
being yielded, tasks’ inputs were fixed such that only a single and
long execution path (i.e. that performs a large number of elementary
operations) is exercised. For instance, we apply bsort and insertsort on
reverse-sorted integer-number arrays, and execute bs with a key that
maximizes the number of divisions performed on the search interval. In
line with the suggestions of (GRIFFIN; BURNS, 2010; CUCU-GROSJEAN

et al., 2012; KOSMIDIS et al., 2016), we also (1) configure the processor’s
ALUs to produce maximum latencies during measurements, which
in our case causes integer multiplication and division operations to
always take 32 clock cycles to complete, and (2) reset the state of
the hardware platform before executing the benchmarks, to avoid
dependency being induced between measurements due to state-related
effects. Consequently, the observed timing variability stems exclusively
from the time-randomized processor, since we isolate effects from any
other sources. We therefore consider our measurements were obtained
under nearly-ideal conditions, in which MBPTA should hence yield
remarkably reliable results to be considered usable in the general case.
We highlight, however, that (A) these conditions are not sufficient for
guaranteeing that the real WCETs are observable (e.g. due to cache
effects), and that (B) the determination of the tasks’ input data for the
application of MBPTA is still an open problem (GIL et al., 2017).

Since all the evaluations we performed led to equivalent
conclusions under all the considered scenarios (i.e. for all combinations
of platforms and benchmarks), we only discuss the analysis results
obtained for the execution times of the bsort task running on the
DPCpArrr platform. Artefacts associated with all other scenarios’
evaluations can be found in Appendix A.

5.2.2 Synthetic Samples

We also reproduced the entire set of evaluations on synthetic
(i.e. pseudo-randomly generated) samples, as a means of generalizing
the conclusions drawn from real-hardware samples’ analysis. Such
replication enabled us extending the research coverage by assessing
whether our conclusions could differ if (1) the collected samples presented
distinct tail shapes due to intrinsic characteristics of the system, or
(2) higher quality thresholds than those selected through EQMAE

86

minimization could be chosen while applying EVT using POT. We
therefore consider that the synthetic datasets we employed are valuable
tools in corroborating the validity of our findings on domains that
could prove too hard or expensive to be assessed through real-hardware
samples. The synthetic datasets were generated through the revd
function of the R (R, 2017) extRemes package (GILLELAND; KATZ,
2016), which is capable of producing arbitrarily large samples of random
values adhering to specific extreme value distributions. The random
draws produced through revd were rounded up to the nearest integer
value, in order to better reproduce the behaviour of execution times
whose minimum practically achievable measurement granularity is the
clock cycle. We performed the analysis on two distinct sets of pseudo-
randomly generated datasets, which we refer to as (1) GEV synthetic
samples and (2) GP synthetic samples.

The GEV synthetic samples adhere to the GEV distribution with
location µ = 40000 and scale σ = 100, and each assumes a different
shape such that ξ ∈ {− 1

2 ,− 1
4 ,− 1

8 , 0,+
1
8 ,+

1
4 ,+

1
2}. Consequently, these

are samples that mimic the times that would be produced by tasks that
take around 40000 clock cycles to be executed, but which are subject
to timing variability sources, such as hardware or control flow effects,
that cause them to adhere to the GEV distribution with different shape
values (LIMA; DIAS; BARROS, 2016). Through the analysis of the GEV
synthetic samples, we evaluate whether variations in the underlying
data shape could lead to conclusions that differ from those obtained on
the real-hardware samples’ analysis. Figure 12(a) illustrates the density
distributions of a subset of the GEV synthetic samples we employ.

Since GEV synthetic samples require the threshold parameter
value to be properly chosen in order to apply EVT using the POT
approach – which is subject to characteristics of the method employed
for that –, we also use a set of GP synthetic samples. The GP
synthetic samples adhere to the GP distribution with threshold τ =
40000 and scale σ = 100, and each assumes a different shape such
that ξ ∈ {− 1

2 ,− 1
4 ,− 1

8 , 0,+
1
8 ,+

1
4 ,+

1
2}. Consequently, these datasets

simulate distribution tails with the same shapes of those of the GEV
synthetic samples (COLES, 2001), but for which the ideal threshold
to be used for the GP and Exponential models’ adjustment is known
beforehand. Through the analysis of the GP synthetic samples we
show that our conclusions hold even when the correct POT parameters
are available, i.e. independently of the threshold selection approach
employed. Figure 12(b) illustrates the distributions of several GP
synthetic samples we employ in this work.

87

Figure 12: Synthetic samples’ distributions

(a) GEV synthetic samples (b) GP synthetic samples

5.3 EXPERIMENT OBJECTIVES

We use the collected datasets, and the artefacts produced based
on them through the proposed experiment design, to perform the
evaluations presented in the following sections.

5.3.1 pWCET HWM Reliability

We assess whether the pWCET estimates derived through EVT
using the GEV and the Gumbel models (for BM) and the GP and
Exponential models (for the POT approach) can be deemed reliable
when compared to the highest values effectively observed on large
samples. For that we plot the pWCET estimates with exceedance
probability 10−15, and their associated 95% confidence intervals, and
highlight the HWM observed in a sample of size 108 as an horizontal line.
For the pWCET estimates being considered reliable, we expect them not
to be exceeded by the effectively observed HWM, since the magnitude
of the considered validation sample is much (i.e. seven orders) smaller
than that of the pWCET exceedance probability used.

5.3.2 pWCET Density Reliability

We also observe whether the density of execution times that
exceed pWCET estimates, whose exceedance probabilities’ magnitudes
are smaller than those of the large validation samples’ sizes, can be
deemed compatible with their associated exceedance probabilities. In
such cases the observation of values that exceed the estimates are in
fact expected, but the exceedance probability must be respected in the
long term for pWCETs being considered potentially reliable.

88

The rationale behind this comparison is that, when we derive a
pWCET with exceedance probability p, we are in fact looking for an
execution time value w for which the expected probability (and hence
density) of execution times that exceed w is closely approximated
(or ideally upper-bounded) by p in the long term. Consider, for
instance, we derive a pWCET wt for a given task t intended to be
exceeded with a maximum probability pwt

= 10−5. In this case, the
number of execution times larger than wt expected to be observed in
a sample of nt1 = 105 execution times of t equals nt1 · pwt

= 1, that
is, exceedances of wt are expected in average once in every a hundred
thousand executions of t. Supposing the sample size is extended e.g.
to nt2 = 106, one should expect in average nt2 · pwt

= 10 exceedances
being then observed. Large positive deviations from this expectation,
especially as replications are performed and sample sizes are further
increased, can be deemed incompatible with pWCETs’ expected upper-
bounding behaviour. Under this rationale, and taking into account that
WCET underestimation is considered unacceptable for critical RTSs,
not observing such upper-bounding for pWCETs with relatively high
exceedance probability (e.g. 10−7) raises doubts regarding the reliability
of estimates associated with lower probabilities (e.g. 10−15).

This new evaluation approach is justified by the fact that
arbitrarily large execution times (HWMs) that exceed pWCETs may in
fact occur, under certain conditions, without necessarily harming their
target exceedance probabilities (even extremely low ones). Consider,
for instance, a task t executing on a dual-core hardware platform that
employs a shared memory bus arbitrated using a purely random policy.
Also consider a pWCET estimate wt of exceedance probability pwt

is
derived for task t. In a fair random arbitration policy all clients (cores)
have the same probability of being chosen next for accessing the shared
resource (memory bus), and since decisions are taken independently
the same probabilities apply for every arbitration round. Despite the
probability of a certain client never being chosen quickly converges to
zero as execution proceeds, the exact zero probability is never reached.
In other words, an extremely low but non-null probability exists that
any one of the clients starves (temporarily or even permanently) while
attempting to access the shared resource. Such an event could cause
a HWM higher than wt being yielded purely by chance, which could
only be deemed to harm the reliability of wt if effectively associated to
a probability higher than pwt

. However, the probability of repeatedly
witnessing execution times larger than wt by chance is substantially
lower than that of witnessing a single of such exceeding HWMs by

89

chance. Consequently, the comparison of exceedance densities can
be considered a more trustworthy method for evaluating pWCET
reliability than the comparison of estimates against HWMs, for being
associated with a lower probability of drawing erroneous conclusions
due to execution times observed purely by chance.

Similarly to the performed in traditional statistical hypothesis
tests, the herein proposed method is applied by (A) assuming as true
the basis hypothesis that the evaluated pWCET is in fact reliable, i.e.
is only exceeded with its intended target probability, and (B) looking for
empirical evidence that can be deemed sufficient for rejecting the basis
hypothesis. The first step in applying it is calculating the Exceedance
Density Metric (EDM) given by edm = e

n·p , where e is the number of
execution time values in a large sample of size n that exceed the evaluated
pWCET estimate whose intended exceedance probability is p. EDM
values are expected to be either close to or below the reference value
edm = 1, respectively meaning that the empirical exceeding densities are
either well-approximated or upper-bounded by the adjusted probabilistic
model. More specifically, (A) whenever edm ≤ 1 is obtained one should
conclude that no empirical evidence exist at all to reject the pWCET
reliability hypothesis, (B) if edm ≫ 1 (e.g. edm ≈ 5) is observed then
clear unreliability evidence can be considered to exist, but (C) whenever
edm & 1 is obtained it does not necessarily mean sufficient evidence of
unreliability exists, since execution times’ randomness may cause such
outcomes to be yielded purely by chance.

It is, however, possible to calculate the probability of a certain
EDM value being produced purely by chance, taking as ground truth
that the evaluated pWCET estimate is reliable – to which we refer simply
as the ε probability (see Section 5.4). The ε probability can then be
used to assess an obtained EDM value and for taking the decision, with
increased confidence, on whether it is a sufficient evidence for rejecting
the pWCET reliability hypothesis. Whenever relatively high values are
obtained (e.g. ε ' 0.01), further evaluations e.g. using replications or
other evaluation methods should be performed for increasing confidence
on the conclusions. If, on the other hand, low probabilities are obtained
(e.g. ε / 10−7), one can confidently conclude that strong evidence exists
that the evaluated pWCET is not reliable. The rationale is that, if it is
extremely unlikely that an EDM as high as the observed one is yielded
assuming that the pWCET is reliable, the evaluated pWCET should
then have been exceeded with a probability higher than the intended
one, being hence potentially unreliable. With that we ensure that a
high confidence can be associated with the drawn conclusions, since the

90

pWCETs’ reliability hypothesis is only rejected under the demonstration
of solid statistical significance. This approach resembles that of classical
statistical tests, in which the tested hypothesis is only rejected if the
probability of false negative errors, given as p-values (WASSERSTEIN;

LAZAR, 2016), is deemed sufficiently low (STEPHENS, 2009).

5.4 THE PROBABILITY OF REJECTING A RELIABLE pWCET

A statistical experiment is called a binomial experiment if (A)
it consists of n independent trials, (B) each trial can lead only to two
possible outcomes: a success or a failure, and (C) the probabilities
of a success and of a failure are given respectively by p and q, and
are such that p+ q = 1. In a binomial experiment, the probability of
exactly k successes being observed in n trials, supposing p and q are in
fact respected, can be calculated using the probability mass function
of the binomial distribution given by pmf(k;n, p) =

(

n
k

)

pk(1 − p)n−k.
Similarly, the probability of at most k successes being observed in
n trials can be calculated using its cumulative distribution function

cdf(k;n, p) =
∑⌊k⌋

i=0 pmf(i;n, p) (FELLER, 1968).
The pWCET exceedance problem can be modelled as a binomial

experiment, in which each trial is associated with an individual execution
of the task and is considered successful if and only if the pWCET
estimate is exceeded in that particular execution. The experiment’s
success probability hence equals the pWCET’s intended exceedance
probability p, and an execution time sample is then seen as a set
of n independent trials of the experiment. It then follows that the
ε probability, i.e. the probability of e pWCET exceedances being
observed purely by chance in a sample of n execution times assuming
the exceedance probability p is indeed respected, can be calculated
through pmf(e;n, p). Additionally, the probability of at most e pWCET
exceedances being observed purely by chance in the same conditions
can be calculated through cdf(e;n, p).

This enables, e.g., the derivation of the probabilities with which
pWCET estimates that are in fact reliable can be erroneously rejected
while applying the pWCET reliability evaluation methods proposed
in this work. The following sections present this and other relevant
properties derived based on the binomial experiment modelling.

91

5.4.1 HWM-based method

The proposed HWM-based reliability evaluation method is
applied by comparing the maximum values observed in execution
time samples of size n = 108 against pWCET estimates whose target
exceedance probability is p = 10−15. The ε probability of observing at
least one exceedance in this scenario, assuming the evaluated pWCET is
in fact reliable, can be calculated as ε = 1− pmf(0; 108, 10−15) ≈ 10−7.
In other words, the HWM-based reliability test proposed in this work
leads to incorrect conclusions regarding pWCETs’ unreliability with
probability ε = 10−7. Especially under replications, the observation of
HWMs that exceed the evaluated pWCETs in the proposed experiment
should hence be regarded as unreliability evidence (MAYS, 2010).

5.4.2 EDM-based method

Several relevant facts can be derived regarding the proposed
EDM-based reliability evaluation method as considered in this work,
i.e. using validation samples of size n = 108 to evaluate pWCET
estimates of target exceedance probability p = 10−7. For instance, the
probability of observing at least one exceedance under such conditions
can be calculated as 1 − pmf(0; 108, 10−7) ≈ 99, 99%, indicating
that exceedances should be observed while applying the method if
the considered pWCETs are in fact exceeded with their intended
probabilities. This also means that non-exceeded pWCETs are likely
to present exceedance probabilities lower than 10−7, being potentially
both reliable and pessimistic. Moreover, the probability of observing
more than n · p = 10 exceedances in the same context is calculated
as 1 − cdf(10; 108, 10−7) ≈ 42%. Consequently, even if the evaluated
pWCETs’ target probabilities are in fact respected, it is likely that
EDM values higher than the reference edm = 1 will be often observable.
However, the probability of EDM values larger than edm = 1 being
observed purely by chance quickly converges to zero. This is evidenced
in Figure 13, which shows the ε probabilities associated with the
observation of all possible EDM values in the range [1, 5] in the scenario
considered in this work (i.e. with n = 108 and p = 10−7), assuming
that the evaluated pWCET is reliable (i.e. purely by chance).

92

Figure 13: ε probability analysis

1.0 1.5 2.0 2.5 3.0

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0
0
.1

2

Observed EDM value

ε
 p

ro
b
a
b
ili

ty

3.0 3.5 4.0 4.5 5.00
.0

0
0
0
0
0
0
0

0
.0

0
0
0
0
0
0
5

0
.0

0
0
0
0
0
1
0

0
.0

0
0
0
0
0
1
5

Observed EDM value

ε
 p

ro
b
a
b
ili

ty

One can then easily show that the proposed EDM-based pWCET
reliability evaluation method achieves higher confidence levels in
comparison with the alternative HWM-based approach. In the herein
considered scenario, the EDM-based method’s ε probability for an EDM
value as high as e.g. edm = 3.1 being yielded purely by chance can be
calculated as ε = pmf(31; 108, 10−7) < 5.53 · 10−8. Consequently, if
it yields edm ≥ 3.1 one can decide with confidence higher than that
enabled by the HWM-based method (whose ε ≈ 10−7) on rejecting the
reliability hypothesis for the evaluated pWCET estimate.

5.5 APPLICABILITY EVIDENCE

The EVT applicability diagnostic artefacts (as of Chapter 2)
associated to the evaluated real-hardware sample are shown in Figure 14,
which presents (1) a box and whisker plot of the p-values yielded by the
independence and identical distribution statistical hypothesis tests, and
(2) quantile and probability plots built by fitting a modelling sample
of size 50000 to the GEV, GP, Gumbel and Exponential distributions.
From the analysis of these artefacts one can conclude that (I) all
statistical tests’ results are acceptable, since the produced p-values are
approximately uniformly distributed in the [0, 1) range, (II) the GEV
and GP models adjusted to the maximum observed execution times are
capable of properly representing their behaviour, and (III) the Gumbel
and Exponential models do not represent well the maxima behaviour, but
lead to potentially reliable upper bounds for consistently overestimating
high quantiles. The 95% confidence interval produced through the
GEV and GP model fitting indicated that the sample’s tail shape is
approximately −0.139 ≤ ξ ≤ −0.055 for GEV and −0.154 ≤ ξ ≤ −0.125
for GP. We can hence conclude with confidence higher than 95% that

93

its right tail shape is negative (i.e. ξ < 0), due to the fact the confidence
intervals’ upper estimates are significantly smaller than zero considering
the typical variation ranges of the shape parameter.

Figure 14: Real-hardware sample applicability evidence

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

25160 25180 25200 25220 25240 25260

2
5

1
6

0
2

5
1

8
0

2
5

2
0

0
2

5
2

2
0

2
5

2
4

0
2

5
2

6
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

25180 25220 25260 25300

2
5

1
6

0
2

5
1

8
0

2
5

2
0

0
2

5
2

2
0

2
5

2
4

0
2

5
2

6
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

25210 25220 25230 25240 25250 25260

2
5

2
1

0
2

5
2

3
0

2
5

2
5

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

25200 25220 25240 25260 25280

2
5

2
0

0
2

5
2

2
0

2
5

2
4

0
2

5
2

6
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

94

Acceptable results were also yielded for the synthetic samples by
both the independence and identical distribution statistical hypothesis
tests and the model adherence evaluation plots. This was expected, since
(1) independence and identical distribution are requirements for random
numbers that adhere to a specific probability distribution (KNUTH,
1997; MARSAGLIA; TSANG, 2002), and (2) data that adhere to the GEV
distribution present tails that are known to adhere to the GP model
with the same shape value (COLES, 2001). For this reason, we suppress
the synthetic samples’ applicability diagnostic artefacts.

5.6 pWCET HWM RELIABILITY

In this section we evaluate the HWM reliability assessment plots
for the selected real-hardware sample and for the synthetic samples, for
both the GEV/Gumbel (BM) and the GP/Exponential (POT) models.
The plots show the behaviour of the pWCET estimates with exceedance
probability of 10−15, and their associated 95% confidence intervals (grey
region), as modelling sample sizes are increased from 150 (i.e. 3 sampling
steps) to 5000 (i.e. 100 sampling steps) in steps of 50 measurements.
The horizontal line indicates the HWMs, i.e. the maximum values, that
were observed in the validation samples of size 108.

5.6.1 Real-Hardware Samples

Figures 15(a) and 15(c) show that the pWCET estimates yielded
by the GEV and GP models consistently converge to values close or lower
than the 108 HWM, a result that can be deemed as unreliability evidence
considering the large difference between the magnitudes of the estimates’
exceedance probability and of the considered validation sample size (i.e.
seven orders). On the other hand, Figures 15(b) and 15(d) show that,
for the Gumbel and Exponential models, all pWCET(10−15) and their
associated confidence intervals stay consistently above the 108 HWM
for reasonable sample sizes, being hence deemed potentially reliable.

95

Figure 15: Real-hardware pWCET HWM reliability

0 1000 2000 3000 4000 5000

2
5

2
0

0
2

5
6

0
0

2
6

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

2
5

2
0

0
2

5
6

0
0

2
6

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

2
5

2
0

0
2

5
6

0
0

2
6

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

2
5

2
0

0
2

5
6

0
0

2
6

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

5.6.2 Synthetic Samples

Figure 16 presents the HWM reliability assessment plots for the
synthetic samples with ξ = − 1

2 . Based on their analysis, one can observe
that the GEV and GP models’ reliability can be considered doubtful,
since (1) the pWCET(10−15) estimates are very close and often slightly
smaller than the observed 108 HWM even after convergence, and (2)
the HWM is within the pWCETs’ confidence intervals, indicating the
correct pWCET value could in fact be lower than the HWM. On the
other hand, the Gumbel and Exponential models present no unreliability
evidence, for providing pWCET estimates which are, together with their
associated confidence intervals, consistently higher than the highest
values observed in samples of 108 measurements.

96

Figure 16: pWCET HWM reliability for ξ = − 1
2

GEV synthetic sample

0 1000 2000 3000 4000 5000

4
0

2
0

0
4

0
4

0
0

4
0

6
0

0
4

0
8

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

4
0

2
0

0
4

0
4

0
0

4
0

6
0

0
4

0
8

0
0

Sample size
p

W
C

E
T

(1
e

−
1

5
)

e
s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

4
0

5
0

0
4

1
0

0
0

4
1

5
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

4
0

5
0

0
4

1
0

0
0

4
1

5
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

GP synthetic sample

0 1000 2000 3000 4000 50004
0

0
0

0
4

1
0

0
0

4
2

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(e) GP

0 1000 2000 3000 4000 50004
0

0
0

0
4

1
0

0
0

4
2

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(f) Exponential

Figures 17 and 18 present HWM reliability assessment plots
for the synthetic samples with ξ = − 1

4 and ξ = − 1
8 , respectively. The

conclusions drawn from these plots’ analysis are similar to those obtained
for the ξ = − 1

2 case, but it is remarkable that the pWCET(10−15)
estimates provided by the GEV and GP models still converge to values
very close to – and are indeed often lower than – the 108 HWM as the
underlying data shape value is increased. Such behaviour is not expected,

97

due to the large difference between the magnitudes of the estimates’
exceedance probability and of the validation samples’ size. One should
expect instead the pWCET(10−15) estimates to be consistently higher
than the HWM observed for a sample of size 108, which is in fact
observable for both the Gumbel and the Exponential models.

Figure 17: pWCET HWM reliability for ξ = − 1
4

GEV synthetic sample

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

4
0

0
0

4
8

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

4
0

0
0

4
8

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

1
0

0
0

4
2

0
0

0
4

3
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

1
0

0
0

4
2

0
0

0
4

3
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

GP synthetic sample

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

1
0

0
0

4
2

0
0

0
4

3
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(e) GP

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

1
0

0
0

4
2

0
0

0
4

3
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(f) Exponential

98

Figure 18: pWCET HWM reliability for ξ = − 1
8

GEV synthetic sample

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

4
0

0
0

4
8

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

4
0

0
0

4
8

0
0

0

Sample size
p

W
C

E
T

(1
e

−
1

5
)

e
s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

1
0

0
0

4
2

0
0

0
4

3
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

1
0

0
0

4
2

0
0

0
4

3
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

GP synthetic sample

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

1
0

0
0

4
2

0
0

0
4

3
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(e) GP

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

1
0

0
0

4
2

0
0

0
4

3
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(f) Exponential

Figure 19 presents the HWM reliability assessment plots for the
synthetic sample with ξ = 0, in which the analysed maxima is known
to adhere to the Gumbel distribution and, therefore, tails are known
to adhere to the Exponential distribution. Based on their analysis, one
can conclude that the GEV and GP models produced what could be
regarded as clearly unreliable results, since the 108 HWM observed on
the validation sample consistently exceeds the yielded pWCET(10−15)
estimates and are contained within their confidence intervals. On the

99

other hand, the Gumbel and Exponential models produced results
that can be deemed reliable, since the pWCETs and their associated
confidence intervals remain consistently above the same HWM.

Figure 19: pWCET HWM reliability for ξ = 0

GEV synthetic sample

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

4
0

0
0

4
8

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

4
0

0
0

4
8

0
0

0

Sample size
p

W
C

E
T

(1
e

−
1

5
)

e
s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

4
0

0
0

4
8

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

4
0

0
0

4
8

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

GP synthetic sample

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

2
0

0
0

4
4

0
0

0
4

6
0

0
0

4
8

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(e) GP

0 1000 2000 3000 4000 5000

4
0

0
0

0
4

2
0

0
0

4
4

0
0

0
4

6
0

0
0

4
8

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(f) Exponential

Figures 20, 21 and 22 present the HWM reliability assessment
plots for the synthetic samples with ξ ∈ {+ 1

8 ,+
1
4 ,+

1
2}, respectively.

