242 research outputs found

    Advances in wind power generation, transmission, and simulation technology

    Get PDF
    Wind is an increasingly important piece of electricity generation portfolios worldwide. This dissertation describes advances related to the electromechanical energy conversion system of wind turbines, and the electric transmission system for offshore wind power plants. The contributions of this work are the following: (i) We propose that the power electronics topology commonly called the Vienna rectifier can be used for improved variable-speed wind energy conversion. Theoretical analysis is conducted to show how a Vienna rectifier could drive either a squirrel-cage induction generator or a permanent-magnet synchronous generator-based wind turbine. Computer simulations and experimental results demonstrate the feasibility of the proposed topology and potential improvements in energy conversion efficiency. (ii) We propose a novel low-frequency ac (LFAC) transmission system for offshore wind power plants. A system design and control method is set forth, and key system operational characteristics are illustrated via computer simulations. The LFAC system constitutes a promising option for medium- or long-distance transmission, and could be an alternative to high-voltage dc (HVDC) transmission. (iii) We develop a technique that utilizes a field programmable gate array (FPGA) as a dynamic simulation platform for wind turbines. A doubly fed induction generator-based wind turbine simulation is implemented on an FPGA board, in order to verify the effectiveness and performance advantage of this approach

    Stratégies de gestion d’énergie pour véhicules électriques et hybride avec systèmes hybride de stockage d’énergie

    Get PDF
    Les véhicules électriques et hybrides font partie des éléments clés pour résoudre les problèmes de réchauffement de la planète et d'épuisement des ressources en combustibles fossiles dans le domaine du transporte. En raison des limites des différents systèmes de stockage et de conversion d’énergie en termes de puissance et d'énergie, les hybridations sont intéressantes pour les véhicules électriques (VE). Dans cette thèse, deux hybridations typiques sont étudiées • un sous-système de stockage d'énergie hybride combinant des batteries et des supercondensateurs (SC) ; • et un sous-système de traction hybride parallèle combinant moteur à combustion interne et entraînement électrique. Ces sources d'énergie et ces conversions combinées doivent être gérées dans le cadre de stratégies de gestion de l'énergie (SGE). Parmi celles-ci, les méthodes basées sur l'optimisation présentent un intérêt en raison de leur approche systématique et de leurs performances élevées. Néanmoins, ces méthodes sont souvent compliquées et demandent beaucoup de temps de calcul, ce qui peut être difficile à réaliser dans des applications réelles. L'objectif de cette thèse est de développer des SGE simples mais efficaces basées sur l'optimisation en temps réel pour un VE et un camion à traction hybride parallèle alimentés par des batteries et des SC (système de stockage hybride). Les complexités du système étudié sont réduites en utilisant la représentation macroscopique énergétique (REM). La REM permet de réaliser des modèles réduits pour la gestion de l'énergie au niveau de la supervision. La théorie du contrôle optimal est ensuite appliquée à ces modèles réduits pour réaliser des SGE en temps réel. Ces stratégies sont basées sur des réductions de modèle appropriées, mais elles sont systématiques et performantes. Les performances des SGE proposées sont vérifiées en simulation par comparaison avec l’optimum théorique (programmation dynamique). De plus, les capacités en temps réel des SGE développées sont validées via des expériences en « hardware-in-the-loop » à puissances réduites. Les résultats confirment les avantages des stratégies proposées développées par l'approche unifiée de la thèse.Abstract: Electric and hybrid vehicles are among the keys to solve the problems of global warming and exhausted fossil fuel resources in transportation sector. Due to the limits of energy sources and energy converters in terms of power and energy, hybridizations are of interest for future electrified vehicles. Two typical hybridizations are studied in this thesis: • hybrid energy storage subsystem combining batteries and supercapacitors (SCs); and • hybrid traction subsystem combining internal combustion engine and electric drive. Such combined energy sources and converters must be handled by energy management strategies (EMSs). In which, optimization-based methods are of interest due to their high performance. Nonetheless, these methods are often complicated and computation consuming which can be difficult to be realized in real-world applications. The objective of this thesis is to develop simple but effective real-time optimization-based EMSs for an electric car and a parallel hybrid truck supplied by batteries and SCs. The complexities of the studied system are tackled by using Energetic Macroscopic Representation (EMR) which helps to conduct reduced models for energy management at the supervisory level. Optimal control theory is then applied to these reduced models to accomplish real-time EMSs. These strategies are simple due to the suitable model reductions but systematic and high-performance due to the optimization-based methods. The performances of the proposed strategies are verified via simulations by comparing with off-line optimal benchmark deduced by dynamic programming. Moreover, real-time capabilities of these novel EMSs are validated via experiments by using reduced-scale power hardware-in-the-loop simulation. The results confirm the advantages of the proposed strategies developed by the unified approach in the thesis

