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ABSTRACT. Church’s Problem asks for the construction of a procedure which, given a logical speci-
fication ϕ on sequence pairs, realizes for any input sequence I an output sequence O such that (I, O)
satisfies ϕ. McNaughton reduced Church’s Problem to a problem about two-player ω-games. Büchi
and Landweber gave a solution for Monadic Second-Order Logic of Order (MLO) specifications in
terms of finite-state strategies. We consider two natural generalizations of the Church problem to
countable ordinals: the first deals with finite-state strategies; the second deals with MLO-definable
strategies. We investigate games of arbitrary countable length and prove the computability of these
generalizations of Church’s problem.

1 Introduction

Two fundamental results of classical automata theory are decidability of the monadic second-

order logic of order (MLO) over ω = (N, <) and computability of the Church synthesis

problem. These results have provided the underlying mathematical framework for the de-

velopment of formalisms for the description of interactive systems and their desired prop-

erties, the algorithmic verification and the automatic synthesis of correct implementations

from logical specifications, and advanced algorithmic techniques that are now embodied in

industrial tools for verification and validation.

In order to prove decidability of the monadic theory of ω, Büchi introduced finite au-

tomata over ω-words. He provided a computable reduction from formulas to finite au-

tomata.

Büchi also introduced automata which “work” on words of any countable length (or-

dinal) and proved that the MLO-theory of any countable ordinal is decidable (see [BS73]).

What is known as the “Church synthesis problem” was first posed by Church in [Ch63]

for the case of (ω, <). The Church problem is much more complex than the decidability

problem for MLO. Church uses the language of automata theory. It was McNaughton

[Mc65] who first observed that the Church problem can be equivalently phrased in game-

theoretic language.

Let α > 0 be an ordinal and let ϕ(X1, X2) be a formula, where X1 and X2 are set

(monadic predicate) variables. The McNaughton game Gα
ϕ is defined as follows.

1. The game is played by two players, called Player I and Player II.

2. A play of the game has α rounds.

3. At round β < α: first, Player I chooses πX1
(β) ∈ {0, 1}; then, Player II chooses

πX2
(β) ∈ {0, 1}.
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4. By the end of the play two monadic predicates πX1
, πX2

⊆ α have been constructed†.

5. Then, Player I wins the play if (α, <) |= ϕ(πX1
, πX2

); otherwise, Player II wins.

What we want to know is: Does either one of the players have a winning strategy in Gα
ϕ? If so,

which one? That is, can Player I choose his moves so that, whatever way Player II responds

we have ϕ(πX1
, πX2

)? Or can Player II respond to Player I’s moves in a way that ensures the

opposite?

This leads to

Game version of the Church problem Let α be an ordinal. Given an MLO formula ϕ(X1, X2),

decide whether Player I has a winning strategy in Gα
ϕ.

In [BL69], Büchi and Landweber prove the computability of the Church problem in ω =
(N, <). Even more importantly, they show that in the case of ω we can restrict ourselves to

MLO-definable strategies, or equivalently, to finite-state strategies (see Sect. 3 for the definitions

of these strategies).

THEOREM 1.1 (BÜCHI-LANDWEBER, 1969) Let ϕ(X1, X2) be an MLO formula. Then:

Determinacy One of the players has a winning strategy in the game Gω
ϕ .

Decidability It is decidable which of the players has a winning strategy.

Definable strategy The player who has a winning strategy, also has an MLO-definable winning

strategy.

Synthesis We can compute a formula ψ(X1, X2) that defines (in ω) a winning strategy for the

winning player in Gω
ϕ .

After stating their main theorem, Büchi and Landweber write:

“We hope to present elsewhere a corresponding extension of [our main theorem]

from ω to any countable ordinal.”

However, despite the fundamental role of the Church problem, no such extension is even

mentioned in a later book by Büchi and Siefkes [BS73], which summarizes the theory of

finite automata over words of countable ordinal length.

We proved in [RS08a, Rab09] that the Büchi-Landweber theorem extends fully to all

ordinals < ωω and its determinacy and decidability parts extend to all countable ordinals.

In [RS08], we provided a counter-example to a full extension of the Büchi-Landweber

theorem to α ≥ ωω. For every ordinal α ≥ ωω we constructed an MLO formula ϕα(X1, X2)
such that Player I has a winning strategy in Gα

ϕα
; however, he has no MLO-definable winning

strategy.

