2,125 research outputs found

    Synthesis of Finite-state and Definable Winning Strategies

    Get PDF
    Church\u27s Problem asks for the construction of a procedure which, given a logical specification varphivarphi on sequence pairs, realizes for any input sequence II an output sequence OO such that (I,O)(I,O) satisfies varphivarphi. McNaughton reduced Church\u27s Problem to a problem about two-playeromegaomega-games. B"uchi and Landweber gave a solution for Monadic Second-Order Logic of Order (MLOMLO) specifications in terms of finite-state strategies. We consider two natural generalizations of the Church problem to countable ordinals: the first deals with finite-state strategies; the second deals with MLOMLO-definable strategies. We investigate games of arbitrary countable length and prove the computability of these generalizations of Church\u27s problem

    The Church Synthesis Problem with Parameters

    Full text link
    For a two-variable formula ψ(X,Y) of Monadic Logic of Order (MLO) the Church Synthesis Problem concerns the existence and construction of an operator Y=F(X) such that ψ(X,F(X)) is universally valid over Nat. B\"{u}chi and Landweber proved that the Church synthesis problem is decidable; moreover, they showed that if there is an operator F that solves the Church Synthesis Problem, then it can also be solved by an operator defined by a finite state automaton or equivalently by an MLO formula. We investigate a parameterized version of the Church synthesis problem. In this version ψ might contain as a parameter a unary predicate P. We show that the Church synthesis problem for P is computable if and only if the monadic theory of is decidable. We prove that the B\"{u}chi-Landweber theorem can be extended only to ultimately periodic parameters. However, the MLO-definability part of the B\"{u}chi-Landweber theorem holds for the parameterized version of the Church synthesis problem

    Playing Games in the Baire Space

    Full text link
    We solve a generalized version of Church's Synthesis Problem where a play is given by a sequence of natural numbers rather than a sequence of bits; so a play is an element of the Baire space rather than of the Cantor space. Two players Input and Output choose natural numbers in alternation to generate a play. We present a natural model of automata ("N-memory automata") equipped with the parity acceptance condition, and we introduce also the corresponding model of "N-memory transducers". We show that solvability of games specified by N-memory automata (i.e., existence of a winning strategy for player Output) is decidable, and that in this case an N-memory transducer can be constructed that implements a winning strategy for player Output.Comment: In Proceedings Cassting'16/SynCoP'16, arXiv:1608.0017

    O-Minimal Hybrid Reachability Games

    Full text link
    In this paper, we consider reachability games over general hybrid systems, and distinguish between two possible observation frameworks for those games: either the precise dynamics of the system is seen by the players (this is the perfect observation framework), or only the starting point and the delays are known by the players (this is the partial observation framework). In the first more classical framework, we show that time-abstract bisimulation is not adequate for solving this problem, although it is sufficient in the case of timed automata . That is why we consider an other equivalence, namely the suffix equivalence based on the encoding of trajectories through words. We show that this suffix equivalence is in general a correct abstraction for games. We apply this result to o-minimal hybrid systems, and get decidability and computability results in this framework. For the second framework which assumes a partial observation of the dynamics of the system, we propose another abstraction, called the superword encoding, which is suitable to solve the games under that assumption. In that framework, we also provide decidability and computability results

    The Church Problem for Countable Ordinals

    Full text link
    A fundamental theorem of Buchi and Landweber shows that the Church synthesis problem is computable. Buchi and Landweber reduced the Church Problem to problems about &#969;-games and used the determinacy of such games as one of the main tools to show its computability. We consider a natural generalization of the Church problem to countable ordinals and investigate games of arbitrary countable length. We prove that determinacy and decidability parts of the Bu}chi and Landweber theorem hold for all countable ordinals and that its full extension holds for all ordinals < \omega\^\omega

    Tree games with regular objectives

    Full text link
    We study tree games developed recently by Matteo Mio as a game interpretation of the probabilistic ÎĽ\mu-calculus. With expressive power comes complexity. Mio showed that tree games are able to encode Blackwell games and, consequently, are not determined under deterministic strategies. We show that non-stochastic tree games with objectives recognisable by so-called game automata are determined under deterministic, finite memory strategies. Moreover, we give an elementary algorithmic procedure which, for an arbitrary regular language L and a finite non-stochastic tree game with a winning objective L decides if the game is determined under deterministic strategies.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Formats of Winning Strategies for Six Types of Pushdown Games

    Full text link
    The solution of parity games over pushdown graphs (Walukiewicz '96) was the first step towards an effective theory of infinite-state games. It was shown that winning strategies for pushdown games can be implemented again as pushdown automata. We continue this study and investigate the connection between game presentations and winning strategies in altogether six cases of game arenas, among them realtime pushdown systems, visibly pushdown systems, and counter systems. In four cases we show by a uniform proof method that we obtain strategies implementable by the same type of pushdown machine as given in the game arena. We prove that for the two remaining cases this correspondence fails. In the conclusion we address the question of an abstract criterion that explains the results

    Synthesis of Deterministic Top-down Tree Transducers from Automatic Tree Relations

    Full text link
    We consider the synthesis of deterministic tree transducers from automaton definable specifications, given as binary relations, over finite trees. We consider the case of specifications that are deterministic top-down tree automatic, meaning the specification is recognizable by a deterministic top-down tree automaton that reads the two given trees synchronously in parallel. In this setting we study tree transducers that are allowed to have either bounded delay or arbitrary delay. Delay is caused whenever the transducer reads a symbol from the input tree but does not produce output. We provide decision procedures for both bounded and arbitrary delay that yield deterministic top-down tree transducers which realize the specification for valid input trees. Similar to the case of relations over words, we use two-player games to obtain our results.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Uniform Strategies

    Get PDF
    We consider turn-based game arenas for which we investigate uniformity properties of strategies. These properties involve bundles of plays, that arise from some semantical motive. Typically, we can represent constraints on allowed strategies, such as being observation-based. We propose a formal language to specify uniformity properties and demonstrate its relevance by rephrasing various known problems from the literature. Note that the ability to correlate different plays cannot be achieved by any branching-time logic if not equipped with an additional modality, so-called R in this contribution. We also study an automated procedure to synthesize strategies subject to a uniformity property, which strictly extends existing results based on, say standard temporal logics. We exhibit a generic solution for the synthesis problem provided the bundles of plays rely on any binary relation definable by a finite state transducer. This solution yields a non-elementary procedure.Comment: (2012
    • …
    corecore