    Source Grid Interface of Wind Energy Systems

    Get PDF
    Wind power is one of the most developed and rapidly growing renewable energy sources. Through extensive literature review this thesis synthesizes the existing knowledge of wind energy systems to offer useful information to developers of such systems. Any prototyping should be preceded by theoretical analysis and computer simulations, foundations for which are provided here. The thesis is devoted to an in-depth analysis of wind energy generators, system configurations, power converters, control schemes and dynamic and steady state performance of practical wind energy conversion systems (WECS). Attention is mainly focused on interfacing squirrel cage Induction generators (SCIG) and doubly-fed induction generators (DFIG) with the power network to capture optimal power, provide controllable active and reactive power and minimize network harmonics using the two-level converter, as a power electronic converter. Control of active and reactive power, frequency and voltage are indispensable for stability of the grid. This thesis focuses on two main control techniques, field oriented control (FOC) and direct torque control (DTC) for the SCIG. The dynamic model of induction generator is non-linear and hence for all types of control, the flux and the torque have to be decoupled for maintaining linearity between input and output for achieving high dynamic performance. FOC is used for decoupled control for rotor flux and electromagnetic torque . The stator current is decomposed into flux and torque producing components and they both are controlled independently. FOC uses three feedback control loops generate gating signals for the converter. DTC also achieves high dynamic performance by decoupling of rotor flux and electromagnetic torque without the intermediate current loops. DTC asks for the estimation of stator flux and torque and like FOC has 2 branches which have flux and torque comparators. The errors between the set and the estimated value are used to drive the inverters. The two methods are valid for both steady and transient state. Their validity is confirmed by simulating the systems on MATLAB/Simulink platform and comparing them the results obtained by hand calculations. Further DFIG’s are introduced. The dynamic model is developed using the machines equivalent circuit and is expressed in the stationary, rotor and the synchronous reference frames for evaluating the performance of the machine. The stator of the DFIG is directly interfaced to the grid and by controlling the rotor voltage by a two level back-to-back converter the grid synchronization and power control is maintained. The DTC and the direct power control (DPC) methods are used to control the rotor side (RSC) and the grid side converter (GSC). The RSC generates the 3-ph voltages of variable frequency in order to control the generator torque and the reactive power exchanged between the stator and the grid. The GSC exchanges active power with the grid injected by the RSC with a constant frequency. The steady and transient behavior of the machine is investigated through simulations

    Renewable Energy

    Get PDF
    Renewable Energy is energy generated from natural resources - such as sunlight, wind, rain, tides and geothermal heat - which are naturally replenished. In 2008, about 18% of global final energy consumption came from renewables, with 13% coming from traditional biomass, such as wood burning. Hydroelectricity was the next largest renewable source, providing 3% (15% of global electricity generation), followed by solar hot water/heating, which contributed with 1.3%. Modern technologies, such as geothermal energy, wind power, solar power, and ocean energy together provided some 0.8% of final energy consumption. The book provides a forum for dissemination and exchange of up - to - date scientific information on theoretical, generic and applied areas of knowledge. The topics deal with new devices and circuits for energy systems, photovoltaic and solar thermal, wind energy systems, tidal and wave energy, fuel cell systems, bio energy and geo-energy, sustainable energy resources and systems, energy storage systems, energy market management and economics, off-grid isolated energy systems, energy in transportation systems, energy resources for portable electronics, intelligent energy power transmission, distribution and inter - connectors, energy efficient utilization, environmental issues, energy harvesting, nanotechnology in energy, policy issues on renewable energy, building design, power electronics in energy conversion, new materials for energy resources, and RF and magnetic field energy devices

    Power Converter of Electric Machines, Renewable Energy Systems, and Transportation

    Get PDF
    Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems

    Lithium-Ion Ultracapacitor Energy Storage Integrated with a Variable Speed Wind Turbine for Improved Power Conversion Control

    Get PDF
    The energy of wind has been increasingly used for electric power generation worldwide due to its availability and ecologically sustainability. Utilization of wind energy in modern power systems creates many technical and economical challenges that need to be addressed for successful large scale wind energy integration. Variations in wind velocity result in variations of output power produced by wind turbines. Variable power output becomes a challenge as the amount of output power of the wind turbines integrated into power systems increases. Large power variations cause voltage and frequency deviations from nominal values that may lead to activation of relay protective equipment, which may result in disconnection of the wind turbines from the grid. Particularly community wind power systems, where only one or a few wind turbines supply loads through a weak grid such as distribution network, are sensitive to supply disturbances. While a majority of power produced in modern power systems comes from synchronous generators that have large inertias and whose control systems can compensate for slow power variations in the system, faster power variations at the scale of fraction of a second to the tens of seconds can seriously reduce reliability of power system operation. Energy storage integrated with wind turbines can address this challenge. In this dissertation, lithium-ion ultracapacitors are investigated as a potential solution for filtering power variations at the scale of tens of seconds. Another class of issues related to utilization of wind energy is related to economical operation of wind energy conversion systems. Wind speed variations create large mechanical loads on wind turbine components, which lead to their early failures. One of the most critical components of a wind turbine is a gearbox that mechanically couples turbine rotor and generator. Gearboxes are exposed to large mechanical load variations which lead to their early failures and increased cost of wind turbine operation and maintenance. This dissertation proposes a new critical load reduction strategy that removes mechanical load components that are the most dangerous in terms of harmful effect they have on a gearbox, resulting in more reliable operation of a wind turbine