For α ≤ ωω, the set of MLO-definable in α strategies is the same as the set of finite-

state strategies. However, for α > ωω, the set of MLO-definable in α strategies properly

contains the set of finite-state strategies. This leads to the following two synthesis problems

for α ≥ ωω:

Synthesis Problems for α

Input: an MLO formula ϕ(X1, X2).

Task1: Decide whether one of the players has a definable winning strategy in Gα
ϕ,

and if so, construct ψ which defines his winning strategy.

Task2: Decide whether one of the players has a finite-state winning strategy in Gα
ϕ,

and if so, construct such a strategy.

†We identify monadic predicates with their characteristic functions.
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The first task is the synthesis problem of definable strategy and it will be denoted by

Dsynth(α); the second task is the synthesis problem of finite-state strategy and it will be

denoted by Fsynth(α).

In [Rab09], we reduced the synthesis problem Dsynth(α) to Dsynth(ωω). However, the

decidability of the latter remained open.

Two main contributions of this paper are: the computability of Dsynth(ωω) (and, as

a consequence, the computability of Dsynth(α)), and the computability of Fsynth(α). Our

results are stronger than the computability of Dsynth(α) and Fsynth(α). For every count-

able α we need finite amount of data (code of α) which determines its monadic theory (see

Subsection 2.2). We prove that there is an algorithm that receives the code of an ordinal α

and a formula ϕ and decides whether Player I has a definable or finite-state strategy in the

McNaughton game Gα
ϕ.

Our proofs use both game theoretical techniques and the “composition method” devel-

oped by Feferman-Vaught, Shelah and others (see, e.g. [Sh75]).

The article is organized as follows. The next section recalls standard definitions about

monadic logic of order, summarizes elements of the composition method and reviews known

facts about the monadic theory of countable ordinals. In Sect. 3, we provide definitions of

the finite-state and MLO-definable strategies and survey results about McNauughton games

of countable length. In Section 4, we introduce special games on types and provide a reduc-

tion of these games to the McNaughton games. Section 5 contains the main results of the pa-

per and outlines the proof of the computability of the synthesis problem for MLO-definable

strategies. Finally, in Sect. 6, we discuss some open problems.

2 Preliminaries on Monadic Logic of Order

Notations and terminology We use n, k, l, m, p, q for natural numbers and α, β, γ, δ for or-

dinals. We use N for the set of natural numbers and ω for the first infinite ordinal. We write

α + β, αβ, αβ for the sum, multiplication and exponentiation, respectively, of ordinals α and

β. We use the expressions “chain” and “linear order” interchangeably. We use P(A) for the

set of subsets of A.

2.1 The Monadic Logic of Order (MLO)

Syntax The syntax of the monadic second-order logic of order - MLO has in its vocabulary

individual (first order) variables t1, t2 . . ., monadic second-order variables X1, X2 . . . and one

binary relation < (the order).

Atomic formulas are of the form X(t) and t1 < t2. Well-formed formulas of the monadic

logic MLO are obtained from atomic formulas using Boolean connectives ¬,∨,∧,→, the

first-order quantifiers ∃t and ∀t, and the second-order quantifiers ∃X and ∀X. The quantifier

depth of a formula ϕ is denoted by qd(ϕ).

We use upper case letters X, Y, Z to denote second-order variables, and overlined letters

X̄, Ȳ to denote finite tuples of variables.

Semantics A structure is a tuple M := (AM, <M, P̄M) where: AM is a non-empty set, <
M

is a binary relation on AM, and P̄M :=
(

PM
1 , . . . , PM

l

)

is a finite tuple of subsets of AM.
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If P̄M is a tuple of l sets, we call M an l-structure. If <
M linearly orders AM, we call

M an l-chain.

Suppose M is an l-structure and ϕ a formula with free-variables among X1, . . . , Xl. We

define the relation M |= ϕ (read: M satisfies ϕ) as usual, understanding that the second-

order quantifiers range over subsets of AM.

Let M be an l-structure. The monadic theory of M, MTh(M), is the set of all formulas

with free variables among X1, . . . , Xl satisfied by M.

¿From now on, we omit the superscript in ‘<M’ and ‘P̄M’. We often write (A, <) |=
ϕ(P̄) meaning (A, <, P̄) |= ϕ.

2.2 The monadic theory of countable ordinals

Büchi (for instance [BS73]) has shown that there is a finite amount of data concerning any

countable ordinal which determines its monadic theory:

THEOREM 2.1 Let α be a countable ordinal. Write α = ωωβ + ζ where ζ < ωω (this can be done

in a unique way). Then the monadic theory of (α, <) is determined by:

1. whether α < ωω, and

2. ζ.

