2,247 research outputs found

    Using nodal coordinates as variables for the dimensional synthesis of mechanisms

    Get PDF
    The method of the lower deformation energy has been successfully used for the synthesis of mechanisms for quite a while. It has shown to be a versatile, yet powerful method for assisting in the design of mechanisms. Until now, most of the implementations of this method used the dimensions of the mechanism as the synthesis variables, which has some advantages and some drawbacks. For example, the assembly configuration is not taken into account in the optimization process, and this means that the same initial configuration is used when computing the deformed positions in each synthesis point. This translates into a reduction of the total search space. A possible solution to this problem is the use of a set of initial coordinates as variables for the synthesis, which has been successfully applied to other methods. This also has some additional advantages, such as the fact that any generated mechanism can be assembled. Another advantage is that the fixed joint locations are also included in the optimization at no additional cost. But the change from dimensions to initial coordinates means a reformulation of the optimization problem when using derivatives if one wants them to be analytically derived. This paper tackles this reformulation, along with a proper comparison of the use of both alternatives using sequential quadratic programming methods. In order to do so, some examples are developed and studied.The authors wish to thank the Spanish Ministry of Economy and Competitiveness for its support through Grant DPI2013-46329-P and DPI2016-80372-R. Additionally the authors wish to thank the Education Department of the Basque Government for ist support through grant IT947-16

    Two-Swim Operators in the Modified Bacterial Foraging Algorithm for the Optimal Synthesis of Four-Bar Mechanisms

    Get PDF
    This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based algorithms and also against a differential evolution algorithm designed for mechanical design problems. The overall results indicate that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem

    A comprehensive survey on cultural algorithms

    Get PDF
    Peer reviewedPostprin

    A generative modeling approach for benchmarking and training shallow quantum circuits

    Get PDF
    Hybrid quantum-classical algorithms provide ways to use noisy intermediate-scale quantum computers for practical applications. Expanding the portfolio of such techniques, we propose a quantum circuit learning algorithm that can be used to assist the characterization of quantum devices and to train shallow circuits for generative tasks. The procedure leverages quantum hardware capabilities to its fullest extent by using native gates and their qubit connectivity. We demonstrate that our approach can learn an optimal preparation of the Greenberger-Horne-Zeilinger states, also known as "cat states". We further demonstrate that our approach can efficiently prepare approximate representations of coherent thermal states, wave functions that encode Boltzmann probabilities in their amplitudes. Finally, complementing proposals to characterize the power or usefulness of near-term quantum devices, such as IBM's quantum volume, we provide a new hardware-independent metric called the qBAS score. It is based on the performance yield in a specific sampling task on one of the canonical machine learning data sets known as Bars and Stripes. We show how entanglement is a key ingredient in encoding the patterns of this data set; an ideal benchmark for testing hardware starting at four qubits and up. We provide experimental results and evaluation of this metric to probe the trade off between several architectural circuit designs and circuit depths on an ion-trap quantum computer.Comment: 16 pages, 9 figures. Minor revisions. As published in npj Quantum Informatio

    Hybrid Evolutionary Computing Assisted Irregular-Shaped Patch Antenna Design for Wide Band Applications

    Get PDF
    A novel optimization concept for modeling irregular-shaped patch antenna with high bandwidth and efficient radiation attributes is proposed in this paper, along with the ability to accomplish the design at a reduced computational and cost burden. A revolutionary computing perception is established with Gravitational Search Algorithm (GSA) and Quantum Based Delta Particle Swarm Optimization (QPSO), now known as GSA-QPSO. The suggested model employed the GSA-QPSO algorithm strategically interfaced with a high-frequency structure simulator (HFSS) software through a Microsoft Visual Basic script to enhance irregular-shaped antenna design while maintaining wide bandwidth with suitable radiation efficiency over the target bandwidth region. The optimally designed microstrip patch antenna is fabricated on an FR-4 substrate with a surface area of 30Ă—30Ă—1.6 mm 3 . The evaluated outcome shows 96 % supreme radiation efficacy at 2.4 GHz whereas overall effectiveness is above 84% over the entire frequency range, with a nearly omnidirectional radiation pattern. In terms of impedance bandwidth, the suggested antenna offers 126.6 % over the operational frequency range from 2.34 GHz to 10.44 GHz. Fabrication and measurement results are also used to validate the simulated results. It exhibits the proficiency of the offered antenna design to be used for real-world wideband (WB) communication drives

    Gravitational Search and Harmony Search Algorithms for Solving the Chemical Kinetics Optimization Problems

    Get PDF
    The article is dedicated to the analysis of the global optimization algorithms application to the solution of inverse problems of chemical kinetics. Two heuristic algorithms are considered - the gravitational search algorithm and the harmony algorithm. The article describes the algorithms, as well as the application of these algorithms to the optimization of test functions. After that, these algorithms are used to search for the kinetic parameters of two chemical processes – propane pre-reforming on Ni-catalyst and catalytic isomerization of pentane-hexane fraction. For the first process both algorithms showed approximately the same solution, while for the second problem the gravitational search algorithm showed a smaller value of the minimizing function. Wherefore, it is concluded that on large-scale problems it is better to use the gravitational search algorithm rather than the harmony algorithm, while obtaining a smaller value of the minimizing function in a minimum time. On low-scale problems both algorithms showed approximately the same result, while demonstrating the coincidence of the calculated data with the experimental ones
    • …
    corecore