The estimates derived through GEV and GP in these cases proved either
(1) unreliable or doubtfully reliable, for being often exceeded or for being
associated to confidence intervals that contain the HWMs observed on

100

the validation samples, or (2) useless in practice, for providing values
that are extremely higher than typical WCET safety margins – i.e. 20%
(CAZORLA et al., 2016). The Gumbel and Exponential models, which are
in fact not applicable if ξ > 0, also produced unreliable results but still
provided more consistent and stable pWCET estimates in comparison
with GEV and GP. Despite also being useless in practice, the consistent
estimates yielded by the Gumbel and Exponential models make it easier
to detect cases in which their application cannot be deemed reliable,
e.g. through the methods proposed in this work.

Figure 20: pWCET HWM reliability for ξ = + 1
8

GEV synthetic sample

0 1000 2000 3000 4000 5000

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

GP synthetic sample

0 1000 2000 3000 4000 5000

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(e) GP

0 1000 2000 3000 4000 5000

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(f) Exponential

101

Figure 21: pWCET HWM reliability for ξ = + 1
4

GEV synthetic sample

0 1000 2000 3000 4000 5000

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0
Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

GP synthetic sample

0 1000 2000 3000 4000 5000

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(e) GP

0 1000 2000 3000 4000 5000

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(f) Exponential

102

Figure 22: pWCET HWM reliability for ξ = + 1
2

GEV synthetic sample

0 1000 2000 3000 4000 5000

0
1

0
0

0
0

0
0

2
0

0
0

0
0

0
3

0
0

0
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

0
1

0
0

0
0

0
0

2
0

0
0

0
0

0
3

0
0

0
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

0
0

0
0

0
0

2
0

0
0

0
0

0
3

0
0

0
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

0
1

0
0

0
0

0
0

2
0

0
0

0
0

0
3

0
0

0
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

GP synthetic sample

0 1000 2000 3000 4000 5000

0
5

0
0

0
0

0
1

0
0

0
0

0
0

1
5

0
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(e) GP

0 1000 2000 3000 4000 5000

0
5

0
0

0
0

0
1

0
0

0
0

0
0

1
5

0
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(f) Exponential

103

5.7 pWCET DENSITY RELIABILITY

This section presents an evaluation of the density reliability
assessment plots produced based on the selected real-hardware sample
and on the synthetic samples, for both the BM (GEV/Gumbel) and
the POT (GP/Exponential) probabilistic models. The plots show the
behaviour of the EDM, as described in Section 5.3.2, for pWCET
estimates associated with a target exceedance probability of 10−7, as
modelling sample sizes are increased from 150 to 5000 in steps of 50
measurements (i.e. from 3 to 100 sampling steps). The EDM value is
limited to the range [0, 5] for improving plots’ readability, the horizontal
dotted line (edm = 1) indicates the reference value which the metric is
intended to be compared with, and the ε probabilities associated with
the corresponding EDM values are also indicated.

5.7.1 Real-Hardware Samples

Figures 23(a) and 23(c) show that the pWCET estimates
produced using either the GEV or the GP models are often exceeded,
even for relatively large modelling sample sizes, with densities many
(at least five) times larger than the expected taking into account their
associated exceedance probabilities. An analysis of the associated ε

probabilities reveals that such high EDM values are extremely unlikely,
i.e. their observation is associated with probabilities as low as 1.5 ·10−19,
assuming the evaluated pWCET estimates are in fact reliable (i.e.
exceeded only with the intended probability). Consequently, one should
consider that unreliability evidence exist for pWCET estimates derived
through the GEV and GP models. On the other hand, Figures 23(b)
and 23(d) show that, under the same conditions, the pWCETs produced
through the Gumbel and Exponential models consistently upper-bound
all execution time values observed in the large validation sample, since
EDM equals zero for all considered modelling sample sizes. We hence
consider unreliability evidence exists for pWCET estimates produced
using the GEV and GP models, which are not observable when the
Gumbel and Exponential models are used to the same purpose.

104

Figure 23: Real-hardware pWCET density reliability

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

5.7.2 Synthetic Samples

The density reliability plots associated to GEV and GP pWCET
estimates, shown in Figures 24 to 30, indicate that the EDM behaviour
varies significantly for pWCET estimates derived through the GEV and
GP models. There are cases in which the EDM reaches unacceptably
high values (A) eventually, as in Figures 25(a), 26(a), 28(e) and 29(e),
(B) frequently, as in Figures 24(a), 24(c), 25(c), 26(c), 27(c), 28(a), 28(c),
29(a), 29(c) and 30(e), and even (C) consistently, as in Figures 24(e),
25(e), 26(e), 27(a) and 27(e). The only cases in which the EDM
behaviour for the GEV and GP models could be deemed acceptable was
for the GEV synthetic samples with ξ = + 1

2 , shown in Figures 30(a)
and 30(c), for quickly converging to values nearby or lower than the
reference value. However, in this specific case the yielded pWCETs
often prove useless in the context of MBPTA for leading to extremely
pessimistic bounds (see Figure 22). We highlight the case of the samples

105

with shape ξ = 0, shown in Figure 27, in which most EDM values reach
the plots’ upper limit (i.e. edm = 5). The ε probabilities’ analysis shows
that such EDM values are extremely improbable assuming the evaluated
pWCETs are in fact reliable, i.e. are associated with probabilities as
low as 1.5 · 10−19, indicating that it is highly unlikely that such high
exceedance densities occurred purely by chance. Such behaviour can
hence be deemed as unreliability evidence, since it indicates the pWCET
estimates produced through the GEV and GP models are often exceeded
with densities that largely diverge from those expected when their target
exceedance probabilities are respected.

On the other hand, the density reliability plots associated to
Gumbel and Exponential pWCET estimates indicate null exceedance
densities are consistently observable for all synthetic samples with tail
shapes ξ < 0, as of Figures 24, 25 and 26. Conversely, for samples whose
tails present shape ξ > 0 the pWCETs’ exceedance densities prove
consistently unacceptable, as shown in Figures 28, 29 and 30. Both
conclusions were expected, since the Gumbel and Exponential models
are in fact known (A) to upper-bound the densities of maxima tails
with shape ξ < 0, and (B) to be not applicable for maxima tails with
shape ξ > 0 (COLES, 2001). Moreover, nearly-ideal EDM behaviour
was observed for synthetic samples with tail shape ξ = 0, which are
known to be modellable using the Gumbel/Exponential distributions
for presenting tails with exponentially decreasing slopes. As shown in
Figure 27, for these samples the EDM is either within acceptable ranges
for reasonable modelling sample sizes or presents a clear convergence
pattern to the reference value edm = 1. Such consistent behaviour
hence provides evidence that, for samples whose maxima present tails
with shape ξ ≤ 0, the Gumbel and Exponential models yield pWCET
estimates that can be deemed potentially reliable.

106

Figure 24: pWCET density reliability for ξ = − 1
2

GEV synthetic sample

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

GP synthetic sample

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(e) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(f) Exponential

107

Figure 25: pWCET density reliability for ξ = − 1
4

GEV synthetic sample

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

GP synthetic sample

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(e) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(f) Exponential

108

Figure 26: pWCET density reliability for ξ = − 1
8

GEV synthetic sample

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

GP synthetic sample

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(e) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(f) Exponential

109

Figure 27: pWCET density reliability for ξ = 0

GEV synthetic sample

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

GP synthetic sample

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(e) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(f) Exponential

110

Figure 28: pWCET density reliability for ξ = + 1
8

GEV synthetic sample

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

GP synthetic sample

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(e) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(f) Exponential

111

Figure 29: pWCET density reliability for ξ = + 1
4

GEV synthetic sample

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

GP synthetic sample

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(e) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(f) Exponential

112

Figure 30: pWCET density reliability for ξ = + 1
2

GEV synthetic sample

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

GP synthetic sample

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(e) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(f) Exponential

113

5.8 EQMAE-BASED POT THRESHOLD SELECTION

All the previously presented POT-related reliability assessment
plots were produced by fitting the GP and Exponential models to
values exceeding thresholds determined through the minimization of the
EQMAE metric, as described in Section 2.4. In this section we present
a brief evaluation of this approach considering a threshold selection
method as adequate if, as the modelling sample size is increased, (1) the
chosen threshold converges, (2) the range in which the best threshold
candidate values are contained also presents convergence pattern, and
especially (3) the produced pWCET estimates are stable and reliable.
For that, we present in Figure 31 a collection of threshold selection plots
in which are shown, as modelling sample sizes are increased from 150
to 5000 in steps of 50 values, (1) in light grey the range of candidate
threshold values, given by the 60% to 99% quantiles of the analysed
data, (2) in dark grey the interval in which the ten best threshold
candidates (taking EQMAE as criterion) are contained, and (3) the
effectively chosen threshold as a dotted line.

From the analysis of these plots one can conclude that no
convergence pattern is generally observable for the thresholds chosen
through the EQMAE minimization method, since even for large sample
sizes both the best candidates’ interval and the chosen threshold
often vary significantly with respect to the range of candidate values.
Through a joint analysis of these artefacts with their associated
reliability counterparts presented in Sections 5.6 and 5.7, we also
observe that the pWCET estimates’ variability is strongly correlated
to threshold selection, which – as expected – makes it clear that the
estimates are sensible to the threshold used. We highlight, however, that
(1) no estimate derived through the Exponential model for reasonable
modelling sample sizes with thresholds determined using the EQMAE
minimization method could be deemed unreliable according to the
assessments performed in this work, and (2) the GP model yields
unreliable results even when the threshold value is known beforehand,
as evidenced in our analysis using GP synthetic samples.

114

Figure 31: EQMAE-based threshold selection plots

0 1000 2000 3000 4000 5000

2
5

0
8

0
2

5
1

2
0

2
5

1
6

0
2

5
2

0
0

Sample size

B
e

s
t

th
re

s
h

o
ld

s

(a) bsort on DPCpArrr

0 1000 2000 3000 4000 5000

4
0

0
5

0
4

0
1

0
0

4
0

1
5

0
4

0
2

0
0

Sample size

B
e

s
t

th
re

s
h

o
ld

s

(b) GEV with ξ = − 1

2

0 1000 2000 3000 4000 5000

4
0

0
5

0
4

0
1

0
0

4
0

1
5

0
4

0
2

0
0

4
0

2
5

0
4

0
3

0
0

Sample size

B
e

s
t

th
re

s
h

o
ld

s

(c) GEV with ξ = − 1

4

0 1000 2000 3000 4000 5000

4
0

0
5

0
4

0
1

5
0

4
0

2
5

0
4

0
3

5
0

Sample size

B
e

s
t

th
re

s
h

o
ld

s

(d) GEV with ξ = − 1

8

5.9 RECOMMENDATIONS

We conclude from the assessments presented in the previous
sections that the Gumbel and Exponential models seem consistent and
stable with respect to the produced pWCET estimates, which gives
confidence on the yielded results whenever their applicability conditions
hold. On the other hand, the GEV and GP models appear to add a
degree of uncertainty to the analysis process, often yielding unreliable
pWCET estimates, hence reducing the confidence on the produced
results. Our conclusions support the idea that only the Gumbel and
Exponential models could be deemed acceptably reliable for sample sizes
feasible in practical environments, i.e. in the order of hundreds (CUCU-

GROSJEAN et al., 2012; WARTEL et al., 2015), and that therefore GEV and
GP should not be used to derive pWCET estimates unless approaches
for increasing confidence on the produced results becomes available.
We also conclude that the POT threshold selection approach based on
the EQMAE metric minimization, as implemented and evaluated in
this work, does not appear to present convergence pattern as modelling
sample sizes are increased. We hence recommend that:

115

• The shape parameter (ξ) of the observed data distribution tail
should be estimated using a (set of) proper method(s), for which
we suggest (1) fitting the GEV and/or GP models and assessing
the shape parameter confidence interval, (2) fitting the Gumbel
and/or Exponential models and assessing the diagnostic quantile
plot – which should suggest high quantiles are not underestimated
(see Section 5.5) –, and/or (3) employing the tail diagnostic method
proposed in (ABELLA et al., 2017), and then:

– If ξ < 0 (Weibull tail), the Gumbel and Exponential models
introduce some pessimism but can apparently be used with
reasonable confidence on the reliability of the yielded results.

– If ξ = 0 (Gumbel tail), the Gumbel and Exponential models
appear to be acceptably reliable but must be carefully used,
e.g. associated to proper evidence on estimates’ reliability.

– If ξ > 0 (Fréchet tail), the Gumbel and Exponential models
yield estimates that are consistent but clearly unreliable,
since they are in fact not applicable to such scenarios. To our
knowledge, no model capable of producing reliable pWCET
estimates in such scenarios is currently available.

Additionally, we highlight that:

• Most of the real-hardware execution time samples we collected
present tails that consistently adhere to the GEV and GP models
with shape ξ < 0, hence being potentially analysable through the
Gumbel and Exponential models with good confidence on the
reliability of the produced pWCETs.

• pWCET confidence intervals’ upper limits can be used to reduce
the probability of faults due to parameter estimation errors only
for the Gumbel and Exponential models, since for GEV and GP
this could lead to huge pessimism in cases the shape parameter’s
upper limit exceeds zero (see e.g. Figure 18).

• The presented assessments were replicated using the POT
methodology for applying EVT as proposed in (GUET; SANTINELLI;

MORIO, 2016; SANTINELLI; GUET; MORIO, 2017), and the obtained
results consistently corroborated all achieved conclusions.

116

• The works presented in (MILUTINOVIC et al., 2017; ABELLA et

al., 2017) point out several reasons for which the Gumbel and
Exponential models should be used for applying EVT within
MBPTA, considering specific aspects of its phenomenon of interest
(i.e. execution times). The evidence provided in this work add
empirical arguments to support this recommendation, by showing
that models that are supposed to be more precise may in fact lead
to underestimations even under nearly-ideal conditions.

Finally, we highlight that the safety margins yielded using the
GEV and GP models can be regarded as valid and quite precise as
estimates, i.e. approximations that can be subject to both positive
errors (overestimation) and negative errors (underestimation) in relation
to the real value. This is evidenced in this work by the relative proximity
of the analysed pWCET estimates to the effectively observed HWMs,
especially for synthetic samples whose shape values lead to bounded tails
(see e.g. Figures 16 and 17). However, the fact that underestimation
is not acceptable while deriving pWCETs for building critical RTSs
requires care regarding estimates that are prone to negative errors.
Consequently, a high criticality becomes associated to the estimation
of the shape parameter of GEV and GP models within MBPTA, since
(A) underestimations can easily lead to unreliable pWCETs, and (B)
overestimations can produce extremely pessimistic (useless in practice)
pWCETs. On the other hand, the Gumbel and Exponential models do
not require the estimation of a shape parameter, for presenting right tails
that decrease exponentially and are therefore equivalent to GEV and GP
with shape ξ = 0, respectively. As a consequence and in line with the
herein presented analysis, Gumbel and Exponential can only be reliably
applied for producing safety margins if the modelled maxima adhere
to GEV and/or GP with shape ξ ≤ 0. Moreover, the pessimism that
arises from this approach for maxima with shape ξ ≪ 0 appears to be
still within acceptable amounts in comparison with typically employed
safety margins. The drawn recommendations can hence be considered
to effectively envision upper-bounding the shape of the analysed maxima,
in order to increase reliability on the produced pWCETs, still providing
reasonable confidence that no extreme pessimism is induced.

117

5.10 CONCLUSION

In the work presented in this chapter we have performed an
empirical evaluation of the GEV/Gumbel and of the GP/Exponential
models, with respect to the reliability of the pWCET estimates they
yield when used for applying EVT in the context of MBPTA through
the BM and the POT approaches, respectively.

For that, we employed a set of large execution time datasets (i.e.
of size 108) of both real (i.e. measured on real hardware platforms)
and synthetic (i.e. pseudo-randomly generated) nature. We then
compared (A) the pWCET estimates produced through the assessed
models with the highest values (i.e. HWMs) effectively observed in the
large validation samples, and (B) the empirical exceedance densities
observed in the validation samples against their expected values taking
into account the pWCETs’ target exceedance probabilities.

We observed that (1) the GEV and GP models lead to pWCET
estimates often exceeded by large samples’ maxima, and that, on the
other hand, (2) the Gumbel and Exponential models produce potentially
reliable upper-bounds in all evaluated cases to which they are expected
to be applicable (i.e. when ξ ≤ 0). In fact, GEV and GP estimates
appear to be often exceeded with densities many (at least five) times
larger than the expected according to the specified pWCET exceedance
probabilities, while both the Gumbel and the Exponential models appear
to consistently upper-bound empirical tails’ densities when ξ ≤ 0.

We hence conclude that GEV and GP do not present key
characteristics required for probabilistic models employed in deriving
pWCET estimates within MBPTA, and therefore recommend that
the Gumbel and Exponential should instead be used for the purpose
until the observed unreliable behaviour is better understood and
handling methods become available. For that, we suggest properly
diagnosing scenarios in which pWCET estimates can be reliably
derived through the Gumbel and Exponential models, and rejecting
the analysis or performing further reliability assessments whenever the
necessary conditions do not clearly hold. Our objective with these
recommendations is translating the outcomes of our research into
measures that enable increasing confidence on the reliability of pWCET
estimates produced through MBPTA.

118

119

6 EVALUATING RANDOMIZED SCHEDULING ON
MULTITHREAD PIPELINES TO BENEFIT MBPTA

In this chapter we evaluate the hypothesis that randomized
thread scheduling can benefit the timing analysis of tasks executed
on multithread pipelines, by causing their execution times to meet
MBPTA’s basic application requirements. For that we employ a
processing core equipped with a simple multithread pipeline, and then
(A) derive the conditions in which execution time measurements can be
taken under maximum inter-thread interference, (B) establish a method
for evaluating key properties such processors are expected to present to
support MBPTA’s applicability, and (C) assess two distinct randomized
thread scheduling approaches. Within (C) we evaluate both (C.1) a
simple thread scheduler that employs a purely random policy, which
meets MBPTA’s basic requirements but does not balance inter-thread
interference delays, and (C.2) a credit-based interference-regulated
thread scheduler, capable of limiting interference timing effects without
compromising execution times’ analysability through MBPTA.

6.1 PIPELINING

In the context of computer processors, pipelining is a core
implementation approach in which instructions’ execution is divided
into a set of stages, such that a new instruction may enter a stage
as soon as the previous one leaves it. This enables the execution of
multiple instructions being overlapped, hence allowing instruction-level
parallelism to be exploited at some level and significantly increasing
processing throughput (i.e. the frequency with which instructions are
completed) in comparison to cores that execute instructions sequentially.
Pipelining also enables increasing processors’ clock frequencies, since it
allows certain complex operations that require deep combinational logic
being decomposed into simpler steps (GONZALEZ; LATORRE; MAGKLIS,
2010; PATTERSON; HENNESSY, 2011; HENNESSY; PATTERSON, 2012).

The application of pipelining techniques requires proper control
logic being added, for guaranteeing instructions’ correct execution.
First, some operations executed by the stages take longer than others,
e.g. multiplications may take longer than additions, which may require
stages to block the previous ones until long operations complete.
Moreover, some instructions use as input the information produced

120

by previously executed ones (i.e. are subject to data dependencies),
requiring stages being stalled (i.e. temporarily stopped) until the
necessary data produced by the following stages is ready – such issues
are known as hazards. Bypassing logic is also used between some stages
for avoiding long stalls, e.g. by forwarding data read at the memory
stage to the instruction at the execution stage that is possibly (and
often) awaiting it to be available. This avoids a delay that would be
necessary for the execution stage to read the memory word from the
register to which the memory stage intends to write it (in load/store
instruction sets). Additional buffering can also be added between
pipeline stages to allow more in-flight instructions. However, their
presence also requires additional logic being added, e.g. to handle data
dependencies between instructions within the stages and in the buffers
between them. Finally, branch instructions may require the content
of the Program Counter (PC) register being changed, hence requiring
instructions in the pipeline to be flushed and new ones being then
loaded (GONZALEZ; LATORRE; MAGKLIS, 2010; PATTERSON; HENNESSY,
2011; HENNESSY; PATTERSON, 2012).

Figure 32 depicts the basic structure of a simple five-stage
instruction processing pipeline, which splits instructions’ execution
in five stages: Instruction Fetch (IF), Instruction Decode (ID), Execute
(EX), Memory Access (MA) and Write-Back (WB). The IF stage
retrieves the next instruction to be executed, which is pointed out
by the PC register of the Register File (RF), from the Instruction
Memory (IM). The ID stage parses the instruction’s machine code and
transforms it into signals semantically meaningful for the next stages.
The EX stage performs instructions’ logic and arithmetic operations, e.g.
using an ALU or a Floating-Point Unit (FPU). The MA stage performs
read/write accesses to the Data Memory (DM). Finally, the WB stage
writes the instructions’ results into the work registers located in the RF.
The arrows indicate information flow between the units (PATTERSON;

HENNESSY, 2011; HENNESSY; PATTERSON, 2012).

Figure 32: Simple pipeline design

121

We highlight that modern processors generally employ very
complex pipelines which use, for instance, out-of-order execution
techniques, i.e. process instructions in an order that can differ from
that of the program binary, or superscalar designs, i.e. stages capable
of issuing more than one instruction per clock cycle. Such techniques
enable higher instruction-level parallelism (and average performance)
being achieved, but require for that highly complex logic (GONZALEZ;

LATORRE; MAGKLIS, 2010; PATTERSON; HENNESSY, 2011; SHEN;

LIPASTI, 2013). Such complexity at the hardware level also leads to
big challenges in employing modern processors in critical RTSs, since
static approaches generally lack composability characteristics that are
necessary for their timing analysis (WILHELM et al., 2008; NOWOTSCH;

PAULITSCH, 2012). In this context, MBPTA emerges as a promising
approach for handling the hardware complexity issue in estimating
WCET bounds for RTSs’ tasks (KOSMIDIS et al., 2016).

6.2 MULTITHREADING

In the computing context, a thread (of execution) is associated
to a set of registers that hold the execution state of a program
(software) within a processor. Simple processors generally use cores
that support the processing of a single thread of execution. On the
other hand, multithread cores are capable of simultaneously holding
the execution state of several threads at hardware level, and executing
their instructions in an overlapped manner while sharing most of the
processing elements between them. A multithread pipeline is hence
capable of exploiting, at some level, both instruction-level parallelism –
by overlapping instructions’ execution – and thread-level parallelism –
by processing instructions from different threads simultaneously. For
handling multiple threads, a processing core requires not only a separate
register file for each thread, but it must also include logic for scheduling
and controlling threads’ execution (GONZALEZ; LATORRE; MAGKLIS,
2010; PATTERSON; HENNESSY, 2011; HENNESSY; PATTERSON, 2012).

A serious drawback of multithreading, which is particularly
harmful to its applicability in processors that target RTSs, is the
intrinsic existence of hardware-level timing interference between threads.
Such interference occurs because, in these pipelines, many hardware
processing elements (i.e. functional units) are shared between threads
and must be accessed exclusively. Moreover, the delay induced between
threads depends on the specific operations performed by each of them,

122

since functional units’ latency may vary depending on the performed
operations and on the operated data. This causes the use of multithread
processing cores to be often discouraged in the context of RTSs, since
the determination of WCET estimates for tasks executing on them
through static methods often proves very challenging and/or leads to
extremely pessimistic upper-bounds (WILHELM et al., 2008; NOWOTSCH;

PAULITSCH, 2012; KOTABA et al., 2013).
A critical aspect of multithreading is the thread scheduling policy

employed, i.e., the decision on when to place instructions of each active
thread into the pipeline for being processed. Thread scheduling is
typically either (1) fine-grained, when switches occur at every clock cycle,
(2) coarse-grained, when switches only occur when costly operations take
place, or (3) simultaneous, when a dynamically scheduled superscalar
pipeline executes in parallel several instructions from different threads
(HENNESSY; PATTERSON, 2012). The employed scheduling policy may
also play an important role with respect to the limitation of timing
interference between threads, since it can be tailored to grant some
level of fairness regarding the amount of processing resources effectively
provided for each of them (MARKOVIC, 2015).