We can associate with every countable α a finite code which holds the data required in the

previous theorem. This is clear with respect to (1). As for (2), if ζ 6= 0, write

ζ = ∑i≤n ωn−i · an−i, where n, ai ∈ N for i ≤ n and an 6= 0

(this, too, can be done in a unique way), and let the sequence (an, . . . , a0) encode ζ. The

following is implicit in [BS73]:

THEOREM 2.2 (MONADIC DECIDABILITY THEOREM) There is an algorithm that, given a sen-

tence ϕ and the code of a countable ordinal α, determines whether (α, <) |= ϕ.

We conclude by a well-known Lemma which is easily derived from Büchi results [BS73],

as well from the composition theorem (see Theorem 2.11).

LEMMA 2.3 For every n there is m computable from n such that for every MLO sentence ϕ of the

quantifier depth at most n and every countable ordinals α > 0 and β:

ωm + β |= ϕ if and only if ωmα + β |= ϕ

2.3 Elements of the composition method

Our proofs make use of the technique known as the composition method developed by

Feferman-Vaught and Shelah [FV59, Sh75]. To fix notations and to aid the reader unfamiliar

with this technique, we briefly review the required definitions and results. A more detailed

presentation can be found in [Th97] or [Gu85].

Let n, l ∈ N. We denote by Formn
l the set of formulas with free variables among

X1, . . . , Xl and of quantifier depth ≤ n.

DEFINITION 2.4 Let n, l ∈ N and let M,N be l-structures. The n-theory of M is

Thn(M) := {ϕ ∈ Formn
l | M |= ϕ}.

If Thn(M) = Thn(N ), we say that M and N are n-equivalent and write M ≡n N .
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Clearly, ≡n is an equivalence relation. For any n ∈ N and l > 0, the set Formn
l is infi-

nite. However, it contains only finitely many semantically distinct formulas. So, there are

finitely many ≡n-equivalence classes of l-structures. In fact, we can compute characteristic

sentences for the ≡n-equivalence classes:

LEMMA 2.5 (HINTIKKA LEMMA) For n, l ∈ N, we can compute a finite set Charn
l ⊆ Formn

l

such that:

1. For every ≡n-equivalence class A there is a unique τ ∈ Charn
l such that for every l-structure

M: M ∈ A iff M |= τ.

2. Every MLO formula ϕ(X1, . . . Xl) with qd(ϕ) ≤ n is equivalent to a (finite) disjunction of char-

acteristic formulas from Charn
l . Moreover, there is an algorithm which for every formula ϕ(X1, . . . Xl)

computes a finite set Gϕ ⊆ Char
qd(ϕ)
l of characteristic formulas, such that ϕ is equivalent to the dis-

junction of all the formulas in G.

Any member of Charn
l we call a (n, l)-Hintikka formula or (n, l)-characteristic formula. We

use τ, τi, τ j to range over the characteristic formulas and G, Gi, G′ to range over sets of

characteristic formulas. Usually, we do not distinguish between ϕ and the corresponding

set Gϕ of characteristic formulas.

DEFINITION 2.6 (n-TYPE) For n, l ∈ N and an l-structure M, we denote by typen(M) the

unique member of Charn
l satisfied by M and call it the n-type of M.

Thus, typen(M) determines Thn(M) and, indeed, Thn(M) is computable from typen(M).

DEFINITION 2.7 (SUM OF CHAINS) Let l ∈ N, I := (I, <I) a chain and S := (Mα | α ∈ I) a

sequence of l-chains. Write Mα := (Aα, <α, P1
α, . . . , Pl

α) and assume that Aα ∩ Aβ = ∅ whenever

α 6= β are in I. The ordered sum of S is the l-chain

∑
I

S := (
⋃

α∈I

Aα, <I ,S,
⋃

α∈I
P1

α, . . . ,
⋃

α∈I

Pl
α),

where: if α, β ∈ I, a ∈ Aα, b ∈ Aβ, then b <
I ,S a iff β <

I α or β = α and b <
α a.

If the domains of the Mα’s are not disjoint, replace them with isomorphic l-chains that have

disjoint domains, and proceed as before.

If I = ({0, 1}, <) and S = (M0,M1), we denote ∑I S by M0 + M1.

The next proposition states that taking ordered sums preserves ≡n-equivalence.

