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This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization
algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second
one promotes fine movements in the neighborhood of each bacterium.The combined effect of the new operators looks to increase
the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum
solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based
algorithms and also against a differential evolution algorithm designed for mechanical design problems.The overall results indicate
that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single
set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the
differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem.

1. Introduction

Nature-inspired algorithms (NIAs) have been successfully
used to solve ConstrainedNumerical Optimization Problems
(CNOPs) using constraint-handling techniques [1] given that,
originally, these algorithms were designed to deal solely
with unconstrained search spaces. NIAs can be comprised
of two groups: (1) Evolutionary Algorithms (EAs) [2] based
on emulating the process of natural evolution and survival
of the fittest and (2) Swarm Intelligence Algorithms (SIAs)
[3] based on cooperative behaviors of simple organisms
such as insects, birds, fish, or bacteria. EAs are one of the
most used metaheuristics. However, SIAs have been gaining
popularity among researchers and practitioners, mainly with
the Particle Swarm Optimization (PSO) [4] and the Ant
Colony Optimization (ACO) [5] algorithms.

Without loss of generality, a CNOP can be defined as

Minimize 𝑓 (𝑥⃗)

subject to: 𝑔
𝑖 (𝑥⃗) ≤ 0, 𝑖 = 1, . . . , 𝑚

ℎ
𝑗 (𝑥⃗) = 0, 𝑗 = 1, . . . , 𝑝,

(1)

where 𝑥⃗ = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
] ∈ 𝑅

𝑛 is the solution vector and
each decision variable 𝑥

𝑘
, 𝑘 = 1, . . . , 𝑛 is bounded by lower

and upper limits 𝐿
𝑘
≤ 𝑥
𝑘
≤ 𝑈
𝑘
, which define the search

space 𝑆;𝑚 is the number of inequality constraints and 𝑝 is the
number of equality constraints (in both cases, the constraints
can be linear or nonlinear). If 𝐹 denotes the feasible region,
then it must be clear that 𝐹 ⊆ 𝑆. As it is commonly found
in the specialized literature of nature-inspired algorithms to
solve CNOPs [1, 6, 7] equality constraints are transformed
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into inequality constraints by using a small tolerance 𝜀 > 0
as follows: |ℎ

𝑗
(𝑥⃗)| − 𝜀 ≤ 0, 𝑗 = 1, . . . , 𝑝.

In the context of mechanical engineering, synthesis is
the design process of mechanical systems [8]. Four-bar
mechanisms are widely used in machinery design, since
they are the simplest articulated mechanisms for controlled
movement with one degree of freedom.The synthesis of these
mechanisms is a well-known CNOP, and originally two clas-
sical approaches were used for this synthesis: graphical and
analytical methods. However, implementing such solutions
is a complicated issue and their results are quite limited;
for this reason, the design of these mechanisms is a case
of hard numerical optimization. There are several types of
syntheses; this work addresses the dimensional design of a
mechanism, that is, to calculate the length of the necessary
links for generating a specific movement [9].

The synthesis of four-bar mechanisms has been carried
out with different nature-inspired metaheuristics. In [10] a
modified Genetic Algorithm (GA) with a penalty function as
constraint-handler was proposed. differential evolution (DE)
and a variable control method for deviations were applied
in [11]. In [12] the synthesis of a mechanism for tracking a
trajectory of 𝑛 points, based on Simulated Annealing (SA),
was developed. Regarding this same tracking problem, a per-
formance comparison among three different metaheuristics,
GA, DE, and PSO, was presented in [13], while the Artificial
Bee Colony (ABC), PSO, a binary GA (BGA), and a hybrid
GA-PSO approach were used in [14]. Finally, in [15] the
synthesis of a planar four-barmechanism for position control
using the Harmony Search (HS) algorithm was carried out.
From the abovementioned literature review, the diversity of
nature-inspired algorithms to solve the synthesis of four-bar
mechanisms is noticeable.

On the other hand, there are algorithms whose usage in
this type of optimization problems has been less explored, as
it is the case of the Bacterial Foraging Optimization Algo-
rithm (BFOA), which is a SIA proposed by Passino in 2002 to
solve unconstrained numerical optimization problems [16].
BFOA emulates the behavior of bacteriumE. coli in the search
of nutrients in its environment.The goal of each bacterium is
to maximize the energy it obtains per each unit of time spent
on the foraging process while avoiding noxious substances.
BFOA is considered a SIA because bacteria can communicate
among them. Such behavior can be summarized in four
processes: (1) chemotaxis (swim and tumble movements are
performed), (2) swarming (bacteria can communicate with
each other to direct their search for nutrients), (3) reproduc-
tion (the best bacteria are duplicated and these replaced other
bacteria), and (4) elimination-dispersal (the worst bacteria
are eliminated and new bacteria are randomly dispersed).

Regarding unconstrained optimization, BFOA has been
combined with other algorithms, particularly with EAs, to
improve its performance, for example, with a GA in [17–19]
and DE in [20]. Mutation operators have been added to
BFOA in [21]. Moreover, hybrids with other SIAs [22], and
particularly with PSO, are found in the specialized literature
[23, 24]. Furthermore, BFOA was also combined with
artificial immune system’s clonal selection and fuzzy logic
within its chemotaxis process in [25].

When dealing with constrained search spaces there are
different approaches [26]; for example, in [27], BFOA was
adapted to solve CNOPs in a proposal called Modified-
BFOA (MBFOA) which used a set of feasibility rules [28]
as constraint-handler. Moreover, MBFOA was simplified and
improved in its step size handling in the swim operator in
[29]. Further modifications were proposed in [30, 31] to solve
multiobjective CNOPs, where some four-bar mechanisms
were tackled.More recently,MBFOAwas further improved to
solve CNOPs in the so-called Improved MBFOA (IMBFOA
for short) [32] where the idea of two-swimmovements within
the chemotaxis process was initially explored.However, IMB-
FOA heavily depends on a local search based on sequential
quadratic programming. IMBFOA is the starting point of
this research, focused on the optimal synthesis of four-bar
mechanisms. Finally, BFOA has been combined with two
NIAs BFOA-DE-PSO in [33, 34], and the idea of using
micropopulations was explored in [35].

From the above literature review, it was found that NIAs
are a valid option to solve four-barmechanisms.However, the
usage of BFOA-based approaches is still scarce. Furthermore,
the incorporation of additional variation operators in those
BFOA-based approaches is more frequent in unconstrained
optimization.The abovementioned is the main motivation of
this work, where two improved swims (and different from
those in IMBFOA) are proposed to enhance the capabilities
of MBFOA to deal with four-bar mechanisms optimiza-
tion. Furthermore, such two-swim mechanism performance
allows eliminating the second-order local search operator.
Therefore, the contribution of this work consists in getting
knowledge about the type of operators which provide better
results in those constrained search spaces defined by the four-
bar mechanisms tackled in this research.

The proposed approach is compared against those BFOA-
based approaches for constrained optimization (IMBFOA
andMBFOA) and also against aDE-based approach designed
to solve mechanical design problems. To the best of the
authors’ knowledge, this is the first time that the variation
operators of a BFOA-based approach are studied in such a
way that they improve the capabilities of the algorithm to
solve a set of four-bar synthesis problems.

The document is organized as follows: in Section 2 the
general synthesis of a four-bar mechanism is explained,
including the kinematics of the mechanism and its coupler,
as well as the specifications of the three case studies to solve.
In Section 3, brief descriptions of MBFOA and IMBFOA are
presented and the new proposal “Two-Swim MBFOA” (TS-
MBFOA) is introduced. Section 4 shows the results obtained
by TS-MBFOA and their comparison against those obtained
by other NIAs. Finally, Section 5 presents the conclusions and
future work of this research.

2. Synthesis of Four-Bar Mechanisms

Figure 1 shows a planar four-bar mechanism formed by a
reference bar 𝑟

1
, an input bar 𝑟

2
(crank), a coupler 𝑟

3
, and an

output bar 𝑟
4
(rocker). In order to analyze this mechanism

two coordinate systems are established: a system that is
fixed to the real world (𝑂𝑋𝑌) and another for self-reference
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Figure 1: Four-bar mechanism.

(𝑂𝑋
𝑟
𝑌
𝑟
). (𝑥
0
, 𝑦
0
) is the distance between the origin points

of both systems, 𝜃
0
is the rotation angle of the reference

system, and 𝜃
𝑖
(𝑖 = 2, 3, 4) corresponds to the angle for every

bar in the mechanism; finally, the coordinate pair (𝑟
𝑐𝑥
, 𝑟
𝑐𝑦
)

determines the position 𝐶 of the coupler.

