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Reinforcement learning control 
of a biomechanical model 
of the upper extremity
Florian Fischer*, Miroslav Bachinski, Markus Klar, Arthur Fleig & Jörg Müller

Among the infinite number of possible movements that can be produced, humans are commonly 
assumed to choose those that optimize criteria such as minimizing movement time, subject to 
certain movement constraints like signal-dependent and constant motor noise. While so far these 
assumptions have only been evaluated for simplified point-mass or planar models, we address the 
question of whether they can predict reaching movements in a full skeletal model of the human 
upper extremity. We learn a control policy using a motor babbling approach as implemented in 
reinforcement learning, using aimed movements of the tip of the right index finger towards randomly 
placed 3D targets of varying size. We use a state-of-the-art biomechanical model, which includes 
seven actuated degrees of freedom. To deal with the curse of dimensionality, we use a simplified 
second-order muscle model, acting at each degree of freedom instead of individual muscles. The 
results confirm that the assumptions of signal-dependent and constant motor noise, together with 
the objective of movement time minimization, are sufficient for a state-of-the-art skeletal model of 
the human upper extremity to reproduce complex phenomena of human movement, in particular 
Fitts’ Law and the 2

3

 Power Law. This result supports the notion that control of the complex human 
biomechanical system can plausibly be determined by a set of simple assumptions and can easily be 
learned.

In the case of simple end-effector models, both Fitts’ Law and the 23 Power Law have been shown to constitute a 
direct consequence of minimizing movement time, under signal-dependent and constant motor noise1,2. Here, 
we aim to confirm that these simple assumptions are also sufficient for a full skeletal upper extremity model to 
reproduce these phenomena of human movement. As a biomechanical model of the human upper extremity, we 
use the skeletal structure of the Upper Extremity Dynamic Model by Saul et al.3, including thorax, right clavicle, 
scapula, shoulder, arm, and hand. The model has seven actuated degrees of freedom (DOFs): shoulder rotation, 
elevation and elevation plane, elbow flexion, forearm rotation, and wrist flexion and deviation. While the thorax 
is fixed in space, the right upper extremity can move freely by actuating these DOFs. To deal with the curse of 
dimensionality and make the control problem tractable, following van Beers et al.4, we use a simplified second-
order muscle model acting at each DOF instead of individual muscles. These second-order dynamics map an 
action vector obtained from the learned policy to the resulting activations for each DOF. Following van Beers 
et al.4, we assume both signal-dependent and constant motor noise in the control, with noise levels 0.103 and 
0.185, respectively. Multiplying these activations with constant moment arm scaling factors, which represent the 
strength of the muscle groups at the respective DOFs, yields the torques that are applied at each DOF indepen-
dently. Further details on the biomechanical model are provided in the Methods section below.

The Upper Extremity Dynamic Model is significantly more complex than standard point-mass or linked-
segment models. In particular, there is no explicit formula for the non-linear and non-deterministic system 
dynamics. Together with the objective of movement time minimization, these properties make it difficult to use 
classical optimal control approaches. Instead, in this paper we learn a control policy using deep reinforcement 
learning (RL). RL algorithms, just like the optimal control methods discussed below, aim to find a policy that 
maximizes a given reward function. Moreover, they do not require any explicit knowledge about the underlying 
model. Instead, the optimal value of a certain state is estimated from sampling different actions in the environ-
ment and observing the subsequent state and obtained reward5.

In our approach, a control policy initially generates random movements, which are rewarded with the negative 
time to reach randomly placed 3D targets of varying size, with the right index finger (see Fig. 1). This reward sig-
nal implies movement time minimization for aimed movements. The policy is updated using the soft-actor-critic 
algorithm (SAC)6. The actor and critic networks both consist of two fully connected layers with 256 neurons each, 
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followed by the output layer, which either returns the means and standard deviations of the action distributions 
(for the actor network) or the state-action value (for the critic network). Further information about the network 
architecture and a detailed description of all state components can be found in the Methods section below. To 
make reinforcement learning computationally feasible within a reasonable time period, a fast physics simulation 
is advantageous. Accordingly, we implemented the biomechanical model in MuJoCo7.

It is important to note in this context that the assumption of minimizing total movement time does not 
provide any gradient information to the reinforcement learner. In particular, it is not possible to distinguish 
beneficial states and actions from inappropriate ones before the target has been reached, which terminates the 
episode and thus increases the total return. This, together with the fairly small subspace of appropriate actions 
relative to the number of possible control vectors, makes it very difficult to obtain a reasonable policy without 
additional aid. For this reason, we created an adaptive curriculum, which dynamically decreases the target diam-
eter from 60 cm to less than 2 cm during training. This has proven to be both effective (targets with diameter 
around 2 cm are consistently reached by the final policy) and efficient (this minimum width was reached after 
1.2M steps, while various predetermined curricula required more than 3M steps).

Related work
The question of how human arm movements are internally planned and controlled has received significant 
attention in the literature. Important phenomena that emerge from human arm movements include Fitts’ Law 
and the 23 Power Law. In this section we review related work in these areas.

Motor control.  Many models of human motor control assume that some objective function is optimized 
during the planning of the movement. A variety of objective functions have been proposed, including mini-
mization of either jerk8,9, peak acceleration10, end-point variance1, duration2,11, or torque-change12. Moreover, 
combined objective functions have been used to model a trade-off between different objectives, e.g., between 
accuracy and effort13,14, or jerk and movement time15. Extensions have been proposed that, e.g., focus on initial 
gating mechanisms16 or motor synergies representing agonist and antagonist muscle groups17.