PROPOSITION 2.8 Let n, l ∈ N. Assume:

1. (I, <I) is a linear order,

2.
(

M0
α | α ∈ I

)

and
(

M1
α | α ∈ I

)

are sequences of l-chains, and

3. for every α ∈ I, M0
α ≡n M1

α.

Then, ∑α∈I M
0
α ≡n ∑α∈I M

1
α.

This allows us to define the sum of formulas in Charn
l with respect to any linear order.

DEFINITION 2.9 Let n, l ∈ N, I := (I, <I) a chain, H := (τα | α ∈ I) a sequence of (n, l)-

Hintikka formulas. The ordered sum of H, (notations ∑I H or ∑α∈I τα), is an element τ of Charn
l

such that:

if S := (Mα | α ∈ I) is a sequence of l-chains and typen(Mα) = τα for α ∈ I, then

typen(∑
I

S) = τ.

If I = ({0, 1}, <) and H = (τ0, τ1), we denote ∑α∈I τα by τ0 + τ1.
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The next Lemma states that the sum of two types is computable.

LEMMA 2.10 (ADDITION LEMMA) The function which maps the pairs of characteristic formulas

to their sum is recursive. Formally, λn, l ∈ N.λτ0, τ1 ∈ Charn
l .τ0 + τ1 is recursive.

The following fundamental result of Shelah can be found in [Sh75]:

THEOREM 2.11 (COMPOSITION THEOREM) Let ϕ(X1, . . . , Xl) be a formula, let n = qd(ϕ)
and let {τ1, . . . , τm} = Charn

l . Then, there is a formula ψ(Y1, . . . , Ym) such that for every chain

I = (I, <) and sequence (Mα | α ∈ I) of l-chains the following holds:

∑
α∈I

Mα |= ϕ iff I |= ψ(Q1, . . . , Qm), where

Qj = {α ∈ I | Mα |= τj}. Moreover, ψ is computable from ϕ.

3 Finite-state and MLO-definable strategies

In the McNaughton game Gα
ϕ, at round β < α, Player I has access only to πX2

∩ [0, β) and

Player II has access only to πX1
∩ [0, β]. Therefore, the following formalizes well the notion

of a strategy in this game:

DEFINITION 3.1 (CAUSAL OPERATOR) Let α be an ordinal, F : P(α) → P(α) maps the subsets

of α into the subsets of α. We call F causal (resp. strongly causal) iff for all P, P′ ⊆ α and β < α:

if P ∩ [0, β] = P′ ∩ [0, β] (resp. P ∩ [0, β) = P′ ∩ [0, β)), then

F(P) ∩ [0, β] = F(P′) ∩ [0, β].
That is, if P and P′ agree up to and including (resp. up to) β, then so do F(P) and F(P′).

So, a winning strategy for Player I is a strongly causal F : P(α) → P(α) such that for every

P ⊆ α, (α, <) |= ϕ(F(P), P); a winning strategy for Player II is a causal F : P(α) → P(α)
such that for every P ⊆ α, (α, <) |= ¬ϕ(P, F(P)).

Let ψ(X1, X2) be a formula where X2 is declared as the “domain” variable and X1 as the

“range” variables. Let M := (A, <) be a chain and let F : P(A) → P(A) be an operator. We

say that ψ defines F in M if M |= ψ(P1, P2) iff P1 = F(P2).

It is easy to formalize in MLO that ψ defines in M a causal or strongly causal operator.

Hence, for every ψ there are sentences I-Player-strategyψ and II-Player-strategyψ such that

α |= I-Player-strategyψ iff ψ defines (in α) a strategy for Player I, and α |= II-Player-strategyψ

iff ψ defines (in α) a strategy for Player II. A play ρ := (ρX1
(0), ρX2

(0)) . . . (ρX1
(β), ρX2

(β))
. . . is consistent with the strategy defined in α by ψ if α |= ψ(ρX1

, ρX2
). A Player I’s strategy

defined by ψ is winning in Gα
ϕ if α |= ∀X1X2ψ(X1, X2) → ϕ(X1, X2). Hence, the monadic

theory of an ordinal α “knows” which formulas defines in α a strategy and which definable

strategies are winning in Gα
ϕ.

A formula ψ(X̄, t) with at most one free individual variable t is (syntactically) bounded

if all its first-order quantifiers are of the form ∃<ty . . . (short for ∃y(y < t ∧ . . .) and ∀<ty . . .

(short for ∀y(y < t → . . .)).

