103 research outputs found

    Conductive poly(α,ω-bis(3-pyrrolyl)alkanes)-coated wool fabrics

    Full text link
    Cross-linked poly(&alpha;,&omega;-bis(3-pyrrolyl)alkanes) were directly applied to woven wool substrates by either chemical, vapour or mist polymerization methods. Choice of dopant could greatly improve the surface resistance. The optimum coating on textiles with the lowest surface resistance, highest colour-fastness and stability was achieved using a mist polymerization method with 1,8-bis(pyrrolyl)octane, iron(III) chloride (FeCl3) as the oxidant and p-toluene sulfonic acid sodium salt (pTSA) as the dopant.<br /

    Functional polypyrrole core-shell particles and flexible membranes for biomedical applications

    Get PDF
    Le polypyrrole (PPy), l'un des polymères conducteurs de type p, a démontré un potentiel considérable dans les applications biomédicales et le stockage d'énergie en raison de sa conductivité électrique intrinsèque, sa facilité de synthèse, son potentiel de modification chimique et sa biocompatibilité. En raison de la conjugaison étendue dans ses chaînes moléculaires et de son état d'agrégation, les mauvaises propriétés mécaniques et le manque de processabilité du PPy ont été des défis scientifiques et technologiques exceptionnels. En outre, le PPy possède une bioconductivité, mais aucune bioinductivité, c'est-à-dire une absence de biofonctionnalité, ce qui constitue un autre défi pour le PPy lorsqu'il est utilisé pour des applications biomédicales. Cette thèse se concentre principalement sur ces deux défis auxquels le PPy fait face, c’est-à-dire le manque de biofonctionnalité et la mauvaise performance mécanique. En se basant sur la différence des réactivités chimiques des comonomères, les particules de poly(pyrrole-co-(1- (2-carboxyéthyl)pyrrole structurées en noyaux-coquilles (P(Py-PyCOOH)) ont été synthétisées. Elles sont constituées d'un noyau composé d’un copolymère de P(Py-PyCOOH) riche en PPy et d'une coque composée de PPy-COOH. Les paramètres expérimentaux de polymérisation en émulsion ont été étudiés pour définir les conditions optimales. L'anticorps d’albumine de sérum humain (anHSA), en tant que molécule modèle a été immobilisé par des liaisons covalentes sur la surface des particules et a été prouvé réactif aux antigènes. Un schéma a été proposé pour illustrer la formation des particules de cœur-coquille (P(Py-PyCOOH)) selon un nouveau mécanisme basé sur les réactivités du comonomère. Cette méthode de fabrication peut permettre de préparer des particules de PPy fonctionnelles en grande quantité. La chimie de surface et de masse, la conductivité et le rendement global des particules peuvent être régulés. Pour la première fois, une membrane en PPy souple et mécaniquement traitable (PPy-N) a été préparée par polymérisation interfaciale assistée par modèle (TIP) sans modification chimique des monomères ni autres matériaux. Les structures uniquement interconnectées et multicouches ont été considérées comme responsables de l'excellente souplesse aux températures ambiante et à -196 °C. Un mécanisme basé sur la nature exothermique de la polymérisation du pyrrole a été suggéré pour expliquer les morphologies du PPy-N. Cette membrane en PPy flexible a un poids léger (9 g m-2), une grande surface (14,5 m2 g-1), un comportement électrothermique stable, une amphiphilicité et une excellente cytocompatibilité. Enfin, une nouvelle approche modulaire a été proposée pour immobiliser les protéines sur une surface micro/nano structurée. L'albumine de sérum bovin (BSA) et la HSA ont été immobilisées de manière covalente sur la surface des particules (P(Py-PyCOOH) avant qu’elles soient assemblées sur la surface de la membrane PPy-N pour construire une surface biofonctionnée avec la coexistence de deux types de biomolécules. Cette approche sépare la greffe de protéines et l'immobilisation en deux étapes indépendantes, fournissant ainsi une méthode simple et hautement flexible pour concevoir et fabriquer une surface ou un échafaudage multi-biofonctionnalisé.Polypyrrole (PPy), one of p-type conducting polymers, has shown considerable potential in biomedical applications and energy storage owing to its inherent electrical conductivity, ease of synthesis, possibility of further chemical modification, and biocompatibility. Due to the extensive conjugation in PPy chains and the aggregation state, the poor mechanical property and processability of pristine heterocyclic PPy have been the outstanding scientific and technological challenges. Moreover, PPy only possesses bioconductivity but no bioinductivity, i.e., lack of biofunction, which is another challenge for PPy when it is applied in biomedical applications. This thesis mainly focuses on these two issues of PPy, i.e., the lack of biofunctionality and the poor mechanical performance. Based on the difference in comonomer reactivity, the core-shell structured poly(pyrrole-co-(1-(2-carboxyethyl)pyrrole)) (P(Py-PyCOOH)) particles were synthesized, comprising the pyrrole (Py) dominated P(Py-PyCOOH) copolymer as the core and PPyCOOH homopolymer as the shell. Experimental parameters of emulsion polymerization were investigated to define the optimal conditions. Anti-human serum albumin antibody (anHSA) as a model molecule was covalently immobilized onto the particle surface and proven reactive to its antigen. A schema was proposed to illustrate the formation of the core-shell (P(Py-PyCOOH)) particles based on a new reactivity-driven mechanism. This fabrication method can be used to prepare functional PPy particles in large-scale. The surface and bulk chemistry, conductivity, and the overall yield of the particles can be regulated. For the first time, a soft and mechanically processable PPy membrane (PPy-N) was prepared by template assisted interfacial polymerization (TIP) with neither chemical modification of the monomers nor compounding with any other materials. The uniquely interconnected and multilayered structures were considered responsible for the excellent flexibility at both room temperature and -196 °C. A mechanism based on the exothermic nature of pyrrole polymerization was suggested to explain the morphology of the PPy-N. Such a flexible PPy membrane has lightweight (9 g m-2), large surface area (14.5 m2 g-1), stable electrothermal behavior, amphiphilicity, and excellent cytocompatibility. Finally, a novel modular approach was proposed to immobilize proteins to a micro/nano structured surface. Bovine serum albumin (BSA) and HSA were covalently immobilized onto the surface of the (P(Py-PyCOOH)) particles prior to their assembly onto the surface of the PPy-N membrane, to construct a biofunctionalized surface with the coexistence of two types of biomolecules. This approach separates protein grafting and immobilization into two independent steps, providing an easy and highly flexible method to design and fabricate multi-biofunctionalized surface or scaffold