While most of these models imply a separation between the planning and the execution stage, the optimal 
feedback control theory18–22 assumes that sensory signals about the controlled quantity are fed back to the con-
troller. These observations are then directly used to compute the remaining optimal control signals, resulting in 
a feedback loop. Extensions to infinite-horizon problems23, which yield the optimal steady-state solution at the 
expense of neglecting transient behavior, and explicit non-linear time costs24,25 have been proposed.

While many early works in motor control have modeled the biomechanics as point-mass models with linear 
dynamics1,13 or linked-segment models1, there is a growing interest in biomechanical models of increasing real-
ism and fidelity. This is spurred by advances in biomechanical modeling3,26,27 and simulation28,29. Biomechanical 
models allow control beyond the end-effector, for example on the level of joints12,30–35, or muscles36–39.

Joint-actuated models apply different optimality criteria for movement generation and coordination, mini-
mizing, e.g., the angular accelerations with constraints40, angular jerk30, torque-change12,31, mechanical energy 
expenditure41, a combination of absolute work and angular acceleration35, or some combination of accuracy 
and effort costs in the context of optimal feedback control14. The biomechanical plant in these works is usually 
represented as a linked-segment model, with simplified kinematic properties. In particular, the shoulder joint is 
commonly described as a rotation-only joint, ignoring the translatory part as well as complex movements related 
to the scapula and clavicle. Some of these models also include simplified muscles with simplified biomechanical 
attachment14.

More recently, more complex, high-fidelity biomechanical musculoskeletal models have been 
introduced36,37,42,43, where the control is muscle-based. In these models, the computation of the control val-
ues is commonly based on neural networks, particularly on deep learning and reinforcement learning. These 
methods have been applied successfully to predict coordinated muscle activations for multi-joint arm42, lower 
body43, and full body36 movements. Moreover, a combination of 20 neural networks, each designed to imitate 
some specific part of the sensorimotor system, has recently been used to synthesize movements for such diverse 
sensorimotor tasks as reaching, writing, and drawing37. To make the control of muscle-based models feasible, 
these works apply multiple simplifications to the full biomechanical model, such as reducing or immobilis-
ing degrees of freedom37,42 or even completely locking the movement to two dimensions43, ignoring tendon’s 

Figure 1.   Synthesized reaching movement. A policy implemented as a neural network computes motor control 
signals of simplified muscles at the joints of a biomechanical upper extremity model from observations of the 
current state of the upper body. We use Deep Reinforcement Learning to learn a policy that reaches random 
targets in minimal time, given signal-dependent and constant motor noise.
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elasticity36,37, limiting maximum passive forces36, ignoring the muscle activation dynamics36,37 or significantly 
reducing the number of independently controlled muscles42,43. Also, the control learning strategies differ from 
the pure reinforcement learning approach by applying imitation learning36,37, or using artificial training data 
with simplified dynamics37.

Up to now, these models have not been evaluated regarding the realism of the movements generated, in 
particular whether they exhibit features characteristic of human movements, such as Fitts’ Law and the 23  Power 
Law34,36,37.

Fitts’ law.  Fitts’ Law44 describes the speed-accuracy trade-off of aimed movements towards a spatially 
defined target. Given the distance D between the initial position of the controlled end-effector (e.g., the hand 
or the finger) and the desired target position, and given the width W of the target, this law claims a logarithmic 
relationship between the distance-width ratio DW  and the resulting movement time MT:

where we used the Shannon formulation45. Most works that explored possible explanations for the emergence 
of Fitts’ Law have postulated that it results from noise in motor control. Crossman and Goodeve46 showed that 
Fitts’ Law emerges from the assumptions of isochronal submovements towards the target and constant error-
velocity ratio. Meyer et al.47 demonstrated that a power form of Fitts’ Law emerges from the optimization of the 
relative duration of two submovements in order to achieve minimal movement time, assuming that the standard 
deviation of submovement endpoints increases proportionally with movement velocity. Fitts’ Law has also been 
derived within the infinite-horizon optimal control framework, assuming that the target is reached as soon as 
the positional end-effector variance relative to the target center falls below the desired target accuracy23.

Harris and Wolpert1 proposed that the central nervous system (CNS) aims to minimize movement end-point 
variance given a fixed movement time, under the constraint of signal-dependent noise. This signal-dependent 
noise is assumed to be the main factor determining the end-point accuracy: Faster movements can be achieved 
through applying larger control signals (in the extreme, this leads to the time-minimizing Bang-bang control), 
but only at the costs of larger deviations, which in turn induce a larger end-point variance and thus a greater 
risk of missing the target. This trade-off has a strong neuroscientific evidence48 and is consistent with the speed-
accuracy trade-off proposed by Fitts’ Law1,2. Moreover, in the case of arm-reaching movements, it has been shown 
recently that the assumptions of feed-forward control and signal-dependent noise (using dynamics of a two-link 
planar arm model) directly imply Fitts’ Law, with coefficients a and b related to the level of signal-dependent 
noise49 . Both coefficients were also shown to depend on the dynamics and kinematics, e.g., on the viscosity, or 
the Jacobian matrix relating the joint space and the end-effector space.

2

3

 Power law.  Continuous, rhythmic movements such as drawing or hand-writing, exhibit a speed-curvature 
trade-off described by the 23 Power Law50. This law proposes a non-linear relationship between the radius of cur-
vature ρn and the corresponding tangential velocity vn,

where the parameter k determines the velocity gain. This particularly implies that higher curvature leads to lower 
velocity. It has also been demonstrated that the 23 Power Law is equivalent to constant affine velocity51.