If ψ(X1, X2, t) is syntactically bounded and does not contain the atomic formulas X1(t)
and X2(t), then ∀t

(

X1(t) ↔ ψ
)

defines in every ordinal a strategy for Player I (a strongly

causal operator); ψ is said to be an explicit definition of this strategy. Similarly, if ψ(X1, X2, t) is

syntactically bounded and does not contain the atomic formula X2(t), then ∀t
(

X2(t) ↔ ψ
)

defines in every ordinal a strategy for Player II (a causal operator).
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The strategies explicitly defined by the bounded formulas can be computed by finite-

state transducers. A finite state transducer consists of a finite set Q - memory states, an

initial state qinit, next-state functions next1 : Q → Q and next2 : Q × {0, 1} → Q, a limit

transition function ∆ : P(Q) → Q, and an output function out : Q → {0, 1}.

During a play, according to a transducer, at round β, Player I first updates the state

according to next1 or ∆, outputs value according to out, and then after a move of Player II

updates the state. Formally, a play ρ := (ρX1
(0), ρX2

(0)) . . . (ρX1
(β), ρX2

(β)) . . . is consistent

with such a strategy if there are q0, q′0 . . . qβq′β . . . such that q0 = qinit

1. If β = β′ + 1 is a successor ordinal, then qβ = next1(q′β′)

2. If β is a limit ordinal then qβ = ∆(L) , where L := {q ∈ Q | q appears cofinally often

in q0, q′0 . . . qγq′γ . . . (γ < β)}.

3. ρX1
(β) = out(qβ).

4. q′β = next2(qβ, ρX2
(β))

It is clear that a transducer defines a strategy st for Player I. Moreover, st is definable by a

transducer iff it is explicitly definable by a bounded a formula.

Every ordinal α < ωω is MLO-definable. It is not difficult to show that a strategy is

MLO-definable in α < ωω iff it is finite-state strategy (equivalently is explicitly defined

by a bounded formula). If for a countable ordinal α every cofinal interval (β, α) is isomor-

phic to α, then a strategy is finite-state iff it is MLO-definable in α. However, the set of

MLO-definable strategies is larger than the set of finite-state strategies; e.g., if n > 0 and

ϕ expresses “X1 contains exactly the last element”, then Player I has a definable winning

strategy in Gωω+n
ϕ , but he has no finite-state winning strategy in this game.

We recall below results from [Rab09, RS08] about McNauughton games over ordinals,

and results from [CH08] about reachability and safety games of length ωω.

THEOREM 3.2 Let α be a countable ordinal, ϕ(X1, X2) a formula.

Determinacy One of the players has a winning strategy in the game Gα
ϕ.

MLO characterization of the winner There is a sentence win(ϕ) such that for every countable

ordinal α: Player I wins Gα
ϕ if and only if α |= win(ϕ). Furthermore, win(ϕ) is computable from ϕ.

Decidability There is an algorithm that given α and ϕ decides which of the players has a winning

strategy in Gα
ϕ.

No definable winning strategy For every α ≥ ωω, there is a formula ϕ such that no player has

a definable winning strategy in Gα
ϕ.

Finite-state winning strategy If α < ωω, then the player who has a winning strategy, also has a

finite-state winning strategy.

Synthesis If α < ωω, then we can compute a finite-state winning strategy for the winning player

in Gα
ϕ.

Hence, the Büchi-Landweber theorem extends fully to the ordinals less than ωω, and its

determinacy and decidability parts extends to all countable ordinals.

REMARK 3.3 1. In this paper, whenever we say that an algorithm is “given an ordinal...” or

“returns an ordinal...”, we mean the code of the ordinal. In particular, this holds for the decidability

and synthesis parts of Theorem 3.2.

2. Sometimes, like in the MLO characterization part of Theorem 3.2, we state our result only for

Player I. However, in all these cases there is a duality between the players, and similar assertions

hold for Player II. For every ϕ we can construct ψ such that Player I has a definable (respectively,
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finite-state) winning strategy st in Gα
ψ iff Player II has a definable (respectively, finite-state) winning

strategy in Gα
ϕ. Moreover, this strategy is computable from (the description of) st.

3. To simplify notations, games and the Church problem were previously defined for formulas with

two free variables X1 and X2. It is easy to generalize all definitions and results to formulas ψ(X1, . . . , Xm,

Y1, . . . Yn) with many variables. In this generalization at round β, Player I chooses values for

X1(β), . . . , Xm(β), then Player II replies by choosing values for Y1(β), . . . , Yn(β). Note that, strictly

speaking, the input to the Church problem is not only a formula, but a formula plus a partition of its

free variables to Player I’s variables and Player II’s variables.