The pipelining and multithreading techniques are well-established,
and related material is widely available, in the field of high-performance
computing (PATTERSON; HENNESSY, 2011; HENNESSY; PATTERSON,
2012). Several previous works were developed that aimed enabling
static timing analysis for tasks executed on processors equipped with
multithread pipelines. A multithread pipeline was proposed in (ZIMMER

et al., 2014) which interleaves threads’ instructions such that a new
instruction of a same thread only enters the pipeline when the last
one already left it, thus eliminating both hazards and the need for
forwarding logic. As a consequence, static analysis of tasks executed on
it becomes much easier in comparison with designs that employ other
scheduling approaches. Similarly, (UNGERER et al., 2010) presents a
pipeline design in which one single real-time thread executes together
but with high priority over several non-real-time others. The approach
enables performance guarantees for the real-time thread being easily
provided, since it executes exactly as if it was the only existing thread
and interference is only observable over the non-real-time ones. To
the best of our knowledge, no previous work evaluated the utilization
of randomized scheduling in the context of multithread pipelines for
benefiting the application of probabilistic timing analysis techniques.

123

6.3 MULTITHREAD PIPELINE DESIGN

A high-level graphical representation of the multithread pipeline
we employ in this work is presented in Figure 33. Similarly to the
example presented in Section 6.1, it decomposes instructions’ execution
into five stages: IF, ID, EX, MA and WB. It implements the 32-bit
MIPS I RISC instruction set (PRICE, 1995) added with a thread halting
instruction (HALT), and can be classified as a scalar, in-order, single-
issue, statically-allocated multithread instruction pipeline (PATTERSON;

HENNESSY, 2011). Moreover, it employs an additional instruction buffer
between each pair of stages, enabling a single instruction being stored
before proceeding to the next stage. Its RFs are composed of 35 registers
each and have two read/write ports, for supporting MIPS instructions
that read or write two registers in parallel.

A scheduler (SCH) feeds the pipeline’s first stage with the
identifier of the thread whose next instruction is to be processed, which
is determined based on the policies presented in Sections 6.6 and 6.7.
The thread identifier enters the pipeline and proceeds, together with
the other information of the instruction to be processed, throughout
the stages. Once an instruction is scheduled, it only leaves the pipeline
if a previous branch or halt instruction of the same thread causes it to
be flushed. Flushes only affect in-flight instructions belonging to the
thread that performed the branch or halt, and no branch prediction
mechanism is used (i.e. instruction fetching always proceeds in memory
order). Only an ALU is currently available for use in the EX stage,
and consequently only integer operations are supported. The RAM
memories containing instructions (IM) and data (DM) are connected to
the IF and MA stages, respectively. The RFs are selectively connected
to the IF, EX and WB stages, according to the identifier of the thread
being currently processed on each of them.

The PRNG we employ for time-randomization purposes at
hardware level (A) has a single clock cycle latency and works by
XORing the results of two other different generators running on
independent and non-synchronized oscillators (TKACIK, 2003), and
(B) is periodically seeded using a TRNG based on a ring of ring
oscillators (BAETONIU, 2004) for ensuring high-quality randomness is
achieved. This approach is similar to that used by Intelr processors’
RDRAND instruction, which accesses a high-throughput PRNG that is
periodically seeded through a TRNG based on a thermal noise entropy
source (INTEL, 2012). For more details on implementation aspects of

124

other hardware elements developed during the research described in
this thesis, please refer to Appendix C.

We also use a thread dispatcher (TD) which is capable of
automatically triggering periodic, aperiodic and sporadic tasks executed
on the pipeline’s threads, by monitoring and controlling their respective
reset and halt signals. It is assumed that (A) a single task is executed
on every thread, and (B) a task signals the end of its execution through
a HALT instruction. Tasks’ dispatching is configured by defining the
following parameters for each of the threads:

Permanent (logical) Determines whether tasks should be continuously
released, and is used for inducing maximum interference during
the measurement collection process (see Section 6.4).

Period (numeric) Defines the period between individual releases of
the tasks, where zero indicates aperiodicity.

Interval (numeric) Establishes a minimum interval to be respected
between consecutive releases of tasks configured as aperiodic, hence
causing them to behave as sporadic tasks.

Jitter width Determines the width (in bits) of a random uniform
release jitter that can be added to the tasks’ dispatching, and is
mainly used for behaviour testing purposes.

Figure 33: Pipeline design

This design differs from (ZIMMER et al., 2014) by (1) being subject
to hazards and hence requiring forwarding and interlocking logic, since
random scheduling can lead the pipeline to be loaded with sequences of
instructions of a same thread, and (2) supporting less than s−1 threads
in execution (where s is the number of pipeline stages), since it does not
need to schedule a thread only when its previous instruction has already
left the pipeline. It also differs from the pipeline proposed in (UNGERER

et al., 2010) by not requiring real-time threads to be executed with higher
priority in relation to non-real-time ones, hence potentially enabling the
provision of probabilistic real-time guarantees for all threads.

125

6.4 MAXIMUM INTERFERENCE SCENARIO

A critical step in collecting samples for performing MBPTA is
guaranteeing that the execution times observed during the analysis
either exactly match or upper bound those produced in operation
(CAZORLA et al., 2016). One possible approach to perform this step
when multithread pipelines are to be employed involves establishing a
maximum interference scenario. In such a scenario, the thread under
analysis should experience temporal interference from other threads
that can be considered – and consistently evidenced – to upper-bound
the interference observed in normal operation.

To enable the establishment of a maximum interference scenario
for the multithread pipeline used in this work, hardware elements
coupled to it that influence its timing behaviour must support both a
measurement mode and an interference mode. In measurement mode,
data-dependent latencies must be forced to their highest possible value,
such that normal operation ones are upper-bounded regardless of the
operated data (KOSMIDIS et al., 2016). In interference mode, timing
behaviour that influence inter-thread interference must be forced to the
highest possible, such that interference over other threads is effectively
maximized. Within the multithread pipeline design used in this work,
both modes exclusively cause the ALU to always produce its maximum
possible latencies. This is because (A) a deterministic memory hierarchy
is used in our evaluations, and (B) the ALU latencies are in fact the
main source of inter-thread interference in the employed pipeline.

Coupled with such hardware elements, the pipeline we use allows
individual threads being forced into interference mode, which causes
them to (A) repeatedly execute ghost instructions, i.e. instructions
that have no effect except presenting temporal behaviour compatible
with that of real ones, and (B) set the memory hierarchy and the ALU
into interference mode, for maximizing inter-thread interference timing
effects. With respect to (A), the MIPS I instruction set is composed
of instructions that, according to the potential interference they can
induce on other threads’ timing due to their latency in traversing each
stage of the pipeline, can be classified as follows:

F Interfere only in the IF stage, for taking a single clock cycle to
traverse all other stages of the pipeline, and therefore includes
the NOOP, SLTI(U), LUI, MOV(Z/N), M(F/T)HI, M(F/T)LO,
SLT(U) and HALT instructions.

126

FF Interfere only in the IF stage, but cause the owner thread’s in-
flight instructions to be flushed out of the pipeline when the WB
stage is reached, comprising the branching instructions J(AL),
J(AL)R, B(LT/GE)Z(AL), B(EQ/NE) and B(LE/GT)Z.

FM Interfere in the IF and MA stages, comprising the memory
instructions LB(U), LH(U), LW, SB, SH and SW.

FEAL Interfere in the IF and EX stages and use the ALU to perform a
low-latency (typically logic) operation, containing the ADDI(U),
ANDI, ORI, XORI, SLL, SRL, SRA, SLLV, SRLV, SRAV,
ADD(U), SUB(U), AND, OR, XOR and NOR instructions.

FEAH Interfere in the IF and EX stages and use the ALU to perform
a high-latency (typically arithmetic) operation, comprising
the MULT(U) and DIV(U) instructions. For containing the
instructions of highest single-stage latencies, it is expected to
induce the highest potential inter-thread interference.

A maximum-interference measurement scenario can hence be built
by (1) setting the thread to be analysed into measurement mode, and (2)
setting all other threads into interference mode permanently executing
ghost instructions of the FEAH interference class. This scenario is
expected to cause the analysed thread to experience the maximum
possible interference from others, hence providing a suitable condition
for collecting upper-bounding measurements to perform MBPTA.

6.5 EVALUATION METHOD

Time-randomized multithread pipelines are expected to present
certain key properties for being considered usable for probabilistic
timing analysis through MBPTA. The maxima analysability property
is associated with the production of execution times that (A) can be
deemed independent and identically distributed, and (B) present maxima
that can be evidenced to adhere to one of the extreme value distributions
employed by EVT. The timing dominance property is associated with
the existence, knowledge and possibility of consistently evidencing, the
measurement conditions that yield the worst-case timing behaviour
of a certain thread with respect to interference from others. A non-
fundamental but rather important property is interference balancing,
which means that tasks’ execution times in the maximum interference
scenario should not increase, in comparison with those of solo execution,

127

by a factor that largely exceeds the number of threads t. Interference
balancing can also be seen as the provision of approximately 1

t of the
processor’s capacity for each of the t threads in the maximum interference
scenario. An additional assessment worth being performed regards the
typical scenario slowdown, in order to evaluate how severe are the
effects of inter-thread interference tasks are likely to be subject under
typical conditions (i.e. when real tasks are executed on the interfering
thread). Threads’ slowdown factor in the typical execution scenario
is also expected to approximate t in relation to solo execution, since
large slowdowns are only expected under conditions that are extremely
unlikely to occur in typical situations. This is so because, during
normal execution, potential interference is reduced by (1) functional
units not yielding worst-case latencies, and (2) interfering tasks not
performing only high-latency operations. In this work, we evaluate the
aforementioned properties as follows:

Maxima analysability is evaluated by submitting the execution
times produced in the maximum interference scenario to the
typical MBPTA applicability assessments presented in Section 2.5,
i.e. by applying statistical tests and creating diagnostic plots
for evaluating (1) independence and identical distribution and
(2) maxima adherence to extreme value models. In this work
we evaluate maxima analysability considering EVT application
through both approaches, i.e., BM – with blocks of size 50 as
performed in Chapter 5 – and POT – defining thresholds through
the minimization of the GP distribution estimated quantiles’
mean absolute error as also performed in Chapter 5.

Timing dominance is evaluated from two distinct perspectives:

• Class dominance aims evidencing that the execution times
produced in the maximum interference scenario dominate
(i.e. are consistently higher than) those produced under
interference of instructions that belong to other interference
classes. This is necessary because the introduction of
interference regulation mechanisms, e.g. based on thread
suspension, may change instructions’ timing dominance
characteristics. For instance, by over-suspending highly-
interfering tasks the low-interference ones can be scheduled
frequently enough to induce larger slowdowns than high-
interference tasks. Class dominance is evidenced by the
maximum interference scenario execution time distributions

128

being composed of values consistently higher than those
observed on samples obtained under interference of other
instruction classes (see Figures 38 and 46).

• Behavioural dominance evidences that the measurements
taken in the maximum interference scenario can be deemed
to dominate those produced under different execution
conditions. For that we measure execution times of
several benchmarks in numerous environments, composed
by applying a large number of distinct combinations
of behavioural configurations to the interfering thread.
The ≈ 25000 evaluated scenarios are built by using (A)
measurement mode active/inactive, (B) execution of distinct
randomly-generated mixes of ghost instructions with different
class proportion combinations, (C) intermittent behaviour,
given by periodic and sporadic releases using different
periods and intervals, and (D) release jitter varying from
zero to several thousand clock cycles. The evaluation hence
evidences timing dominance of the maximum interference
scenario independently of both the specific instructions
that compose interfering tasks and of the interfering tasks’
configuration and behaviour. Behavioural dominance is
evidenced by the maximum-interference execution times’
distributions being composed of values consistently higher
than those observed on all distinct execution conditions
considered (see Figures 39 and 47).

Interference balancing is evaluated by comparing the distribution
of the execution time measurements obtained while a set of
benchmarks are executed solo, against those of their execution
in the maximum interference scenario. Interference balancing
is evidenced by the increase factor between the two compared
conditions not largely exceeding the number of threads t.

Typical scenario slowdown is evaluated by comparing the execution
times observed for a set of benchmark tasks while other real tasks
are repeatedly executed on the interfering thread (we use the same
benchmarks employed in the evaluations) with those obtained in
solo execution. The slowdown factor between solo and typical
execution is expected to approximate the number of threads t.

129

The experimental processor we used to perform the proposed
evaluations is a single-core, equipped with a dual-thread instance of
the multithread pipeline presented in Section 6.3, running at 50MHz
on an FPGA. It uses separate instruction and data RAM memories,
which are directly accessed by the processor. The benchmark tasks
used in the evaluations were bsort , bs, cnt , cover , crc, expint , fdct ,
fibcall , fir , insertsort , janne complex , matmult , ns and prime from the
Mälardalen WCET Benchmarks suite (GUSTAFSSON et al., 2010), which
are often used in comparisons and assessments of WCET-related tools.
Since these are multi-path tasks, we fix their inputs such that only a
long execution path, i.e. that performs a large number of elementary
operations, is exercised (e.g. we use reverse-sorted integer arrays for the
sorting algorithms). As mentioned and in line with the suggestions of
(GRIFFIN; BURNS, 2010; CUCU-GROSJEAN et al., 2012; KOSMIDIS et al.,
2016), we also reset the state of the hardware platform before executions,
for avoiding dependency between measurements due to state-related
effects. Consequently, the observed timing variability stems exclusively
from the time-randomized multithread pipeline, since we isolate effects
from any other sources. We highlight, however, that (A) these conditions
are not sufficient for guaranteeing that the real WCETs are effectively
observable, and (B) the determination of tasks’ input data for the
reliable application of MBPTA must be performed in a per-scenario
basis and is still considered an open problem (GIL et al., 2017).

The herein presented evaluations were also replicated using
a cached memory hierarchy, which increases instruction and data
memories’ access throughput by fetching consecutive words in a
pipelined fashion. A time-randomized two-way set-associative thread-
partitioned cache memory was used (KOSMIDIS et al., 2013a), which
implements the modulo placement policy, the write-through update
policy, a randomized line replacement policy, and a simple write-to-
all-partitions coherency mechanism. Partitioning is used for avoiding
inter-thread timing interference due to cache effects, whose worst-case
behaviour prediction and/or reproduction is hard (ALTMEYER et al.,
2014), but the approach presented in (SLIJEPCEVIC et al., 2014) could
also be used for handling cache sharing between threads. In interference
mode the employed cache memories assume reads always miss, in order
to maximize interference induced on other threads while instructions
traverse the IF and MA stages. The conclusions achieved in this
replication were consistent with those drawn without cache memories.

130

6.6 PURELY RANDOM SCHEDULER (PRS)

The first randomized thread scheduling approach we evaluate
is the Purely Random Scheduler (PRS), which selects the next active
thread to be scheduled based solely on (pseudo-)random numbers that
follow an approximately uniform distribution. In other words, PRS
randomly selects one between the active threads such that all have
approximately the same probability of being chosen, and schedules it
whenever a new instruction can be inserted into the pipeline.

6.6.1 Evaluation

This section presents the results obtained by applying the
evaluation method proposed in Section 6.5 on the execution times of
benchmark tasks executed on the multithread pipeline using a PRS.

6.6.1.1 Maxima Analysability

Figures 34 to 37 show the MBPTA applicability evaluation
artefacts presented in Section 2.5, for samples of 50000 measurements
of the benchmarks’ execution times. These plots’ analysis evidence
that the maxima analysability property can be considered to hold
when the PRS is used, since in the maximum interference scenario all
MBPTA applicability requirements can be deemed being acceptably met.
Equivalent analysability evaluation plots associated with the remaining
benchmarks can be found in Appendix B.

Figure 34: bsort PRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

194000 196000 198000 200000 202000 204000

1
9
4
0
0
0

1
9
8
0
0
0

2
0
2
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

196000 198000 200000 202000 204000

1
9
6
0
0
0

1
9
8
0
0
0

2
0
0
0
0
0

2
0
2
0
0
0

2
0
4
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

131

Figure 35: bs PRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

11500 12000 12500 13000 135001
1
0
0
0

1
2
0
0
0

1
3
0
0
0

1
4
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

11500 12000 12500 13000 13500

1
1
5
0
0

1
2
5
0
0

1
3
5
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 36: cnt PRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

214000 218000 222000

2
1
4
0
0
0

2
1
8
0
0
0

2
2
2
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

214000 216000 218000 220000 222000 2240002
1
4
0
0
0

2
1
8
0
0
0

2
2
2
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 37: cover PRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

45000 46000 47000 48000 49000

4
5
0
0
0

4
6
0
0
0

4
7
0
0
0

4
8
0
0
0

4
9
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

45000 46000 47000 48000 49000

4
5
0
0
0

4
6
0
0
0

4
7
0
0
0

4
8
0
0
0

4
9
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

6.6.1.2 Class Timing Dominance

The plots presented in Figure 38 show the mean, the minimum
and the maximum execution times observed while the benchmark tasks
execute (1) in the maximum interference scenario (i.e. under FEAH
instructions’ interference), as a continuous line in a dark grey region,
and (2) under interference of instructions of classes other than FEAH, as

132

superposed dashed lines on light grey regions. The benchmark tasks’ solo
execution times are highlighted as a straight dotted line, for slowdown
evaluation purposes. Each of the employed execution time samples
is composed of 1000 measurements and was replicated 15 times. The
plots evidence that the class timing dominance property holds when
the PRS is used, since benchmarks’ execution times produced in the
maximum interference scenario consistently dominate those yielded
under interference of instructions of classes other than FEAH. Class
timing dominance plots associated with the other benchmark tasks
considered in this work can be found in Appendix B.

Figure 38: PRS class timing dominance analysis

0
5

0
0

0
0

1
5

0
0

0
0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) bsort

0
4

0
0

0
8

0
0

0
1

2
0

0
0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(b) bs

0
5

0
0

0
0

1
5

0
0

0
0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) cnt

0
1

0
0

0
0

3
0

0
0

0
5

0
0

0
0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) cover

133

6.6.1.3 Behavioural Timing Dominance

The plots shown in Figure 39 present the mean, the minimum
and the maximum execution times observed while the benchmark tasks
are executed (1) in a large number of distinct interference conditions
(see Section 6.5 for details), as a continuous line in a light grey region,
and (2) in the maximum interference scenario, as a straight continuous
line surrounded by dashed lines. Approximately 25000 scenarios were
evaluated using samples composed of 100 execution times each, and
therefore only those that produce the top-1000 highest mean execution
times are presented for improving plots’ readability. Benchmark tasks’
solo execution time is highlighted as a straight dotted line, for slowdown
evaluation purposes. The plots evidence that the behavioural timing
dominance property holds when the PRS is used, since benchmarks’
execution time distributions produced in the maximum interference
scenario consistently dominate those observed in numerous distinct
execution conditions. Behavioural timing dominance plots associated
with the other benchmarks can be found in Appendix B.

6.6.1.4 Interference Balancing

Table 2 presents, for each of the considered benchmark tasks, its
solo execution time and the slowdown factor observed for its average
execution times in the maximum interference scenario in relation to solo
execution. This information is presented for both the processor executing
in measurement mode, i.e. with logical units producing maximum
latencies, and under normal execution conditions. Based on its analysis,
it is evident that the interference balancing property does not acceptably
hold when the PRS is employed. This is so because the slowdown
factors experienced by the measured thread in the maximum interference
scenario largely exceed the total number of threads. Consider, for
instance, the execution times yielded for the bsort benchmark, whose
solo execution takes ≈ 30000 clock cycles to complete. Taking into
account that a multithread design with t threads enables t tasks being
executed on the same core, the ideal maximum slowdown factor for
each of the threads also equals t. For this reason, if the interference
balancing property held ideally in the evaluated dual-thread pipeline,
then the bsort benchmark would take ≈ 60000 clock cycles to execute in
the maximum interference scenario. However, its mean execution time
reaches values as high as ≈ 190000 cycles. Such slowdown is observable

134

Figure 39: PRS behavioural timing dominance analysis

0
5

0
0

0
0

1
5

0
0

0
0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) bsort
0

4
0

0
0

8
0

0
0

1
2

0
0

0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(b) bs

0
5

0
0

0
0

1
5

0
0

0
0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) cnt

0
1

0
0

0
0

3
0

0
0

0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) cover

because, despite scheduling is uniform among threads, some may execute
low-interference instructions (e.g. NOOPs) while others execute highly-
interfering ones (e.g. MULTs). This fact causes the processing provision
to become unbalanced, allowing threads’ execution times to be largely
increased due to uncontrolled inter-thread interference.

6.6.1.5 Typical Scenario Slowdown

The plots shown in Figure 40, whose reading is similar to that of
the behavioural timing dominance plots of Section 6.6.1.3, compare the
distributions of 1000 execution times obtained while each benchmark
executes under interference of real tasks (the same set of benchmarks)
against those of solo execution and of the maximum interference scenario.
Their analysis shows that the slowdown factor threads experience under

135

Task
Measurement mode Execution mode
Solo Maximum Solo Maximum

execution slowdown execution slowdown

bsort 29967 6.35 23352 8.15
isort 25946 6.45 20762 8.06
bs 1460 7.00 1310 7.80

mmult 54292 5.68 36692 8.40
cnt 32802 6.40 25602 8.20
cover 5377 7.93 5377 7.93
crc 10092 7.31 9372 7.87

expint 36896 6.51 31588 7.61
fdct 56074 5.99 41540 8.09
fibcall 4457 7.87 4457 7.87
fir 65640 7.21 60614 7.81

jn cmpl 4916 7.74 4812 7.91
ns 29244 6.39 22437 8.33

prime 16017 6.71 14392 7.47

Table 2: PRS maximum slowdown

typical execution conditions while using the PRS is acceptable, i.e.
approximates the ideal value t, despite it proves higher in the maximum
interference scenario. Consider for instance the bsort benchmark task
(see Figure 40(a)), which takes ≈ 30000 clock cycles to execute solo.
Its average execution time in typical execution conditions remain close
to ≈ 51000 cycles, and its typical slowdown factor is hence potentially
lower than t. Similar plots, associated with other benchmark tasks, can
be found in Appendix B. Summarized information on typical scenario
slowdowns is presented in Table 3, which shows, for each benchmark
task, its solo execution time and the maximum slowdown factor it was
observed to experience in the evaluated typical scenarios – considering
their execution both in measurement mode and in normal mode.

136

Figure 40: PRS typical scenario slowdown analysis

0
5

0
0

0
0

1
5

0
0

0
0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) bsort

0
4

0
0

0
8

0
0

0
1

2
0

0
0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(b) bs

0
5

0
0

0
0

1
5

0
0

0
0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) cnt

0
2

0
0

0
0

4
0

0
0

0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) cover

137

Task
Measurement mode Execution mode

Solo Typical Solo Typical
execution slowdown execution slowdown

bsort 29967 1.71 23352 2.19
isort 25946 1.76 20762 2.20
bs 1460 1.90 1310 2.12

mmult 54292 1.49 36692 2.20
cnt 32802 1.71 25602 2.19
cover 5377 2.16 5377 2.16
crc 10092 2.03 9372 2.18

expint 36896 1.81 31588 2.11
fdct 56074 1.65 41540 2.23
fibcall 4457 2.17 4457 2.17
fir 65640 2.00 60614 2.16

jn cmpl 4916 2.11 4812 2.16
ns 29244 1.67 22437 2.17

prime 16017 1.84 14392 2.05

Table 3: PRS typical slowdown

138

6.7 INTERFERENCE-REGULATED SCHEDULER (IRS)

For tackling the interference balancing issue observed for the
PRS in Section 6.6.1.4, we propose and evaluate in this section a novel
randomized thread scheduler which is expected to (1) limit the timing
effects of maximum inter-thread interference, while ideally (2) conserving
typical scenario slowdowns observed using the PRS. The proposed
thread scheduler, referred to as Interference-Regulated Scheduler (IRS),
is based on an inter-thread interference detection logic coupled to a
credit-based schedulability regulator. The interference detection logic
it uses identifies in-flight instructions’ states, i.e. pipeline stages’ and
inter-stage buffers’ states, that characterize inter-thread interference.
A credit-based eligibility regulator then uses this detection logic to
account for interference as execution evolves, and temporarily suspends
the (randomized) selection of high-interfering threads for balancing the
provision of processing resources. The following sections present relevant
concepts and details of the IRS implementation.

