2,773 research outputs found

    A framework for the synergistic integration of fully autonomous ground vehicles with smart city

    Get PDF
    Most of the vehicle manufacturers aim to deploy level-5 fully autonomous ground vehicles (FAGVs) on city roads in 2021 by leveraging extensive existing knowledge about sensors, actuators, telematics and Artificial Intelligence (AI) gained from the level-3 and level-4 autonomy. FAGVs by executing non-trivial sequences of events with decimetre-level accuracy live in Smart City (SC) and their integration with all the SC components and domains using real-time data analytics is urgent to establish better swarm intelligent systems and a safer and optimised harmonious smart environment enabling cooperative FAGVs-SC automation systems. The challenges of urbanisation, if unmet urgently, would entail severe economic and environmental impacts. The integration of FAGVs with SC helps improve the sustainability of a city and the functional and efficient deployment of hand over wheels on robotized city roads with behaviour coordination. SC can enable the exploitation of the full potential of FAGVs with embedded centralised systems within SC with highly distributed systems in a concept of Automation of Everything (AoE). This paper proposes a synergistic integrated FAGV-SC holistic framework - FAGVinSCF in which all the components of SC and FAGVs involving recent and impending technological advancements are moulded to make the transformation from today's driving society to future's next-generation driverless society smoother and truly make self-driving technology a harmonious part of our cities with sustainable urban development. Based on FAGVinSCF, a simulation platform is built both to model the varying penetration levels of FAGV into mixed traffic and to perform the optimal self-driving behaviours of FAGV swarms. The results show that FAGVinSCF improves the urban traffic flow significantly without huge changes to the traffic infrastructure. With this framework, the concept of Cooperative Intelligent Transportation Systems (C-ITS) is transformed into the concept of Automated ITS (A-ITS). Cities currently designed for cars can turn into cities developed for citizens using FAGVinSCF enabling more sustainable cities

    A Framework for the Synergistic Integration of Fully Autonomous Ground Vehicles With Smart City

    Get PDF
    Most of the vehicle manufacturers aim to deploy level-5 fully autonomous ground vehicles (FAGVs) on city roads in 2021 by leveraging extensive existing knowledge about sensors, actuators, telematics and Artificial Intelligence (AI) gained from the level-3 and level-4 autonomy. FAGVs by executing non-trivial sequences of events with decimetre-level accuracy live in Smart City (SC) and their integration with all the SC components and domains using real-time data analytics is urgent to establish better swarm intelligent systems and a safer and optimised harmonious smart environment enabling cooperative FAGVs-SC automation systems. The challenges of urbanisation, if unmet urgently, would entail severe economic and environmental impacts. The integration of FAGVs with SC helps improve the sustainability of a city and the functional and efficient deployment of hand over wheels on robotized city roads with behaviour coordination. SC can enable the exploitation of the full potential of FAGVs with embedded centralised systems within SC with highly distributed systems in a concept of Automation of Everything (AoE). This article proposes a synergistic integrated FAGV-SC holistic framework - FAGVinSCF in which all the components of SC and FAGVs involving recent and impending technological advancements are moulded to make the transformation from today's driving society to future's next-generation driverless society smoother and truly make self-driving technology a harmonious part of our cities with sustainable urban development. Based on FAGVinSCF, a simulation platform is built both to model the varying penetration levels of FAGV into mixed traffic and to perform the optimal self-driving behaviours of FAGV swarms. The results show that FAGVinSCF improves the urban traffic flow significantly without huge changes to the traffic infrastructure. With this framework, the concept of Cooperative Intelligent Transportation Systems (C-ITS) is transformed into the concept of Automated ITS (A-ITS). Cities currently designed for cars can turn into cities developed for citizens using FAGVinSCF enabling more sustainable cities

    Eco-Driving Optimization Based on Variable Grid Dynamic Programming and Vehicle Connectivity in a Real-World Scenario