In [CH08] reachability games of ordinal length over finite graphs were considered. The next

theorem reformulates results from [CH08] in logical terms.

Let ϑ(X1, X2) be a formula. Let ϑ<t be the relativization of ϑ to the interval [0, t), i.e.,

obtained from ϑ(X1, X2) by changing the first-order quantifiers ∃y and ∀y to ∃<ty and ∀<ty.

A reachability formula is a formula of the form ∃tϑ<t. A safety formula is a formula of the

form ∀tϑ<t.

THEOREM 3.4 Let ϕ be a reachability or safety formula. Then

Finite-state strategy The player who has a winning strategy in Gωω

ϕ also has a finite-state winning

strategy.

Synthesis We can compute a finite-state winning strategy for the winning player in Gωω

ϕ .

4 Special Games on Types

In this section we introduce special games on types. These games play an important role

in our proof that Dsynth(ωω) is computable. We reduce special games to safety games and

derive that a winning player in these games has a definable winning strategy.

DEFINITION 4.1 (RESIDUAL) Let k ∈ N, G ⊆ Chark
2 and τ ∈ Chark

2. Define resτ(G) as

resτ(G) := {τ′ ∈ Chark
2 | τ + τ′ ∈ G}.

Let F assign to every τ ∈ G a non-empty subset of P(resτ(G)) \ {∅}. The ωω-game on

types, Game(F, G), is defined as follows. There are ωω rounds.

Round 0: Player I sets G0 := G. Player II chooses τ0 ∈ G0.

Round α (for α > 0): Let τ<α := ∑β∈α τβ. If τ<α 6∈ G, then Player II wins. Otherwise, Player

I chooses Gα ∈ F(τ<α) and then Player II chooses τα ∈ Gα.

Winning Conditions: Player I wins a play G0τ0 . . . Gβτβ . . . if ∑β∈α τβ ∈ G for every α ≤ ωω.

The proof of the next proposition is based on a reduction of special games to safety games.

PROPOSITION 4.2 There is an algorithm that given a game Game(F, G), decides whether Player

I has a winning strategy. Furthermore, if such a strategy exists, then there is definable winning

strategy, and we can compute a formula ψ(X̄, Ȳ) that defines in ωω a winning strategy for Player I.

Since a strategy is definable in ωω iff it is finite-state, we can replace “definable” by “finite-

state” in the above Proposition.

5 Main Results

In the next lemma and throughout this paper we often use G ⊆ Chark
2 for ϕ defined as

∨τ∈Gτ. In particular, we use Gα
G, for the McNaughton game Gα

ϕ, and win(G) for win(ϕ),

where win(ϕ) is the sentence from Theorem 3.2.
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LEMMA 5.1 (MAIN) Let G ⊆ Chark
2. The following are equivalent:

1. Player I has a definable winning strategy in Gωω

G .

2. There is G′ ⊆ G and a special game Game(F, G′) such that

(a) ωω |= win(G′).

(b) ωω |= win(G1) for every τ ∈ G′ and G1 ∈ F(τ).

(c) Player I has a winning strategy in Game(F, G′).

The implication (2)⇒(1) will be proved in Subsection 5.1. The implication (1)⇒(2) will be

proved in Subsection 5.2. As a consequence, we obtain the computability of Dsynth(ωω).

THEOREM 5.2 (COMPUTABILITY OF DSYNTH(ωω)) There is an algorithm that given a for-

mula ϕ(X1, X2) decides whether Player I has a definable winning strategy in the game Gωω

ϕ . Further-

more, if such a strategy exists we can compute a formula ψ(X1, X2) that defines (in ωω) a winning

strategy for Player I.

PROOF. Since condition (2) of Lemma 5.1 is decidable, we obtain the decidability part

of the theorem. The “furthermore part” of the theorem can be extracted from our proof of

Lemma 5.1.

In [Rab09] we provided reduction from Dsynth(α) to Dsynth(ωω). As a consequence of

Theorem 5.2 and results in [Rab09] we obtain:

THEOREM 5.3 (COMPUTABILITY OF DSYNTH(α)) 1. There is an algorithm that given a for-

mula ϕ(X1, X2) computes a sentence Dwinϕ such that for every countable ordinal α ≥ ωω: Player

I has a definable (in α) winning strategy in Gα
ϕ iff α |= Dwinϕ.