6.7.1 Thread States

We consider that (A) a ready thread is a thread which was
released and is therefore eligible to be scheduled into the pipeline, (B) a
suspended thread is a ready thread that was suspended by the scheduler
for regulation purposes, (C) a halted thread is one that executed a HALT
instruction and is therefore temporally or permanently reset due to
task completion, and (D) a stopped thread is one that is either not yet
released or has been halted, and is therefore not eligible for scheduling.

6.7.2 Inter-Thread Interference Detection

The interference detection logic used by the IRS is formally
defined according to the following set of statements:

• A stage si is considered to be blocked when its processing is
finished, its output buffer is full, and the following stage si+1 is
currently either in busy or in blocked state.

• A thread ti is considered to be blocked on a stage si when si is
blocked while executing an instruction of ti.

• A thread ti is said to be blocking a stage si when one of its
instructions is causing si to be blocked, either directly or indirectly.
Indirect blocking refers to stages whose processing is blocked
because a contiguous chain of posterior stages are blocked.

139

• Finally, a thread t2 is considered to be interfering with a thread t1
when an instruction of t2 is being executed on a stage s2 while an
instruction of t1 is executing on a stage s1 previous to s2 which is
currently being blocked by t2, either directly or indirectly.

We highlight the existence of a recurrence characteristic in the
proposed interference detection logic, since we consider interference
occurs when a thread’s instruction is avoiding another thread’s
instruction to proceed in the pipeline due to direct or indirect stage
blocking. Let, for instance, s1 and s2 be two consecutive pipeline stages
executing instructions of threads t1 and t2, respectively. We consider s1
is blocked if (1) its processing is completed, (2) its output buffer is full,
and (3) s2 is busy or blocked by a posterior stage. If s2 is currently
busy then t1 is considered to be under interference of t2, but if s2 is
currently blocked then t1 is considered to be under interference of the
thread that is, either directly or indirectly, blocking thread t2.

6.7.3 Credit-Based Schedulability Regulator

Credit-based regulators are often used to achieve fairness in
sharing hardware elements among multiple clients (e.g. buses). Such
regulators periodically allocate credits for each client, and account for
their consumption as utilization evolves for deciding on granting or
delaying requests (AKESSON; STEFFENS; GOOSSENS, 2009; SLIJEPCEVIC

et al., 2017b). The credit-based regulator used in our scheduler consists
of a set of t credit accounting and schedulability decisioning mechanisms
running in parallel, one for each of the possible number of active threads
(excluding the zero case), where t is the total number of threads. It is
characterized, for each number of active threads a ∈ [1..t], by credit
periods Cprda, initial credit values Cinia, minimum and maximum
credit values Cmina and Cmaxa, and budget credits Cbdga.

Each thread z ∈ [1..t] is associated to a set of t credit accumulator
registers Cacca,z, which are (A) reinitialized to Cinia when thread
z is stopped, (B) permanently enforced to assume values such that
Cmina ≤ Cacca,z ≤ Cmaxa, (C) decremented on every clock cycle in
which thread z is not stopped and is interfering with any thread, and
(D) increased by Cbdga every time the Cprda regulation period elapses
while the associated thread is not stopped. Whenever Cacca,z ≤ 0,
thread z is suspended if and only if a threads are currently active.
Among the eligible threads, scheduling is performed based on random
numbers with approximately uniform distribution – i.e. all have the
same approximate chance of being scheduled next into the pipeline.

140

Each parameter of the IRS affects its functioning in a distinct
manner. Cbdga and Cprda affect the speed and frequency with which
threads’ credits are restored, respectively. Cinia defines the threads’
credit at the moment they are released. Cmina influences the credit
deficits threads can be subject due to pre-consumption (which occur
because suspensions do not flush in-flight instructions), after their budget
is restored – where zero indicates the threads obtain their full budgets
on restores and negative values allow their budgets being pre-consumed
on suspensions. Finally, Cmaxa affects the highest credit a thread can
accumulate when low consumption is observed.

Most of the IRS’s parameters should be either fixed or derived
in function of others’ values, for granting threads’ timing certain
fundamental properties. Cinia should be set to the same value as
Cmina, for ensuring threads cannot receive budgets higher than others’
by frequently restarting execution. Cmaxa should be set to Cprda, for
ensuring low-interference threads can accumulate credit for spending
at most an entire credit period interfering on others. Finally, Cbdga
should be set as Cbdga = Cprda

a to ensure that, when a threads are
active, any individual thread can receive budget for spending at most
1
a of the credit period inducing interference. Moreover, when a single
thread is active (i.e. when a = 1) it should be continuously scheduled
into the pipeline, which can be done by assigning Cmin1 = Cprd1 = 1.
Consequently, for the dual-thread case (i.e. with t = 2) only parameters
Cmin2 and Cprd2 values must be defined.

We show in Figure 41 traces of the IRS credit consumption and
restoration patterns, for threads T1 and T2, observed during 5000-cycle
slices of simulated executions on the multithread pipeline. The software
task used is bsort and scheduler’s parameters are set as Cmin2 = −50
and Cprd2 = 110, hence (1) every Cprd2 = 110 clock cycles each thread
receives Cbdg2 = 55 credit units, (2) threads can accumulate up to
Cmax2 = 110 credit units, and (3) threads can pre-consume up to
−Cmin2 = 50 credit units while suspended (since in-flight instructions
are not flushed on suspensions). In the trace shown in Figure 41(a)
the bsort task is executed on both threads, which can be regarded
as a typical execution scenario since real tasks are being executed
on both threads. The trace shows that, during most of the analysed
period, both threads remain schedulable (have credit greater than
zero). This indicates that, in this case, random thread selection is
sufficient for balancing the allocation of processing among threads. In
the trace shown in Figure 41(b) the bsort task is executed on T1 in
the maximum interference scenario, i.e. with T2 permanently executing

141

ghost instructions of the FEAH interference class. The trace shows that
T1 remains almost permanently schedulable, since it does not induce
strong interference on T2’s execution. On the other hand, T2 quickly
consumes its credit as soon as it is restored, remaining non-eligible
for scheduling during most of the analysed period, hence limiting the
interference T2 is capable of inducing on T1’s execution.

Figure 41: IRS credit consumption traces

5000 6000 7000 8000 9000 10000

−
5

0
0

5
0

1
0

0

Time

C
re

d
it

T1 T2

(a) Typical scenario

5000 6000 7000 8000 9000 10000

−
5

0
0

5
0

1
0

0

Time

C
re

d
it

T1 T2

(b) Maximum interference scenario

6.7.4 Evaluation

This section shows the results obtained by applying the evaluation
method proposed in Section 6.5 on the execution times of benchmark
tasks executed on the multithread pipeline with the IRS, together with
comparisons with those obtained using the PRS. The measurements for
this section’s evaluations were taken using parameters Cmin2 = −50
and Cprd2 = 110. These values were defined based on an empirical
assessment that mainly envisioned the production of MBPTA-analysable
execution time distributions. Optimized parameter calibration and
detailed analyses of the sensitivity of execution times’ analysability to
IRS parameters are subjects for future works.

142

6.7.4.1 Maxima Analysability

Figures 42 to 45 show the MBPTA applicability evaluation
artefacts presented in Section 2.5, for samples of 50000 measurements
of the benchmarks’ execution times. These plots’ analysis evidence
that the maxima analysability property can be considered to hold
when the IRS is used, since in the maximum interference scenario all
MBPTA applicability requirements can be deemed being acceptably
met. Equivalent analysability evaluation plots associated with other
benchmark tasks can be found in Appendix B.

Figure 42: bsort IRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

66000 66400 66800 67200

6
6
0
0
0

6
6
5
0
0

6
7
0
0
0

6
7
5
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

66400 66600 66800 67000 67200 67400

6
6
4
0
0

6
6
8
0
0

6
7
2
0
0

6
7
6
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 43: bs IRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

3600 3700 3800 3900

3
5
0
0

3
6
0
0

3
7
0
0

3
8
0
0

3
9
0
0

4
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

3600 3700 3800 3900

3
6
0
0

3
7
0
0

3
8
0
0

3
9
0
0

4
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 44: cnt IRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

72800 73200 73600 74000

7
2
6
0
0

7
3
0
0
0

7
3
4
0
0

7
3
8
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

73000 73200 73400 73600 73800 740007
3
0
0
0

7
3
2
0
0

7
3
4
0
0

7
3
6
0
0

7
3
8
0
0

7
4
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

143

Figure 45: cover IRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

12200 12400 12600 12800

1
2
0
0
0

1
2
2
0
0

1
2
4
0
0

1
2
6
0
0

1
2
8
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

12200 12400 12600 12800

1
2
2
0
0

1
2
4
0
0

1
2
6
0
0

1
2
8
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

6.7.4.2 Class Timing Dominance

The plots shown in Figure 46 present the mean, the minimum and
the maximum execution times observed while the benchmarks execute
(1) in the maximum interference scenario (i.e. under interference of
FEAH instructions), as a continuous line in a dark grey region, and
(2) under interference of instructions of classes other than FEAH, as
superposed dashed lines on light grey regions. The benchmarks’ solo
execution times are highlighted as a straight dotted line, for slowdown
evaluation purposes. Each of the employed execution time samples is
composed of 1000 measurements and was replicated 15 times. The plots
provide evidence that the class timing dominance property holds when
the IRS is used, since tasks’ execution times yielded under interference
of instructions of classes other than FEAH are dominated by those
produced in the maximum interference scenario. Class timing dominance
plots associated with other benchmarks can be found in Appendix B.

6.7.4.3 Behavioural Timing Dominance

The plots presented in Figure 47 show the mean, the minimum
and the maximum execution times observed while the benchmark tasks
are executed (1) in a large number of distinct interference conditions
(see Section 6.5 for details), as a continuous line in a light grey region,
and (2) in the maximum interference scenario, as a straight continuous
line surrounded by dashed lines. Approximately 25000 scenarios were
evaluated using samples composed of 100 execution times, and therefore
only those that produced the top-1000 highest mean execution times
are considered in order to improve plots’ readability. Benchmark
tasks’ solo execution time is highlighted as a straight dotted line, for
slowdown evaluation purposes. The plots provide evidence that the

144

Figure 46: IRS class timing dominance analysis

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) bsort
0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(b) bs

0
2

0
0

0
0

6
0

0
0

0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) cnt

0
4

0
0

0
8

0
0

0
1

2
0

0
0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) cover

behavioural timing dominance property holds when the IRS is used,
since benchmarks’ execution time distributions produced in numerous
execution conditions are dominated by those observed in the maximum
interference scenario. Behavioural timing dominance plots associated
with all other benchmark tasks can be found in Appendix B.

6.7.4.4 Interference Balancing

Table 4 presents, for each of the considered benchmark tasks, its
solo execution time and the slowdown factor observed for its average
execution times in the maximum interference scenario in relation to
solo execution. This information is presented both with the processor
executing in measurement mode, i.e. with logical units producing
maximum latencies, and under normal execution conditions. Based

145

Figure 47: IRS behavioural timing dominance analysis

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) bsort

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(b) bs

0
2

0
0

0
0

6
0

0
0

0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) cnt

0
4

0
0

0
8

0
0

0
1

2
0

0
0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) cover

on its analysis we observe that the IRS can be deemed to provide
improved interference balancing characteristics, in comparison with
the PRS approach taken as baseline. Consider for instance the bsort
benchmark, which executes solo in ≈ 30000 clock cycles and takes in
average ≈ 70000 cycles to execute in the maximum interference scenario.
The slowdown factor of ≈ 2.5 using IRS can be considered reasonable,
if compared with the t = 2 ideal case, and is in fact much smaller
than that of ≈ 6 observed with PRS (as shown in Section 6.6.1.4). We
hence conclude that the proposed IRS is capable of limiting inter-thread
interference effects in the maximum interference scenario, and does so
without compromising execution times’ analysability through MBPTA.

146

Task
Measurement mode Execution mode
Solo Maximum Solo Maximum

execution slowdown execution slowdown

bsort 29967 2.18 23352 2.80
isort 25946 2.18 20762 2.72
bs 1460 2.32 1310 2.58

mmult 54292 2.26 36692 3.34
cnt 32802 2.20 25602 2.81
cover 5377 2.18 5377 2.18
crc 10092 2.12 9372 2.29

expint 36896 2.11 31588 2.47
fdct 56074 2.17 41540 2.93
fibcall 4457 2.17 4457 2.17
fir 65640 2.13 60614 2.31

jn cmpl 4916 2.15 4812 2.20
ns 29244 2.21 22437 2.89

prime 16017 2.15 14392 2.39

Table 4: IRS maximum slowdown

6.7.4.5 Typical Scenario Slowdown

The plots shown in Figure 48, whose reading is similar to that
of the behavioural timing dominance plots of Section 6.7.4.3, compare
the distributions of 1000 execution times yielded while each benchmark
executes under interference of real tasks (the same set of benchmarks)
against those of solo execution and of the maximum interference scenario.
These plots’ analysis shows that the slowdown factor threads experience
under typical conditions while the IRS is employed proves acceptable (i.e.
approximates the ideal value t), despite in the maximum interference
scenario it is slightly higher. Moreover, it remains very similar to
those witnessed when the PRS is employed instead (see Section 6.6.1.5).
Consider for instance the bsort benchmark task (see Figure 48(a)),
which takes ≈ 30000 clock cycles to execute solo. Its mean execution
time in typical execution conditions remain (A) around ≈ 51000 cycles
when PRS is used, and (B) close to ≈ 50000 cycles using IRS. We

147

hence conclude that the IRS is capable of limiting inter-thread timing
interference without negatively affecting the execution time distributions
observed in typical scenarios. Similar plots, associated with the other
considered benchmark tasks, can be found in Appendix B. Summarized
information on IRS’s typical scenario slowdowns is found in Table 5,
which shows, for each of the benchmark tasks, its solo execution time
and the maximum slowdown factor it was observed to experience in
the evaluated typical scenarios – considering their execution both in
measurement mode and in normal mode.

Figure 48: IRS typical scenario slowdown analysis

0
2

0
0

0
0

5
0

0
0

0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) bsort

0
1

0
0

0
2

0
0

0
3

0
0

0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(b) bs

0
2

0
0

0
0

6
0

0
0

0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) cnt

0
4

0
0

0
8

0
0

0
1

2
0

0
0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) cover

148

Task
Measurement mode Execution mode

Solo Typical Solo Typical
execution slowdown execution slowdown

bsort 29967 1.65 23352 2.11
isort 25946 1.67 20762 2.08
bs 1460 1.90 1310 2.12

mmult 54292 1.41 36692 2.09
cnt 32802 1.63 25602 2.09
cover 5377 2.06 5377 2.06
crc 10092 1.93 9372 2.08

expint 36896 1.74 31588 2.03
fdct 56074 1.56 41540 2.11
fibcall 4457 2.09 4457 2.09
fir 65640 1.88 60614 2.04

jn cmpl 4916 2.02 4812 2.06
ns 29244 1.60 22437 2.09

prime 16017 1.79 14392 1.99

Table 5: IRS typical slowdown

6.8 TIMING ANALYSIS COMPARISON

In this section we present a comparison of the previously evaluated
randomized thread scheduling approaches, namely PRS and IRS, with
respect to the timing analysis of execution times produced in the
maximum interference scenario. For that we assess characteristics
of the samples of size 50000 used in Sections 6.6.1.1 and 6.7.4.1, and
the results obtained from their analysis through MBPTA considering
the application of EVT using both BM and POT.

Table 6 presents, for each benchmark task executing in the
maximum interference scenario using both PRS and IRS, (1) the average,
minimum and maximum execution times observed, (2) the standard
deviation of the produced execution times, and (3) the reduction factor
observed for IRS in relation to PRS with respect to execution times’
average value and standard deviation. From its analysis we conclude
that the proposed IRS doesn’t only produce average execution times

149

that are smaller in relation to those of PRS by a factor that often
proves higher than ≈ 3, but it is also capable of reducing their standard
deviation (dispersion) by factors as high as ≈ 6.

Tables 7 and 8 show information associated with the application
of MBPTA, using BM and POT respectively, on the benchmark tasks’
execution times yielded in the maximum interference scenario using
both PRS and IRS. In line with the recommendations of Chapter 5,
we apply EVT within MBPTA by (1) fitting GEV and GP models by
estimating their location (µ)/threshold (τ), scale (σ) and shape (ξ)
parameters, for evaluating whether execution times’ maxima present
right tails that decrease at least exponentially (i.e. ξ < 0), and (2) using
the Gumbel and Exponential models for effectively producing pWCET
estimates (for BM and POT approaches, respectively). Despite this
approach being likely to introduce some level of pessimism, it also grants
pWCET estimates with higher reliability.

Table 7 presents (1) estimates for the location (µ) and scale (σ),
and 95% confidence intervals for the shape (ξ), of the GEV distribution
adjusted to the samples’ maxima using blocks of size 50, (2) the resulting
pWCET estimates (γ) with exceedance probability 10−15, and (3) the
reduction factors of µ, σ, ξ and γ observed for IRS in relation to PRS.
Similarly, Table 8 presents (1) estimates for the scale (σ) and 95%
confidence intervals for the shape (ξ) of the GP distribution adjusted to
the samples’ maxima that exceed the threshold (τ) defined through GP
estimated quantiles’ mean absolute error minimization (see Section 2.4),
(2) the resulting pWCET estimates (γ) with exceedance probability
10−15, and (3) the reduction factors of τ , σ, ξ and γ observed for IRS
in comparison with the PRS taken as baseline.

From the analysis of Tables 7 and 8, we observe that (A) the
maxima shape (ξ) remains consistently negative and often present no
significant changes for IRS in relation to PRS, and that (B) the reduction
in the execution times’ average values and dispersion IRS provides in
relation to PRS also causes the location (µ)/threshold (τ) and the scale
(σ) of the produced maxima distributions to be reduced by significant
amounts – i.e. by factors as high as ≈ 3 and ≈ 8, respectively. From
(A), it follows that MBPTA application with increased reliability, as
recommended in Chapter 5, is feasible using either PRS or IRS. As a
consequence of both (A) and (B), the yielded pWCET estimates (γ)
are reduced by factors between ≈ 2 and ≈ 4 for IRS in relation to PRS.

1
5
0

Task

Purely Random Scheduler (PRS) Interference-Regulated Scheduler (IRS) Average Std. dev.

Minimum Average Maximum
Standard

Minimum Average Maximum
Standard reduction reduction

deviation deviation factor factor

bsort 177042 190162.90 204373 3328.52 63543 65389.40 67550 496.88 2.91 6.70

isort 153374 167215.53 180977 3152.86 54732 56447.08 58207 464.95 2.96 6.78

bs 7051 10198.62 14026 762.97 2980 3384.42 4021 120.40 3.01 6.34

mmult 290141 307864.95 324885 4212.46 119981 122453.11 125423 863.58 2.51 4.88

cnt 196120 209719.26 225005 3506.17 69946 72023.83 74017 543.62 2.91 6.45

cover 36584 42564.45 49662 1594.51 10698 11731.79 12798 266.60 3.63 5.98

crc 64958 73651.28 83278 2113.36 20131 21443.13 22980 349.24 3.43 6.05

expint 221710 240016.50 256634 3732.31 75395 77892.78 80578 573.00 3.08 6.51

fdct 316381 335702.78 353981 4433.85 119135 121912.48 124838 815.28 2.75 5.44

fibcall 28962 35005.33 41565 1441.93 8731 9671.49 10683 236.53 3.62 6.10

fir 451360 472750.09 494177 5297.45 136084 139858.20 143692 859.87 3.38 6.16

jn cmpl 32162 38022.17 44528 1507.45 9588 10585.87 11707 249.40 3.59 6.04

ns 173568 186781.04 199818 3242.42 62910 64730.35 66745 500.65 2.89 6.48

prime 96192 107327.08 118281 2482.29 32795 34454.97 36032 372.65 3.11 6.66

Table 6: Raw dataset analysis

1
5
1

Task
Purely Random Scheduler (PRS) Interference-Regulated Scheduler (IRS) µ σ ξ γ

Location Scale Shape pWCET Location Scale Shape pWCET reduction reduction reduction reduction

(µ) (σ) (ξ) (γ) (µ) (σ) (ξ) (γ) factor factor factor factor

bsort 197043.18 1467.38 −0.18<−0.13<−0.08 246500 66391.32 199.17 −0.17<−0.12<−0.09 73162 2.97 7.37 1.03 3.37

isort 173774.89 1391.37 −0.15<−0.11<−0.06 220363 57384.97 178.99 −0.15<−0.10<−0.06 63365 3.03 7.77 1.05 3.48

bs 11840.89 339.32 −0.14<−0.10<−0.06 23376 3650.04 59.14 −0.15<−0.11<−0.06 5640 3.24 5.74 0.88 4.14

mmult 316602.25 1791.97 −0.22<−0.17<−0.13 376640 124096.95 236.27 −0.20<−0.16<−0.12 132109 2.55 7.58 1.09 2.85

cnt 216978.71 1563.71 −0.17<−0.13<−0.08 269921 73101.39 202.60 −0.16<−0.12<−0.09 79891 2.97 7.72 1.03 3.38

cover 45890.64 672.54 −0.15<−0.11<−0.06 68715 12287.71 111.24 −0.15<−0.11<−0.07 16163 3.73 6.05 0.96 4.25

crc 78055.75 896.29 −0.19<−0.14<−0.10 108346 22171.84 148.41 −0.15<−0.11<−0.06 27152 3.52 6.04 1.33 3.99

expint 247709.50 1612.69 −0.18<−0.13<−0.09 302618 79079.32 254.26 −0.16<−0.11<−0.07 87546 3.13 6.34 1.19 3.46

fdct 344925.97 1834.47 −0.15<−0.11<−0.07 406950 123460.69 256.84 −0.17<−0.13<−0.08 132338 2.79 7.14 0.86 3.08

fibcall 38022.77 608.41 −0.14<−0.10<−0.06 58455 10166.17 100.13 −0.14<−0.10<−0.05 13617 3.74 6.08 1.01 4.29

fir 483741.73 2175.20 −0.16<−0.11<−0.07 556511 141621.63 363.04 −0.14<−0.09<−0.05 153912 3.42 5.99 1.24 3.62

jn cmpl 41187.75 615.58 −0.14<−0.09<−0.05 62420 11103.45 107.70 −0.15<−0.11<−0.07 14776 3.71 5.72 0.85 4.22

ns 193587.44 1409.31 −0.20<−0.16<−0.11 240208 65742.60 201.77 −0.16<−0.12<−0.08 72666 2.94 6.98 1.36 3.31

prime 112454.55 1063.74 −0.15<−0.10<−0.06 148482 35232.14 152.20 −0.16<−0.11<−0.06 40433 3.19 6.99 0.90 3.67

Table 7: BM timing analysis

1
5
2

Task
Purely Random Scheduler (PRS) Interference-Regulated Scheduler (IRS) τ σ ξ γ

Threshold Scale Shape pWCET Threshold Scale Shape pWCET reduction reduction reduction reduction

(τ) (σ) (ξ) (γ) (τ) (σ) (ξ) (γ) factor factor factor factor

bsort 195246 1701.61 −0.16<−0.13<−0.09 247437 66287 196.26 −0.14<−0.09<−0.03 74036 2.95 8.67 1.47 3.34

isort 171258 1708.18 −0.15<−0.12<−0.08 224021 57176 208.00 −0.16<−0.12<−0.07 63632 3.00 8.21 1.02 3.52

bs 11376 408.17 −0.16<−0.12<−0.08 24519 3547 74.32 −0.18<−0.14<−0.10 5799 3.21 5.49 0.84 4.23

mmult 313515 2276.27 −0.20<−0.16<−0.13 381277 124137 212.83 −0.18<−0.10<−0.03 133365 2.53 10.70 1.66 2.86

cnt 214369 1895.63 −0.17<−0.13<−0.10 272602 73017 227.78 −0.23<−0.16<−0.10 79783 2.94 8.32 0.79 3.42

cover 45005 798.88 −0.16<−0.12<−0.08 69738 12202 117.38 −0.15<−0.09<−0.04 15778 3.69 6.81 1.26 4.42

crc 76189 1224.98 −0.20<−0.17<−0.14 112525 22019 170.88 −0.18<−0.13<−0.09 28170 3.46 7.17 1.27 3.99

expint 246914 1597.18 −0.15<−0.09<−0.03 312745 78622 305.45 −0.15<−0.11<−0.08 88096 3.14 5.23 0.82 3.55

fdct 342108 2307.94 −0.18<−0.14<−0.10 412783 123136 302.83 −0.17<−0.13<−0.09 132377 2.78 7.62 1.03 3.12

fibcall 37119 738.30 −0.16<−0.12<−0.09 59767 10053 115.53 −0.16<−0.12<−0.07 13629 3.69 6.39 1.06 4.39

fir 481733 2418.72 −0.17<−0.12<−0.07 556434 141217 399.72 −0.13<−0.09<−0.05 153868 3.41 6.05 1.28 3.62

jn cmpl 40634 704.29 −0.16<−0.11<−0.06 64138 11016 114.98 −0.15<−0.10<−0.06 14618 3.69 6.13 1.08 4.39

ns 190354 1952.15 −0.19<−0.16<−0.13 248432 65418 238.96 −0.15<−0.11<−0.08 72840 2.91 8.17 1.44 3.41

prime 111370 1154.89 −0.14<−0.10<−0.05 147752 35200 147.99 −0.14<−0.07<−0.01 41952 3.16 7.80 1.37 3.52

Table 8: POT timing analysis

153

6.9 IMPLEMENTATION EFFORT

Developing both the maximum interference scenario and the
interference detection logic we employ in this work have demanded
careful analysis and adaptations. Establishing the maximum interference
scenario required classifying the processor’s instructions with respect
to their maximum potential inter-thread interference, which depends
on the timing of hardware elements used both within and outside
the processing core (e.g. ALU and memory hierarchy). It has also
required hardware adaptations, e.g. for enabling the execution of
ghost instructions and for fixing elements’ latencies to effectively induce
maximum interference. In turn, implementing the interference detection
logic required a careful analysis of the pipeline’s internal dynamics
while traversed by instructions belonging to different threads. These
tasks are critical, and their execution can also prove quite challenging,
for implementing the approaches proposed in this work in processors
equipped with hardware elements of higher complexity.