    Get PDF
    In a context in which the connectivity level of last-generation vehicles is constantly onthe rise, the combined use of Vehicle-To-Everything (V2X) connectivity and autonomous drivingcan provide remarkable benefits through the synergistic optimization of the route and the speedtrajectory. In this framework, this paper focuses on vehicle ecodriving optimization in a connectedenvironment: the virtual test rig of a premium segment passenger car was used for generatingthe simulation scenarios and to assess the benefits, in terms of energy and time savings, that theintroduction of V2X communication, integrated with cloud computing, can have in a real-worldscenario. The Reference Scenario is a predefined Real Driving Emissions (RDE) compliant route,while the simulation scenarios were generated by assuming two different penetration levels of V2Xtechnologies. The associated energy minimization problem was formulated and solved by means of aVariable Grid Dynamic Programming (VGDP), that modifying the variable state search grid on thebasis of the V2X information allows to drastically reduce the DP computation burden by more than95%. The simulations show that introducing a smart infrastructure along with optimizing the vehiclespeed in a real-world urban route can potentially reduce the required energy by 54% while shorteningthe travel time by 38%. Finally, a sensitivity analysis was performed on the biobjective optimizationcost function to find a set of Pareto optimal solutions, between energy and travel time minimization

    The synergistic effect of operational research and big data analytics in greening container terminal operations: a review and future directions

    Get PDF
    Container Terminals (CTs) are continuously presented with highly interrelated, complex, and uncertain planning tasks. The ever-increasing intensity of operations at CTs in recent years has also resulted in increasing environmental concerns, and they are experiencing an unprecedented pressure to lower their emissions. Operational Research (OR), as a key player in the optimisation of the complex decision problems that arise from the quay and land side operations at CTs, has been therefore presented with new challenges and opportunities to incorporate environmental considerations into decision making and better utilise the ‘big data’ that is continuously generated from the never-stopping operations at CTs. The state-of-the-art literature on OR's incorporation of environmental considerations and its interplay with Big Data Analytics (BDA) is, however, still very much underdeveloped, fragmented, and divergent, and a guiding framework is completely missing. This paper presents a review of the most relevant developments in the field and sheds light on promising research opportunities for the better exploitation of the synergistic effect of the two disciplines in addressing CT operational problems, while incorporating uncertainty and environmental concerns efficiently. The paper finds that while OR has thus far contributed to improving the environmental performance of CTs (rather implicitly), this can be much further stepped up with more explicit incorporation of environmental considerations and better exploitation of BDA predictive modelling capabilities. New interdisciplinary research at the intersection of conventional CT optimisation problems, energy management and sizing, and net-zero technology and energy vectors adoption is also presented as a prominent line of future research

    Conceptualisation of human-on-the-loop haptic teleoperation with fully autonomous self-driving vehicles in the urban environment

    Get PDF
    The automotive industry aims to deploy commercial level-5 fully autonomous self-driving vehicles (FA-SDVs) in a diverse range of benefit-driven concepts on city roads in the years to come. In all future visions of operating networks of FA-SDVs, humans are expected to intervene with some kind of remote supervisory role. Recent advances in cyber-physical systems (CPS) within the concept of Internet of Everything (IoE) using tactile internet (TI) teleport us to teleoperate remote objects within the cyber-world. Human-on-the-loop (HOTL) haptic teleoperation with an extension of human control and sensing capability by coupling with artificial sensors and actuators with an increased sense of real-time driving in the remote vehicle can help overcome the challenging tasks when the new driver - artificial intelligence (AI) agent - encounters an unorthodox situation that can't be addressed by the autonomous capabilities. This paper analyses HOTL real-time haptic delay-sensitive teleoperation with FA-SDVs, in the aspects of human-vehicle teamwork by establishing two similar remote parallel worlds --- real-world vehicle time-varying environment and cyber-world emulation of this environment, i.e., digital twins (DTs) --- in which a human telesupervisor (HTS), as a biological agent, can be immersed within a reasonable timescale with no cybersickness enabling omnipresence and a bidirectional flow of energy and information. The experiments conducted as a proof of concept of HOTL haptic teleoperation shows promising results and the potential of benefiting from the proposed framework
    • …
    corecore