2.1. Kinematics of the Mechanism. The kinematics of four-
bar mechanisms have been extensively treated; a detailed
explanation is found in [36, 37]. For analyzing themechanism
position, the closed loop equation can be established as
follows:

󳨀→
𝑟
1
+
󳨀→
𝑟
4
=
󳨀→
𝑟
2
+
󳨀→
𝑟
3
. (2)

Applying polar notation to each term of (2),

𝑟
1
𝑒
𝑗𝜃
1
+ 𝑟
4
𝑒
𝑗𝜃
4
= 𝑟
2
𝑒
𝑗𝜃
2
+ 𝑟
3
𝑒
𝑗𝜃
3
. (3)

Using the equation of Euler on (3) and separating the real and
imaginary parts,

𝑟
1
cos 𝜃
1
+ 𝑟
4
cos 𝜃
4
= 𝑟
2
cos 𝜃
2
+ 𝑟
3
cos 𝜃
3
,

𝑟
1
sin 𝜃
1
+ 𝑟
4
sin 𝜃
4
= 𝑟
2
sin 𝜃
2
+ 𝑟
3
sin 𝜃
3
.

(4)

Expressing the equation system (4) in terms of 𝜃
4
,

𝑟
4
cos 𝜃
4
= 𝑟
2
cos 𝜃
2
+ 𝑟
3
cos 𝜃
3
− 𝑟
1
cos 𝜃
1
,

𝑟
4
sin 𝜃
4
= 𝑟
2
sin 𝜃
2
+ 𝑟
3
sin 𝜃
3
− 𝑟
1
sin 𝜃
1
.

(5)

The compact form of Freudenstein’s equation is obtained by
squaring system (5) and adding its terms as follows:

𝐴
1
cos 𝜃
3
+ 𝐵
1
sin 𝜃
3
+ 𝐶
1
= 0, (6)

where

𝐴
1
= 2𝑟
3
(𝑟
2
cos 𝜃
2
− 𝑟
1
cos 𝜃
1
) ,

𝐵
1
= 2𝑟
3
(𝑟
2
sin 𝜃
2
− 𝑟
1
sin 𝜃
1
) ,

𝐶
1
= 𝑟
2

1
+ 𝑟
2

2
+ 𝑟
2

3
− 𝑟
2

4
− 2𝑟
1
𝑟
2
cos (𝜃

1
− 𝜃
2
) .

(7)

Table 1: Sign of radical in relation to the type of mechanism.

Configuration 𝜃
3

𝜃
4

Open +√ −√

Crossed −√ +√

Then the angle 𝜃
3
can be calculated as a function of the

parameters 𝐴
1
, 𝐵
1
, 𝐶
1
, and 𝜃

2
; this solution is generated by

expressing sin 𝜃
3
and cos 𝜃

3
in terms of tan(𝜃

3
/2):

sin 𝜃
3
=

2 tan (𝜃
3
/2)

1 + tan2 (𝜃
3
/2)
,

cos 𝜃
3
=
1 − tan2 (𝜃

3
/2)

1 + tan2 (𝜃
3
/2)
.

(8)

A second-order lineal equation is obtained by substitution on
(6):

[𝐶
1
− 𝐴
1
] tan2 (

𝜃
3

2
) + [2𝐵

1
] tan(

𝜃
3

2
) + 𝐴

1
+ 𝐶
1

= 0.

(9)

From the solution of (9), the angular position 𝜃
3
is given by

(10):

𝜃
3
= 2 arctan[[

[

−𝐵
1
± √𝐵
2

1
+ 𝐴
2

1
− 𝐶
2

1

𝐶
1
− 𝐴
1

]
]

]

. (10)

A similar process is carried out to get 𝜃
4
from (4) using

Freudenstein’s equation.The correct sign for the radical must
be selected in the equations for 𝜃

3
and 𝜃

4
, according to the

configuration of the mechanism. Table 1 indicates the signs
related with both configurations.

2.2. Kinematics of the Coupler. Since the point of interest in
the coupler is 𝐶, to determine its position in the reference
system 𝑂𝑋

𝑟
𝑌
𝑟
it has to be established that

𝐶
𝑥𝑟
= 𝑟
2
cos 𝜃
2
+ 𝑟
𝑐𝑥
cos 𝜃
3
− 𝑟
𝑐𝑦
sin 𝜃
3
,

𝐶
𝑦𝑟
= 𝑟
2
sin 𝜃
2
+ 𝑟
𝑐𝑥
sin 𝜃
3
+ 𝑟
𝑐𝑦
cos 𝜃
3
.

(11)

In the global coordinate system, this point is expressed as

[

𝐶
𝑥

𝐶
𝑦

] = [

cos 𝜃
0
− sin 𝜃

0

sin 𝜃
0

cos 𝜃
0

][

𝐶
𝑥𝑟

𝐶
𝑦𝑟

] + [

𝑥
0

𝑦
0

] . (12)

Equations (11) and (12) and the expressions from the kinemat-
ics of themechanism are sufficient to calculate the position of
𝐶 along the trajectory.

2.3. Design Constraints. One of the most important aspects
involved in a mechanism design is to accomplish the con-
straints on its performance, which are related to mobility
criteria and the size and shape of the mechanism itself.
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2.3.1. Grashof ’s Law. Grashof ’s law is a fundamental con-
sideration when designing a four-bar mechanism, since it
defines the criteria to ensure complete mobility for at least
one link of that mechanism. This law establishes that for a
planar four-bar linkage, the sum of the shortest and the largest
bars cannot be larger than the sum of the remaining bars, if a
continual relative rotation between two elements is desired [8].
If 𝑠 is the length of the shortest link, 𝑙 represents the largest
bar, and 𝑝, 𝑞 indicate the remaining elements, it is established
that

𝑙 + 𝑠 ≤ 𝑝 + 𝑞. (13)

In this work, Grashof ’s law is given by

𝑟
1
+ 𝑟
2
≤ 𝑟
3
+ 𝑟
4
. (14)

Therefore, to ensure that the solution method fulfills this law,
the following constraints were established:

𝑟
2
< 𝑟
3
,

𝑟
3
< 𝑟
4
,

𝑟
4
< 𝑟
1
.

(15)

2.3.2. Sequence of Input Angles. Since the general problem
of synthesis addressed in this work is the generation of
trajectories based on sequences of successive precision points
representing different positions of the coupler, the values of
the crank angles have to be ordered in correspondence with
these sequences. If the angle for a specific point 𝑖 is denoted
as 𝜃𝑖
2
, it is required that

𝜃
1

2
< 𝜃
2

2
< ⋅ ⋅ ⋅ < 𝜃

𝐾

2
, (16)

where𝐾 is the number of precision points.

2.4. Optimization Strategies. After properly establishing the
kinematics of the mechanism, the design problem can be
defined as a numerical optimization case, and then it is neces-
sary to specify the appropriate mathematical expressions for
evaluating the performance of the system.

2.4.1. Objective Function. This work addresses the synthesis
of a planar mechanism in order to calculate the length of its
bars, the rotation angle in respect to the reference system, the
distance between the coordinate systems, and the set of angles
for the input bar to generate a trajectory corresponding to a
sequence of precision points. In the global coordinate system
𝑂𝑋𝑌, the point of the precision pair 𝐶𝑖

𝑑
is indicated as

𝐶
𝑖

𝑑
= [𝐶
𝑖

𝑥𝑑
, 𝐶
𝑖

𝑦𝑑
]
𝑇

. (17)

The set of 𝐾 pairs of precision points is defined as

Ω = {𝐶
𝑖

𝑑
| 𝑖 ∈ 𝐾} . (18)

Then, given a set of values of the mechanism bars and
their parameters 𝑥

0
, 𝑦
0
, 𝜃
0
, each point of the coupler can be

expressed as a function of the input bar position:

𝐶
𝑖
= [𝐶
𝑥
(𝜃
𝑖

2
) , 𝐶
𝑦
(𝜃
𝑖

2
)]
𝑇

. (19)

Accordingly, it is desired to minimize the distance (error)
between the precision point 𝐶𝑖

𝑑
and the calculated point

𝐶
𝑖. To quantify the overall error the following function is

proposed:

error =
𝐾

∑

𝑖=1

[(𝐶
𝑖

𝑥𝑑
− 𝐶
𝑖

𝑥
)
2

+ (𝐶
𝑖

𝑦𝑑
− 𝐶
𝑖

𝑦
)
2

] . (20)

2.4.2. Case Studies

(1)𝑀01. It is the design of a four-bar mechanism that follows
a linear vertical path defined by a sequence of six precision
points, without a previously established synchronization.The
set of precision points is defined as

Ω = {(20, 20) , (20, 25) , (20, 30) , (20, 35) , (20, 40) ,

(20, 45)} .