In terms of hardware complexity/cost, summary information and
a simplified comparison between PRS and IRS is presented in Table 9.
The table shows the number and the percentage increase, for IRS in
relation to PRS, of logic elements, combinational functions and logic
registers used for synthesizing the employed multithread processor with
the proposed thread schedulers, for execution on Altera FPGAs.

Hardware elements
Scheduler

Increase
PRS IRS

Logic elements 19256 20107 4,42%
Combinational functions 17490 18243 4,30%
Logic registers 7648 7988 4,45%

Table 9: Schedulers’ hardware complexity/cost

6.10 CONCLUSION

In this chapter we evaluate whether the application of
randomization techniques to perform thread scheduling on multithread
pipelines can benefit their timing analysis through MBPTA. For that
we (A) designed a simple multithread pipelined core, (B) established the
conditions in which maximum inter-thread interference is observable,
(C) proposed a method to evaluate key properties MBPTA-targeted

154

multithread processors must present, and (D) assessed two distinct
randomized thread scheduling approaches. We first evaluated PRS,
a simple purely-random scheduler, and observed that (i) it leads to
execution times that meet the basic MBPTA applicability requirements,
but also that (ii) it allows threads being severely slowed down in the
maximum inter-thread interference scenario. We then introduced IRS,
a scheduler that employs a credit-based eligibility regulation mechanism
coupled with an inter-thread interference detection logic, and then
observed that (I) it also produces execution times that meet MBPTA’s
basic requirements, (II) it is capable of limiting the delays experienced
by threads due to inter-thread interference, and consequently (III)
the resulting pWCET estimates produced through MBPTA when IRS
is used are also substantially reduced. We have also observed that,
when randomized scheduling is employed, the threads’ slowdown in
typical scenarios – i.e. under interference of real tasks – remains within
acceptable ranges when using either PRS or IRS.

With that, we conclude that (A) time-randomization is, in
principle, capable of benefiting the analysability of multithread pipelines
through MBPTA when applied at the thread scheduling level, by leading
to execution times that meet its basic requirements in the scenario of
maximum inter-thread interference; (B) in the presence of instructions
whose latencies in traversing a randomly scheduled multithread pipeline
largely differ (e.g. NOOPs and MULTs), a great unbalancing in the
allocation of processing power is observed if no mechanism is employed
to limit inter-thread interference effects; and (C) credit-based eligibility
regulation is a plausible approach for limiting the delays experienced by
threads due to inter-thread interference, which was evidenced to reduce
the mean execution times and to limit their dispersion in comparison
with the baseline purely random scheduling approach (even in the
maximum inter-thread interference scenario).

We highlight that processors whose architectures differ from
the one employed in this work can produce execution times whose
characteristics deviate from those we have observed. For this reason, we
strongly recommend the evaluation method proposed in Section 6.5 being
applied on future multithread pipeline designs targeted to probabilistic
timing analysis, as a means to produce evidence that their behaviour
is in fact compatible with their utilization within MBPTA. We also
underline that the analysability evidence shown in this work cannot be
used as general proof for supporting the use of MBPTA under similar
conditions. The production of applicability evidence is an integral part
of MBPTA, and it must hence be performed on a per-application basis.

155

7 FINAL REMARKS

The complexity of RTSs is growing fast as modern applications
emerge, hence causing the demand for WCET-analysable processing
power to increase accordingly. Modern processors capable of delivering
such high processing capacity employ numerous acceleration hardware
elements, which cause their behavioural complexity to easily prove
intractable within traditional timing analysis techniques. This is so
because these methods must deal with hardware models that either
(1) present complexity that grow fast as acceleration mechanisms
are introduced, which easily hampers such techniques’ computational
feasibility, or (2) must conservatively abstract hardware constructive
details for ensuring computational feasibility, which potentially leads to
high pessimism on the produced WCET estimates. Static approaches
are also extremely sensitive to hardware changes, since even small
design improvements require large efforts for adjusting the models and
the analysis process accordingly (WILHELM et al., 2008).

A recently proposed methodology, called Measurement-Based
Probabilistic Timing Analysis (MBPTA), promises improving this
scenario by replacing the joint hardware-software analysis of static
approaches with probabilistic analyses of execution time measurements.
Its basic principle is the application of Extreme Value Theory (EVT),
a statistics framework designed to estimate the probabilities associated
with the occurrence of unusual extreme events, on the execution times
of RTSs’ tasks. One of the most attractive aspects of MBPTA is its
potentiality to abstract hardware complexity, which could ultimately
enable arbitrarily complex processors being used within RTSs. It is
hence emerging as an attractive solution for industry, also due to
its relatively low cost and complexity in comparison with traditional
approaches (HERNANDEZ et al., 2015; CAZORLA et al., 2016). In
particular, the emergence of modern applications such as autonomous
cars and Internet of Things (IoT) devices may lead to significant
increases on the demand for high-performance processors suitable for
running RTSs, i.e. to which reliable and affordable timing analysis
techniques are readily available (SLIJEPCEVIC et al., 2016).

For being applied, MBPTA imposes a number of requirements
on the conditions under which measurements are taken, and also on
the observed data. It requires, for instance, (A) measured execution
times to present independence and identical distribution characteristics,
(B) measurements being taken under either realistic or pessimistic

156

conditions with respect to the system’s real operation environment, and
(C) the observed execution times’ maxima adhering to the extreme value
distributions used by EVT (LIMA; DIAS; BARROS, 2016).

Time-randomized processors are built replacing, by design,
internal information that influence execution times – which are typically
deterministic or speculative in traditional processor designs – with
(pseudo-)random numbers. For instance, such processors may use
(1) cache memories with random placement and/or replacement
policies (KOSMIDIS et al., 2013a), (2) bus arbiters with randomized
client scheduling (LAHIRI; RAGHUNATHAN; LAKSHMINARAYANA, 2001;
JALLE et al., 2014), and/or (3) NoCs whose routing employs random
decisions (SLIJEPCEVIC et al., 2016). Time-randomized processors were
recently shown to better fit the needs of probabilistic timing analysis
techniques, since they produce execution times whose maxima often
proves modellable through the extreme value distributions used by
EVT (CAZORLA et al., 2013b; KOSMIDIS et al., 2016).

The research whose outcomes are presented in this thesis produced
contributions in the context of MBPTA on two distinct fronts.

Firstly, we proposed methods for evaluating the reliability of
probabilistic WCET estimates (pWCETs) yielded by MBPTA. The
proposed methods are based on collecting large execution time samples
(i.e. of size 108) and then comparing (1) pWCET estimates against the
largest observed execution times, and (2) pWCET exceedance densities
against their expected values. Reliability evaluations led us to conclude
that EVT probabilistic models intended to yield more precise bounds
(i.e. GEV and GP) may often lead to underestimations. For this reason,
recommendations were drawn that precise models should be used mainly
for diagnosing execution times’ maxima tails’ shapes, and tail density
upper-bounding models (i.e. Gumbel and Exponential) should then be
used for effectively deriving reliable pWCETs.

Secondly, we evaluated whether randomized thread scheduling
approaches are capable of benefiting the application of MBPTA to
analyse multiple tasks which are simultaneously executed on multithread
pipelines. For that we evaluated (1) a baseline scheduler that employs
a purely random policy, and (2) an interference-regulated scheduler
that employs a credit-based eligibility regulation mechanism coupled
to an inter-thread interference detection logic. Evaluations led us to
conclude that (A) thread scheduling randomization potentially enables
multithread pipelines producing EVT-suitable execution times, but that
(B) purely random scheduling does not balance interference-related
delays, leading to unbalanced processing provision, while (C) credit-

157

based regulation is potentially a suitable approach for limiting inter-
thread interference on time-randomized multithread pipelines without
compromising analysability through MBPTA.

This thesis provides valuable contributions in the context
of MBPTA, both by evaluating and improving the reliability of
its outcomes and by assessing the introduction of randomization at
hardware level for facilitating its application. Particularly, our reliability
evaluation methods showed that MBPTA requires probabilistic models
being used such that pWCET estimates are likely to upper-bound (and
not only estimate) the maximum observable execution times. Moreover,
the herein presented work explored original research paths involving
multithreading, a technique that is often avoided in RTSs’ design
since it either potentially (1) leads to extreme pessimism in WCET
estimation through static approaches, or (2) requires timing guarantees
being provided only for a single thread whose execution is generally
prioritized. The presented work can therefore be considered to provide
relevant contributions, which mainly targeted increasing the reliable
applicability of MBPTA and promoting its usability for the timing
analysis of RTSs executed on multithread pipelines.

7.1 GENERAL CONSIDERATIONS

Despite static timing analysis techniques being capable of solving
numerous WCET-related issues even for relatively complex processors
(WILHELM et al., 2008), they lack composability characteristics needed
for being applied in modern (highly complex) hardware platforms. Since
temporal variability is vast in such processors due to numerous hardware-
and software-related aspects, timing analysis through statistical tools
is potentially adequate and promising. Moreover, it is a relatively
common practice in other fields determining safety margins through
statistical techniques such as EVT (COLES, 2001), which supports the
potential adequacy of the approach. However, intrinsic differences
between computing systems and other phenomena in which EVT has
been traditionally applied must be handled carefully.

The main challenges of MBPTA arise from the fact that typical
execution environments give no clues regarding execution times’
behaviour under extreme conditions. This obligates computing systems
being induced into scenarios that can be deemed either representative or
pessimistic with respect to the worst-case environment during execution
times’ sampling – which usually proves quite hard. In this regard, there

158

are a number of controllable factors – mainly associated with tasks’
input data – that largely influence execution times and that have no
direct counterpart in other fields where EVT is used. These factors
must therefore be carefully manipulated for obtaining measurements
that, when analysed through EVT, in fact lead to safety margins that
are globally reliable in relation to tasks’ WCETs. On the other hand,
there is also a significant benefit MBPTA has in relation to other areas
in which EVT is used. In other fields, the collection of arbitrarily large
samples easily proves too hard and costly, or can even be infeasible.
This prevents practitioners from performing experiments that enable
evidencing and/or quantifying the reliability of safety margins produced
using EVT. On the other hand, large execution time samples can be
collected with relatively small cost, enabling evaluations such as those
proposed in this thesis to be performed.

The empirical experiments performed during the herein presented
research using time-randomized processors suggest that their use in
fact make it easier applying MBPTA. The timing variability that
arises using randomization techniques produces smoother execution time
distributions in comparison with traditional designs, which ultimately
leads to maxima more easily modellable through EVT. Moreover, in
this work time-randomization proved successful in enabling MBPTA
being applied on a processor whose design is hardly analysable through
traditional approaches (i.e. using a multithread pipeline). In such
designs, static timing analysis often needs assuming extremely unrealistic
and pessimistic local worst-cases, leading to extreme pessimism on the
produced WCET upper-bounds. Randomization allowed us using a
regulation mechanism whose static analysis would be challenging, but
which enabled pWCET estimates with acceptable slack in relation
to ideal values being transparently produced. This suggests that
randomization techniques are indeed promising in enabling hardware
designs of increasing complexity being handled within MBPTA, for
totally abstracting their constructive details. A clear drawback of time-
randomization regards performance reductions that may arise, e.g.,
as work-conserving resource arbitration policies are randomized. We
should consider, however, that (A) reasonable performance reductions
are an acceptable price for enabling the production of reliable pWCET
bounds, and (B) penalties also exist when static methods are used in
timing analysis, which show up mainly in the form of sub-utilization.

159

7.2 PUBLICATIONS

The following papers were published based on the research work
whose outcomes are presented in this thesis:

SILVA, K. P.; ARCARO, L. F.; OLIVEIRA, R. S. de. On Using
GEV or Gumbel Models when Applying EVT for Probabilistic WCET
Estimation. In: Real-Time Systems Symposium 2017 (RTSS’17).
IEEE, 2017. p. 220–230.

ARCARO, L. F.; SILVA, K. P.; OLIVEIRA, R. S. de. On the
Reliability and Tightness of GP and Exponential Models for Probabilistic
WCET Estimation. ACM Transactions on Design Automation of
Electronic Systems (TODAES), ACM, v. 23, p. 39:1–39:27, 2018.

ARCARO, L. F.; SILVA, K. P.; OLIVEIRA, R. S. de. A
Reliability Evaluation Method for Probabilistic WCET Estimates
based on the Comparison of Empirical Exceedance Densities. In:
Brazilian Symposium on Computing Systems Engineering
2018 (SBESC’18) – Work-in-Progress. IEEE, 2018.

The following papers were submitted for publication based on
the research work presented in this thesis:

ARCARO, L. F.; SILVA, K. P.; OLIVEIRA, R. S. de. On
Using Randomized Scheduling on Multithread Pipelines for Benefiting
Probabilistic Timing Analysis. ACM Transactions on Embedded
Computing Systems (TECS), ACM. Submitted on January 14, 2019.

7.3 FUTURE WORK

There are many directions in which the herein presented research
can be extended in future works, especially concerning the introduction
of randomization at hardware level for benefiting MBPTA. For the IRS
element proposed in Chapter 6 we consider, for instance, performing
(A) further empirical evaluations using processors with e.g. more than
two threads and/or multiple cores, (B) optimized calibrations and
sensitivity analyses of its parameters, (C) assessments regarding the
use of unbalanced credits between threads e.g. for providing increased
performance and/or reduced worst-case slowdown for particular threads,
and (D) the derivation of formal/theoretical explanations for properties

160

shown through empirical data in this thesis. We also consider (E)
designing a randomized thread scheduler in which the probabilities of
threads being chosen are smoothly decreased as they induce interference
on others, instead of using binary suspensions as performed by the
proposed scheduler, (F) scaling time-randomized processors equipped
with multithread pipelines into multi-/many-core configurations, and
evaluating the limitations such designs are subject with respect to
execution time increases observed in the maximum interference scenario,
(G) coupling peripherals to time-randomized processors, and evaluating
whether timing analysability or performance limitations may arise from
their introduction, and (H) evaluating the design of a time-randomized
multi-/many-core processor equipped with a stand-alone task scheduler,
which could prove capable of executing multiple tasks in parallel while
enabling probabilistic timing guarantees being provided for all of them.

7.4 ACKNOWLEDGEMENT

This research was partially funded by CAPES (Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior) and CNPq (Conselho
Nacional de Desenvolvimento Cient́ıfico e Tecnológico).

161

REFERENCES

ABELLA, J. et al. On the Comparison of Deterministic and
Probabilistic WCET Estimation Techniques. In: Euromicro
Conference on Real-Time Systems 2014 (ECRTS’14). [S.l.]:
IEEE, 2014. p. 266–275.

ABELLA, J. et al. WCET analysis methods: Pitfalls and challenges on
their trustworthiness. In: International Symposium on Industrial
Embedded Systems 2015 (SIES’15). [S.l.]: IEEE, 2015. p. 1–10.

ABELLA, J. et al. Measurement-Based Worst-Case Execution Time
Estimation Using the Coefficient of Variation. ACM Transactions
on Design Automation of Electronic Systems (TODAES),
ACM, v. 22, p. 72:1–72:29, 2017.

ABELLA, J. et al. Understanding MBPTA and its
requirements on program instructions. [S.l.], 2013. 11 p.

ABELLA, J. et al. Heart of Gold: Making the Improbable Happen to
Increase Confidence in MBPTA. In: Euromicro Conference on
Real-Time Systems 2014 (ECRTS’14). [S.l.]: IEEE, 2014. p.
255–265.

AGIRRE, I. et al. Fitting Software Execution-Time Exceedance into a
Residual Random Fault in ISO-26262. IEEE Transactions on
Reliability, IEEE, p. 14, 2018.

AKESSON, B. et al. Composability and Predictability for Independent
Application Development, Verification, and Execution. In: HÜBNER,
M.; BECKER, J. (Ed.). Multiprocessor System-on-Chip. [S.l.]:
Springer, 2011. p. 25–56.

AKESSON, B.; STEFFENS, L.; GOOSSENS, K. Efficient Service
Allocation in Hardware Using Credit-Controlled Static-Priority
Arbitration. In: International Conference on Embedded and
Real-Time Computing Systems and Applications 2009
(RTCSA’09). [S.l.]: IEEE, 2009. p. 59–68.

ALFKE, P. Efficient Shift Registers, LFSR Counters, and
Long Pseudo-Random Sequence Generators. [S.l.], 1996. 6 p.

162

ALTMEYER, S. et al. Evaluation of Cache Partitioning for Hard
Real-Time Systems. In: Euromicro Conference on Real-Time
Systems 2014 (ECRTS’14). [S.l.]: IEEE, 2014. p. 15–26.

ANWAR, H. A Probabilistically Analyzable Cache to Estimate
Timing Bounds. 85 p. Dissertação (Mestrado), 2016.

ARCARO, L. F.; SILVA, K. P.; OLIVEIRA, R. S. de. A Reliability
Evaluation Method for Probabilistic WCET Estimates based on the
Comparison of Empirical Exceedance Densities. In: Brazilian
Symposium on Computing Systems Engineering 2018
(SBESC’18). [S.l.]: IEEE, 2018. p. 6.

ARCARO, L. F.; SILVA, K. P.; OLIVEIRA, R. S. de. On the
Reliability and Tightness of GP and Exponential Models for
Probabilistic WCET Estimation. ACM Transactions on Design
Automation of Electronic Systems (TODAES), ACM, v. 23, p.
39:1–39:27, 2018.

BAETONIU, C. High Speed True Random Number
Generators in Xilinx FPGAs. 2004. Dispońıvel em:
<http://forums.xilinx.com/xlnx/attachments/xlnx/Virtex/24484/1/High
Speed True Random Number Generators in Xilinx FPGAs.pdf>.

BALKEMA, A. A.; HAAN, L. de. Residual Life Time at Great Age.
The Annals of Probability, Institute of Mathematical Statistics,
v. 2, p. 792–804, 1974.

BALL, T.; LARUS, J. R. Branch Prediction for Free. In: Conference
on Programming Language Design and Implementation 1993
(PLDI’93). [S.l.]: ACM, 1993. p. 300–313.

BEIRLANT, J. et al. Statistics of Extremes: Theory and
Applications. [S.l.]: Wiley, 2004. 504 p. (Wiley Series in Probability
and Statistics).

BENEDICTE, P. et al. RPR: A Random Replacement Policy with
Limited Pathological Replacements. In: Symposium on Applied
Computing 2018 (SAC’18). [S.l.]: ACM, 2018. p. 593–600.

BENEDICTE, P. et al. A confidence assessment of WCET estimates
for software time randomized caches. In: International Conference
on Industrial Informatics 2016 (INDIN’16). [S.l.]: IEEE, 2016.
p. 90–97.

163

BENEDICTE, P. et al. Modelling the confidence of timing analysis for
time randomised caches. In: International Symposium on
Industrial Embedded Systems 2016 (SIES’16). [S.l.]: IEEE,
2016. p. 1–8.

BUI, B. D.; CACCAMO, M.; PELLIZZONI, R. A Slot-Based
Real-Time Scheduling Algorithm for Concurrent Transactions in NoC.
In: International Conference on Embedded and Real-Time
Computing Systems and Applications 2011 (RTCSA’11).
[S.l.]: IEEE, 2011. v. 1, p. 329–338.

BUI, D. et al. Temporal isolation on multiprocessing architectures. In:
Design Automation Conference 2011 (DAC’11). [S.l.]: ACM,
2011. p. 274–279.

BURNS, A.; EDGAR, S. Predicting computation time for advanced
processor architectures. In: Euromicro Conference on Real-Time
Systems 2000 (ECRTS’00). [S.l.]: IEEE, 2000. p. 89–96.

ČAKAREVIĆ, V. et al. Characterizing the resource-sharing levels in
the UltraSPARC T2 processor. In: International Symposium on
Microarchitecture 2009 (MICRO-42). [S.l.]: ACM, 2009. p.
481–492.

CAZORLA, F. J. et al. PROXIMA: Improving Measurement-Based
Timing Analysis through Randomisation and Probabilistic Analysis. In:
Euromicro Conference on Digital System Design 2016
(DSD’16). [S.l.]: IEEE, 2016. p. 276–285.

CAZORLA, F. J. et al. Reconciling Time Predictability and
Performance in Future Computing Systems. IEEE Design & Test,
IEEE, PP, p. 1, 2017.

CAZORLA, F. J. et al. PROARTIS: Probabilistically Analyzable
Real-Time Systems. ACM Transactions on Embedded
Computing Systems (TECS), ACM, v. 12, p. 94:1–94:26, 2013.