2. There is an algorithm that given a formula ϕ(X1, X2) and the code of an ordinal α decides whether

Player I has a definable winning strategy in Gα
ϕ, and if so, computes a formula ψα which defines in α

such a strategy.

The next theorem states that the synthesis problem for finite-state strategies is computable.

Its proof refines the proof of Theorem 5.3 and will be presented in the full paper.

THEOREM 5.4 (COMPUTABILITY OF FSYNTH(α)) 1. There is an algorithm that given a for-

mula ϕ(X1, X2) computes a sentence Fswinϕ such that for every countable ordinal α ≥ ωω: Player

I has a finite-state winning strategy in Gα
ϕ if and only if α |= Fswinϕ.

2. There is an algorithm that given a formula ϕ(X1, X2) and a code of α decides whether Player I has

a finite-state winning strategy in Gα
ϕ, and if so, computes such a strategy.

5.1 Implication (2)⇒ (1) of Lemma 5.1

Terminology. (k-type of a play) For a (partial) play π := (πX1
(0), πX2

(0)) . . . (πX1
(β), πX2

(β)) . . .

(β ∈ α) its k-type is defined as the k-type of the chain (α, <, πX1
, πX2

).

Let n be an upper bound on the quantifier depth of win(H) for H ⊆ Chark
2, where

win(H) is as in Theorem 3.2. By Lemma 2.3, we can compute m such that no sentence of the

quantifier depth ≤ n can distinguish between multiples of ωm.

¿From condition 2(a), and our choice of m, it follows that ωm |= win(G′) and therefore,

by the synthesis part of Theorem 3.2, Player I has a definable winning strategy in Gωm

G′ .

We fix such a strategy stG′ . Similarly, condition 2(b) implies that for every τ ∈ G′ and

G1 ∈ F(τ) Player I has a definable winning strategy in Gωm

G1
, we denote such a strategy by

stG1
. Condition 2(c) implies that Player I has a definable winning strategy stF in Game(F, G′).
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We organize our description of a winning strategy for Gωω

G in sessions; each session is

played for ωm rounds. Each session “corresponds” to one round in Game(F, G′).

We show that this strategy wins G′ on every multiple of ωm.

Session 0: Play first ωm rounds according to a definable winning strategy for G0 := G′.

Set τ0 to be the k-type of the play during this session. Note that τ0 ∈ G0 and this session

corresponds to the play π0 := G0τ0 consistent with stF in the game Game(F, G′).

Session α (for α > 0): Let π := G0τ0, . . . , Gβτβ . . . (for β < α) be the play of Game(F, G′)
which corresponds to the previous sessions of the play.

Let Gα be defined as the response of stF after π. Play the next ωm rounds according to

the winning strategy stGα
in Gωm

Gα
.

Set τα to be the k-type of the play during this session. Note that τα ∈ Gα and the play

πGατα is a play according to stF.

It is clear that the above strategy is winning in Gωω

G′ and hence in Gωω

G .

It is easy to see that the above description of the strategy can be formalized in MLO.

5.2 Implication (1)⇒(2) of Lemma 5.1

DEFINITION 5.5 Let G ⊆ Chark
2. We say that a strategy realizes G on α if it wins Gα

G and there is

no G1 ( G such that it wins Gα
G1

.

Note that for each k and a strategy st, the set G ⊆ Chark
2 realized by st on α is unique. For

every ψ and G ⊆ Chark
2, there is a sentence Realize(ψ, G) such that for every α: ψ defines in

α a strategy which realizes G iff α |= Realize(ψ, G).

Assume that st defines a strategy and the quantifier depth of st is s. For τ ∈ Chars
2, let

stτ := {τ′ ∈ Chars
2 | τ + τ′ → st} be the residual of st wrt τ.

LEMMA 5.6 Assume that st defines in ωω a strategy, its quantifier depth is s, and τ ∈ Chars
2.

1. If st ∧ τ is satisfiable, then stτ defines in ωω a strategy.

2. If M0 + M1 |= st and types(M0) = τ then M1 |= stτ.

3. If M0 |= st and types(M0) = τ and M1 |= stτ, then M0 + M1 |= st.

4. If τβ = types(Mβ), and M0 |= st and Mβ |= stΣγ∈βτγ
for every β ∈ (0, α), then

Σβ∈[0,α)Mβ |= st.

For k ∈ N and a strategy st, we denote by R(k, st) the subset of Chark
2 realized by st on ωω.