(21)

The vector of design variables is
𝑝⃗ = {𝑝

1
, 𝑝
2
, 𝑝
3
, 𝑝
4
, 𝑝
5
, 𝑝
6
, 𝑝
7
, 𝑝
8
, 𝑝
9
, 𝑝
10
, 𝑝
11
, 𝑝
12
, 𝑝
13
, 𝑝
14
,

𝑝
15
} ,

(22)

where

𝑝⃗ = {𝑟
1
, 𝑟
2
, 𝑟
3
, 𝑟
4
, 𝑟
𝑐𝑥
, 𝑟
𝑐𝑦
, 𝜃
0
, 𝑥
0
, 𝑦
0
, 𝜃
1

2
, 𝜃
2

2
, 𝜃
3

2
, 𝜃
4

2
, 𝜃
5

2
, 𝜃
6

2
} . (23)

The first four variables correspond to the lengths of the bars
in the mechanism presented in Figure 1, the following two
are the position of the coupler, 𝜃

0
is the orientation angle of

the system with respect to the horizontal, 𝑂
2
= (𝑥
0
, 𝑦
0
) is its

coordinate position, and the last six are the angle values for
the input bar 𝑟

2
. The boundaries for each design variable are

defined as
𝑝
1
, 𝑝
2
, 𝑝
3
, 𝑝
4
∈ [0, 60] ,

𝑝
5
, 𝑝
6
, 𝑝
8
, 𝑝
9
∈ [−60, 60] ,

𝑝
7
, 𝑝
10
, 𝑝
11
, 𝑝
12
, 𝑝
13
, 𝑝
14
, 𝑝
15
∈ [0, 2𝜋] .

(24)

The single-objective numerical optimization problem for this
case is described by the following:

min 𝑓 (𝑝⃗)

=

𝑁

∑

𝑖=1

[(𝐶
𝑖

𝑥𝑑
− 𝐶
𝑖

𝑥
)
2

+ (𝐶
𝑖

𝑦𝑑
− 𝐶
𝑖

𝑦
)
2

] ,

𝑝 ∈ R
15

subject to: 𝑔
1
(𝑝⃗) = 𝑝

1
+ 𝑝
2
− 𝑝
3
− 𝑝
4
≤ 0,

𝑔
2
(𝑝⃗) = 𝑝

2
− 𝑝
3
≤ 0,

𝑔
3
(𝑝⃗) = 𝑝

3
− 𝑝
4
≤ 0,

𝑔
4
(𝑝⃗) = 𝑝

4
− 𝑝
1
≤ 0,

𝑔
5
(𝑝⃗) = 𝑝

10
− 𝑝
11
≤ 0,

𝑔
6
(𝑝⃗) = 𝑝

11
− 𝑝
12
≤ 0,

𝑔
7
(𝑝⃗) = 𝑝

12
− 𝑝
13
≤ 0,
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𝑔
8
(𝑝⃗) = 𝑝

13
− 𝑝
14
≤ 0,

𝑔
9
(𝑝⃗) = 𝑝

14
− 𝑝
15
≤ 0.

(25)

(2)𝑀02. It is the design of a four-bar mechanism that follows
a trajectory defined by a sequence of five unaligned precision
points, with a previously established synchronization for each
point. The set of precision points is defined as

Ω = {(3, 3) , (2.759, 3.363) , (2.372, 3.663) , (1.89, 3.862) ,

(1.355, 3.943)} .

(26)

For this case it is considered that𝑥
0
, 𝑦
0
, 𝜃
0
= 0.The restriction

given by (16) is not considered since the sequence of input
angles is set by

𝜃
𝑖

2
= {

2𝜋

12
,
3𝜋

12
,
4𝜋

12
,
5𝜋

12
,
6𝜋

12
} . (27)

The vector of design variables is

𝑝⃗ = {𝑝
1
, 𝑝
2
, 𝑝
3
, 𝑝
4
, 𝑝
5
, 𝑝
6
} , (28)

where

𝑝⃗ = {𝑟
1
, 𝑟
2
, 𝑟
3
, 𝑟
4
, 𝑟
𝑐𝑥
, 𝑟
𝑐𝑦
} . (29)

The upper and lower values for the design variables are
defined as

𝑝
1
, 𝑝
2
, 𝑝
3
, 𝑝
4
∈ [0, 50] ,

𝑝
5
, 𝑝
6
∈ [−50, 50] .

(30)

The objective function is defined by the following:

min 𝑓 (𝑝⃗)

=

𝑁

∑

𝑖=1

[(𝐶
𝑖

𝑥𝑑
− 𝐶
𝑖

𝑥
)
2

+ (𝐶
𝑖

𝑦𝑑
− 𝐶
𝑖

𝑦
)
2

] ,

𝑝 ∈ R
6

(31)

subject to: 𝑔
1
(𝑝⃗) = 𝑝

1
+ 𝑝
2
− 𝑝
3
− 𝑝
4
≤ 0,

𝑔
2
(𝑝⃗) = 𝑝

2
− 𝑝
3
≤ 0,

𝑔
3
(𝑝⃗) = 𝑝

3
− 𝑝
4
≤ 0,

𝑔
4
(𝑝⃗) = 𝑝

4
− 𝑝
1
≤ 0.

(32)

(3)𝑀03. It is the design of a four-barmechanism for tracking
a trajectory delimited by pairs of precision points. This case
considers a sequence with ten pairs of precision points given
by the coordinates shown in Table 2.

The vector of design is

𝑝⃗ = {𝑝
1
, 𝑝
2
, 𝑝
3
, 𝑝
4
, 𝑝
5
, 𝑝
6
, 𝑝
7
, 𝑝
8
, 𝑝
9
, 𝑝
10
, 𝑝
11
, 𝑝
12
, 𝑝
13
, 𝑝
14
,

𝑝
15
, 𝑝
16
, 𝑝
17
, 𝑝
18
, 𝑝
19
} ,

(33)

Table 2: Pairs of precision points for case study 3.

Pair 𝐶
1𝑑

𝐶
2𝑑

1 (1.768, 2.3311) (1.9592, 2.44973)
2 (1.947, 2.6271) (2.168, 2.675)
3 (1.595, 2.7951) (1.821, 2.804)
4 (1.019, 2.7241) (1.244, 2.720)
5 (0.479, 2.4281) (0.705, 2.437)
6 (0.126, 2.0521) (0.346, 2.104)
7 (−0.001, 1.720) (0.195, 1.833)
8 (0.103, 1.514) (0.356, 1.680)
9 (0.442, 1.549) (0.558, 1.742)
10 (1.055, 1.905) (1.186, 2.088)

where

𝑝⃗ = {𝑟
1
, 𝑟
2
, 𝑟
3
, 𝑟
4
, 𝑟
𝑐𝑥
, 𝑟
𝑐𝑦
, 𝜃
0
, 𝑥
0
, 𝑦
0
, 𝜃
1

2
, . . . , 𝜃

10

2
} (34)

and its variables are limited by

𝑝
1
, 𝑝
2
, 𝑝
3
, 𝑝
4
∈ [0, 60] ,

𝑝
5
, 𝑝
6
, 𝑝
8
, 𝑝
9
∈ [−60, 60] ,

𝑝
7
, 𝑝
10
⋅ ⋅ ⋅ 𝑝
19
∈ [0, 2𝜋] .

(35)

Because in this case the trajectory is defined by pairs of
precision points, the objective function in (20) is modified
in order to consider the error with respect to each point.
Therefore, the new function is given by the following:

min 𝑓 (𝑝⃗) = error
1
+ error

2
,

error
1

=

𝐾

∑

𝑖=1

[(𝐶
𝑖

1𝑥𝑑
− 𝐶
𝑖

𝑥
)
2

+ (𝐶
𝑖

1𝑦𝑑
− 𝐶
𝑖

𝑦
)
2

] ,

error
2

=

𝐾

∑

𝑖=1

[(𝐶
𝑖

2𝑥𝑑
− 𝐶
𝑖

𝑥
)
2

+ (𝐶
𝑖

2𝑦𝑑
− 𝐶
𝑖

𝑦
)
2

]

(36)

subject to: 𝑔
1
(𝑝⃗) = 𝑝

1
+ 𝑝
2
− 𝑝
3
− 𝑝
4
≤ 0,

𝑔
2
(𝑝⃗) = 𝑝

2
− 𝑝
3
≤ 0,

𝑔
3
(𝑝⃗) = 𝑝

3
− 𝑝
4
≤ 0,

𝑔
4
(𝑝⃗) = 𝑝

4
− 𝑝
1
≤ 0,

𝑔
5
(𝑝⃗) = 𝑝

10
− 𝑝
11
≤ 0,

𝑔
6
(𝑝⃗) = 𝑝

11
− 𝑝
12
≤ 0,

𝑔
7
(𝑝⃗) = 𝑝

12
− 𝑝
13
≤ 0,

𝑔
8
(𝑝⃗) = 𝑝

13
− 𝑝
14
≤ 0,
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𝑔
9
(𝑝⃗) = 𝑝

14
− 𝑝
15
≤ 0,

𝑔
10
(𝑝⃗) = 𝑝

15
− 𝑝
16
≤ 0,

𝑔
11
(𝑝⃗) = 𝑝

16
− 𝑝
17
≤ 0,

𝑔
12
(𝑝⃗) = 𝑝

17
− 𝑝
18
≤ 0,

𝑔
13
(𝑝⃗) = 𝑝

18
− 𝑝
19
≤ 0.