The 23 Power Law has been confirmed to hold for a variety of task conditions, including hand movement52, 
eye movement53, perceptuomotor tasks54,55, and locomotion56. Moreover, it has been shown to apply under the 
assumption of signal-dependent noise1. Schaal and Sternad57 observed that the perimeter of the ellipse has a large 
impact on the validity of this law, with β obtained from a non-linear regression showing deviations in the order 
of 30–40% for large ellipses (or, alternatively, with decreasing coefficient of determination R2 , i.e., decreasing 
reliability of the parameter fitting). Based on these observations, Schaal and Sternad argue that the 23 Power Law 
cannot be an intrinsic part of the movement planning procedure, but rather occurs as a “by-product” from the 
generation of smooth trajectories in intrinsic joint space57 Following this argumentation, the non-linearities aris-
ing from the transformation from joint space to end-effector space, i.e., from a non-trivial kinematic chain, may 
account for scale- and direction-dependent results. Other theories see the cause of the wide applicability of the 
2
3 Power Law either in trajectory planning processes such as motor imagery58 or jerk minimization59, or directly 
emerging from muscle properties60 or population vectors in motor cortical areas in the CNS61,62.

Results
Fitts’ law.  In order to evaluate the trajectories resulting from our final policy for different target conditions, 
we designed a discrete Fitts’ Law type task. The task follows the ISO 9241-9 ergonomics standard and incorpo-
rates 13 equidistant targets arranged in a circle at 50 cm distance in front of the body and placed 10 cm to the 
right of the right shoulder (Fig. 2). The objective is for the end-effector to reach each target and to remain inside 
the target for 100 ms. In this case we deem the movement successful. Although not included in the training 
phase, remaining inside the target seemed to be unproblematic during evaluation. If either the movement was 
successful, or 1.5 s have passed, the next target is given to the learned policy.

(1)MT = a+ b log2

(

D

W
+ 1

)

,

(2)vn = kρ1−β
n ,

(3)β ≈
2

3
,
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The Index of Difficulty (ID) of the tasks ranges from 1 to 4, where ID is computed as log2(D/W + 1) . D 
denotes the distance between the initial and target position, and W is the target size. We execute 50 movements 
for each task condition and each direction, i.e., 6500 movements in total—all were successful.

Using the trajectories from this discrete pointing task, we evaluate whether the synthesized movements follow 
Fitts’ Law44, i.e., whether there is a linear relationship between task difficulty (ID) and the required movement 
time. Figure 2c shows the total duration for each movement sorted by ID. The median movement times for each 
ID (green lines) are approximated by a linear function (red line, with coefficient of determination R2 = 0.9986).

2

3

 Power law.  We evaluate whether our model exhibits the 23 Power Law using an elliptic via-point task. To 
this end, we define an ellipse in 2D space (55 cm in front, 10 cm above, and 10 cm to the right of the shoulder) 
that lies completely within the area used for target sampling during training (ellipse radii are 7.5 cm (horizontal) 
and 3 cm (vertical)). Using the via-point method described in the Methods section below, our learned policy 
needs to trace the ellipse for 60 s as fast as possible . As shown in Fig. 3a, the simulation trajectories deviate from 
the desired ellipse, with the lower-right segment being flattened. Using these trajectories, we compute ρn and vn 
for all time steps sampled at a rate of 100 Hz and then perform a log-log regression on the resulting values. This 
yields the optimal parameter values β = 0.65 and k = 0.54 (with correlation coefficient R = 0.84 ). Thus, the 23 
Power Law accounts for 71% of the variance observed in elliptic movements ( R2 = 0.71 ). Both the data points 
and the linear approximation in log-log space are shown in Fig. 3b.

Movement trajectories.  In addition to Fitts’ Law and the 23 Power Law, we qualitatively analyze the move-
ment trajectories generated by the model. Figures 4 and 5 show the position, velocity, and acceleration time 
series, as well as 3D movement path, Phasespace, and Hooke plots for multiple movements from the Fitts’ Law 
type task for two representative task conditions (ID 4 respective ID 2, each with a 35 cm distance between tar-
gets) and one representative movement direction (between targets 7 and 8 shown in Fig. 2a). Apart from the 
3D movement path, all plots show centroid projections of the respective trajectory onto the vector between the 
initial and target positions.

The movements exhibit typical features of human aimed movements, such as symmetric bell-shaped velocity 
profiles63. Movements are smooth, and gently accelerate and decelerate, as evident in the acceleration profiles 
and Hooke plots in Figs. 4 and 5. For high ID (Fig. 4), movements exhibit an initial rapid movement towards 
the target, followed by an extended phase of corrective movements. For low ID (Fig. 5), the phase of corrective 
movements is generally shorter.

Figure 2.   Fitts’ Law type task. (a) The target setup in the discrete Fitts’ Law type task follows the ISO 
9241-9 ergonomics standard. Different circles correspond to different IDs and distances between targets. (b) 
Visualization of our biomechanical model performing aimed movements. Note that for each time step, only 
the current target (position and radius) is given to the learned policy. (c) The movements generated by our 
learned policy conform to Fitts’ Law. Here, movement time is plotted against ID for all distances and IDs in the 
considered ISO task (6500 movements in total).
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Movement trajectories towards the target are slightly curved and some of them exhibit pronounced correc-
tional submovements at the end (see, e.g., Supplementary Fig. S1 and S2 online). The between-movement vari-
ability within one movement direction and task condition decreases with increasing ID. In particular, very simple 
ID 1 movements exhibit a large variability and are most prone to outliers (see, e.g., Supplementary Fig. S3 online).