CAZORLA, F. J. et al. Upper-bounding Program Execution Time with
Extreme Value Theory. In: International Workshop on
Worst-Case Execution Time Analysis 2013 (WCET’13). [S.l.]:
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013. v. 30, p.
64–76.

164

COLES, S. G. An Introduction to Statistical Modeling of
Extreme Values. 1st. ed. [S.l.]: Springer, 2001. 219 p. (Springer
Series in Statistics).

COLES, S. G.; DIXON, M. J. Likelihood-Based Inference for Extreme
Value Models. Extremes, Springer, v. 2, p. 5–23, 1999.

CONMY, P. R. et al. Measurement-Based Probabilistic Timing
Analysis - From Academia to Space Industry. In: Data Systems In
Aerospace 2015 (DASIA’15). [S.l.: s.n.], 2015. v. 732, p. 61.

CROS, F. et al. Dynamic software randomisation: Lessons learned
from an aerospace case study. In: Design, Automation and Test
in Europe Conference and Exhibition 2017 (DATE’17). [S.l.]:
IEEE, 2017. p. 103–108.

CUCU-GROSJEAN, L. Independence - A misunderstood property of
and for probabilistic real-time systems. In: Real-Time Systems:
the past, the present and the future. [S.l.]: CreateSpace, 2013. p.
29–37.

CUCU-GROSJEAN, L. et al. Measurement-Based Probabilistic Timing
Analysis for Multi-path Programs. In: Euromicro Conference on
Real-Time Systems 2012 (ECRTS’12). [S.l.]: IEEE, 2012. p.
91–101.

CULLMANN, C. et al. Predictability Considerations in the Design of
Multi-Core Embedded Systems. In: Embedded Real Time
Software and Systems Conference 2010 (ERTS’10). [S.l.: s.n.],
2010. v. 807, p. 36–42.

DASARI, D. et al. Identifying the sources of unpredictability in
COTS-based multicore systems. In: International Symposium on
Industrial Embedded Systems 2013 (SIES’13). [S.l.]: IEEE,
2013. p. 39–48.

DAVIS, R. I.; BURNS, A.; GRIFFIN, D. On the Meaning of pWCET
Distributions and their use in Schedulability Analysis. In:
International Real-Time Scheduling Open Problems Seminar
2017 (RTSOPS’17). [S.l.: s.n.], 2017. p. 4.

DAVIS, R. I. et al. PROXIMA: A Probabilistic Approach to the
Timing Behaviour of Mixed-Criticality Systems. Ada User Journal
(AUJ), Ada-Europe, p. 118–122, 2014.

165

EDGAR, S. Estimation of Worst-Case Execution Time Using
Statistical Analysis. 193 p. Tese (Doutorado) — University of York,
2002.

EDGAR, S.; BURNS, A. Statistical analysis of WCET for scheduling.
In: Real-Time Systems Symposium 2001 (RTSS’01). [S.l.]:
IEEE, 2001. p. 215–224.

EMBRECHTS, P.; KLÜPPELBERG, C.; MIKOSCH, T. Modelling
Extremal Events: for Insurance and Finance. 1. ed. [S.l.]:
Springer, 2013. 648 p. (Stochastic Modelling and Applied Probability,
v. 33).

FARANDA, D. et al. Numerical Convergence of the Block-Maxima
Approach to the Generalized Extreme Value Distribution. Journal of
Statistical Physics, Springer, v. 145, p. 1156–1180, 2011.

FELLER, W. An Introduction to Probability Theory and its
Applications. 3. ed. [S.l.]: Wiley, 1968. 527 p.

FERNANDEZ, G.; CAZORLA, F. J.; ABELLA, J. Consumer
Electronics Processors for Critical Real-Time Systems: a (Failed)
Practical Experience. In: European Congress on Embedded Real
Time Software and Systems 2018 (ERTS’18). [S.l.]: HAL, 2018.
p. 5.

FERNANDEZ, M. et al. Probabilistic timing analysis on
time-randomized platforms for the space domain. In: Design,
Automation and Test in Europe Conference and Exhibition
2017 (DATE’17). [S.l.]: IEEE, 2017. p. 738–739.

FISHER, R. A.; TIPPETT, L. H. C. Limiting forms of the frequency
distribution of the largest or smallest member of a sample.
Mathematical Proceedings of the Cambridge Philosophical
Society, Cambridge University Press, v. 24, p. 180–190, 1928.

GALTON, F. Dice for Statistical Experiments. Nature, Nature
Publishing Group, p. 2, 1890.

GEBHARD, G. Timing Anomalies Reloaded. In: International
Workshop on Worst-Case Execution Time Analysis 2010
(WCET’10). [S.l.]: Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2010. v. 15, p. 1–10.

166

GIL, S. J. et al. Open Challenges for Probabilistic Measurement-Based
Worst-Case Execution Time. IEEE Embedded Systems Letters
(ESL), IEEE, PP, p. 4, 2017.

GILLELAND, E.; KATZ, R. W. extRemes 2.0: An Extreme Value
Analysis Package in R. Journal of Statistical Software, v. 72, p. 39,
2016.

GILLELAND, E.; RIBATET, M.; STEPHENSON, A. G. A software
review for extreme value analysis. Extremes, Springer, v. 16, p.
103–119, 2013.

GONZALEZ, A.; LATORRE, F.; MAGKLIS, G. Processor
Microarchitecture: An Implementation Perspective. [S.l.]:
Morgan & Claypool, 2010. 116 p. (Synthesis Lectures on Computer
Architecture).

GRIFFIN, D.; BURNS, A. Realism in Statistical Analysis of Worst
Case Execution Times. In: International Workshop on
Worst-Case Execution Time Analysis 2010 (WCET’10). [S.l.]:
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010. v. 15, p.
44–53.

GUET, F.; SANTINELLI, L.; MORIO, J. On the Reliability of the
Probabilistic Worst-Case Execution Time Estimates. In: European
Congress on Embedded Real Time Software and Systems
2016 (ERTS’16). [S.l.: s.n.], 2016. p. 10.

GUET, F.; SANTINELLI, L.; MORIO, J. On the Representativity of
Execution Time Measurements: Studying Dependence and Multi-Mode
Tasks. In: International Workshop on Worst-Case Execution
Time Analysis 2017 (WCET’17). [S.l.]: Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. v. 57, p. 1–13.

GUMBEL, E. J. Statistics of Extremes. [S.l.]: Dover Publications,
2012. 396 p. (Dover Books on Mathematics).

GUSTAFSSON, J. et al. The Mälardalen WCET Benchmarks: Past,
Present And Future. In: International Workshop on Worst-Case
Execution Time Analysis 2010 (WCET’10). [S.l.]: Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2010. v. 15, p. 136–146.

HAAN, L. de; FERREIRA, A. Extreme Value Theory - An
Introduction. [S.l.]: Springer, 2006. 421 p. (Springer Series in
Operations Research and Financial Engineering).

167

HANSEN, J.; HISSAM, S.; MORENO, G. A. Statistical-Based WCET
Estimation and Validation. In: International Workshop on
Worst-Case Execution Time Analysis 2009 (WCET’09). [S.l.]:
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2009. v. 10, p. 1–11.

HENNESSY, J. L.; PATTERSON, D. A. Computer Architecture:
A Quantitative Approach. 5. ed. [S.l.]: Morgan Kaufmann, 2012.
1357 p.

HERNANDEZ, C. et al. Towards Making a LEON3 Multicore
Compatible with Probabilistic Timing Analysis. In: Data Systems
In Aerospace 2015 (DASIA’15). [S.l.: s.n.], 2015. v. 732, p. 60.

HERNANDEZ, C. et al. Random Modulo: A New Processor Cache
Design for Real-time Critical Systems. In: Design Automation
Conference 2016 (DAC’16). [S.l.]: ACM, 2016. p. 29:1–29:6.

HOSKING, J. R. M. L-Moments: Analysis and Estimation of
Distributions Using Linear Combinations of Order Statistics. Journal
of the Royal Statistical Society. Series B (Methodological),
[Royal Statistical Society, Wiley], v. 52, p. 105–124, 1990.

INTEL. Intelr Digital Random Number Generator (DRNG) -
Software Implementation Guide. [S.l.], 2012. 35 p.

INTEL. Intelr 64 and IA-32 Architectures Software
Developer’s Manual - Combined Volumes: 1, 2A, 2B, 2C,
2D, 3A, 3B, 3C and 3D. [S.l.], 2016. 4670 p.

JACOB, B.; NG, S. W.; WANG, D. T. Memory systems: Cache,
DRAM, Disk. [S.l.]: Morgan Kaufmann, 2008. 998 p.

JALLE, J. et al. Bus designs for time-probabilistic multicore processors.
In: Design, Automation and Test in Europe Conference and
Exhibition 2014 (DATE’14). [S.l.]: IEEE, 2014. p. 1–6.

KIM, N. et al. Attacking the One-Out-Of-m Multicore Problem by
Combining Hardware Management with Mixed-Criticality Provisioning.
In: Real-Time and Embedded Technology and Applications
Symposium 2016 (RTAS’16). [S.l.]: IEEE, 2016. p. 15.

KINNAN, L. M. Use of multicore processors in avionics systems and its
potential impact on implementation and certification. In: Digital
Avionics Systems Conference 2009 (DASC’09). [S.l.]: IEEE,
2009. p. 1.E.4–1–1.E.4–6.

168

KNUTH, D. E. The Art of Computer Programming. 3rd. ed.
[S.l.]: Addison-Wesley, 1997. 782 p.

KOETER, J. What’s an LFSR? [S.l.], 1996. 12 p.

KOSMIDIS, L. et al. A Cache Design for Probabilistically Analysable
Real-time Systems. In: Design, Automation and Test in Europe
Conference and Exhibition 2013 (DATE’13). [S.l.]: IEEE, 2013.
p. 513–518.

KOSMIDIS, L. et al. Multi-level Unified Caches for Probabilistically
Time Analysable Real-Time Systems. In: Real-Time Systems
Symposium 2013 (RTSS’13). [S.l.]: IEEE, 2013. p. 360–371.

KOSMIDIS, L. et al. Efficient Cache Designs for Probabilistically
Analysable Real-Time Systems. IEEE Transactions on Computers
(TC), IEEE, v. 63, p. 2998–3011, 2014.

KOSMIDIS, L. et al. PUB: Path Upper-Bounding for
Measurement-Based Probabilistic Timing Analysis. In: Euromicro
Conference on Real-Time Systems 2014 (ECRTS’14). [S.l.]:
IEEE, 2014. p. 276–287.

KOSMIDIS, L. et al. Probabilistic Timing Analysis on Conventional
Cache Designs. In: Design, Automation and Test in Europe
Conference and Exhibition 2013 (DATE’13). [S.l.]: EDA
Consortium, 2013. p. 603–606.

KOSMIDIS, L. et al. Achieving timing composability with
measurement-based probabilistic timing analysis. In: International
Symposium on Object / Component / Service-Oriented
Real-Time Distributed Computing 2013 (ISORC’13). [S.l.]:
IEEE, 2013. p. 1–8.

KOSMIDIS, L. et al. Measurement-Based Probabilistic Timing
Analysis and Its Impact on Processor Architecture. In: Euromicro
Conference on Digital System Design 2014 (DSD’14). [S.l.]:
IEEE, 2014. p. 401–410.

KOSMIDIS, L. et al. Fitting processor architectures for
measurement-based probabilistic timing analysis. Microprocessors
and Microsystems (MICPRO), Elsevier, v. 47B, p. 287–302, 2016.

KOSMIDIS, L. et al. Applying Measurement-Based Probabilistic
Timing Analysis to Buffer Resources. In: International Workshop

169

on Worst-Case Execution Time Analysis 2013 (WCET’13).
[S.l.]: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013. v. 30, p.
97–108.

KOTABA, O. et al. Multicore In Real-Time Systems - Temporal
Isolation Challenges Due To Shared Resources. In: Workshop on
Industry-Driven Approaches for Cost-Effective Certification
of Safety-Critical Mixed-Criticality Systems 2013 (WICERT
2013). [S.l.: s.n.], 2013. p. 6.

LAHIRI, K.; RAGHUNATHAN, A.; LAKSHMINARAYANA, G.
LOTTERYBUS: A new high-performance communication architecture
for system-on-chip designs. In: Design Automation Conference
2001 (DAC’01). [S.l.]: IEEE, 2001. p. 15–20.

LAIO, F. Cramer-von Mises and Anderson-Darling goodness of fit tests
for extreme value distributions with unknown parameters. Water
Resources Research, John Wiley & Sons, v. 40, p. 10, 2004.

LAW, S.; BATE, I. Achieving Appropriate Test Coverage for Reliable
Measurement-Based Timing Analysis. In: Euromicro Conference
on Real-Time Systems 2016 (ECRTS’16). [S.l.]: IEEE, 2016. p.
189–199.

LEADBETTER, M. R.; LINDGREN, G.; ROOTZÉN, H. Extremes
and Related Properties of Random Sequences and Processes.
1. ed. [S.l.]: Springer, 1983. 336 p. (Springer Series in Statistics).

LESAGE, B. et al. A Framework for the Evaluation of
Measurement-based Timing Analyses. In: International Conference
on Real-Time and Network Systems 2015 (RTNS’15). [S.l.]:
ACM, 2015. p. 35–44.

LESAGE, B.; LAW, S.; BATE, I. TACO: An industrial case study of
Test Automation for COverage. In: International Conference on
Real-Time Networks and Systems 2018 (RTNS’18). [S.l.]:
ACM, 2018. p. 114–124.

LIMA, G.; DIAS, D.; BARROS, E. Extreme Value Theory for
Estimating Task Execution Time Bounds: A Careful Look. In:
Euromicro Conference on Real-Time Systems 2016
(ECRTS’16). [S.l.]: IEEE, 2016. p. 200–211.

LIU, I.; REINEKE, J.; LEE, E. A. A PRET architecture supporting
concurrent programs with composable timing properties. In: Asilomar

170

Conference on Signals, Systems and Computers 2010
(ASILOMAR’10). [S.l.]: IEEE, 2010. p. 2111–2115.

LIU, J. W.-S. Real-Time systems. 1. ed. [S.l.]: Prentice Hall, 2000.
409 p.

LIU, M.; BEHNAM, M.; NOLTE, T. Applying the peak over
thresholds method on worst-case response time analysis of complex
real-time systems. In: International Conference on Embedded
and Real-Time Computing Systems and Applications 2013
(RTCSA’13). [S.l.]: IEEE, 2013. p. 22–31.

LJUNG, G. M.; BOX, G. E. P. On a Measure of Lack of Fit in Time
Series Models. Biometrika, Biometrika Trust, v. 65, p. 297–303, 1978.

LU, Y. et al. A Trace-Based Statistical Worst-Case Execution Time
Analysis of Component-Based Real-Time Embedded Systems. In:
International Conference on Emerging Technologies and
Factory Automation 2011 (ETFA’11). [S.l.]: IEEE, 2011. p. 1–4.

LU, Y. et al. A Statistical Response-Time Analysis of Real-Time
Embedded Systems. In: Real-Time Systems Symposium 2012
(RTSS’12). [S.l.]: IEEE, 2012. p. 351–362.

LUNDQVIST, T.; STENSTRÖM, P. Timing anomalies in dynamically
scheduled microprocessors. In: Real-Time Systems Symposium
1999 (RTSS’99). [S.l.]: IEEE, 1999. p. 12–21.

MA, S. et al. Networks-on-Chip: From Implementations to
Programming Paradigms. 1. ed. [S.l.]: Morgan Kaufmann, 2014.
361 p.

MARKOVIC, N. Hardware Thread Scheduling Algorithms for
Single-ISA Asymmetric CMPs. 124 p. Tese (Doutorado) —
Universitat Politècnica de Catalunya, 2015.

MARSAGLIA, G.; TSANG, W. W. Some Difficult-to-pass Tests of
Randomness. Journal of Statistical Software, Foundation for Open
Access Statistics, v. 7, p. 1–9, 2002.

MARTINS, E. S.; STEDINGER, J. R. Generalized maximum-likelihood
generalized extreme-value quantile estimators for hydrologic data.
Water Resources Research, Wiley, v. 36, p. 737–744, 2000.

171

MAXIM, C. et al. Reproducibility and representativity - mandatory
properties for the compositionality of measurement-based WCET
estimation approaches. In: International Workshop on
Compositional Theory and Technology for Real-Time
Embedded System (CRTS’16). [S.l.: s.n.], 2016. p. 17–24.

MAYS, L. W. Water Resources Engineering. 2nd. ed. [S.l.]: John
Wiley & Sons, 2010. 920 p.

MELANI, A.; NOULARD, E.; SANTINELLI, L. Learning from
probabilities: Dependences within real-time systems. In:
International Conference on Emerging Technologies and
Factory Automation 2013 (ETFA’13). [S.l.]: IEEE, 2013. p. 1–8.

MEZZETTI, E. et al. EPC Enacted: Integration in an Industrial
Toolbox and Use against a Railway Application. In: Real-Time and
Embedded Technology and Applications Symposium 2017
(RTAS’17). [S.l.]: IEEE, 2017. p. 163–174.

MEZZETTI, E. et al. Randomized Caches Can Be Pretty Useful to
Hard Real-Time Systems. Leibniz Transactions on Embedded
Systems (LITES), Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, v. 2, p. 01:1–01:10, 2015.

MILUTINOVIC, S. et al. Software Time Reliability in the Presence of
Cache Memories. In: International Conference on Reliable
Software Technologies 2017 (Ada-Europe 2017). [S.l.]: Springer,
2017. p. 233–249.

MILUTINOVIC, S.; ABELLA, J.; CAZORLA, F. J. Modelling
Probabilistic Cache Representativeness in the Presence of Arbitrary
Access Patterns. In: International Symposium on Real-Time
Distributed Computing 2016 (ISORC’16). [S.l.]: IEEE, 2016. p.
142–149.

MILUTINOVIC, S.; ABELLA, J.; CAZORLA, F. J. On the assessment
of probabilistic WCET estimates reliability for arbitrary programs.
EURASIP Journal on Embedded Systems, Springer, v. 2017,
p. 28, 2017.

MILUTINOVIC, S. et al. Measurement-based Cache
Representativeness on Multipath Programs. In: Design Automation
Conference 2018 (DAC’18). [S.l.]: ACM, 2018. p. 123:1–123:6.

172

MILUTINOVIC, S. et al. On uses of extreme value theory fit for
industrial-quality WCET analysis. In: International Symposium
on Industrial Embedded Systems 2017 (SIES’17). [S.l.]: IEEE,
2017. p. 1–6.

MISES, R. V. La distribution de la plus grande de n valeurs. Rev.
math. Union interbalcanique, v. 1, p. 141–160, 1936.

MURALI, S. Designing Reliable and Efficient Networks on
Chips. [S.l.]: Springer, 2009. 200 p. (Lecture Notes in Electrical
Engineering, v. 34).

MURDOCCA, M.; HEURING, V. P. Principles of Computer
Architecture. [S.l.]: Prentice Hall, 1999. 654 p.

NÉLIS, V.; YOMSI, P. M.; PINHO, L. M. The variability of
application execution times on a multi-core platform. In:
International Workshop on Worst-Case Execution Time
Analysis 2016 (WCET’16). [S.l.]: Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. p. 12.

NÉLIS, V. et al. The Challenge of Time-Predictability in Modern
Many-Core Architectures. In: International Workshop on
Worst-Case Execution Time Analysis 2014 (WCET’14). [S.l.]:
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014. v. 39, p. 72.

NOWOTSCH, J.; PAULITSCH, M. Leveraging Multi-core Computing
Architectures in Avionics. In: European Dependable Computing
Conference 2012 (EDCC’12). [S.l.]: IEEE, 2012. p. 132–143.

NULL, L.; LOBUR, J. The Essentials of Computer
Organization and Architecture. 1. ed. [S.l.]: Jones & Bartlett
Learning, 2003. 703 p.

PANIĆ, M. et al. Enabling TDMA Arbitration in the Context of
MBPTA. In: Euromicro Conference on Digital System Design
2015 (DSD’15). [S.l.]: IEEE, 2015. p. 462–469.

PANIĆ, M. et al. Adapting TDMA Arbitration for Measurement-Based
Probabilistic Timing Analysis. Microprocessors and
Microsystems (MICPRO), Elsevier, v. 52, p. 188–201, 2017.

PATTERSON, D. A.; HENNESSY, J. L. Computer Organization
and Design, Fourth Edition: The Hardware/Software
Interface. 4. ed. [S.l.]: Morgan Kaufmann, 2011. 917 p. (The Morgan
Kaufmann Series in Computer Architecture and Design).

173

PELLIZZONI, R.; CACCAMO, M. Impact of Peripheral-Processor
Interference on WCET Analysis of Real-Time Embedded Systems.
IEEE Transactions on Computers (TC), IEEE, v. 59, p. 400–415,
2010.

PETTERS, S. M. Worst Case Execution Time Estimation for
Advanced Processor Architectures. 158 p. Tese (Doutorado) —
Technische Universität München, 2002.

PICKANDS, J. Statistical Inference Using Extreme Order Statistics.
The Annals of Statistics, Institute of Mathematical Statistics, v. 3,
p. 119–131, 1975.

PRICE, C. MIPS IV Instruction Set: Revision 3.2. [S.l.]: MIPS
Technologies, 1995. 334 p.

QUIÑONES, E. et al. Using Randomized Caches in Probabilistic
Real-Time Systems. In: Euromicro Conference on Real-Time
Systems 2009 (ECRTS’09). [S.l.]: IEEE, 2009. p. 129–138.

R. R: A Language and Environment for Statistical
Computing. 2017. Dispońıvel em: <http://www.r-project.org/>.

REINEKE, J. Randomized Caches Considered Harmful in Hard
Real-Time Systems. Leibniz Transactions on Embedded
Systems (LITES), Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, v. 1, p. 03:1–03:13, 2014.

REINEKE, J. et al. A definition and classification of timing anomalies.
In: International Workshop on Worst-Case Execution Time
Analysis 2006 (WCET’06). [S.l.]: Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2006. v. 4, p. 1–6.

REINEKE, J.; WILHELM, R. Impact of resource sharing on
performance and performance prediction. In: Design, Automation
and Test in Europe Conference and Exhibition 2014
(DATE’14). [S.l.]: IEEE, 2014. p. 1–2.

SAIDI, S. et al. The shift to multicores in real-time and safety-critical
systems. In: International Conference on Hardware/Software
Codesign and System Synthesis 2015 (CODES+ISSS’15).
[S.l.]: IEEE, 2015. p. 220–229.

SANTINELLI, L.; GUET, F.; MORIO, J. Revising
Measurement-Based Probabilistic Timing Analysis. In: Real-Time

174

and Embedded Technology and Applications Symposium
2017 (RTAS’17). [S.l.]: IEEE, 2017. p. 199–208.

SANTINELLI, L. et al. On the Sustainability of the Extreme Value
Theory for WCET Estimation. In: International Workshop on
Worst-Case Execution Time Analysis 2014 (WCET’14). [S.l.]:
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014. v. 39, p.
21–30.

SARMA, M. S. On the convergence of the Baba and Dorea random
optimization methods. Journal of Optimization Theory and
Applications, Springer, p. 337–343, 1990.

SCARROTT, C.; MACDONALD, A. A review of extreme value
threshold estimation and uncertainty quantification. REVSTAT -
Statistical Journal, Instituto Nacional de Estat́ıstica, v. 10, p. 33–60,
2012.

SCHLANSKER, M.; SHAW, R.; SIVARAMAKRISHNAN, S.
Randomization and associativity in the design of
placement-insensitive caches. [S.l.], 1993. 21 p.

SCHLIECKER, S.; ERNST, R. Real-time performance analysis of
multiprocessor systems with shared memory. ACM Transactions on
Embedded Computing Systems (TECS), ACM, v. 10, p.
22:1–22:27, 2010.