(37)

Finally, it is important to note that the complexity of the study
cases presented in the paper is high, due to two aspects. (1) A
large number of precision points that must touch the mech-
anism: in the state of the art of synthesis mechanisms, cases
with four precision pointsmaximum are solved using graphic
methods or MPM’s. (2) Values of design variables 𝜃2

𝑖
with

𝑖 = 1, . . . , 6 for case𝑀01 and 𝑖 = 1, . . . , 10 for case𝑀02: these
must have an ascending or descending order, which implies
a strong constraint for finding solution vectors to ensure a
proper mechanism functioning. Additionally, cases𝑀01 and
𝑀02 have not previously undergone a synchronization on the
mechanism input bar.

3. Two-Swim Modified Bacterial Foraging
Optimization Algorithm (TS-MBFOA)

TS-MBFOA is inspired by the ideas of IMBFOA, a recently
proposed BFOA-based algorithm to solve CNOPs by using
two-swim operators, a skewmechanism for the initial swarm
of bacteria, a second-order local search operator, and a
limited usage of the reproduction step [32]. To get a self-
contained paper, in the next subsections, MBFOA, IMBFOA’s
base algorithm, is presented. After that, IMBFOA is detailed.
Finally, TS-MBFOA is introduced.

3.1. Modified Bacterial Foraging Optimization Algorithm
(MBFOA). MBFOA is based on the original BFOA [16], but
it was proposed to solve CNOPs. Each one of its elements is
detailed as follows.

(i) A bacterium 𝑖 represents a potential solution to
the CNOP (i.e., a 𝑛-dimensional real-value vector
identified as 𝑥⃗ in Section 1), and it is denoted as
𝜃
𝑖
(𝑗, 𝐺), where 𝑗 is its chemotaxis loop index and 𝐺

is a generational (cycle) loop index. Within a cycle,
three inner processes are carried out: chemotaxis,
reproduction, and elimination-dispersal. Swarming
process is added to the chemotaxis process.

(ii) Chemotaxis. In this process, each bacterium in the
current swarm performs a tumble-swim movement.
The tumble, as proposed by Passino [16], consists
of a search direction 𝜙(𝑖) generated at random with
uniform distribution as presented in the following:

𝜙 (𝑖) =
Δ (𝑖)

√Δ (𝑖)
𝑇
Δ (𝑖)

, (38)

whereΔ(𝑖) is a 𝑛-dimensional real-value vector gener-
ated at randomwith uniform distribution where each
one of its elements has values between [−1, 1].
The swim allows the bacterium 𝜃

𝑖
(𝑗, 𝐺) to follow

the search direction and move to a new position
𝜃
𝑖
(𝑗 + 1, 𝐺). The swim is computed as indicated in the

following:

𝜃
𝑖
(𝑗 + 1, 𝐺) = 𝜃

𝑖
(𝑗, 𝐺) + 𝐶 (𝑖) 𝜙 (𝑖) , (39)

where 𝐶(𝑖) is the step size vector and its values are
calculated by considering the limits of each design
variable 𝑘, defined by the expression in the following:

𝐶 (𝑖)𝑘 = 𝑅 ∗ (
Δ𝑥
𝑘

√𝑛
) , 𝑘 = 1, . . . , 𝑛, (40)

where Δ𝑥
𝑘
is the difference between the upper and

lower limits of each variable 𝑥
𝑘
: 𝑈
𝑘
− 𝐿
𝑘
, 𝑛 is the

number of variables, and 𝑅 ∈ [0, 1] is a user-defined
parameter that scales the step size value of bacteria.
This vector remains fixed during the search process.
MBFOA, like other BFOA-based algorithms as shown
in [26], is particularly sensitive to this parameter and
such behavior has motivated further studies as that in
[29].
If the new position, 𝜃𝑖(𝑗 + 1, 𝐺), is better with respect
to the previous position 𝜃𝑖(𝑗, 𝐺) [28] (i.e., (1) both
positions are feasible, but the new position has a
better objective function value, (2) the new position
is feasible while the previous one is not, or (3) both
positions are infeasible, but the new position has
a lower sum of constraint violation), another swim
in the same direction will be carried out by taking
this better solution as the new starting position.
Otherwise, a new tumble is computed. The process
stops after 𝑁

𝑐
attempts (parameter defined by the

user).
(iii) Swarming. MBFOA includes an attractor movement

within the chemotaxis process, which lets each bac-
terium in the swarm follow the bacterium located in
the most promising region of the search space, that is,
either the feasible bacterium with the best objective
function value or the bacterium with the lowest sum
of constraint violation if no feasible bacteria are found
in the current swarm. Such information is given by the
three feasibility rules used in the chemotaxis process.
The movement is detailed in the following:

𝜃
𝑖
(𝑗 + 1, 𝐺) = 𝜃

𝑖
(𝑗, 𝐺) + 𝛽 (𝜃

𝐵
(𝐺) − 𝜃

𝑖
(𝑗, 𝐺)) , (41)

where 𝜃𝑖(𝑗 + 1, 𝐺) is the new position of bacterium
𝑖, 𝜃𝑖(𝑗, 𝐺) is the current position of bacterium 𝑖,
𝜃
𝐵
(𝐺) is the current position of the best bacterium

in the swarm so far at cycle 𝐺, and 𝛽 (user-defined
parameter) defines the closeness of the new position
of bacterium 𝑖 with respect to the position of the best
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bacterium 𝜃
𝐵
(𝐺). The attractor movement is applied

once within the chemotaxis loop. In the remaining
steps, the tumble-swim movement is used. Both the
tumble-swim and swarming movements can gener-
ate variable values outside their limits. Therefore, a
simple repair mechanism is used as in [38], where the
violated value is multiplied by 2 and the violated limit
is subtracted (i.e., 𝑥valid = 2∗ violated limit−𝑥invalid).

(iv) Reproduction. The swarm is sorted based on the same
three rules adopted in the chemotaxis process and the
first 𝑆

𝑟
are cloned (these bacteria are considered as

the best ones), and the remaining 𝑆
𝑏
− 𝑆
𝑟
(the worst

bacteria) are eliminated (𝑆
𝑏
is the swarm size).

(v) Elimination-Dispersal. This process eliminates only
the worst bacterium 𝜃

𝑤
(𝑗, 𝐺) based on the already

mentioned feasibility rules, and a new randomly
generated bacterium is inserted as a replacement.

In Algorithm 1 the corresponding MBFOA pseudocode is
presented, and its user-defined parameters are summarized
in the caption.

3.2. ImprovedMBFOA (IMBFOA). IMBFOAwas designed to
improve MBFOA in its performance to solve CNOPs. Four
changes were promoted: (1) two-swim movements within
the chemotaxis process, one for exploration and another one
for exploitation, (2) a skew mechanism for the initial swarm
of bacteria, (3) a local search operator based on sequential
quadratic programming, and (4) a reduction on the usage of
the reproduction process. Below is the description of each
change.

