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Abstract

Technological advances are enabling decentralized energy systems to be more economically
competitive on larger scales with their centralized counterparts. Suitable information exchange,
data analysis, and communication solutions are needed to operate and manage these physically
decentralized systems. The transition thereto is accelerated by increased unsustainability of
traditional models to cope with emerging technical, socio-economic, and environmental problems.

In the electrical energy sector, rapid Internet-of-Things (IoT)-enabling of smart grids (SGs),
the proliferation of distributed generation (DG), and the emergence of peer-to-peer (P2P)
trading and decentralized economies are collectively paving the way for the emergence of
the Internet-of-Energy (IoE). In this IoE paradigm being a fully decentralized network of
energy prosumers, traditional top-down centralized models are being rendered obsolete, with
the “demand” side participation in the operation and control of the IoE being centerpiece.
Active participation by energy end-users began decades ago with the first waves of electricity
market liberalization that incentivized the participation of consumers as active players in the
market through the introduction of Demand Response (DR) belonging to the wider category of
Demand-Side Management (DSM) programs. SGs have been a key enabler to modern data-driven
DR and DSM schemes, with smart metering data providing input to underlying optimization
and forecasting tools. Between P2P energy trading and the development of the IoE (seen as an
evolution of SGs), there is a clear emergence of what is referred to as democratic energy systems
in which fundamental aspects are (1) significant citizen participation, (2) decentralized decision
making in operation, management, planning, and trading, and (3) renewable energy source (RES)
dominated generation. Concurrently, the fourth industrial revolution (I4.0) currently underway
is resulting in increased intertwining between sectors that are the major consumers of energy
(residential, transport, and industry). In addition, with the electrification of transport being a
top priority and smart industries emerging as vital pillars of modern economies, the adaptation
of DSM and DR schemes for cross-sector applications becomes of paramount importance.
More physically decentralized and interconnected energy systems motivate the investigation of
decentralized data models to manage them as opposed to centralized operators.

In this context, the work in this thesis builds on architectures, approaches, and emerging
technologies in the IoE paradigm to develop disruptive energy management tools that cover the
full spectrum and dimensions of this transition: 1) grid operation (cloud-based coordination,
forecasting, and power flow management tools), and 2) cross-sector end-user energy management
adaptation to future scenarios (namely: the residential, transport, and industry sectors).

Keywords: Energy Management, Smart Grids, Demand Response, Decentralized Systems,
Machine Learning, Optimal Scheduling.

v





Resumo

Graças ao avanços tecnológicos dos últimos anos, os sistemas de energia descentralizados têm-se
tornados mais competitivos economicamente, e em maior escala, do que seus equivalentes
centralizados. A troca de informação adequada, a análise de dados, e as tecnologias de
comunicação, são domínios necessários para a operação e adequada gestão dos sistemas
fisicamente descentralizados, os quais têm tido um crescimento acelerado, por causa do aumento
de insustentabilidade dos modelos tradicionais em tratar os problemas técnicos, socioeconómicos
e ambientais da atualidade.

No setor de energia elétrica, devido à rápida adaptação do conceito "Internet-of-Things"
(IoT) nas redes inteligentes (SGs), a proliferação da geração distribuída (GD), o surgimento do
conceito de comércio "peer-to-peer", e as economias descentralizadas, coletivamente pavimentam
o caminho para o surgimento do novo paradigma denominado por "Internet-of-Energy" (IoE). o
IoE é uma rede totalmente descentralizada de prosumers energéticos, onde os modelos tradicionais
de produção de eletricidade se tornam obsoletos. Na operação e controlo da IoE, a participação do
lado da “procura” fica no centro da ação.