Define Fk
st : R(k, st) → P(P(Chark

2)) \ {∅} as follows:

Fk
st(τ) := {R(k, stδ) | δ ∈ Chars

2 and δ ∧ st ∧ τ is satisfiable on ωω}

The implication (1) ⇒ (2) of Lemma 5.1 immediately follows from the next lemma and the

observation that stδ wins Gωω

R(k,stδ)
.

LEMMA 5.7 Assume that st defines in ωω a strategy for Player I, and the quantifier depth of st is s.

Then for every k ≤ s, Player I has a winning strategy in Game(Fk
st, R(k, st)).

PROOF. Let m be defined from n := s + 2 as in Lemma 2.3. In particular, st realizes R(k, st)
on every multiple of ωm. Note that for δ ∈ Chars

2, the quantifier depth of stδ is s. Therefore,

stδ realizes R(k, stδ) on every multiple of ωm.

We will describe a strategy for Player I and show that it is winning in Game(Fk
st, R(k, st)).

Each round in this game corresponds to ωm rounds in Gωω

R(k,st). A play according to this

strategy corresponds to a play according to the strategy st in Gωω

R(k,st).
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In addition to the description of the strategy we are going to define for each round α:

δα, υα ∈ Chars
2, and a play Mα of length ωm.

Round 0 Play G0 := R(k, st). Assume that Player II has replied by τ0 ∈ G0 in round

0. Choose υ1 = δ0 ∈ Chars
2 consistent with τ0 ∧ st on ωω. Choose 2-chain M0 :=

(ωm, X1, X2) such that M0 |= τ0 ∧ δ0. The structure M0 is a (partial) play, according

to the strategy st.

Round α (for α > 0) Assume that π<α = G0τ0 . . . Gβτβ . . . is the (partial) play up to round α

and we have chosen δβ ∈ Chars
2 at round β < α.

Set υα := ∑β∈α δβ.

Play Gα := R(k, stυα).

Assume that Player II replies by τα ∈ Gα at this round.

Choose δα ∈ Chars
2 to be consistent with τα ∧ stυα .

Choose 2-chain Mα := (ωm, X1, X2) such that Mα |= τα ∧ δα ∧ stυα .

By the induction on α, using Lemma 5.6 and our choice of m, one can show that for every

play G0τ0 . . . Gβτβ . . . which is consistent with the described strategy the following invari-

ants hold:

1. δα ∧ τα are satisfiable on ωω and therefore on ωm.

2. (∑β∈α δβ) ∧ (∑β∈α τβ) are satisfiable on ωω, and therefore on ωmα.

3. types(∑β∈α Mβ) = ∑β∈α δβ = υα

4. ∑β∈α Mβ |= st, i.e., the play ∑β∈α Mβ is consistent with st.

5. ∑β∈α τβ ∈ R(k, st).

6. Gα ∈ Fk
st(∑β∈α τβ).

¿From (5)-(6) it follows that the described strategy is a winning strategy in Game(Fk
st, R(k, st)).

6 Open Problems and Further Directions

The Büchi-Landweber theorem (Theorem 1.1) states that for the ω-games with MLO win-

ning conditions, the player who has a winning strategy also has an MLO-definable win-

ning strategy. In [RT07], we considered fragments of MLO logics. We proved that the

Büchi-Landweber theorem fully extends to the first-order fragment of MLO (FOMLO) for

ω-games; i.e., for every winning conditions ϕ(X1, X2) ∈ FOMLO, the player who has a win-

ning strategy in Gω
ϕ , also has a FOMLO-definable winning strategy. We also proved that the

theorem extends fully to the FOMLO extended by modular counting quantifiers.

In [RS08], we proved that for every ordinal α ≥ ωω there is a FOMLO formula ϕα(X1, X2)
such that Player I has a winning strategy in Gα

ϕα
; however, he has no MLO-definable winning

strategy.

We plan to consider several fragments of MLO including FOMLO, FOMLO extended

by the modular counting quantifiers and FOMLO extended by the quantifications over the

finite sets (WMLO). For each of the above fragments L we address the problem of deciding

for a formula ϕ ∈ L and an ordinal α, whether one of the player has L-definable winning

strategy in Gα
ϕ.

We reduced the synthesis problems to the satisfiability problem for MLO which has

non-elementary complexity. We plan to analyze the complexity of the synthesis problems
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when winning conditions are described by automata which have the same expressive power

as MLO or by temporal logic formulas which have the same expressive power as FOMLO.

For the winning conditions expressed in these formalisms we hope to prove that the syn-

thesis problems have a reasonable complexity.
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