(i) Two-Swim Operators. In the chemotaxis process,
instead of the [−1, 1] interval, the range for the tumble
was set to [𝜐, 𝜏], where 𝜐 and 𝜏 are user-defined
parameters, −1 ≤ 𝜐 < 0, 0 < 𝜏 ≤ 1.
The first swim, focused on exploration, is computed
as indicated in the following:

𝜃
𝑖
(𝑗 + 1, 𝐺) = 𝜃

𝑖
(𝑗, 𝐺) + 𝜙 (𝑖) , (42)

where 𝜙(𝑖) is computed as in (38), but now consid-
ering the updated range and not using the step size
vector. The second swim, focused on exploitation, is
computed as indicated in the following:

𝜃
𝑖
(𝑗 + 1, 𝐺) = 𝜃

𝑖
(𝑗, 𝐺) + 𝐶 (𝑖, 𝐺) 𝜙 (𝑖) , (43)

where 𝐶(𝑖, 𝐺) is a dynamic step size vector [29].
However, each value 𝑘 of vector 𝐶(𝑖, 𝐺) decreases
dynamically at each cycle of the algorithm as indi-
cated in the following:

𝐶 (𝑖, 𝐺 + 1)𝑘 = 𝐶 (𝑖, 𝐺)𝑘

𝐺

𝐺MAX
, 𝑘 = 1, . . . , 𝑛, (44)

where𝐶(𝑖, 𝐺+1)
𝑘
is the new step size value for variable

𝑘, while 𝐺 and 𝐺MAX are the current and maximum
number of cycles of the algorithm, respectively. The
initial𝐶(𝑖, 0) is computed as indicated in (40), but the
𝑅 parameter is no longer used.

The first swim is applied until no improvement is
obtained, and then the second swim takes place and
so on.The process stops, as in the chemotaxis process
in MBFOA, after𝑁

𝑐
attempts.

(ii) Skew Mechanism for the Initial Swarm. The initial
swarm of bacteria 𝑆

𝑏
is generated by considering

three groups. In the first group there are randomly
generated bacteria but with their location skewed to
the lower limit of the decision variables 𝐿

𝑘
. In the

second group there are randomly generated bacteria
but with their location skewed to the upper limit of
the decision variables 𝑈

𝑘
. Finally, a third group of

randomly generated bacteria are created as in the
original MBFOA (i.e., without any skew). The three
groups use random values with uniform distribution.
The details to set the limits per variable for the first
and second group are presented in the following:

[𝐿
𝑘
, 𝐿
𝑘
+ (

(𝑈
𝑘
− 𝐿
𝑘
)

ss
)] ,

[𝑈
𝑘
− (

(𝑈
𝑘
− 𝐿
𝑘
)

ss
) ,𝑈
𝑖
] ,

(45)

where ss is the skew size. A high value decreases the
skew effect, while a low value increases it.

(iii) Local Search Operator. Sequential Quadratic Pro-
gramming (SQP) [39] is the local search operator
in IMBFOA. This search is applied to the best bac-
terium in the swarm after the chemotaxis, swarming,
reproduction, and elimination-dispersal processes.
The user can define the local search operator usage
frequency with the LS

𝐺
parameter.

(iv) Scarce Usage of the Reproduction Step. To reduce
premature convergence due to bacteria duplication,
the reproduction takes place only at certain cycles of
the algorithm, defined by the RepCycle parameter.

Algorithm 2 includes the IMBFOA pseudocode and its
parameters are in the caption.

3.3. Two-Swim MBFOA (TS-MBFOA). TS-MBFOA revisits
the two swims originally proposed in IMBFOA to enhance
its search capabilities and to simplify them as well. In this
way, two new swims to be applied within the chemotaxis
process are proposed in this work.The first one of them aims
to complement the swarming operator by letting a bacterium
to explore other areas of the search space with the guide
of randomly chosen bacteria. The second swim focuses on
slight movements of the bacterium in its vicinity by using the
original swim proposed by Passino [16], but with very small
step size values.

The details of each one of the two proposed swims are
presented below.
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(1) Create an initial swarm of bacteria at random 𝜃
𝑖
(𝑗, 0) ∀𝑖, 𝑖 = 1, . . . , 𝑆

𝑏

(2) Evaluate each 𝜃𝑖(𝑗, 0) ∀𝑖, 𝑖 = 1, . . . , 𝑆
𝑏

(3) for 𝐺 = 1 to 𝐺MAX do
(4) for 𝑖 = 1 to 𝑆

𝑏
do

(5) for 𝑗 = 1 to𝑁
𝑐
do

(6) Perform the chemotaxis process (tumble-swim) with (38), (39) and the attractor operator in (41) for bacteria
𝜃
𝑖
(𝑗, 𝐺) by considering the three feasibility rules as selection criteria

(7) end
(8) end
(9) Perform the reproduction process by sorting all bacteria in the swarm based on the feasibility rules, duplicating

the 𝑆
𝑟
best bacteria and eliminating the remaining 𝑆

𝑏
− 𝑆
𝑟

(10) Perform the elimination-dispersal process by eliminating the worst bacterium 𝜃
𝑤
(𝑗, 𝐺) in the current swarm

(11) end

Algorithm 1:MBFOA. Input parameters are number of bacteria 𝑆
𝑏
, chemotaxis loop limit𝑁

𝑐
, number of bacteria for reproduction 𝑆

𝑟
(usually

𝑆
𝑟
= 𝑆
𝑏
/2), scaling factor 𝛽, percentage of initial stepsize 𝑅, and number of cycles (generations) 𝐺MAX.

(1) Create an initial swarm of bacteria by using the skew mechanism 𝜃
𝑖
(𝑗, 0) ∀𝑖, 𝑖 = 1, . . . , 𝑆

𝑏

(2) Evaluate 𝜃𝑖(𝑗, 0) ∀𝑖, 𝑖 = 1, . . . , 𝑆
𝑏

(3) for 𝐺 = 1 to 𝐺MAX do
(4) for 𝑖 = 1 to 𝑆

𝑏
do

(5) for 𝑗 = 1 to𝑁
𝑐
do

(6) Perform the chemotaxis process by using the two swims in (42) and (43) and the attractor operator in (41) for
bacteria 𝜃𝑖(𝑗, 𝐺) by considering the three feasibility rules as selection criteria

(7) end
(8) end
(9) if (𝐺mod RepCycle == 0) then
(10) Perform the reproduction process by sorting all bacteria in the swarm based on the feasibility rules, duplicating

the 𝑆
𝑟
best bacteria and eliminating the remaining 𝑆

𝑏
− 𝑆
𝑟

(11) end
(12) Perform the elimination-dispersal process by eliminating the worst bacterium 𝜃

𝑤
(𝑗, 𝐺) in the current swarm

(13) Update the step size vector with (44)
(14) if (𝐺mod LS

𝐺
== 0) then

(15) Apply the local search operator (i.e., SQP) to the best bacterium in the swarm. If the obtained bacterium is
better than the original best bacterium, it takes its place in the swarm.

(16) end
(17) end

Algorithm 2: IMBFOA pseudocode. Input parameters are number of bacteria 𝑆
𝑏
, chemotaxis loop limit 𝑁

𝑐
, number of bacteria for

reproduction 𝑆
𝑟
, scaling factor 𝛽, the reproduction cycle RepCycle, the number of cycles 𝐺MAX, the local search frequency LS

𝐺
, 𝜏 and 𝜐

for the search direction, and ss for the skew mechanism.

(1) Exploration Swim.The first swim is computed as indicated
in the following:

𝜃
𝑖
(𝑗 + 1, 𝐺) = 𝜃

𝑖
(𝑗, 𝐺) + 𝛽

− 1 (𝜃
𝑟
1
(𝑗, 𝐺) − 𝜃

𝑟
2
(𝑗, 𝐺)) ,

(46)

where 𝛽 is the user-defined parameter utilized in MBFOA’s
swarming operator and its value is now greater than 1.
𝜃
𝑟
1(𝑗, 𝐺) and 𝜃𝑟2(𝑗, 𝐺) are two bacteria randomly selected

from the swarm (𝑖 ̸= 𝑟
1

̸= 𝑟
2
). This swim operator uses the

position of such two bacteria to determine a search direction
considering the current position of the bacterium ready to
swim 𝜃

𝑖
(𝑗, 𝐺) as the starting point.

Figure 2 shows the behavior of this swim operator using
a space of two decision variables, each one into a range of

[−5, 5]. In this example, the new position of the bacterium
after the swim will fall in the purple spot defined by bact1
and bact2, which are 𝜃𝑟

1
(𝑗, 𝐺) and 𝜃𝑟

2
(𝑗, 𝐺), respectively. The

best bacterium is included so as to remark that this operator
aims to find different regions of the search space (i.e., not
those on the neighborhood of the best current solution as the
swarming movement promotes).