For a few movement directions (mostly in ID 2 tasks), the corresponding plots seem to incorporate two dif-
ferent trajectory types (see, e.g., Supplementary Fig. S6 online): While some movements start with zero or even 
a negative acceleration and show a typical N-shaped acceleration profile, others exhibit a positive acceleration at 
the beginning, and their first peak is less pronounced. The reason for this behavior is corrective submovements 
at the end of the previous movement (see, e.g., Supplementary Fig. S4 and S5 online), leading to a different 
initial acceleration at the beginning of the subsequent movement. Apart from these notable features, almost all 
movements exhibit bell-shaped velocity and N-shaped acceleration profiles, as is typical for pointing tasks63,64.

Discussion
Our results indicate that, under the assumption of movement time minimization given signal-dependent and 
constant motor noise, movement of the human upper extremity model produced by reinforcement learning 
follows both Fitts’ Law and the 23 Power Law. The movement times of aimed movements produced by the model 
depend linearly on the Index of Difficulty of the movement. For elliptic movements, the logarithm of the velocity 

Figure 3.   Elliptic via-point task. Elliptic movements generated by our learned policy conform to the 2
3
 Power 

Law. (a) End-effector positions projected onto the 2D space (blue dots), where targets were subsequently placed 
along an ellipse of 15 cm width and 6 cm height (red curve). (b) Log-log regression of velocity against radius of 
curvature for end-effector positions sampled with 100 Hz when tracing the ellipse for 60 s.

Figure 4.   End-effector trajectories (ID 4). 3D path, projected position, velocity, acceleration, phasespace, and 
Hooke plots of 50 aimed movements (between targets 7 and 8 shown in Fig. 2a) with ID 4 and a target distance 
of 35 cm.
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of the end-effector correlates with the logarithm of the radius of curvature65 The optimal β = 0.65 obtained 
from log-log regression matches the proposed value of 23 , with a correlation coefficient of R = 0.84 , which is 
consistent with previous observations, as the required ellipse has moderate size57. Finally, the generated trajec-
tories exhibit features that are typical for human arm movements, such as bell-shaped velocity and N-shaped 
acceleration profiles.

The results confirm previous findings that demonstrated these phenomena in simpler models of the human 
biomechanics. In particular, the emergence of Fitts’ Law and the 23 Power Law from the assumption of signal-
dependent noise has been demonstrated in the case of point-mass and linked-segment models of the human 
arm1,2,49. Our results support that insight by showing that Fitts’ Law and the 23 Power Law also emerge from those 
normative principles in a state-of-the-art biomechanical model of the human arm with simplified actuation.

In addition, we want to emphasize that the control signals that drive this model were obtained from RL 
methods. The fact that Fitts’ Law and the 23 Power Law hold for the generated trajectories provides evidence that 
behavior abiding these established laws of human motion can be generated using joint-actuated biomechanical 
models controlled by reinforcement learning algorithms. To the best of our knowledge, this has not yet been 
shown for state-of-the-art biomechanical models.

One limitation of our approach is the implicit assumption of perfect observability, as all state information 
(joint angles, end-effector position, etc.) are immediately available to the controller, without any disturbing noise. 
In the future, it will be interesting to combine state-of-the art models of sensory perception with the presented 
RL-based motor control approach. Promising approaches to address this problem include the usage of recurrent 
networks66,67 and the internal formation of “beliefs”, given the latest (imperfect) observations68.

Another limitation is the usage of simplified muscle dynamics due to the curse of dimensionality. However, 
recent applications of deep learning methods, which approximate complex state-dependent torque limits69 or 
muscle activation signals37 using synthesized training data, raise hope for future approaches that efficiently 
combine RL or optimal control methods with state-of-the-art muscle models. It will be interesting to see whether 
well-established regularities such as Fitts’ Law or the 23 Power Law also emerge from such models.

Methods
Below, we first provide details on our biomechanical model. After discussing our general reinforcement learning 
approach, we focus on the individual components of our method, namely states, actions, scaling factors, rewards, 
and an adaptive target-selection mechanism. We also provide details on the implementation of our algorithm. 
Finally, we discuss the methods used for evaluation.

Biomechanical model of the human upper extremity.  Our biomechanical model of the human 
upper extremity is based on the Upper Extremity Dynamic model3, which was originally implemented in Open-
Sim28. Kinematically, the model represents the human shoulder and arm, using seven physical bodies and five 
”phantom” bodies to model the complex movement of the shoulder. This corresponds to three joints (shoulder, 
elbow, and wrist) with seven DOFs and five additional joints with thirteen associated components coupled by 

Figure 5.   End-effector trajectories (ID 2). 3D path, projected position, velocity, acceleration, phasespace, and 
Hooke plots of 50 aimed movements (between targets 7 and 8 shown in Fig. 2a) with ID 2 and a target distance 
of 35 cm.
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thirteen constraints with the DOFs. Each DOF has constrained joint ranges (see Table 1), which limits the pos-
sible movements. In contrast to linked-segment models, the Upper Extremity Dynamic model represents both 
translational and rotatory components of the movement within shoulder, clavicle, and scapula, and also within 
the wrist. It also contains physiological joint axis orientations instead of the perpendicular orientations in linked-
segment models. The dynamics components of the musculoskeletal model are represented by the weight and 
inertia matrix of each non-phantom body and the default negligible masses and inertia of all phantom bodies. 
The dynamics properties of the model were extracted from various previously published works on human and 
cadaveric studies. The active components of the Upper Extremity Dynamic Model consist of thirty-one Hill-type 
muscles as well as of fourteen coordinate limit forces softly generated by the ligaments when a DOF approaches 
the angle range limit. Further details of this model are given in Saul et al.3