A participação ativa dos utilizadores finais de eletricidade começou há décadas atrás com a
liberalização do mercado de eletricidade, os quais incentivaram a participação dos consumidores
como agentes ativos no mercado, através da introdução do conceito de "Demand Response" (DR),
e da categoria mais generalizada de programas de "Demand-Side Management" (DSM). Nesta
senda, as definições sobre as SGs foram as principais facilitadoras dos esquemas modernos de
DR e DSM baseados em dados, com dados monitorizados por medidores inteligentes, os quais
fornecem os dados para as ferramentas de otimização e previsão.

Na atualidade, entre a negociação P2P e o desenvolvimento da IoE, existe uma evidente
manifestação de que é identificado como "sistemas democráticos de energia", cujos aspetos
fundamentais se resumem: (1) a significativa participação dos cidadãos, (2) tomada de decisão
descentralizada para operação, gestão, planeamento e negociação, e, (3) geração dominada pelas
fontes renováveis. Ao mesmo tempo, com a quarta revolução industrial (I4.0) a decorrer,
permite também o aumento da interligação entre os setores que são os grandes consumidores
de eletricidade, (residencial, transportes e indústria). Também, com a prioridade global na
eletrificação dos transportes, as indústrias inteligentes são vistas como pilares vitais das economias
modernas, onde a adaptação dos esquemas DSM e DR para aplicações intersectoriais se mostram
de grande importância.

O trabalho desta tese baseia-se nas arquiteturas, métodos e tecnologias emergentes no
paradigma IoE, para desenvolver ferramentas de gestão de energia disruptivas que cobrem todo
o espectro e as dimensões da transição energética: 1) o funcionamento da rede (coordenação
baseada em nuvem, com ferramentas de previsão e gestão de fluxo de potência), e 2) adaptação
da gestão da energia dos utilizadores finais, dos vários setores, e dos cenários futuros (nos setores
residencial, transporte, e a indústria).
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Prologue and Thesis Synopsis

1 Research Questions

Primary Research Question:

Can fully decentralized distributed data models (based on IoT1 and P2P2 networks) ensure
techno-economic sustainability for electric power systems and cross-sector end-users?

Secondary Research Questions:

Can individual and proprietary data models from the IoE3 paradigm be used to leverage DSM4

and DR5 services from individual prosumers and microgrids (cluster of prosumers) thereby
improving global operation of dispersed energy systems?

Can local (fully decentralized) optimization and data analytics functions enable global integration
of demand-side flexibility in the energy market, system operation, and planning?

Can optimal prosumption scheduling of individual agents in a decentralized energy system (using
information signals from other individual agents contrary to top-down centralized control) result
in global optimal operation?

Do decentralized data models provide an effective and sustainable solution for the operation of
physically decentralized energy systems?

Could new models be created and developed to enable a fully decentralized P2P energy and
information trading platform?

In the future cloud-based IoE paradigm, how can energy management models be adapted for
end-users in different sectors (namely: residential, transport, and industry).

1Internet-of-Things (IoT)
2Peer-to-Peer (P2P)
3Internet-of-Energy (IoE)
4Demand Side Management (DSM)
5Demand Response (DR)
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2 Novel Contributions and Thesis Structure

This work builds on architectures, approaches, and emerging technologies in the IoE paradigm
to develop disruptive energy management tools that cover the full spectrum and dimensions
of this transition: 1) grid operation (cloud-based coordination, forecasting, and power flow
management tools), and 2) cross-sector end-user energy management adaptation to future
scenarios (namely: the residential, transport, and industry sectors).

Embracing the adopted scientific hypothesis pertaining to the IoE paradigm, this thesis is also
structured in a "decentralized" manner. While the order of the chapters provides the ideal flow of
information to describe the work performed in this thesis; an effort was made to ensure that each
chapter can also be read separately with minimal need to refer to other chapters.

Each chapter has its separate nomenclature, which is especially important due to the fact that
research was conducted on different sectors, with different variable and mathematical notation
conventions used in their corresponding fields of research. A unified list of references is used to
duly link the bibliography across the entire document.