(2) Exploitation Swim.The second swim returns to be original
swim based on random search directions but is now coupled
with small random step size values to precisely favor fine
movements, as indicated in the following:

𝜃
𝑖
(𝑗 + 1, 𝐺) = 𝜃

𝑖
(𝑗, 𝐺) + 𝐶 (𝑖, 𝐺) 𝜙 (𝑖) , (47)
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Bact1

Bact2

−5 −3 −1 1 3 5

Bacterium in process
New bacterium after mutation 

Randomly selected bacteria
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0
1
2
3
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5

Figure 2: Graphical example of the first exploration swim.
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Figure 3: Random swim behavior.

where the step size values comprise a 𝑛-dimensional random
vector called again 𝐶(𝑖, 𝐺) [29], calculated at each generation
as shown in the following:

𝐶 (𝑖, 𝐺)𝑘 = 𝑅 ∗ Δ (𝑖
𝑘
)
, 𝑘 = 1, . . . , 𝑛, (48)

where Δ
(𝑖
𝑘
)
is a randomly generated value with uniform

distribution within [𝐿
𝑘
, 𝑈
𝑘
] of decision variable 𝑘.𝑅 is a user-

defined parameter to scale the step size, and its value should
be close to zero, for example, 5.00𝐸−03. At the first cycle, the
step size is calculated using just Δ

(𝑖
𝑘
)
to allow bacteria in the

initial swarm tomove in different directionswithin the search
space while avoiding attractors at the start of the process, as
suggested in [40].

Figure 3 shows the swim behavior, where the bacterium
represented as a green triangle will move by using a random
search direction but close to its current position, regardless of
the positions of other bacteria in the swarm.

Algorithm 3 presents TS-MBFOA pseudocode, and its
parameters are detailed in the caption.

The combined expected effect of both proposed swims
with the swarming operator, all three inside the chemotaxis
process, is an enhanced ability to avoid local optimum
solutions and a promotion of a faster convergence. Such
effect is possible because of the fact that TS-MBFOA has

Table 3: Main features of each four-bar synthesis problem.
Max Evals is the maximum number of evaluations allowed per each
of the problems, 𝑛 is the number of design variables, and c is the
number of constraints.

Problem Max Evals 𝑛 𝑐

M01 500,000 15 5
M02 100,000 6 4
M03 500,000 19 5

a swim for exploration (first proposed swim), a swim to
favor convergence (swarming operator fromMBFOA), and a
fine-swim to further improve good quality solutions (second
proposed swim).

Finally, it is important to remark that the local search
based on SQP is not used in TS-MBFOA.Therefore, second-
order information is not required as it was the case with
IMBFOA.

4. Results and Analysis

TS-MBFOA was used to solve the three four-bar synthesis
design problems stated in Section 2. A summary of their
main features is presented in Table 3. Four experiments were
designed to (1) assess the effectiveness of the proposed swims
compared with the swims in IMBFOA and MBFOA, (2)
compare the final results of TS-MBFOA against those of
IMBFOA and MBFOA, (3) compare the final results of TS-
MBFOA now against those obtained by a DE-based approach
to solve mechanical engineering problems [41], and (4)
simulate the best four-bar systems obtained by each one of
the three algorithms in each one of the optimization problems
to analyze their behavior from a mechanical point of view.
The Wilcoxon Signed-Rank Test (WSRT) [42] was used to
validate the differences observed in the samples of 30 inde-
pendent runs computed per algorithmper test problem in the
experiments. TS-MBFOA was coded in MATLAB R2009b
and executed on a PC with a 3.5 Core 2 Duo Processor, 4GB
of RAM, and 64-bit Windows 7 operating system.

4.1. Performance Measures. To evaluate the behavior of the
compared algorithms, the following performance measures
for nature-inspired constrained optimization, taken from
[43], were computed:

(i) Feasible run: a run where at least one feasible solution
is found within Max Evals.

(ii) Feasible rate = (number of feasible runs)/total runs.
(iii) Successful swim: A swim movement where the new

position is better (based on the feasibility rules) than
the original position.

(iv) Successful swim rate = (number of successful swims)/
total swims, where total swims = 𝑆

𝑏
× 𝑁
𝑐
× 𝐺MAX.

4.2. Parameter Setting. The parameter setting for nature-
inspired algorithms is an open problem [44]. Therefore, to
get suitable parameter values for the proposed algorithm,
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(1) Create an initial swarm of bacteria by using the skew mechanism 𝜃
𝑖
(𝑗, 0) ∀𝑖, 𝑖 = 1, . . . , 𝑆

𝑏

(2) Evaluate 𝜃𝑖(𝑗, 0) ∀𝑖, 𝑖 = 1, . . . , 𝑆
𝑏

(3) for 𝐺 = 1 to 𝐺MAX do
(4) for 𝑖 = 1 to 𝑆

𝑏
do

(5) for 𝑗 = 1 to𝑁
𝑐
do

(6) Perform the chemotaxis process by using the two swims in (46) and (47) and the attractor operator in (41) for
bacteria 𝜃𝑖(𝑗, 𝐺) by considering the three feasibility rules as selection criteria

(7) end
(8) end
(9) if (𝐺mod RepCycle == 0) then
(10) Perform the reproduction process by sorting all bacteria in the swarm based on the feasibility rules, duplicating the

𝑆
𝑟
best bacteria and eliminating the remaining 𝑆

𝑏
− 𝑆
𝑟

(11) end
(12) Perform the elimination-dispersal process by eliminating the worst bacterium 𝜃

𝑤
(𝑗, 𝐺) in the current swarm

(13) Calculated the step size vector with (48)
(14) end

Algorithm 3: TS-MBFOA pseudocode. Input parameters are number of bacteria 𝑆
𝑏
, chemotaxis loop limit𝑁

𝑐
, scaling stepsize 𝑅, number of

bacteria for reproduction 𝑆
𝑟
, scaling factor 𝛽, the reproduction cycle RepCycle, ss for the skewmechanism, and the number of cycles 𝐺MAX.

Table 4: Parameter values for the three BFOA-based compared algorithms. “—” indicates that the corresponding parameter is not required
by the algorithm located in the column.

Parameter MBFOA IMBFOA TS-MBFOA
𝑆
𝑏

40 20 60
𝑁
𝑐

24 20 10
𝑅 1.2𝐸 − 02 — 5.00𝐸 − 03

𝑆
𝑟

1 2 1
𝛽 1.75 1.5 1.75
RepCycle — 100 100
𝐺MAX Value to reach Max Evals Value to reach Max FEs Value to reach Max FEs
LS
𝐺

— 1 and (𝐺MAX/2) generations —
𝜐 — 0.15 —
𝜏 — −0.25 —
ss — 8 8

a tuning process was carried out by the iRace tool [45].
iRace implements the iterated racing procedure for automatic
algorithm configuration. Iterated racing is a generalization of
the iterated F-race and consists of three phases: (1) sampling
new parameter configurations with a particular distribution,
(2) choosing the most competitive configurations by means
of racing, and (3) updating the sampling distribution to favor
better configurations. For details about iRace the reader is
referred to [45].

The user-defined parameter of TS-MBFOA is shown in
Table 4.Theparameter values forMBFOAand IMBFOAwere
taken from [29] and [32], respectively.

The set of parameters for TS-MBFOA in Table 4 is one
out of four sets provided by iRace. The other three are the
following: (1) 𝑆

𝑏
= 60, 𝑁

𝑐
= 12, 𝑅 = 1.89𝐸 − 2, 𝑆

𝑟
= 1,

𝛽 = 1.32, RepCycle = 100, ss = 5, (2) 𝑆
𝑏
= 40, 𝑁

𝑐
= 22,

𝑅 = 1.50𝐸+0, 𝑆
𝑟
= 2,𝛽 = 1.75, RepCycle = 80, ss = 8, and (3)

𝑆
𝑏
= 40,𝑁

𝑐
= 24, 𝑅 = 1.34𝐸−1, 𝑆

𝑟
= 5, 𝛽 = 1.54, RepCycle =

100, ss = 8. As it can be seen, four parameters in the sets

have different values:𝑁
𝑐
, 𝑅, 𝑆
𝑟
, and 𝛽. This suggests that TS-

MBFOA is not very sensitive to those parameters. From those
four parameters, 𝑅 has been reported as very sensitive in
previousMBFOA versions [29]. However, TS-MBFOA shows
less sensitivity to its value. On the other hand, the parameters
with similar values in the sets are 𝑆

𝑏
, RepCycle, and ss. This

suggests that TS-MBFOA requires a more careful tuning of
the swarm size, the reproduction frequency, and the initial
skew in the population. However, the tuning process could
deal with such sensitivity.