In order to make reinforcement learning feasible, we manually implement the Upper Extremity Dynamic 
Model in the fast MuJoCo physics simulation7. With respect to kinematics, the MuJoCo implementation of the 
model is equivalent to the original OpenSim model and contains physiologically accurate degrees of freedom, 
as well as corresponding constraints. We assume the same physiological masses and inertial properties of indi-
vidual segments as in the OpenSim model. We do not implement muscles in the MuJoCo model, as this would 
significantly slow down the simulation and make reinforcement learning computationally infeasible due to the 
exponential growth of decision variables in the (discretized) action space when increasing the number of DOFs 
– the curse of dimensionality. In particular, computing dynamic actuator lengths (which significantly affect the 
forces produced by muscle activation patterns) has proven challenging in MuJoCo70. Instead, we implement 
simplified actuators, representing aggregated muscle actions on each individual DOF, which are controlled 
using the second-order dynamics introduced by van der Helm et al.71 with fixed excitation and activation time 
constants te = 30 ms and ta = 40 ms, respectively. We discretize the continuous state space system using the 
forward Euler method, which yields the following dynamics:

where c(q)n  is the applied control and σ (q)
n  the resulting activation for each DOF q ∈ Q , and Q is the set that con-

tains all DOFs. The controls are updated every �t=10 ms, at time steps n ∈ {0, . . . ,N − 1} . To get more accurate 
results, at each time step n, we compute five sub-steps (during which the control c(q)n  is constant) with a sampling 
time of 2 ms to arrive at time step n+ 1.

We assume both signal-dependent and constant noise in the control, i.e.,

where an = (a
(q)
n )q∈Q denotes the action vector obtained from the learned policy, and ηn and ǫn are Gaussian 

random variables with zero mean and standard deviations of 0.103 and 0.185, respectively, as described by van 
Beers et al.4 The torques, which are applied at each DOF independently, are obtained by multiplying the respec-
tive activation σ (q)

n  with a constant scaling factor g (q) , which represents the strength of the muscle groups at the 
this DOF, i.e.,

 We select the scaling factors, and respectively the maximum voluntary torques for the actuators given in Table 1, 
based on experimental data as described below. We currently do not model the soft joint ranges in MuJoCo, as 
the movements the model produces do not usually reach joint limits.

The used biomechanical model provides the following advantages over simple linked-segment models:

•	 Phantom bodies and joints allow for more realistic movements, including both translation and rotation 
components within an individual joint,

•	 Individual joint angle and torque limits are set for each and every DOF,
•	 Axes between joints are chosen specifically and not just perpendicular between two segments,
•	 The model includes physiological body segment masses, and yields better options for scaling individual body 

parts, e.g., based on particular individuals.

Reinforcement learning.  We define the task of controlling the biomechanical model of the human upper 
extremity through motor control signals applied at the joints as a reinforcement learning problem, similar to 
recent work from Cheema et al.34 In this formulation, a policy πθ (a|s) models the conditional distribution over 
actions a ∈ A (motor control signals applied at the individual DOFs) given the state s ∈ S (the pose, velocities, 
distance to target, etc.). The subindex θ denotes the parameters of the neural networks introduced below. At each 
timestep n ∈ {0, . . . ,N} , we observe the current state sn , and sample a new action an from the current policy πθ . 
The physical effects of that action, i.e., the application of these motor control signals, constitute the new state 
sn+1 , which we obtain from our biomechanical simulation. In our model, given sn and an , the next state sn+1 is not 
deterministic, since both signal-dependent and constant noise are included. Hence, we denote the probability 
of reaching some subsequent state sn+1 given sn and an by p(sn+1|sn, an) , while p(s0) denotes the probability of 
starting in s0 . Given some policy πθ and a trajectory T = (s0, a0, . . . , aN−1, sN ),

(4)

[

σ
(q)
n+1

σ̇
(q)
n+1

]

=

[

1 �t
−�t
(teta)

1−�t te+ta
teta

]

[

σ
(q)
n

σ̇
(q)
n

]

+

[

0
�t
teta

]

c
(q)
n ,

(5)c
(q)
n = (1+ ηn)a

(q)
n + ǫn,

(6)τ
(q)
n = g (q)σ

(q)
n .



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14445  | https://doi.org/10.1038/s41598-021-93760-1

www.nature.com/scientificreports/

describes the probability of realizing that trajectory. Evaluating/Sampling equation (7) for all possible trajectories 
T ∈ T  then yields the distribution over all possible trajectories, ̺ T

θ  , induced by a policy πθ.
We compute a reward rn at each time step n, which allows us to penalize the total time needed to reach a given 

target. The total return of a trajectory is given by the sum of the (discounted) rewards 
∑N

n=0 γ
nrn , where γ ∈]0, 1] 

is a discount factor that causes the learner to prefer earlier rewards to later ones. Incorporating the entropy term,

yields the expected (soft) return

 which we want to maximize with respect to the parameters θ , i.e., the goal is to identify the optimal parameters 
θ∗ that maximize J(θ) . Here, the temperature parameter α > 0 determines the importance of assigning the same 
probability to all actions that yield the same return (enforced by maximizing the entropy H ), i.e., increasing the 
“stochasticity” of the policy πθ , relative to maximizing the expected total return. It thus significantly affects the 
optimal policy, and finding an “appropriate” value is non-trivial and heavily depends on the magnitude of the 
rewards rn . For this reason, we decided to adjust it automatically during training together with the parameters 
θ , using dual gradient descent as implemented in the soft-actor critic algorithm (see below)6.