This thesis is structured into four parts and ten chapters:

PART I (Chapters 1 and 2) serves to introduce the setting within which this work is conducted
(the emergence of the IoE paradigm and energy prosumers) by conducting a thorough analysis of
scientific literature, legislations, and expert reviews. The necessary criteria for tools developed
to be compatible with the IoE paradigm are defined. Then, PART II (Chapters 3, 4, and 5) and
PART III (Chapters 6, 7, and 8) form the core of the thesis, presenting the developed methods and
analyses performed.

PART II (Chapters 3, 4, and 5) focuses on the work done with regards to grid operation. Chapter
3 demonstrates how modern-day energy management systems can be coordinated through a cloud
based approach to achieve synergistic benefits both for the global system and the end-users
(local prosumers). Chapters 4 and 5 proceed to develop new algorithms for fully decentralized
forecasting and power flow management of next-generation power systems. In Chapter 4, a novel
KDE method is developed and enables fully decentralized local forecasting for prosumers without
depending on private/proprietary data or divulging their own, being compatible with the cloud
based IoE paradigm. In Chapter 5, a novel machine learning algorithm is proposed and formulated
to enable the transition into a cloud-based fully decentralized power system operation.

PART III (Chapters 6, 7, and 8) focuses on the work done with regards to adapting energy
management models of end-users from different sectors to future scenarios. In Chapter 6, a
combined prosumption scheduling and trading tool based on energy value is presented. In Chapter
7, a comprehensive optimization model for charging infrastructure deployment, charge scheduling,
battery sizing, and route design for fully electric public transport networks is developed and used
to analyze future scenarios. In Chapter 8, a novel graph-based model for fully autonomous task
scheduling in smart industries is presented to minimize energy consumption.

PART IV (Chapters 9 and 10) is the final part of this thesis. In Chapter 9 the research questions
of the this thesis are revisited and answered in detail based on, and referencing, the research work
presented in all previous chapters. Chapter 10 summarizes the final conclusions and discusses
future prospects building on the work developed in this thesis.
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Part I

The Rise of the "Demand" Side:
History, Present, and Future
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Chapter 1

Evolution of Demand Side Management
and Demand Response

In the past two decades, interest in Demand Response (DR) schemes has grown exponentially.

The need for DR has been driven both by sustainability (environmental and socioeconomic)

and cost efficiency. The main premise of DR is to influence the timing and magnitude of

consumption to match energy supply by sharing the benefits with consumers, ultimately aiming

to optimize generation cost. As such, the first and primary enabler to DR was the establishment of

contemporary electricity markets. Increased proliferation of Distributed Energy Resources (DER)

and micro generation further motivated the participation of consumers as active players in the

market. This immensely popularized DR and the wider category of Demand-Side Management

(DSM) programs. Smart Grids (SG) have been an enabler to modern DR schemes, with smart

metering data providing input to the underlying optimization and forecasting tools. The more

recent emergence of the Internet of Energy (IoE), seen as the evolution of SG, is driven by

increased Internet of Things (IoT)-enabling and high penetration of scalable and distributed

energy resources. In this IoE paradigm being a fully decentralized network of energy prosumers,

DR will continue to be a vital aspect of the grid in future Transactive Energy (TE) schemes,

aiming for a more user-centered, energy-efficient, cost-saving, energy management approach.

This chapter investigates original motives and identifies the first mentions of DR in the legislative

and scientific literature. Afterwards, the evolution of DR is tracked over the past four decades,

attempting to study the co-influence of legislation and research by performing a thorough

statistical analysis of research trends on the IEEE Xplore digital library. Finally, the current state

of DR programs is presented and future prospects are discussed.
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Chapter Highlights and Novel Contributions:

• Origins of DR and DSM and initial motives for their inception are identified and regional

differences investigated (namely: USA, UK, and EU, as pioneers of DR and DSM development).

• The historical evolution of DR and DSM is analyzed using a novel scientometric approach of

both legislative and scientific research literature from the past four decades.