4.3. Experiment 1: Effectiveness of the Proposed Swims. The
number of successful swims per generation obtained by
TS-MBFOA, IMBFOA, and MBFOA on the three four-bar
synthesis problems (𝑀01, 𝑀02, and 𝑀03) is presented in
Figures 4, 5, and 6, where the run located in the median
value of 30 independent runs is plotted. In the three figures,
the effectiveness of the two proposed swims included in TS-
MBFOA was superior in most of the process and particularly
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Figure 4: Successful swims byMBFOA, IMBFOA, and TS-MBFOA
in𝑀01 problem in the execution located in the median value of 30
independent runs.
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Figure 5: Successful swims byMBFOA, IMBFOA, and TS-MBFOA
in𝑀02 problem in the execution located in the median value of 30
independent runs.

late in the search.On the other hand, the number of successful
swims in MBFOA showed a decreasing tendency in the
three synthesis problems. Finally, the number of successful
swims in IMBFOA was the lowest in the three problems but
showed some improvement at the end of the search, but it did
not outperform those successful swims by TS-MBFOA. To
provide further evidence to the above finding, the successful
swim rates in problem 𝑀01 were 3.68% by MBFOA, 2.16%
by IMBFOA, and 7.26% by TS-MBFOA. In problem 𝑀02

the successful swim rates were 2.31%, 3.76%, and 4.36%, by
MBFOA, IMBFOA, and TS-MBFOA, respectively. Finally,
in problem 𝑀03, the rates were 2.14%, 3.76% and 6.53%
by MBFOA, IMBFOA, and TS-MBFOA, respectively. As a
conclusion of this first experiment, the two proposed swims
were able to generate a greater number of better solutions
during the search, mainly in late generations, unlike the
swims in IMBFOA and BFOA. It remains to be seen if such
behavior leads to better final results.

4.4. Experiment 2: Final Results Comparison among BFOA-
Based Approaches. As a first element of analysis, the feasible
rates obtained by TS-MBFOA, IMBFOA, and MBFOA in the
three four-bar synthesis problems are shown in Table 5. It is
clear that the three algorithms were able to consistently reach
the feasible region of the search space.
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Figure 6: Successful swims byMBFOA, IMBFOA, and TS-MBFOA
in𝑀03 problem in the execution located in the median value of 30
independent runs.
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Figure 7: Convergence plots by each BFOA-based algorithm in
problem𝑀01.

Table 5: Feasible rate obtained by MBFOA, IMBFOA, and TS-
MBFOA on 30 independent runs.

Prob. MBFOA IMBFOA TS-MBFOA
M01 100% 100% 100%
M02 100% 100% 100%
M03 100% 100% 100%

The statistical results obtained byMBFOA, IMBFOA, and
TS-MBFOA on the three four-bar synthesis problems are
presented in Table 6 in terms of best, average, and standard
deviation values of 30 independent runs. According to the
95%-confidence Wilcoxon Signed-Rank Test, the differences
observed in the samples of runs in Table 6 are significant.
Based on such information, TS-MBFOA outperformed IMB-
FOA and BFOA in the three optimization problems.

To further understand the behavior of each BFOA-
based algorithm, the convergence plots for each optimization
problem are shown in Figures 7, 8, and 9 using the run
located in the median value of the 30 independent runs.
To complement the information, in Table 7, the objective
function value of the best solution found in such run is
presented per algorithm per optimization problem.

Those results suggest that the combination of the two
proposed swims allowed TS-MBFOA to avoid local optimum
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Table 6: Statistical results obtained in 30 independent runs byMBFOA, IMBFOA, and TS-MBFOAwhen solving the three four-bar synthesis
problems. Best results are remarked in boldface. All differences are significant based on the 95%-confidence Wilcoxon test.

Problem Stat MBFOA IMBFOA TS-MBFOA

𝑀01

Evaluations 500,000 500,000 500,000
Best 1.20𝐸 + 00 1.21𝐸 − 02 1.26E − 29

Average 2.50𝐸 + 01 3.38𝐸 + 01 2.40E − 02
Std. 2.57𝐸 + 01 6.93𝐸 + 01 9.15E − 02

𝑀02

Evaluations 100,000 100,000 100,000
Best 0.002997125 0.003726955 0.002628079

Average 3.69𝐸 + 00 4.34𝐸 − 03 2.63E − 03
Std. 2.98𝐸 − 04 9.29𝐸 − 04 1.31E − 17

𝑀03

Evaluations 500,000 500,000 500,000
Best 0.5630512 3.537282325 0.2750193

Average 1.66𝐸 + 01 1.35𝐸 + 01 1.07E + 00
Std. 2.72𝐸 + 01 1.03𝐸 + 04 1.10E + 00
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Figure 8: Convergence plots by each BFOA-based algorithm in
problem𝑀02.

Table 7: Best solution obtained by MBFOA, IMBFOA, and TS-
MBFOA in the run located in the median value out of 30 indepen-
dent runs. Best values are remarked in boldface.

Algorithm 𝑀01 𝑀02 𝑀03
MBFOA 1.53𝐸 + 01 4.10𝐸 − 03 1.26𝐸 + 01

IMBFOA 1.51𝐸 + 02 3.93𝐸 − 03 7.75𝐸 + 01

TS-MBFOA 1.21E − 04 2.63E − 03 4.80E − 01

solutions and find even more promising areas in the feasible
region of the search space. In contrast, IMBFOA andMBFOA
got trapped in those local attractors. Finally, based on the
best solution found in the run located in the median value
out of the 30 independent runs, TS-MBFOA was the most
consistent algorithm to reach competitive values.

4.5. Experiment 3: Comparison between TS-MBFOA and an
Evolutionary Algorithm for Mechanical Design. The results
of TS-MBFOA were compared against those obtained by
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Figure 9: Convergence plots by each BFOA-based algorithm in
problem𝑀03.

a differential-evolution-based approach designed to solve
mechanical design problems [41]. The parameter values used
for such algorithm were the following: 100 individuals and
7500 generations for problem 𝑀01, 100 individuals and
1000 generations for problem𝑀02, and 100 individuals and
5000 generations for problem 𝑀03. 𝐹 and 𝐶𝑅 values were
randomly generated at each generation within the following
intervals: [0.3, 0.9] and [0.8, 1.0], respectively.

Table 8 includes the statistical results of 30 independent
runs carried out by TS-MBFOA and the DE-based approach.
It is important tomention that in the 30 runs, both algorithms
found feasible solutions. Moreover, the 95%-confidence
Wilcoxon test indicated that the differences between the
algorithms in the final results were not significant.

Despite the fact that no significant differences were
observed in the results obtained by TS-MBFOA and the DE-
based approach, TS-MBFOA was able to find those competi-
tive results by using a single parameter setting, while the DE-
based approach required a fine-tuning for each optimization
problem. Furthermore, TS-MBFOA required less evaluations
to reach such results in problem 𝑀01 (500,000 against
750,000 evaluations in problem𝑀01).
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Figure 10: Problem𝑀01 best solution simulation.

4.6. Experiment 4: Simulation of Best Solutions. This final
experiment simulated the mechanisms corresponding to the
best solutions found byMBFOA, IMBFOA, TS-MBFOA, and
the DE-based algorithms for the three problems. The results
are analyzed from a mechanical point of view. The decision
variable values of each best solution per algorithm per
optimization problem are presented in Table 9.The graphical
representations of the simulations are shown in Figures 10, 11,
and 12 for problems𝑀01,𝑀02, and𝑀03, respectively.

Regarding problem𝑀01, Figure 10 indicates that the four
algorithms found mechanisms (solutions) whose trajectories
pass over the six precision points. However, the mechanisms
generated byMBFOA and IMBFOA are less efficient in terms
of time and energy consumption because their recovering
loops to start tracking the points again are much longer than
those obtained by TS-MBFOA and the DE-based approach.

The mechanisms provided by TS-MBFOA, the DE-based
approach, and MBFOA in problem 𝑀02 (Figure 11) were
equally good from amechanical point of view, that is, the tra-
jectories of the three mechanisms pass over the five precision
points and their elements vary in less than 25% among them.
The exception was the mechanism obtained by IMBFOA
because it was deficient; that is, its transmission did not pass
over the trajectory specified by the five precision points.

For the most complex problem 𝑀03 (Figure 12), the
mechanisms provided by TS-MBFOA and the DE-based
approach showed a similar path through the precision point
pairs. Furthermore, the length of the bars is quite uniform
(see Table 9). In contrast, the mechanism found by MBFOA
fails in some precision point pairs and the length of its bars
is not as uniform as those of the mechanisms obtained by
TS-MBFOA and the DE-based approach. Large bars may



14 Computational Intelligence and Neuroscience

MBFOA

TS-MBFOA ED

IMBFOA

rcy
rcx C r1

r2

r3

r4

0

2

4

6

8

10

12

14

16

2 4 6 8−1

−1

12 14 16 18 20100
0

2

4

6

8

10

12

14

16

18

2 4 6 8 12 14 16 18 20 22 24 26 28100

rcy

rcx C
r1

r2

r3

r4

12

10

8

6

4

2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

rcy

rcx
C

r1

r2

r3

r4

rcy

rcx C r1

r2

r3
r4

−1

12

10

8

6

4

2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 11: Problem𝑀02 best solution simulation.

