We solve a generalized version of Church's Synthesis Problem where a play is
given by a sequence of natural numbers rather than a sequence of bits; so a
play is an element of the Baire space rather than of the Cantor space. Two
players Input and Output choose natural numbers in alternation to generate a
play. We present a natural model of automata ("N-memory automata") equipped
with the parity acceptance condition, and we introduce also the corresponding
model of "N-memory transducers". We show that solvability of games specified by
N-memory automata (i.e., existence of a winning strategy for player Output) is
decidable, and that in this case an N-memory transducer can be constructed that
implements a winning strategy for player Output.Comment: In Proceedings Cassting'16/SynCoP'16, arXiv:1608.0017