10 research outputs found

    Estimation of Maximum Shoulder and Elbow Joint Torques Based on Demographics and Anthropometrics

    Get PDF
    Repetitive movements that involve a significant shift of the body's center of mass can lead to shoulder and elbow fatigue, which are linked to injury and musculoskeletal disorders if not addressed in time. Research has been conducted on the joint torque individuals can produce, a quantity that indicates the ability of the person to carry out such repetitive movements. Most of the studies surround gait analysis, rehabilitation, the assessment of athletic performance, and robotics. The aim of this study is to develop a model that estimates the maximum shoulder and elbow joint torque an individual can produce based on anthropometrics and demographics without taking a manual measurement with a force gauge (dynamometer). Nineteen subjects took part in the study which recorded maximum shoulder and elbow joint torques using a dynamometer. Sex, age, body composition parameters, and anthropometric data were recorded, and relevant parameters which significantly contributed to joint torque were identified using regression techniques. Of the parameters measured, body mass index and upper forearm volume predominantly contribute to maximum torque for shoulder and elbow joints; coefficient of determination values were between 0.6 and 0.7 for the independent variables and were significant for maximum shoulder joint torque (P<0.001) and maximum elbow joint torque (P<0.005) models. Two expressions illustrated the impact of the relevant independent variables on maximum shoulder joint torque and maximum elbow joint torque, using multiple linear regression. Coefficient of determination values for the models were between 0.6 and 0.7. The models developed enable joint torque estimation for individuals using measurements that are quick and easy to acquire, without the use of a dynamometer. This information is useful for those employing joint torque data in biomechanics in the areas of health, rehabilitation, ergonomics, occupational safety, and robotics. Clinical Relevance - The rapid estimation of arm joint torque without the direct force measurement can help occupational safety with the prevention of injury and musculoskeletal disorders in several working scenarios

    Efficient Trajectory Optimization for Curved Running Using a 3D Musculoskeletal Model With Implicit Dynamics

    Get PDF
    Trajectory optimization with musculoskeletal models can be used to reconstruct measured movements and to predict changes in movements in response to environmental changes. It enables an exhaustive analysis of joint angles, joint moments, ground reaction forces, and muscle forces, among others. However, its application is still limited to simplified problems in two dimensional space or straight motions. The simulation of movements with directional changes, e.g. curved running, requires detailed three dimensional models which lead to a high-dimensional solution space. Weextended a full-body three dimensional musculoskeletal model to be specialized for running with directional changes. Model dynamics were implemented implicitly and trajectory optimization problems were solved with direct collocation to enable efficient computation. Standing, straight running, and curved running were simulated starting from a random initial guess to confirm the capabilities of our model and approach: efficacy, tracking and predictive power. Altogether the simulations required 1 h 17 min and corresponded well to the reference data. The prediction of curved running using straight running as tracking data revealed the necessity of avoiding interpenetration of body segments. In summary, the proposed formulation is able to efficiently predict a new motion task while preserving dynamic consistency. Hence, labor-intensive and thus costly experimental studies could be replaced by simulations for movement analysis and virtual product design

    Reinforcement learning control of a biomechanical model of the upper extremity

    Get PDF
    Among the infinite number of possible movements that can be produced, humans are commonly assumed to choose those that optimize criteria such as minimizing movement time, subject to certain movement constraints like signal-dependent and constant motor noise. While so far these assumptions have only been evaluated for simplified point-mass or planar models, we address the question of whether they can predict reaching movements in a full skeletal model of the human upper extremity. We learn a control policy using a motor babbling approach as implemented in reinforcement learning, using aimed movements of the tip of the right index finger towards randomly placed 3D targets of varying size. We use a state-of-the-art biomechanical model, which includes seven actuated degrees of freedom. To deal with the curse of dimensionality, we use a simplified second-order muscle model, acting at each degree of freedom instead of individual muscles. The results confirm that the assumptions of signal-dependent and constant motor noise, together with the objective of movement time minimization, are sufficient for a state-of-the-art skeletal model of the human upper extremity to reproduce complex phenomena of human movement, in particular Fitts' Law and the 2/3 Power Law. This result supports the notion that control of the complex human biomechanical system can plausibly be determined by a set of simple assumptions and can easily be learned.Comment: 19 pages, 7 figure

    A review of forward-dynamics simulation models for predicting optimal technique in maximal effort sporting movements

    Get PDF
    The identification of optimum technique for maximal effort sporting tasks is one of the greatest challenges within sports biomechanics. A theoretical approach using forward-dynamics simulation allows individual parameters to be systematically perturbed independently of potentially confounding variables. Each study typically follows a four-stage process of model construction, parameter determination, model evaluation, and model optimization. This review critically evaluates forward-dynamics simulation models of maximal effort sporting movements using a dynamical systems theory framework. Organismic, environmental, and task constraints applied within such models are critically evaluated, and recommendations are made regarding future directions and best practices. The incorporation of self-organizational processes representing movement variability and "intrinsic dynamics" remains limited. In the future, forward-dynamics simulation models predicting individual-specific optimal techniques of sporting movements may be used as indicative rather than prescriptive tools within a coaching framework to aid applied practice and understanding, although researchers and practitioners should continue to consider concerns resulting from dynamical systems theory regarding the complexity of models and particularly regarding self-organization processes

    Synthesis of Biologically Realistic Human Motion Using Joint Torque Actuation

    No full text
    status: publishe
    corecore