It is important to note that the soft return in Equation (9) is different from the objective function used in 
standard reinforcement learning. The MaxEnt RL formulation, which incorporates an additional entropy maxi-
mization term, provides several technical advantages. These include the natural state-space exploration72,73, a 
smoother optimization landscape that eases convergence towards the global optimum74–76, and increased robust-
ness to changes in the reward function77,78. In practice, many RL algorithms have gained increased stability from 
the additional entropy maximization79–81. Conceptually, MaxEnt RL can be considered equivalent to probabilistic 
matching, which has been used to explain human decision making82,83. Existing evidence indicates that human 
adults tend to apply probabilistic matching methods rather than pure maximization strategies82,84,85. However, 
these observations still lack conclusive neuroscientific explanation80.

In order to approximate the optimal parameters θ∗ , we use a policy-gradient approach, which iteratively 
refines the parameters θ in the direction of increasing rewards. Reinforcement learning methods that are based 
on fully sampled trajectories usually suffer from updates with high variance. To reduce this variance and thus 
accelerate the learning process, we choose an approach that includes two approximators: an actor network and a 
critic network. These work as follows. Given some state s0 as input, the actor network outputs the (standardized) 
mean and standard deviation of as many normal distributions as dimensions of the action space. The individual 
action components are then sampled from these distributions. To update the actor network weights, we must 
measure the “desirability” of some action a, given some state s, i.e., how much reward can be expected when 
starting in this state with this action and subsequently following the current policy. These values are approxi-
mated by the critic network.

The architecture of both networks is depicted in Fig. 6. For the sake of a simpler notation, the parameter 
vector θ contains the weights of both networks, however these weights are not shared between the two. These 
two networks are then coupled with the soft actor-critic (SAC) algorithm6, which has been used successfully in 
physics-based character motion86: As a policy-gradient method, it can be easily used with a continuous action 
space such as continuous motor signals – something that is not directly possible with value function methods 
like DQN5. As an off-policy method that makes use of a replay buffer, it is quite sample-efficient. This is impor-
tant, since running forward physics simulations in MuJoCo constitutes the major part of the training duration. 
Moreover, it has been shown that SAC outperforms other state-of-the-art algorithms such as PPO87 or TD388. 
Supporting the observations in Haarnoja et al.6, we also found our training process to be faster and more robust 
when using SAC rather than PPO. Moreover, SAC incorporates an automatic adaption of the temperature α using 
dual gradient descent, which eliminates the need for manual, task-dependent fine-tuning. In order to obtain 
an unbiased estimate of the optimal value function, we use Double Q-Learning89, using a separate target critic 
network. The neural network parameters are optimized with the Adam optimizer90.

States, actions, and scaling factors.  Using the MuJoCo implementation of the biomechanical model 
described above, the states s ∈ S ⊆ R

48 in our RL approach include the following information:

•	 Joint angle for each DOF q ∈ Q in radians (7 values),
•	 Joint velocity for each DOF q ∈ Q in radians/s (7 values),
•	 Activations σ (q) and excitations σ̇ (q) for each DOF q ∈ Q ( 2× 7 values),
•	 Positions of the end-effector and target sphere ( 2× 3 values),
•	 (positional) Velocities of the end-effector and target sphere ( 2× 3 values),
•	 (positional) Acceleration of the end-effector (3 values),
•	 Difference vector: vector between the end-effector attached to the index finger and the target, pointing towards 

the target (3 values),
•	 Projection of the end-effector velocity towards the target (1 value),

(7)pθ (T) = p(s0)

N−1
∏

n=0

πθ (an|sn)p(sn+1|sn, an)

(8)H(πθ (· | s)) = Ea∼πθ (·|s)[− log(πθ (a | s))],

(9)J(θ) = ET∼̺Tθ

[(

N−1
∑

n=0

γ n
(

rn − α log(πθ (an | sn))
)

)

+ γNrN

]

,
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•	 Radius of the target sphere (1 value).

We found that in our case, the target velocity (which always equals zero for the considered tasks), the end-effector 
acceleration, the difference vector, and the projection of the end-effector velocity can be omitted from state space 
without reducing the quality of the resulting policy. However, we decided to incorporate these observations, as 
they did not considerably slow down training and might be beneficial for more complex tasks such as target 
tracking or via-point tasks.

Each component a(q) ∈ [−1, 1] of the action vector a = (a(q))q∈Q ∈ A ⊆ R
7 is used to actuate some DOF 

q ∈ Q by applying the torque τ (q) resulting from Eqs. (4)–(6). Note that in addition to these actuated forces, 
additional active forces (e.g., torques applied to parent joints) and passive forces (e.g., gravitational and contact 
forces) act on the joints in each time step.

We determine experimentally the maximum torque a human would exert at each DOF in this task as follows. 
We implemented the Fitts’ Law task described above in a VR environment displayed via the HTC Vive Pro VR 
headset. We recorded the movements of a single participant performing the task, using the Phasespace X2E 
motion capture system with a full-body suit provided with 14 optical markers. This study was granted ethical 
approval by the ethics committee of the University of Bayreuth and followed ethical standards according to the 
Helsinki Declaration. Written informed consent was received from the participant, which received an economic 
compensation for participating in the study. Using OpenSim, we scaled the Upper Extremity Dynamic Model 
to this particular person. We then used OpenSim to perform Inverse Dynamics to obtain the torque sequences 
that are most likely to produce the recorded marker trajectories. For each DOF q ∈ Q , we set the corresponding 
scaling factor g (q) to the absolute maximum torque applied at this DOF during the experiment, omitting a small 
number of outliers from the set of torques, i.e., values with a distance to mean larger than 20 times the standard 
deviation. The resulting values are shown in Table 1.