Table 8: Statistical results obtained in 30 independent runs by TS-
MBFOA and the DE-based approach when solving the three four-
bar synthesis problems. Best results are remarked in boldface. No
significant differences were found based on the 95%-confidence
Wilcoxon test.

Problem Stat TS-MBFOA DE

𝑀01

Evaluations 500,000 750,000
Best 1.26217E − 29 1.26218E − 29

Average 2.40𝐸 − 02 1.99E − 03
Std. 9.15𝐸 − 02 5.39E0 − 03

𝑀02

Evaluations 100,000 100,000
Best 0.002628079 0.002628079

Average 2.63E − 03 2.63𝐸 − 03

Std. 1.31E − 17 4.473𝐸 − 10

𝑀03

Evaluations 500,000 500,000
Best 0.2750193 0.274968745

Average 1.07E + 00 1.31𝐸 + 00

Std. 1.10E + 00 3.27𝐸 + 00

produce undesired effects such as bad alignment, weak bal-
ancing because of a transverse flexion produced by internal
loads, and a bigger stress betweenmechanical elements on the
tightening points related with the transmission angle of the
mechanism. Finally, IMBFOA failed to provide a competitive

mechanism based on both number of precision point pairs
covered and bar length uniformity.

From this last experiment, the simulation of the best
solutions suggests that TS-MBFOA was able to find, from a
mechanical point of view, high-quality four-bar mechanisms
in the three instances presented in this work. Particularly in
problem 𝑀01, TS-MBFOA was able to find a very compet-
itive solution with less evaluations with respect to the DE-
based approach, an algorithm whose performance has been
highly competitivewhen solvingmechanical design problems
[41].

5. Conclusions and Future Work

This work proposed two-swim operators for the modified
bacterial foraging optimization algorithm (TS-MBFOA), to
solve three instances of the synthesis of four-bar planar
mechanisms: (1) design of a four-bar mechanism that follows
a linear vertical path defined by a sequence of six precision
points, without a previously established synchronization
(𝑀01), (2) design of a four-bar mechanism that follows a
trajectory defined by a sequence of five unaligned precision
points, with a previously established synchronization for each
point (𝑀02), and (3) design of a four-bar mechanism for
tracking a trajectory delimited by a sequence of ten pairs of
precision points (𝑀03). The first swim favored exploration
of the search space by using locations of other bacteria, while
the second swim promoted fine movements in the vicinity of
the bacterium position by using small step size values.
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Figure 12: Problem𝑀03 best solution simulation.

TS-MBFOA was analyzed in four experiments, where it
was found that the two swims, unlike those of the other two
BFOA-based algorithms, provided a larger number of better
solutions along the search, even in its last cycles. Moreover,
TS-MBFOA was able to consistently generate feasible solu-
tions in the three optimization problems and its final results
clearly outperformed those ofMBFOA and IMBFOAbecause
of its ability to avoid local optimum solutions. Furthermore,
TS-MBFOAwas able to obtain, with a single set of parameter
values, competitive results in the three synthesis problems,
with respect to one evolutionary algorithm designed for
mechanical design optimization which required being fine-
tuned for each synthesis problem. TS-MBFOA also found
a similar competitive result for problem 𝑀01 but with less
evaluations than the DE-based approach. Finally, from a
mechanical point of view, the best solutions obtained by TS-
MBFOA for the three optimization problems were highly
competitive, suitable, and better than those found byMBFOA
and IMBFOA.

The future work consists in revisiting the design of TS-
MBFOA for studying the sensitivity to some of its parameters
and trying to adapt their values. Finally, optimization prob-
lems of other mechanisms will be stated and solved.
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of a four-bar linkage using differential evolution and method
of variable controlled deviations,” Mechanism and Machine
Theory, vol. 44, no. 1, pp. 235–246, 2009.

[12] H. Mart́ınez-Alfaro, “Four-bar mechanism synthesis for n
desired path points using simulated annealing,” in Advances
in Metaheuristics for Hard Optimization, Natural Computing
Series, pp. 23–37, Springer, Berlin, Germany, 2008.

[13] S. K. Acharyya and M. Mandal, “Performance of EAs for four-
bar linkage synthesis,”Mechanism and MachineTheory, vol. 44,
no. 9, pp. 1784–1794, 2009.

[14] H. Emdadi, M. Yazdanian, M. M. Ettefagh, and M. Feizi-
Derakhshi, “Double four-bar crank-slider mechanism dynamic
balancing by meta-heuristic algorithms,” International Journal
of Artificial Intelligence & Applications, vol. 4, no. 5, pp. 1–18,
2013.

[15] A. Sanchez-Marquez, E. Vega-Alvarado, E. A. Portilla-Flores,
and E. Mezura-Montes, “Synthesis of a planar four-bar mecha-
nism for position control using the harmony search algorithm,”
in Proceedings of the 11th International Conference on Electrical
Engineering, Computing Science and Automatic Control (CCE
’14), pp. 1–6, IEEE, September 2014.

[16] K.M. Passino, “Biomimicry of bacterial foraging for distributed
optimization and control,” IEEE Control Systems Magazine, vol.
22, no. 3, pp. 52–67, 2002.

[17] D. H. Kim, A. Abraham, and J. H. Cho, “A hybrid genetic algo-
rithm and bacterial foraging approach for global optimization,”
Information Sciences, vol. 177, no. 18, pp. 3918–3937, 2007.

[18] N.Kushwaha,V. S. Bisht, andG. Shah, “Genetic algorithmbased
bacterial foraging approach for optimization,” IJCA Proceedings
onNational Conference on FutureAspects of Artificial Intelligence
in Industrial Automation, vol. NCFAAIIA, no. 2, pp. 11–14, 2012.

[19] Y. Luo and Z. Chen, “Optimization for PID control param-
eters on hydraulic servo control system based on the novel
compound evolutionary algorithm,” in Proceedings of the 2nd
International Conference on Computer Modeling and Simulation
(ICCMS ’10), pp. 40–43, IEEE, January 2010.

[20] A. Biswas, S. Dasgupta, S. Das, and A. Abraham, “A synergy
of differential evolution and bacterial foraging optimization for
global optimization,” Neural Network World, vol. 17, no. 6, pp.
607–626, 2007.

[21] H. Nouri and T. S. Hong, “A bacteria foraging algorithm based
cell formation considering operation time,” Journal of Manu-
facturing Systems, vol. 31, no. 3, pp. 326–336, 2012.

[22] H.-C. Huang, Y.-H. Chen, and A. Abraham, “Optimized water-
marking using swarm-based bacterial foraging,” Journal of
Information Hiding andMultimedia Signal Processing, vol. 1, no.
1, pp. 51–58, 2010.

[23] A. Biswas, S. Dasgupta, S. Das, and A. Abraham, “Synergy of
PSO and bacterial foraging optimization—a comparative study
on numerical benchmarks,” in Innovations in Hybrid Intelligent
Systems, E. Corchado, J. M. Corchado, and A. Abraham, Eds.,
vol. 44 of Advances in Soft Computing, pp. 255–263, Springer,
Berlin, Germany, 2007.

[24] W. Korani, “Bacterial foraging oriented by particle swarm opti-
mization strategy for PID tuning,” in Proceedings of the 10th
Annual Genetic and Evolutionary Computation Conference
(GECCO ’08), pp. 1823–1826, IEEE, Atlanta, Ga, USA, July 2008.

[25] D. H. Kim and J. H. Cho, “Advanced bacterial foraging and its
application using fuzzy logic based variable step size and clonal
selection of immune algorithm,” in Proceedings of the 6th IEEE
International Conference on Hybrid Information Technology
(ICHIT ’06), vol. 1, pp. 293–298, Cheju Island, Republic of
Korea, November 2006.

[26] B. Hernández-Ocaña, E. Mezura-Montes, and P. Pozos-Parra,
“A review of the bacterial foraging algorithm in constrained
numerical optimization,” in Proceedings of the IEEE Congress
on Evolutionary Computation (CEC ’13), pp. 2695–2702, IEEE,
Cancun, Mexico, June 2013.

[27] E. Mezura-Montes and B. Hernández-Ocaña, “Modified bacte-
rial foraging optimization for engineering design,” in Proceed-
ings of the Artificial Neural Networks in Engineering Conference
(ANNIE ’09), C. H. Dagli, K. M. Bryden, S. M. Corns, M. Gen,
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