SCHOLZ, F. W.; STEPHENS, M. A. K-Sample Anderson-Darling
Tests. Journal of the American Statistical Association, Taylor
& Francis, v. 82, p. 918–924, 1987.

SCHÖNBERG, S. Impact of PCI-bus load on applications in a PC
architecture. In: Real-Time Systems Symposium 2003
(RTSS’03). [S.l.]: IEEE, 2003. p. 430–439.

SHAH, H.; HUANG, K.; KNOLL, A. Timing anomalies in multi-core
architectures due to the interference on the shared resources. In: Asia
and South Pacific Design Automation Conference 2014
(ASP-DAC’14). [S.l.]: IEEE, 2014. p. 708–713.

SHEN, J. P.; LIPASTI, M. H. Modern Processor Design: Funds
of Superscalar Processors. [S.l.]: Waveland, 2013. 642 p.

SILVA, K. P. et al. An Empirical Study on the Adequacy of MBPTA
for Tasks Executed on a Complex Computer Architecture with Linux.

175

In: International Conference on Emerging Technologies and
Factory Automation 2018 (ETFA’18). [S.l.]: IEEE, 2018. p.
321–328.

SILVA, K. P.; ARCARO, L. F.; OLIVEIRA, R. S. de. On Using GEV
or Gumbel Models when Applying EVT for Probabilistic WCET
Estimation. In: Real-Time Systems Symposium 2017
(RTSS’17). [S.l.]: IEEE, 2017. p. 220–230.

SLIJEPCEVIC, M. Probabilistically time-analyzable complex
processor designs. 168 p. Tese (Doutorado), 2017.

SLIJEPCEVIC, M. et al. pTNoC: Probabilistically Time-Analyzable
Tree-Based NoC for Mixed-Criticality Systems. In: Euromicro
Conference on Digital System Design 2016 (DSD’16). [S.l.]:
IEEE, 2016. p. 404–412.

SLIJEPCEVIC, M. et al. Boosting Guaranteed Performance in
Wormhole NoCs with Probabilistic Timing Analysis. In: Euromicro
Conference on Digital System Design 2017 (DSD’17). [S.l.]:
IEEE, 2017. p. 440–444.

SLIJEPCEVIC, M. et al. Design and implementation of a fair
credit-based bandwidth sharing scheme for buses. In: Design,
Automation and Test in Europe Conference and Exhibition
2017 (DATE’17). [S.l.]: IEEE, 2017. p. 926–929.

SLIJEPCEVIC, M. et al. Time-Analysable Non-Partitioned Shared
Caches for Real-Time Multicore Systems. In: Design Automation
Conference 2014 (DAC’14). [S.l.]: ACM, 2014. p. 198:1–198:6.

SMITH, R. L. Maximum Likelihood Estimation in a Class of
Nonregular Cases. Biometrika, [Oxford University Press, Biometrika
Trust], v. 72, p. 67–90, 1985.

STEPHENS, L. J. Schaum’s Outline of Beginning Statistics. 2.
ed. [S.l.]: McGraw-Hill, 2009. 413 p. (Schaum’s Outline).

TANENBAUM, A. S.; AUSTIN, T. Structured Computer
Organization. 6th. ed. [S.l.]: Prentice Hall, 2012. 801 p.

TKACIK, T. E. A Hardware Random Number Generator. In:
KALISKI, B. S.; KOÇ, Ç. K.; PAAR, C. (Ed.). Cryptographic
Hardware and Embedded Systems 2002 (CHES’02). [S.l.]:
Springer, 2003. p. 450–453.

176

TRILLA, D. et al. Resilient random modulo cache memories for
probabilistically-analyzable real-time systems. In: International
Symposium on On-Line Testing and Robust System Design
2016 (IOLTS’16). [S.l.]: IEEE, 2016. p. 27–32.

TRILLA, D. et al. Aging Assessment and Design Enhancement of
Randomized Cache Memories. IEEE Transactions on Device and
Materials Reliability, IEEE, v. 17, p. 32–41, 2017.

TRILLA, D. et al. On the suitability of time-randomized processors for
secure and reliable high-performance computing. In: BSC Severo
Ochoa Doctoral Symposium 2017. [S.l.]: Barcelona
Supercomputing Center (BSC), 2017. p. 110–113.

TRILLA, D. et al. Cache side-channel attacks and time-predictability
in high-performance critical real-time systems. In: Design
Automation Conference 2018 (DAC’18). [S.l.]: ACM, 2018. p. 6.

TSAI, W.-C. et al. Networks on chips: structure and design
methodologies. Journal of Electrical and Computer
Engineering, Hindawi, v. 2012, p. 2, 2012.

UNGERER, T. et al. MERASA: Multicore Execution of Hard
Real-Time Applications Supporting Analyzability. IEEE Micro,
IEEE, v. 30, p. 66–75, 2010.

WARTEL, F. et al. Timing analysis of an avionics case study on
complex hardware/software platforms. In: Design, Automation and
Test in Europe Conference and Exhibition 2015 (DATE’15).
[S.l.]: IEEE, 2015. p. 397–402.

WARTEL, F. et al. Measurement-Based Probabilistic Timing Analysis:
Lessons from an Integrated-Modular Avionics Case Study. In:
International Symposium on Industrial Embedded Systems
2013 (SIES’13). [S.l.]: IEEE, 2013. p. 241–248.

WASSERSTEIN, R. L.; LAZAR, N. A. The ASA’s Statement on
p-Values: Context, Process, and Purpose. The American
Statistician, Taylor & Francis, v. 70, p. 129–133, 2016.

WILHELM, R. et al. Designing Predictable Multicore Architectures for
Avionics and Automotive Systems. In: Workshop on Reconciling
Performance with Predictability 2009 (RePP’09). [S.l.: s.n.],
2009. p. 6.

177

WILHELM, R. et al. The Worst-Case Execution-Time Problem -
Overview of Methods and Survey of Tools. ACM Transactions on
Embedded Computing Systems (TECS), ACM, v. 7, p.
36:1–36:53, 2008.

WILLMOTT, C. J.; MATSUURA, K. Advantages of the mean
absolute error (MAE) over the root mean square error (RMSE) in
assessing average model performance. Climate Research,
Inter-Research, v. 30, p. 79–82, 2005.

ZICCARDI, M. et al. EPC: Extended Path Coverage for
Measurement-Based Probabilistic Timing Analysis. In: Real-Time
Systems Symposium 2015 (RTSS’15). [S.l.]: IEEE, 2015. p.
338–349.

ZIMMER, M. et al. FlexPRET: A Processor Platform for
Mixed-Criticality Systems. In: Real-Time and Embedded
Technology and Applications Symposium 2014 (RTAS’14).
[S.l.]: IEEE, 2014. p. 101–110.

178

APPENDIX A -- pWCET Reliability Evaluation

181

A.1 APPLICABILITY EVIDENCE

Figure 49: Applicability evidence for bsort on DPCpArrr

Statistical tests
p

−
va

lu
e

 d
is

tr
ib

u
ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

25160 25180 25200 25220 25240 25260

2
5

1
6

0
2

5
1

8
0

2
5

2
0

0
2

5
2

2
0

2
5

2
4

0
2

5
2

6
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

25180 25220 25260 25300

2
5

1
6

0
2

5
1

8
0

2
5

2
0

0
2

5
2

2
0

2
5

2
4

0
2

5
2

6
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

25210 25220 25230 25240 25250 25260

2
5

2
1

0
2

5
2

3
0

2
5

2
5

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

25200 25220 25240 25260 25280

2
5

2
0

0
2

5
2

2
0

2
5

2
4

0
2

5
2

6
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

182

Figure 50: Applicability evidence for bsort on DPArptdm

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

46400 46450 46500 465504
6

3
5

0
4

6
4

0
0

4
6

4
5

0
4

6
5

0
0

4
6

5
5

0
4

6
6

0
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

46400 46450 46500 46550 466004
6

3
5

0
4

6
4

0
0

4
6

4
5

0
4

6
5

0
0

4
6

5
5

0
4

6
6

0
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

46400 46450 46500

4
6

4
0

0
4

6
4

5
0

4
6

5
0

0
4

6
5

5
0

4
6

6
0

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

46450 46500 46550 46600

4
6

4
5

0
4

6
5

0
0

4
6

5
5

0
4

6
6

0
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

183

Figure 51: Applicability evidence for insertsort on DPCpArrr

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

21200 21220 21240 21260

2
1

2
0

0
2

1
2

2
0

2
1

2
4

0
2

1
2

6
0

2
1

2
8

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

21200 21220 21240 21260 21280

2
1

2
0

0
2

1
2

2
0

2
1

2
4

0
2

1
2

6
0

2
1

2
8

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

21220 21230 21240 21250 21260 21270

2
1

2
2

0
2

1
2

4
0

2
1

2
6

0
2

1
2

8
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

21220 21240 21260 21280

2
1

2
2

0
2

1
2

4
0

2
1

2
6

0
2

1
2

8
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

184

Figure 52: Applicability evidence for insertsort on DPArptdm

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

41200 41250 41300

4
1

2
0

0
4

1
2

5
0

4
1

3
0

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

41200 41250 41300 41350

4
1

2
0

0
4

1
2

5
0

4
1

3
0

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

41220 41240 41260 41280 41300 41320

4
1

2
2

0
4

1
2

6
0

4
1

3
0

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

41200 41250 41300 41350

4
1

2
2

0
4

1
2

6
0

4
1

3
0

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

185

Figure 53: Applicability evidence for bs on DPCpArrr

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

480 490 500 510

4
8

0
4

9
0

5
0

0
5

1
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

480 490 500 510 520

4
8

0
4

9
0

5
0

0
5

1
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

490 495 500 505 510

4
9

0
4

9
5

5
0

0
5

0
5

5
1

0
5

1
5

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

490 495 500 505 510 515 520

4
9

0
4

9
5

5
0

0
5

0
5

5
1

0
5

1
5

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

186

Figure 54: Applicability evidence for bs on DPArptdm

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

720 725 730 735 740 745

7
2

0
7

2
5

7
3

0
7

3
5

7
4

0
7

4
5

7
5

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

720 730 740 750 760

7
2

0
7

2
5

7
3

0
7

3
5

7
4

0
7

4
5

7
5

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

725 730 735 740

7
2

5
7

3
0

7
3

5
7

4
0

7
4

5
7

5
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

730 740 750 760

7
2

5
7

3
0

7
3

5
7

4
0

7
4

5
7

5
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

187

Figure 55: Applicability evidence for expint on DPCpArrr

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

29060 29100 291402
9

0
4

0
2

9
0

8
0

2
9

1
2

0
2

9
1

6
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

29050 29100 29150 292002
9

0
4

0
2

9
0

8
0

2
9

1
2

0
2

9
1

6
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

29060 29080 29100 29120 29140

2
9

0
6

0
2

9
1

0
0

2
9

1
4

0
2

9
1

8
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

29100 29150 29200

2
9

0
6

0
2

9
1

0
0

2
9

1
4

0
2

9
1

8
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

188

Figure 56: Applicability evidence for expint on DPArptdm

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

61800 61900 62000

6
1

8
0

0
6

1
9

0
0

6
2

0
0

0
6

2
1

0
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

61800 61900 62000 62100 62200

6
1

8
0

0
6

1
9

0
0

6
2

0
0

0
6

2
1

0
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

61850 61900 61950 62000 62050

6
1

8
5

0
6

1
9

5
0

6
2

0
5

0
6

2
1

5
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

61850 61950 62050 62150

6
1

8
5

0
6

1
9

5
0

6
2

0
5

0
6

2
1

5
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

189

Figure 57: Applicability evidence for fdct on DPCpArrr

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

57150 57250 57350 57450

5
7

1
5

0
5

7
2

5
0

5
7

3
5

0
5

7
4

5
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

57200 57300 57400 57500 57600

5
7

1
5

0
5

7
2

5
0

5
7

3
5

0
5

7
4

5
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

57150 57250 57350 574505
7

1
5

0
5

7
2

5
0

5
7

3
5

0
5

7
4

5
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

57200 57300 57400 57500 57600

5
7

1
5

0
5

7
2

5
0

5
7

3
5

0
5

7
4

5
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

190

Figure 58: Applicability evidence for fdct on DPArptdm

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

83450 83500 83550 83600

8
3

4
5

0
8

3
5

0
0

8
3

5
5

0
8

3
6

0
0

8
3

6
5

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

83450 83500 83550 83600 83650

8
3

4
5

0
8

3
5

0
0

8
3

5
5

0
8

3
6

0
0

8
3

6
5

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

83480 83520 83560 83600

8
3

5
0

0
8

3
5

5
0

8
3

6
0

0
8

3
6

5
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

83450 83500 83550 83600 83650

8
3

4
5

0
8

3
5

0
0

8
3

5
5

0
8

3
6

0
0

8
3

6
5

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

191

Figure 59: Applicability evidence for crc on DPCpArrr

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

7300 7350 7400

7
2

6
0

7
2

8
0

7
3

0
0

7
3

2
0

7
3

4
0

7
3

6
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

7260 7280 7300 7320 7340 7360 7380

7
2

6
0

7
2

8
0

7
3

0
0

7
3

2
0

7
3

4
0

7
3

6
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

7300 7320 7340 7360 7380

7
3

0
0

7
3

2
0

7
3

4
0

7
3

6
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

7280 7300 7320 7340 7360 7380

7
2

8
0

7
3

0
0

7
3

2
0

7
3

4
0

7
3

6
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

192

Figure 60: Applicability evidence for crc on DPArptdm

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

18500 18540 18580 18620

1
8

5
0

0
1

8
5

5
0

1
8

6
0

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

18500 18550 18600 18650

1
8

5
0

0
1

8
5

5
0

1
8

6
0

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

18520 18540 18560 18580 18600 18620

1
8

5
2

0
1

8
5

6
0

1
8

6
0

0
1

8
6

4
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

18550 18600 18650

1
8

5
2

0
1

8
5

6
0

1
8

6
0

0
1

8
6

4
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

193

Figure 61: Applicability evidence for matmult on DPCpArrr

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

49880 49900 49920 49940 49960

4
9

8
8

0
4

9
9

0
0

4
9

9
2

0
4

9
9

4
0

4
9

9
6

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

49880 49920 49960 50000

4
9

8
8

0
4

9
9

0
0

4
9

9
2

0
4

9
9

4
0

4
9

9
6

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

49880 49900 49920 499404
9

8
8

0
4

9
9

0
0

4
9

9
2

0
4

9
9

4
0

4
9

9
6

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

49900 49920 49940 49960 49980 50000

4
9

9
0

0
4

9
9

2
0

4
9

9
4

0
4

9
9

6
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

194

Figure 62: Applicability evidence for matmult on DPArptdm

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

74450 74500 74550 74600 746507
4

4
0

0
7

4
5

0
0

7
4

6
0

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

74450 74550 74650 747507
4

4
0

0
7

4
5

0
0

7
4

6
0

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

74450 74500 74550 74600

7
4

4
5

0
7

4
5

0
0

7
4

5
5

0
7

4
6

0
0

7
4

6
5

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

74550 74600 74650 74700

7
4

5
5

0
7

4
6

0
0

7
4

6
5

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

195

Figure 63: Applicability evidence for fir on DPCpArrr

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

50200 50300 50400 50500

5
0

2
0

0
5

0
3

0
0

5
0

4
0

0
5

0
5

0
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

50200 50300 50400 50500 50600

5
0

2
0

0
5

0
3

0
0

5
0

4
0

0
5

0
5

0
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

50250 50300 50350 50400 50450 50500

5
0

2
5

0
5

0
3

5
0

5
0

4
5

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

50200 50300 50400 50500 50600

5
0

2
5

0
5

0
3

5
0

5
0

4
5

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

196

Figure 64: Applicability evidence for fir on DPArptdm

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

118700 118900 119100

1
1

8
7

0
0

1
1

8
9

0
0

1
1

9
1

0
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

118700 118900 119100

1
1

8
7

0
0

1
1

8
9

0
0

1
1

9
1

0
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

118800 118900 119000 119100

1
1

8
8

0
0

1
1

9
0

0
0

1
1

9
2

0
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

118700 118900 119100

1
1

8
8

0
0

1
1

9
0

0
0

1
1

9
2

0
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

197

Figure 65: Applicability evidence for fibcall on DPCpArrr

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

3200 3220 3240 3260

3
2

0
0

3
2

2
0

3
2

4
0

3
2

6
0

3
2

8
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

3200 3220 3240 3260 3280

3
2

0
0

3
2

2
0

3
2

4
0

3
2

6
0

3
2

8
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

3230 3240 3250 3260 3270

3
2

3
0

3
2

4
0

3
2

5
0

3
2

6
0

3
2

7
0

3
2

8
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

3200 3220 3240 3260 3280 3300

3
2

2
0

3
2

4
0

3
2

6
0

3
2

8
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

198

Figure 66: Applicability evidence for fibcall on DPArptdm

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

8740 8760 8780 8800 8820 8840

8
7

4
0

8
7

6
0

8
7

8
0

8
8

0
0

8
8

2
0

8
8

4
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

8740 8760 8780 8800 8820 8840 8860 8880

8
7

4
0

8
7

6
0

8
7

8
0

8
8

0
0

8
8

2
0

8
8

4
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

8780 8790 8800 8810 8820 8830 8840

8
7

8
0

8
8

0
0

8
8

2
0

8
8

4
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

8780 8800 8820 8840 8860

8
7

8
0

8
8

0
0

8
8

2
0

8
8

4
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

199

Figure 67: Applicability evidence for cnt on DPCpArrr

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

28100 28120 28140 28160 28180

2
8

1
0

0
2

8
1

4
0

2
8

1
8

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

28100 28140 28180 28220

2
8

1
0

0
2

8
1

4
0

2
8

1
8

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

28100 28120 28140 28160

2
8

1
0

0
2

8
1

4
0

2
8

1
8

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

28100 28140 28180 282202
8

1
0

0
2

8
1

2
0

2
8

1
4

0
2

8
1

6
0

2
8

1
8

0
2

8
2

0
0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

200

Figure 68: Applicability evidence for cnt on DPArptdm

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u

ti
o

n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) Applicability statistical tests’ p-values

50600 50650 50700 50750 50800

5
0

6
0

0
5

0
6

5
0

5
0

7
0

0
5

0
7

5
0

5
0

8
0

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(b) GEV quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(c) GEV probability plot

50600 50650 50700 50750 50800 50850

5
0

6
0

0
5

0
6

5
0

5
0

7
0

0
5

0
7

5
0

5
0

8
0

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(d) Gumbel quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(e) Gumbel probability plot

50600 50650 50700 50750

5
0

6
0

0
5

0
6

5
0

5
0

7
0

0
5

0
7

5
0

5
0

8
0

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(f) GP quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(g) GP probability plot

50600 50700 50800 50900

5
0

6
0

0
5

0
6

5
0

5
0

7
0

0
5

0
7

5
0

5
0

8
0

0

Model quantiles

E
m

p
ir

ic
a

l
q

u
a

n
ti
le

s

(h) Exponential quantile plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model probabilities

E
m

p
ir

ic
a

l
p

ro
b

a
b

ili
ti
e

s

(i) Exponential probability plot

201

A.2 PWCET HWM RELIABILITY

Figure 69: pWCET HWM reliability for bsort on DPCpArrr

0 1000 2000 3000 4000 5000

2
5

2
0

0
2

5
6

0
0

2
6

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

2
5

2
0

0
2

5
6

0
0

2
6

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

2
5

2
0

0
2

5
6

0
0

2
6

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

2
5

2
0

0
2

5
6

0
0

2
6

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

Figure 70: pWCET HWM reliability for bsort on DPArptdm

0 1000 2000 3000 4000 5000

4
6

0
0

0
4

7
0

0
0

4
8

0
0

0
4

9
0

0
0

5
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

4
6

0
0

0
4

7
0

0
0

4
8

0
0

0
4

9
0

0
0

5
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

4
6

5
0

0
4

7
0

0
0

4
7

5
0

0
4

8
0

0
0

4
8

5
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

4
6

5
0

0
4

7
0

0
0

4
7

5
0

0
4

8
0

0
0

4
8

5
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

202

Figure 71: pWCET HWM reliability for insertsort on DPCpArrr

0 1000 2000 3000 4000 5000

2
1

2
0

0
2

1
4

0
0

2
1

6
0

0
2

1
8

0
0

2
2

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

2
1

2
0

0
2

1
4

0
0

2
1

6
0

0
2

1
8

0
0

2
2

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

2
1

2
0

0
2

1
4

0
0

2
1

6
0

0
2

1
8

0
0

2
2

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

2
1

2
0

0
2

1
4

0
0

2
1

6
0

0
2

1
8

0
0

2
2

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

Figure 72: pWCET HWM reliability for insertsort on DPArptdm

0 1000 2000 3000 4000 5000

4
1

2
0

0
4

1
6

0
0

4
2

0
0

0
4

2
4

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

4
1

2
0

0
4

1
6

0
0

4
2

0
0

0
4

2
4

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

4
1

2
0

0
4

1
6

0
0

4
2

0
0

0
4

2
4

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

4
1

2
0

0
4

1
6

0
0

4
2

0
0

0
4

2
4

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

203

Figure 73: pWCET HWM reliability for bs on DPCpArrr

0 1000 2000 3000 4000 5000

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

Figure 74: pWCET HWM reliability for bs on DPArptdm

0 1000 2000 3000 4000 5000

7
0

0
7

5
0

8
0

0
8

5
0

9
0

0
9

5
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

7
0

0
7

5
0

8
0

0
8

5
0

9
0

0
9

5
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

7
0

0
7

5
0

8
0

0
8

5
0

9
0

0
9

5
0

1
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

7
0

0
7

5
0

8
0

0
8

5
0

9
0

0
9

5
0

1
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

204

Figure 75: pWCET HWM reliability for expint on DPCpArrr

0 1000 2000 3000 4000 5000

2
9

0
0

0
2

9
5

0
0

3
0

0
0

0
3

0
5

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

2
9

0
0

0
2

9
5

0
0

3
0

0
0

0
3

0
5

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

2
9

5
0

0
3

0
0

0
0

3
0

5
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

2
9

5
0

0
3

0
0

0
0

3
0

5
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

Figure 76: pWCET HWM reliability for expint on DPArptdm

0 1000 2000 3000 4000 5000

6
2

0
0

0
6

3
0

0
0

6
4

0
0

0
6

5
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

6
2

0
0

0
6

3
0

0
0

6
4

0
0

0
6

5
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

6
2

0
0

0
6

3
0

0
0

6
4

0
0

0
6

5
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

6
2

0
0

0
6

3
0

0
0

6
4

0
0

0
6

5
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

205

Figure 77: pWCET HWM reliability for fdct on DPCpArrr

0 1000 2000 3000 4000 50005
7

0
0

0
5

8
0

0
0

5
9

0
0

0
6

0
0

0
0

6
1

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 50005
7

0
0

0
5

8
0

0
0

5
9

0
0

0
6

0
0

0
0

6
1

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

5
7

5
0

0
5

8
5

0
0

5
9

5
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

5
7

5
0

0
5

8
5

0
0

5
9

5
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

Figure 78: pWCET HWM reliability for fdct on DPArptdm

0 1000 2000 3000 4000 5000

8
3

6
0

0
8

4
0

0
0

8
4

4
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

8
3

6
0

0
8

4
0

0
0

8
4

4
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

8
3

5
0

0
8

4
0

0
0

8
4

5
0

0
8

5
0

0
0

8
5

5
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

8
3

5
0

0
8

4
0

0
0

8
4

5
0

0
8

5
0

0
0

8
5

5
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

206

Figure 79: pWCET HWM reliability for crc on DPCpArrr

0 1000 2000 3000 4000 5000

7
3

0
0

7
5

0
0

7
7

0
0

7
9

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

7
3

0
0

7
5

0
0

7
7

0
0

7
9

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 50007
2

0
0

7
4

0
0

7
6

0
0

7
8

0
0

8
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 50007
2

0
0

7
4

0
0

7
6

0
0

7
8

0
0

8
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

Figure 80: pWCET HWM reliability for crc on DPArptdm

0 1000 2000 3000 4000 5000

1
8

4
0

0
1

8
8

0
0

1
9

2
0

0
1

9
6

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

1
8

4
0

0
1

8
8

0
0

1
9

2
0

0
1

9
6

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

1
8

6
0

0
1

9
0

0
0

1
9

4
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

1
8

6
0

0
1

9
0

0
0

1
9

4
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

207

Figure 81: pWCET HWM reliability for matmult on DPCpArrr

0 1000 2000 3000 4000 50004
9

8
0

0
5

0
0

0
0

5
0

2
0

0
5

0
4

0
0

5
0

6
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 50004
9

8
0

0
5

0
0

0
0

5
0

2
0

0
5

0
4

0
0

5
0

6
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

5
0

0
0

0
5

0
4

0
0

5
0

8
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

5
0

0
0

0
5

0
4

0
0

5
0

8
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

Figure 82: pWCET HWM reliability for matmult on DPArptdm

0 1000 2000 3000 4000 5000

7
4

5
0

0
7

5
0

0
0

7
5

5
0

0
7

6
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

7
4

5
0

0
7

5
0

0
0

7
5

5
0

0
7

6
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

7
4

5
0

0
7

5
0

0
0

7
5

5
0

0
7

6
0

0
0

7
6

5
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

7
4

5
0

0
7

5
0

0
0

7
5

5
0

0
7

6
0

0
0

7
6

5
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

208

Figure 83: pWCET HWM reliability for fir on DPCpArrr

0 1000 2000 3000 4000 5000

5
0

0
0

0
5

1
0

0
0

5
2

0
0

0
5

3
0

0
0

5
4

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

5
0

0
0

0
5

1
0

0
0

5
2

0
0

0
5

3
0

0
0

5
4

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

5
0

0
0

0
5

1
0

0
0

5
2

0
0

0
5

3
0

0
0

5
4

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

5
0

0
0

0
5

1
0

0
0

5
2

0
0

0
5

3
0

0
0

5
4

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

Figure 84: pWCET HWM reliability for fir on DPArptdm

0 1000 2000 3000 4000 5000

1
1

9
0

0
0

1
2

1
0

0
0

1
2

3
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

1
1

9
0

0
0

1
2

1
0

0
0

1
2

3
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

1
1

9
0

0
0

1
2

1
0

0
0

1
2

3
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

1
1

9
0

0
0

1
2

1
0

0
0

1
2

3
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

209

Figure 85: pWCET HWM reliability for fibcall on DPCpArrr

0 1000 2000 3000 4000 50003
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 50003
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