    Surfactant-assisted synthesis of conducting polymers. Application to the removal of nitrates from water

    Get PDF
    Three different conducting polymers, polythiophene (PT), polypirrol (PPY) and polyaniline (PANI) have been synthesized via oxidative chemical polymerization in aqueous media, in such a way that the synthesis protocol did not involve any toxic solvents. They have been tested in the abatement of nitrates from an aqueous solution without the need of any metal catalyst. The N-containing polymers (PANI and PPy) were able to remove nitrates to a level that accomplishes the European legislation requirements; however, the nature of each polymer greatly influenced the process mechanism. Whereas ion exchange between Cl- and SO42- counter-ions in the polymer and NO3- from water is the main responsible for the effective nitrate removal in PANI, as assessed by FTIR and XPS analyses, the nitrate removal mechanism on PPy is based in an electron transfer from the polymer to nitrate through N sites located in the pyrrolic ring. On the other hand, PT was not able to exchange nitrate unless it was synthesized with FeCl3 as oxidant/dopant and an anionic surfactant (sodium dodecyl sulfate -SDS-) is used. In that case, the electrostatic attraction between sulfate (OSO3-) groups from the surfactant and Fe3+ ions from FeCl3 produced the anchoring of Cl- to the oxidized PT growing chain, this favoring ion exchange with nitrate in the aqueous solution, followed by a redox process.Financial support from Generalitat Valenciana, Spain (PROMETEOII/2014/004) is gratefully acknowledged

    Improvement of polypyrrole coating adhesion by radio frequency plasma

    Full text link
    Tariq worked in the area of electronic textiles. He coated polyester fabric and PVDF films with polypyrrole. Plasma treatment was used to improve binding of coatings over the surface. He investigated in detail, the factors responsible for adhesion improvement using XPS, AFM, SEM, contact angle, abrasion tests and conductivity measurements. Different plasma gases, plasma power and plasma modes were investigated to get optimum bonding data. His investigations pointed towards improved surface oxygen functionalization and suitable surface morphology for improved bonding