Reward function and curriculum learning.  The behavior of the policy is determined largely by the 
reward rn that appears in Eq. (9). We designed the reward following Harris and Wolpert1, who argue that there 

Figure 6.   Neuronal network architectures. (a) The actor network takes a state s as input and returns the policy 
πθ in terms of mean and standard deviation of the seven normal distributions, from which the components of 
the action vector are drawn. (b) The critic network takes both state s and action vector a as input and returns the 
estimated state-action value. Two critic networks are trained simultaneously to improve the speed and stability 
of learning (Double Q-Learning). Detailed information about the input state components are given in the 
Methods section.
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is no rational explanation as to why the central nervous system (CNS) should explicitly try to minimize previ-
ously proposed metrics such as the change in torque applied at the joints12, or the acceleration (or jerk) of the 
end-effector8. They argue that it is not even clear whether the CNS is able to compute, store, and integrate these 
quantities while executing motions.

Instead, they argue that the CNS aims to minimize movement end-point variance given a fixed movement 
time, under the constraint of signal-dependent noise. Following Harris and Wolpert1, t his is equivalent to mini-
mizing movement time when the permissible end-point variance is given by the size of the target. This objective 
is simple and intuitively plausible, since achieving accurate aimed movements in minimal time is critical for the 
success of many movement tasks. Moreover, it has already been applied to linear dynamics2.

Therefore, the objective of our model is to minimize movement time while reaching a target of given width.
More precisely, our reward function consists only of a time reward, which penalizes every time step of an 

episode equally:

This term provides incentives to terminate the episode (which can only be achieved by reaching the target) as 
early as possible. Since we apply each control an for 10 ms, �t amounts to 0.01 in our case, i.e., rn = −1 in each 
time step n ∈ {0, . . . ,N}.

According to our experience, it is possible to learn aimed movements despite the lack of gradient provided 
by the reward function, provided the following requirements are met. The initial posture needs to be sampled 
randomly, and the targets need to be large enough at the beginning of the training to ensure that the target is 
reached by exploration sufficiently often in early training steps to guide the reinforcement learner. However, 
creating a predetermined curriculum that gradually decreases the target width during training appropriately has 
proved very difficult. In most cases, the task difficulty either increased too fast, leading to unnatural movements 
that do not reach the target directly (and often not at all), or progress was slow, resulting in a time-consuming 
training phase.

For this reason, we decided to use an adaptive curriculum, which adjusts the target width dynamically, 
depending on the recent success rate. Specifically, we define a curriculum state, which is initialized with an initial 
target diameter of 60 cm. Every 10K update steps, the current policy is evaluated on 30 complete episodes, for 
which target diameters are chosen, depending on the current state of the curriculum. Based on the percentage 
of targets reached within the permitted 1.5 s (success rate), the curriculum state is updated. If the success rate 
falls below 70% , it is increased by 1 cm; if the success rate exceeds 90% , it is decreased by 1 cm. To avoid target 
sizes that are larger than the initial width or are too close to zero, we clipped the resulting value to the interval 
[0.1 cm, 60 cm].

At the beginning of each episode, the target diameter is set to the current curriculum state with probability 
1− ε , and sampled uniformly randomly between 0.1 cm and 60 cm with probability ε = 0.1 , which has proven 
to be a reasonable choice. This ensures in particular that all required target sizes occur throughout the training 
phase, and thus prevents forgetting how to solve “simpler” tasks (in literature, often referred to as catastrophic 
forgetting; see, e.g., McCloskey et al.91).

Implementation of the reinforcement learning algorithm.  The actor and critic networks described 
in the Reinforcement Learning section consist of two fully connected layers with 256 neurons each, followed by 
the output layer, which either returns the means and standard deviations of the action distributions (for the 
actor network) or the state-action value (for the critic network). To improve the speed and stability of learning, 
we train two separate, but same-structuredidentically structured critic networks and use the minimum of both 
outputs as the teaching signal for all networks (Double Q-Learning)6,89. In all networks, ReLU92 is used as non-
linearity for both hidden layers. The network architectures are depicted in Fig. 6.

The reinforcement learning methods of our implementation are based on the TF-Agents library93. The learning 
phase consists of two parts, which are repeated alternately: trajectory sampling and policy updating.

In the trajectory sampling part, the target position is sampled from the uniform distribution on a cuboid of 70 
cm height, 40 cm width, and 30 cm depth, whose center is placed 50 cm in front of the human body, and 10 cm 
to the right of the shoulder. The width of the target is controlled by the adaptive curriculum described above. The 
biomechanical model is initialized with some random posture, for which the joint angles are uniformly sampled 
from the convex hull of static postures that enables keeping the end-effector in one of 12 targets placed along 
the vertices of the cuboid described above. The initial joint velocities are uniformly sampled from the interval 
[−0.005 radians/s, 0.005 radians/s].

In each step n ∈ {0, . . . ,N − 1} , given the current state vector sn ∈ S (see description above), an action is 
sampled from the current policy πθ (· | sn) . Next, the MuJoCo simulation uses this action to actuate the model 
joints. It also updates the body posture, and returns both the reward rn and the subsequent state vector sn+1 . In 
our implementation, each episode in the learning process contains at most N = 150 of such steps, with each 
step corresponding to 10 ms (allowing movements to be longer than one and a half seconds did not improve the 
training procedure significantly). If the target is reached earlier, i.e., the distance between end-effector and target 
center is lower than the radius of the target sphere, and the end-effector remained inside the target for 100 ms, 
the current episode terminates and the next episode begins with a new target position and width. At the begin-
ning of the training, 10K steps are taken and the corresponding transitions stored in a replay buffer, which has 
a capacity of 1M steps. During training, only one step is taken and stored per sampling phase.