    Power conversion for a modular lightweight direct-drive wind turbine generator

    Get PDF
    A power conversion system for a modular lightweight direct-drive wind turbine generator has been proposed, based on a modular cascaded multilevel voltage-source inverter. Each module of the inverter is connected to two generator coils, which eliminates the problem of DC-link voltage balancing found in multilevel inverters with a large number of levels.The slotless design of the generator, and modular inverter, means that a high output voltage can be achieved from the inverter, while using standard components in the modules. Analysis of the high voltage issues shows that isolating the modules to a high voltage is easily possible, but insulating the generator coils could result in a signicant increase in the airgap size, reducing the generator effciency. A boost rectier input to the modules was calculated to have the highest electrical effciency of all the rectier systems tested, as well as the highest annual power extraction, while having a competitive cost. A rectier control system, based on estimating the generator EMF from the coil current and drawing a sinusoidal current in phase with the EMF, was developed. The control system can mitigate the problem of airgap eccentricity, likely to be present in a lightweight generator. A laboratory test rig was developed, based on two 2.5kW generators, with 12 coils each. A single phase of the inverter, with 12 power modules, was implemented, with each module featuring it's own microcontroller. The system is able to produce a good quality AC voltage waveform, and is able to tolerate the fault of a single module during operation. A decentralised inverter control system was developed, based on all modules estimating the grid voltage position and synchronising their estimates. Distributed output current limiting was also implemented, and the system is capable of riding through grid faults

    DC/DC converter for offshore DC collection network

    Get PDF
    Large wind farms, especially large offshore wind farms, present a challenge for the electrical networks that will provide interconnection of turbines and onward transmission to the onshore power network. High wind farm capacity combined with a move to larger wind turbines will result in a large geographical footprint requiring a substantial sub-sea power network to provide internal interconnection. While advanced HVDC transmission has addressed the issue of long-distance transmission, internal wind farm power networks have seen relatively little innovation. Recent studies have highlighted the potential benefits of DC collection networks. First with appropriate selection of DC voltage, reduced losses can be expected. In addition, the size and weight of the electrical plant may also be reduced through the use of medium- or high-frequency transformers to step up the generator output voltage for connection to a medium-voltage network suitable for wide-area interconnection. However, achieving DC/DC conversion at the required voltage and power levels presents a significant challenge for wind-turbine power electronics.This thesis first proposes a modular DC/DC converter with input-parallel output-series connection, consisting of full-bridge DC/DC modules. A new master-slave control scheme is developed to ensure power sharing under all operating conditions, including during failure of a master module by allowing the status of master module to be reallocated to another healthy module. Secondly, a novel modular DC/DC converter with input-series-input-parallel output-series connection is presented. In addition, a robust control scheme is developed to ensure power sharing between practical modules even where modules have mismatched parameters or when there is a faulted module. Further, the control strategy is able to isolate faulted modules to ensure fault ride-through during internal module faults, whilst maintaining good transient performance. The ISIPOS connection is then applied to a converter with bidirectional power flow capability, realised using dual-active bridge modules.The small- and large-signal analyses of the proposed converters are performed in order to deduce the control structure for the converter input and output stages. Simulation and experimental results demonstrate and validate the proposed converters and associated control schemes.Large wind farms, especially large offshore wind farms, present a challenge for the electrical networks that will provide interconnection of turbines and onward transmission to the onshore power network. High wind farm capacity combined with a move to larger wind turbines will result in a large geographical footprint requiring a substantial sub-sea power network to provide internal interconnection. While advanced HVDC transmission has addressed the issue of long-distance transmission, internal wind farm power networks have seen relatively little innovation. Recent studies have highlighted the potential benefits of DC collection networks. First with appropriate selection of DC voltage, reduced losses can be expected. In addition, the size and weight of the electrical plant may also be reduced through the use of medium- or high-frequency transformers to step up the generator output voltage for connection to a medium-voltage network suitable for wide-area interconnection. However, achieving DC/DC conversion at the required voltage and power levels presents a significant challenge for wind-turbine power electronics.This thesis first proposes a modular DC/DC converter with input-parallel output-series connection, consisting of full-bridge DC/DC modules. A new master-slave control scheme is developed to ensure power sharing under all operating conditions, including during failure of a master module by allowing the status of master module to be reallocated to another healthy module. Secondly, a novel modular DC/DC converter with input-series-input-parallel output-series connection is presented. In addition, a robust control scheme is developed to ensure power sharing between practical modules even where modules have mismatched parameters or when there is a faulted module. Further, the control strategy is able to isolate faulted modules to ensure fault ride-through during internal module faults, whilst maintaining good transient performance. The ISIPOS connection is then applied to a converter with bidirectional power flow capability, realised using dual-active bridge modules.The small- and large-signal analyses of the proposed converters are performed in order to deduce the control structure for the converter input and output stages. Simulation and experimental results demonstrate and validate the proposed converters and associated control schemes
    corecore