    Syntéza a charakterizace polypyrrolových vrstev na různých substrátech

    Get PDF
    This work focuses on preparation and characterisation of polypyrrole layers on different substrates. The preparation of polypyrrole layers was carried out by a simple method using ferric chloride as an oxidising agent on several types of substrates - soda lime glass, polyethylene terephthalate foil, and the silicon wafer. The conductivity of the prepared layers was measured, they were then further characterised by an optical microscope, and Raman spectroscopy. By creating a series of models with molecular modeling and their subsequent optimisation, it was possible to calculate and compare the interaction energy of polypyrrole layers on the used substrates.Tato práce se zaměřuje na přípravu a charakterizaci polypyrrolových vrstev na různých substrátech. Příprava polypyrrolových vrstev probíhala jednoduchou metodou za použití chloridu železitého jako oxidačního činidla na několika typech substrátu – sodnovápenatém skle, polyethylentereftalátové folie a křemíkové desce. U připravených vrstev byla změřena jejich vodivost a dále byly charakterizovány pomocí optického mikroskopu a Ramanovy spektroskopie. Vytvořením série modelů molekulárním modelováním a jejich následnou optimalizací bylo možné vypočíst a srovnat interakční energie polypyrrolových vrstev na použitých substrátech.9360 - Centrum nanotechnologiívýborn

    Hydrolysis-directed Vapor-phase Synthesis and Solution Processing of Nanostructured Conducting Polymers

    Get PDF
    Conducting polymers are a class of organic material that possesses semiconducting properties. Their unique molecular structure facilitates charge transport via delocalized π-electron network in the polymer backbone. Creating nanostructures in a conducting polymer increases its surface area to volume ratio and promotes molecular interaction at the surface of the polymer, resulting in enhanced physical and chemical properties, such as ion transfer, adsorption/desorption efficiency, and electrical conductivity. This dissertation focuses on synthesizing nanostructured conducting polymers and their composites from the vapor phase. The mechanisms in a novel synthetic strategy that utilizes iron corrosion products to initiate polymerization and template nanostructure formation is examined. Vapor-phase synthesis is carried out on both organic and inorganic substrates, and varying reaction conditions, such as temperature, reaction time, or anions in the iron(III) salt, creates a spectrum of morphologies (0D particles, 1D fibers, and amorphous films). This dissertation also presents methods for overcoming challenges in conducting polymer processing. Vapor-phase synthesized conducting polymers are fabricated into electrodes for state-of-art supercapacitors, humidity and temperature sensors, and proof-of-concept functional 3D-printed objects

    Heterophase Polymerization Of Pyrrole And Thienyl End Capped Ethoxlated Nonyl Phenol By Iron (iii) Chloride

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2015Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2015Bu çalışmanın amacı, büyük tanecik boyutları ve birçok çözücüde çözünememesinden dolayı işlenemeyen polipirolün kopolimerini yaparak daha küçük tanecik boyutunda, işlenebilir ve çözünebilir bir polimer elde etmektir.Bu amaçla , tiyenil sonlu etoksile nonil fenol ile polipirol'ün demir (III) klorür varlığında heterofaz polimerizasyonu incelenmiştir.Etoksile nonil fenol 2-tiyofenkarbonil klorür ile reaksiyona girerek tiyenil sonlu bir makromonomer haline gelmiştir. Tiyenil grubunun amacı ileride yapılacak blok kopolimer yapısında iletken (polipirol kısmı) ve iletken olmayan (etoksile nonil fenol kısmı) arası köprü görevi görmek ve malzemenin kimyasal yükseltgenme potansiyelini arttırarak demir (III) klorür oksidantı için uygun hale getirmektir. Demir (III) klörür varlığında yapılan kimyasal oksidatif polimerizasyonu sonucu elde edilen kopolimerler FTIR ve NMR gibi analiz yöntemleriyle incelenmiştir.This study presents synthesis of novel block copolymers of thienyl end capped ethoxylated nonyl phenol and pyrrole via chemical oxidative polymerization, by iron (III) chloride (FeCl3). Ethoxylated nonyl phenol (ENP) was reacted with 2-thiophenecarbonyl chloride in order to synthesize a macromonomer containing thienyl end-group (ENP-ThC). Then copolymers of ENP-ThC and pyrrole were synthesized by chemical oxidative polymerization using iron (III) chloride as an oxidant. ENP-ThC served both as a macromonomer and an emulsifier for pyrrole with poor solubility in water.Yüksek LisansM.Sc

    Conducting composite membranes

    Full text link

    Conductive Polymer-Based Membranes

    Get PDF
    This review focuses on an important theme of conductive polymer domain: preparation and applications of advanced materials with permselective properties, such as conductive polymer-based membranes. The most common groups of conductive polymers, their particularities, their use in membranes preparation together with main specific obtaining methods/techniques and conductive polymer-based membrane applications are presented based on a comprehensive documentary study
    corecore