In the policy updating part, 256 previously sampled transitions (sn, an, rn, sn+1) are randomly chosen from 
the replay buffer to update both the actor network and the critic network weights. We use a discount factor of 

(10)rn = −100�t.
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γ =0.99 in the critic loss function of SAC. All other parameters are set to the default values of the TF-Agents 
SAC implementation93.

Both parts of our learning algorithm, the trajectory sampling and the policy update, are executed alternately 
until the curriculum state, i.e., the current suggested target diameter, falls below 1 cm. With our implementa-
tion, this was the case after 1.2M steps, corresponding to about four hours of training time. To evaluate a policy 
πθ , we apply the action a∗n with the highest probability under this policy for each time step (i.e., we use the 
corresponding greedy policy) and evaluate the resulting trajectory. Such an evaluation is done every 10K steps, 
for which 30 complete episodes are generated using this deterministic policy, and the resulting performance 
indicators are stored. After the training phase, θ∗ is set to the latest parameter set θ , i.e., the final policy πθ∗ is 
chosen as the latest policy πθ.

An overview of the complete training procedure is given in Fig. 7.

Evaluation.  For an evaluation of the trajectories resulting from the learned policy for different target con-
ditions, we designed a discrete Fitts’ Law type task. This task follows the ISO 9241-9 ergonomics standard and 
incorporates 13 equidistant targets arranged in a circle 50 cm in front of the body and placed 10 cm right of the 
right shoulder (Fig. 2). As soon as a target is reached and the end-effector remains inside for 100 ms, the next 
target is given to the learned policy. This also happens after 1.5 s, regardless of whether or not the episode was 
successful.

Based on the recommendations from Guiard et al.94, we determine different task difficulty conditions by sam-
pling “form and scale”, i.e., the Index of Difficulty (ID) and the distance D between the target centers are sampled 

Figure 7.   Reinforcement learning procedure. Before training, the networks are initialized with random 
weights θ , and 10 K transitions are generated using the resulting initial policy. These are stored in the replay 
buffer (blue dashed arrows). During training (red dotted box), trajectory sampling and policy update steps 
are executed alternately in each step. The targets used in the trajectory sampling part are generated by the 
curriculum learner, which is updated every 10K steps, based on an evaluation of the most recent (greedy) 
policy. As soon as the target width suggested by the curriculum learner falls below 1 cm, the training phase is 
completed and the final policy πθ∗ is returned (teal dash-dotted arrow).

Table 1.   Joint ranges of individual DOFs. Angle and torque ranges of all joint DOFs, which are actuated via 
second-order muscle dynamics [Eq. (4)]. Moment arm scaling factors are defined as the magnitude of the 
torque range limits.

Joint DOF

Joint angle ranges (deg) Joint torque ranges (Nm)

Minimum Maximum Minimum Maximum

Elevation angle − 90 130 − 36.01 36.01

Shoulder elevation 0 180 − 60.97 60.97

Shoulder rotation − 90 20 − 19.37 19.37

Elbow flexion 0 130 − 12.57 12.57

Pronation/supination − 90 90 − 1.03 1.03

Wrist deviation − 10 25 − 2.14 2.14

Wrist flexion − 70 70 − 1.53 1.53
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independently, instead of using a distance-width grid. We use the Shannon Formulation45 of Fitts’ Law [Eq. (1)] 
to compute the resulting distance between the initial and target point D, given the target width W and the ID:

The used combinations of distance, width, and ID can be found as Supplementary Table S1 online, and the 
resulting target setup is shown in Fig. 2a.

The model executes 50 movements for each task condition and each direction, i.e., 6500 movements in total. 
All movements reached the target and remained inside for 100 ms within the given maximum movement time 
of 1.5 s. Plots for all task conditions and movement directions, together with their underlying data, can be found 
in a public repository95.

In addition, an adaptive “moving target” mechanism is applied to generate elliptic movements from our 
learned policy. During training, the policy only learned to reach a given target as fast and accurate as possible—
it was never asked to follow a specific path accurately. For this reason, we make use of the following method.

Initially, we place the first target on the ellipse such that 10% of the complete curve needs to be covered 
clockwise within the first movement, starting at a fixed initial position ( leftmost point on the ellipse). In con-
trast to regular pointing tasks, the target already switches as soon as the movement (or rather the projection of 
the movement path onto the ellipse) covers more than half of this distance. The next target is then chosen so as 
to again create an incentive to cover the next 10% of the elliptic curve. Thus, roughly 20 via-points in total are 
subsequently placed on the ellipse. As shown in Fig. 3a, this indeed leads to fairly elliptic movements.

For our evaluation, we use an ellipse with horizontal and vertical diameters of 15 cm and 6 cm (similar to the 
ellipse used by Harris and Wolpert1), with its center placed 55 cm in front, 10 cm above, and 10 cm to the right 
of the shoulder. The task was performed for one minute, with end-effector position, velocity, and acceleration 
stored every 10 ms.

Comprehensive data for all of these movements can also be found in a public repository95.

Data availability
The datasets generated during and/or analysed during the current study are available in a public repository, 
https://​doi.​org/​10.​5281/​zenodo.​42682​30.
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