3
2

0
0

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

4
2

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

3
2

0
0

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

4
2

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

Figure 86: pWCET HWM reliability for fibcall on DPArptdm

0 1000 2000 3000 4000 5000

8
5

0
0

9
0

0
0

9
5

0
0

1
0

0
0

0
1

0
5

0
0

1
1

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

8
5

0
0

9
0

0
0

9
5

0
0

1
0

0
0

0
1

0
5

0
0

1
1

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

9
0

0
0

9
5

0
0

1
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

9
0

0
0

9
5

0
0

1
0

0
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

210

Figure 87: pWCET HWM reliability for cnt on DPCpArrr

0 1000 2000 3000 4000 5000

2
8

0
0

0
2

8
5

0
0

2
9

0
0

0
2

9
5

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

2
8

0
0

0
2

8
5

0
0

2
9

0
0

0
2

9
5

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

2
8

0
0

0
2

8
5

0
0

2
9

0
0

0
2

9
5

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

2
8

0
0

0
2

8
5

0
0

2
9

0
0

0
2

9
5

0
0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

Figure 88: pWCET HWM reliability for cnt on DPArptdm

0 1000 2000 3000 4000 5000

5
0

5
0

0
5

1
5

0
0

5
2

5
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(a) GEV

0 1000 2000 3000 4000 5000

5
0

5
0

0
5

1
5

0
0

5
2

5
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(b) Gumbel

0 1000 2000 3000 4000 5000

5
0

5
0

0
5

1
5

0
0

5
2

5
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(c) GP

0 1000 2000 3000 4000 5000

5
0

5
0

0
5

1
5

0
0

5
2

5
0

0

Sample size

p
W

C
E

T
(1

e
−

1
5

)
e

s
ti
m

a
te

(d) Exponential

211

A.3 PWCET DENSITY RELIABILITY

Figure 89: pWCET density reliability for bsort on DPCpArrr

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

Figure 90: pWCET density reliability for bsort on DPArptdm

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

212

Figure 91: pWCET density reliability for insertsort on DPCpArrr

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

Figure 92: pWCET density reliability for insertsort on DPArptdm

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

213

Figure 93: pWCET density reliability for bs on DPCpArrr

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

Figure 94: pWCET density reliability for bs on DPArptdm

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

214

Figure 95: pWCET density reliability for expint on DPCpArrr

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

Figure 96: pWCET density reliability for expint on DPArptdm

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

215

Figure 97: pWCET density reliability for fdct on DPCpArrr

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

Figure 98: pWCET density reliability for fdct on DPArptdm

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

216

Figure 99: pWCET density reliability for crc on DPCpArrr

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

Figure 100: pWCET density reliability for crc on DPArptdm

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

217

Figure 101: pWCET density reliability for matmult on DPCpArrr

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

Figure 102: pWCET density reliability for matmult on DPArptdm

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

218

Figure 103: pWCET density reliability for fir on DPCpArrr

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

Figure 104: pWCET density reliability for fir on DPArptdm

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

219

Figure 105: pWCET density reliability for fibcall on DPCpArrr

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

Figure 106: pWCET density reliability for fibcall on DPArptdm

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

220

Figure 107: pWCET density reliability for cnt on DPCpArrr

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

Figure 108: pWCET density reliability for cnt on DPArptdm

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(a) GEV

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(b) Gumbel

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(c) GP

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

Sample size

p
W

C
E

T
(1

e
−

7
)

E
D

M

 ε

 p
ro

b
a

b
ili

ty

0
.0

0
1

8
7

5
.6

e
−

1
3

1
.7

1
e

−
7

1
.5

e
−

1
9

(d) Exponential

APPENDIX B -- Evaluating Randomized Scheduling on
Multithread Pipelines to Benefit MBPTA

223

B.1 PRS EVALUATION

B.1.1 Maxima Analysability

Figure 109: crc PRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

76000 78000 80000 82000

7
6
0
0
0

7
8
0
0
0

8
0
0
0
0

8
2
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

76000 78000 80000 820007
6
0
0
0

7
8
0
0
0

8
0
0
0
0

8
2
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 110: expint PRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

244000 248000 2520002
4
4
0
0
0

2
4
8
0
0
0

2
5
2
0
0
0

2
5
6
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

248000 250000 252000 254000

2
4
8
0
0
0

2
5
2
0
0
0

2
5
6
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 111: fdct PRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

342000 346000 350000 354000

3
4
2
0
0
0

3
4
6
0
0
0

3
5
0
0
0
0

3
5
4
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

342000 346000 350000 3540003
4
2
0
0
0

3
4
6
0
0
0

3
5
0
0
0
0

3
5
4
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

224

Figure 112: fibcall PRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

37000 38000 39000 40000 41000

3
7
0
0
0

3
8
0
0
0

3
9
0
0
0

4
0
0
0
0

4
1
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

37000 38000 39000 40000 410003
7
0
0
0

3
8
0
0
0

3
9
0
0
0

4
0
0
0
0

4
1
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 113: fir PRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

480000 485000 490000

4
8
0
0
0
0

4
8
5
0
0
0

4
9
0
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

482000 486000 490000 494000

4
8
2
0
0
0

4
8
6
0
0
0

4
9
0
0
0
0

4
9
4
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 114: insertsort PRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

172000 174000 176000 178000 180000

1
7
2
0
0
0

1
7
6
0
0
0

1
8
0
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

172000 174000 176000 178000 180000

1
7
2
0
0
0

1
7
6
0
0
0

1
8
0
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 115: janne complex PRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

40000 41000 42000 43000 44000

4
0
0
0
0

4
1
0
0
0

4
2
0
0
0

4
3
0
0
0

4
4
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

41000 42000 43000 44000

4
1
0
0
0

4
2
0
0
0

4
3
0
0
0

4
4
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

225

Figure 116: matmult PRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

314000 318000 322000

3
1
4
0
0
0

3
1
8
0
0
0

3
2
2
0
0
0

Model quantiles
E

m
p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

314000 318000 322000

3
1
4
0
0
0

3
1
8
0
0
0

3
2
2
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 117: ns PRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

192000 194000 196000 1980001
9
0
0
0
0

1
9
4
0
0
0

1
9
8
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

190000 192000 194000 196000 1980001
9
0
0
0
0

1
9
4
0
0
0

1
9
8
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 118: prime PRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

110000 112000 114000 116000 1180001
1
0
0
0
0

1
1
2
0
0
0

1
1
4
0
0
0

1
1
6
0
0
0

1
1
8
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

112000 114000 116000 118000

1
1
2
0
0
0

1
1
4
0
0
0

1
1
6
0
0
0

1
1
8
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

226

B.1.2 Class Timing Dominance

Figure 119: PRS class timing dominance analysis

0
2

0
0

0
0

6
0

0
0

0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) crc

0
5

0
0

0
0

1
5

0
0

0
0

2
5

0
0

0
0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(b) expint

0
1

0
0

0
0

0
2

5
0

0
0

0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) fdct

0
1

0
0

0
0

3
0

0
0

0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) fibcall

0
2

0
0

0
0

0
4

0
0

0
0

0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(e) fir

0
5

0
0

0
0

1
5

0
0

0
0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(f) insertsort

227

Figure 120: PRS class timing dominance analysis

0
1

0
0

0
0

3
0

0
0

0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) janne complex

0
1

0
0

0
0

0
2

5
0

0
0

0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(b) matmult

0
5

0
0

0
0

1
5

0
0

0
0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) ns

0
4

0
0

0
0

8
0

0
0

0
1

2
0

0
0

0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) prime

228

B.1.3 Behavioural Timing Dominance

Figure 121: PRS behavioural timing dominance analysis

0
2

0
0

0
0

6
0

0
0

0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) crc

0
5

0
0

0
0

1
5

0
0

0
0

2
5

0
0

0
0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(b) expint

0
1

0
0

0
0

0
2

5
0

0
0

0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) fdct

0
1

0
0

0
0

3
0

0
0

0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) fibcall

0
2

0
0

0
0

0
4

0
0

0
0

0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(e) fir

0
5

0
0

0
0

1
5

0
0

0
0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(f) insertsort

229

Figure 122: PRS behavioural timing dominance analysis

0
1

0
0

0
0

3
0

0
0

0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) janne complex

0
1

0
0

0
0

0
2

5
0

0
0

0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(b) matmult

0
5

0
0

0
0

1
5

0
0

0
0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) ns

0
4

0
0

0
0

8
0

0
0

0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) prime

230

B.1.4 Typical Scenario Slowdown

Figure 123: PRS typical scenario slowdown analysis

0
2

0
0

0
0

6
0

0
0

0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) crc

0
1

0
0

0
0

0
2

0
0

0
0

0
bs

or
t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(b) expint

0
1

0
0

0
0

0
2

5
0

0
0

0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) fdct

0
1

0
0

0
0

3
0

0
0

0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) fibcall

0
2

0
0

0
0

0
4

0
0

0
0

0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(e) fir

0
5

0
0

0
0

1
5

0
0

0
0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(f) insertsort

231

Figure 124: PRS typical scenario slowdown analysis

0
1

0
0

0
0

3
0

0
0

0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) janne complex

0
1

0
0

0
0

0
2

5
0

0
0

0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(b) matmult

0
5

0
0

0
0

1
5

0
0

0
0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) ns

0
4

0
0

0
0

8
0

0
0

0
1

2
0

0
0

0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) prime

232

B.2 IRS EVALUATION

B.2.1 Maxima Analysability

Figure 125: crc IRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

22000 22200 22400 22600 22800

2
2
0
0
0

2
2
4
0
0

2
2
8
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

22000 22200 22400 22600 228002
2
0
0
0

2
2
2
0
0

2
2
4
0
0

2
2
6
0
0

2
2
8
0
0

2
3
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 126: expint IRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

78500 79000 79500 80000

7
8
5
0
0

7
9
0
0
0

7
9
5
0
0

8
0
0
0
0

8
0
5
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

79000 79500 80000

7
9
0
0
0

7
9
5
0
0

8
0
0
0
0

8
0
5
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 127: fdct IRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

123000 123500 124000 124500

1
2
3
0
0
0

1
2
3
5
0
0

1
2
4
0
0
0

1
2
4
5
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

123500 124000 124500

1
2
3
5
0
0

1
2
4
0
0
0

1
2
4
5
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

233

Figure 128: fibcall IRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

10000 10200 10400 10600

1
0
0
0
0

1
0
2
0
0

1
0
4
0
0

1
0
6
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

10100 10300 10500

1
0
1
0
0

1
0
3
0
0

1
0
5
0
0

1
0
7
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 129: fir IRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

141000 142000 143000

1
4
1
0
0
0

1
4
2
0
0
0

1
4
3
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

141500 142000 142500 143000 143500

1
4
1
5
0
0

1
4
2
5
0
0

1
4
3
5
0
0

Model quantiles
E

m
p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 130: insertsort IRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

57000 57400 57800 582005
7
0
0
0

5
7
4
0
0

5
7
8
0
0

5
8
2
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

57200 57400 57600 57800 58000 58200

5
7
2
0
0

5
7
4
0
0

5
7
6
0
0

5
7
8
0
0

5
8
0
0
0

5
8
2
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 131: janne complex IRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

11000 11200 11400 116001
0
8
0
0

1
1
0
0
0

1
1
2
0
0

1
1
4
0
0

1
1
6
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

11000 11200 11400 116001
1
0
0
0

1
1
2
0
0

1
1
4
0
0

1
1
6
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

234

Figure 132: matmult IRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

124000 124500 125000

1
2
3
5
0
0

1
2
4
0
0
0

1
2
4
5
0
0

1
2
5
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

124200 124600 125000

1
2
4
2
0
0

1
2
4
6
0
0

1
2
5
0
0
0

1
2
5
4
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 133: ns IRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

65400 65800 66200 66600

6
5
5
0
0

6
6
0
0
0

6
6
5
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

65400 65800 66200 66600

6
5
4
0
0

6
5
8
0
0

6
6
2
0
0

6
6
6
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

Figure 134: prime IRS maxima analysability analysis

Statistical tests

p
−

va
lu

e
 d

is
tr

ib
u
ti
o
n
s

0.2

0.4

0.6

0.8

AD1 AD2 KS LB02 LB05 LB10 LB20 LB50 WW

(a) I.i.d. statistical tests

35000 35200 35400 35600 35800 36000

3
5
0
0
0

3
5
4
0
0

3
5
8
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(b) GEV quantile plot

35200 35400 35600 35800 36000

3
5
2
0
0

3
5
4
0
0

3
5
6
0
0

3
5
8
0
0

3
6
0
0
0

Model quantiles

E
m

p
ir

ic
a
l
q
u
a
n
ti
le

s

(c) GP quantile plot

235

B.2.2 Class Timing Dominance

Figure 135: IRS class timing dominance analysis
0

5
0

0
0

1
5

0
0

0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) crc
0

2
0

0
0

0
6

0
0

0
0

1 5 10 15

Replication (1000 runs each)
E

xe
c
u

ti
o

n
 t

im
e

(b) expint

0
4

0
0

0
0

8
0

0
0

0
1

2
0

0
0

0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) fdct

0
2

0
0

0
6

0
0

0
1

0
0

0
0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) fibcall

0
4

0
0

0
0

8
0

0
0

0
1

4
0

0
0

0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(e) fir

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(f) insertsort

236

Figure 136: IRS class timing dominance analysis

0
2

0
0

0
6

0
0

0
1

0
0

0
0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) janne complex
0

4
0

0
0

0
8

0
0

0
0

1
2

0
0

0
0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(b) matmult

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) ns

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

1 5 10 15

Replication (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) prime

237

B.2.3 Behavioural Timing Dominance

Figure 137: IRS behavioural timing dominance analysis
0

5
0

0
0

1
5

0
0

0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) crc
0

2
0

0
0

0
6

0
0

0
0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)
E

xe
c
u

ti
o

n
 t

im
e

(b) expint

0
4

0
0

0
0

8
0

0
0

0
1

2
0

0
0

0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) fdct

0
2

0
0

0
6

0
0

0
1

0
0

0
0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) fibcall

0
4

0
0

0
0

1
0

0
0

0
0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(e) fir

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(f) insertsort

238

Figure 138: IRS behavioural timing dominance analysis

0
4

0
0

0
8

0
0

0
1

2
0

0
0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) janne complex
0

4
0

0
0

0
8

0
0

0
0

1
2

0
0

0
0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(b) matmult

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) ns

0
1

0
0

0
0

2
5

0
0

0

10
00 75

0
50

0
25

0 1

Top scenario (100 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) prime

239

B.2.4 Typical Scenario Slowdown

Figure 139: IRS typical scenario slowdown analysis
0

5
0

0
0

1
5

0
0

0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) crc
0

2
0

0
0

0
6

0
0

0
0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)
E

xe
c
u

ti
o

n
 t

im
e

(b) expint

0
4

0
0

0
0

8
0

0
0

0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) fdct

0
2

0
0

0
6

0
0

0
1

0
0

0
0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) fibcall

0
4

0
0

0
0

1
0

0
0

0
0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(e) fir

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(f) insertsort

240

Figure 140: IRS typical scenario slowdown analysis

0
4

0
0

0
8

0
0

0
1

2
0

0
0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(a) janne complex
0

4
0

0
0

0
8

0
0

0
0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(b) matmult

0
2

0
0

0
0

5
0

0
0

0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(c) ns

0
1

0
0

0
0

2
5

0
0

0

bs
or

t
is
or

t
bs

m
m

ul
t
cn

t

co
ve

r
cr

c

ex
pi
nt

fd
ct

fib
ca

ll fir

jn
_c

m
pl ns

pr
im

e

Interfering task (1000 runs each)

E
xe

c
u

ti
o

n
 t

im
e

(d) prime

APPENDIX C -- Experimentation Platforms

243

In this chapter we present technical details (1) of the hardware
elements developed during the research whose outcomes are presented in
this thesis, and (2) of the software tools that were necessary for building
and using the hardware platforms that were employed in this work.

C.1 HARDWARE ELEMENTS

The following hardware elements were developed during this work,
using the SystemVerilog hardware description language, for building
the time-randomized processors we employed in our research.

•ALU: Performs operations such as integer negation, addition,
subtraction, logical AND, logical OR, exclusive OR, negated OR,
shift left and shift right in a single clock cycle. Multiplications are
executed with data-dependent latency of 1 to 32 cycles, and
divisions are performed using a non-restoring algorithm that
always takes 32 clock cycles to complete. Supports a constant-
time mode in which data-dependent operations always take the
maximum possible latency to be acknowledged as finished, even if
results are available sooner. Its validation was performed through
a large set of corner-case integer operations, mainly by comparing
its results with those produced by a traditional processor.

•Memory: A true dual-port synchronous RAM memory, with byte-
enable write support and single-cycle latency for read/write.

•Memory controller: A single-port memory controller capable of
performing multi-word read (e.g. for using cache memories) and
single-word write with byte-enable support. At least one extra
clock cycle is consumed by the controller for each access, and
multi-word reads consume one more cycle for each extra word.

•PRNG: A pseudo-random number generator with single clock
cycle latency that combines through a XOR operation the results
of two independent and different generators, namely a LFSR
and a CASR, which can be clocked from independent and non-
synchronized ring oscillators (TKACIK, 2003).

•TRNG: A hardware-level generator of true random numbers that
consists of a ring of ring oscillators (BAETONIU, 2004), used as
entropy source for seeding pseudo-random number generators.

•Simple (sequential) core: A reference sequential processing core, i.e.
which fetches, decodes and executes instructions in a sequential
manner such that one instruction’s execution only starts when

244

the last one was finished. The core implements the MIPS I ISA,
and for being sequential the latencies of each processing stage
are cumulative to the instructions’ overall execution times. A
halting instruction was added to the ISA to ease execution time
measurements. The core’s functional validation was performed
through a set of test cases, ranging from simple expressions to
complete algorithms, for which the memory and the registers’
values were validated against their known correct values.

•Pipelined core: A core that implements exactly the same ISA
as the sequential one, but which employs a five-stage pipeline
(i.e. fetch, decode, execute, memory access, and write back)
for exploiting instruction-level parallelism. Instruction execution
latencies vary depending on the internal pipeline behaviour, which
itself depends on other elements’ timing (e.g. cache memories and
memory controllers). The pipelined core was subject to the same
functional validation as the sequential one.

•Time-randomized cache memory: A set-associative cache memory
whose size, block size, and way count can be defined through
module parameters. It currently implements only a randomized
replacement policy, i.e. it defines the cache way in which lines are
to be evicted and replaced based on pseudo-random numbers.

•Random Time Division Multiplexing (TDM) bus arbiter:
Randomly chooses the next client to be served, reserving a time
slice regardless of the resource being effectively accessed, hence
providing temporal isolation but allowing starvation.

•Random Round-Robin (RR) bus arbiter: Randomly chooses the
next client to be served, allocating the resource only if a request is
pending, not providing temporal isolation and allowing starvation.

•Random Permutation TDM bus arbiter: Uses a non-work-
conserving time schedule that is randomly permuted after each
round, providing temporal isolation and avoiding starvation.

C.2 DATA COLLECTION TOOLS

The developed hardware elements were synthesized for two
similar educational boards, namely DE2-115 and DE2i-150 from Terasic,
both equipped with Cyclone IV Altera FPGAs. The synthesis proved
necessary both for validating the hardware implementation and for
accelerating execution time measurements’ collection, since simulation

245

proved too slow for obtaining samples of reasonable size. For enabling
data collection applications to control the hardware platforms executed
on the FPGA, we also developed a special hardware element referred
to as “manager”. This element is capable of communicating with an
external computer through the IEEE 802.3 (Ethernet) physical layer
transceiver provided by the employed development boards, and provides
data collection applications with the following functionalities:

•Inquiring configuration: Allows checking the configuration of the
processor, such as the number of cores and bus widths.

•Memory management: Enables reading, writing and internally
copying the contents of instruction and data RAM memories.

•Clearing caches: For clearing individual cache memories’ contents.

•Setting PRNGs’ seeds: Allows the seeds (initial random values)
of the pseudo-random number generators being set.

•Configuring cores: Supports the assignment of configuration words,
used to determine specific aspects of the developed hardware
platforms’ behaviour, without requiring them to be re-synthesized.

•Thread scheduling: Performs task scheduling at the thread level,
supporting periodic, aperiodic and sporadic tasks’ dispatching, by
monitoring and controlling their reset and halt signals.

•Execution time measurement: Measurements are taken in a cycle-
precise and non-intrusive manner by manipulating the cores’ reset
signals and monitoring their halt signals. More specifically, only
clock cycles in which the reset and the halt signals of the cores
are both de-asserted are considered in measurements.

C.3 OTHER SOFTWARE TOOLS

The following software tools were also developed during this work
for supporting and automating the platforms’ generation and synthesis,
and also for accelerating data collection and analysis processes:

•Hardware platform generator: Based on a platform configuration
description, generates the hardware platform’s main module, by
instantiating and interconnecting e.g. memories and cores

•Data collection applications: Capable of invoking external tools
for synthesizing and programming generated processors on the
development boards, and also of communicating with the manager
to configure, execute and measure programs’ execution times.