• A co-influence between legislation and academic research trends on DR is identified and a

timeline of its evolution identifying important milestones is presented.

• With the history and status-quo of DR investigated, the emergence of the IoE as a future

paradigm is identified, being a fully decentralized network of energy prosumers.

Relevant Publication(s):

M. Lotfi, C. Monteiro, M. Shafie-khah, J.P.S. Catalão, "Evolution of Demand Response: A

Historical Analysis of Legislation and Research Trends," 2018 Twentieth International Middle

East Power Systems Conference (MEPCON), 2018, pp. 968-973.

Published: https://doi.org/10.1109/MEPCON.2018.8635264

M. Lotfi, J.P.S. Catalão, M.S. Javadi, A.E. Nezhad and M. Shafie-khah, "Demand Response

Program Implementation for Day-Ahead Power System Operation," 2019 IEEE Milan PowerTech,

2019, pp. 1-6.

Published: https://doi.org/10.1109/PTC.2019.8810850

https://doi.org/10.1109/MEPCON.2018.8635264
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1.1 Introduction

1.1.1 The Problem with Conventional Power Systems

Conventional electric power systems were designed with over-dimensioned generation capacity

to provide for peak load. Presently, around 20% of generation capacity is used exclusively for

peak demand periods, accounting for 5% of the year [5]. By analyzing wholesale price duration

curves such as in [6], one can calculate that those 5% of annual demand (18 days) exhibit hourly

electricity prices reaching more than six times the average price. Another calculation indicates that

one in every ten Euros of the average annual electricity wholesale price is due to costs associated

with peak demand periods.

Peak demand price spikes are due to the economics of energy generation and supply. Baseload

power plants are generally ones with high capital investment and low running costs (e.g. steam,

nuclear, and hydroelectric). Peaking power plants generally have lower capital investment and

high running costs, with fast start-up being a necessity to respond to sudden demand peaks (e.g.

gas and diesel generators) [7]. On a year-average, baseload power plants operate at an 85% load

factor (LF), with the overall LF of generation capacity being 55% [8]. Power plants at lower LF

operate less efficiently which results in higher cost per unit of generated electricity. Consequently,

in peak demand periods caused by sudden imbalance of supply and demand (e.g. unforeseen rise in

demand, unforeseen fall in supply, or transmission failure), price spikes in a spot market occur as

generators have an opportunity to compensate losses in off-peak periods [9, 10]. Furthermore,

thermal peaking plants operating at low annual LFs increases their CO2 and greenhouse gas

emissions [11, 12] and thus current power systems also have an environmental problem aside

from being economically inefficient with most generation capacity being redundant.

While large-scale renewable energy sources (RES) are increasingly used as an economic

low-emission alternative for both baseload and peak generation (mainly solar and wind) [7], their

intermittent, non-dispatchable, stochastic, and geographically-constrained nature does not make

them a reliable solution [13]. Meanwhile, although they result in a direct reduction of emissions,

RES do not contribute to power system inertia (although synthetic inertia may be used with wind

farms, it does not equal that of traditional generation [14, 15]), and thus create a need to maintain

spinning and non-spinning reserves which indirectly, once again, increase the cost and emissions

of the power system [16]. Therefore, the problem can be summarized in the following points:

• Generation capacity is planned according to peak demand which constitutes only 5% of the year.

• 20% of total installed generation capacity is only used during peak demand periods.

• The average annual LF of total installed generation capacity is 55%.

• A lower LF results in lower efficiency, which results in higher cost and emissions per unit of

generated electricity.

• RESs decrease emissions but are volatile, geographically constrained, and unreliable.

• RESs decrease inertia, and it is necessary to still maintain reserves.
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1.1.2 Demand Response as a Solution

During the 1990s, proliferation of distributed energy resources (DER) and distributed generation

(DG) has made electricity consumers increasingly active participants in power generation. This,

occurring simultaneously with the electricity market liberalization movement globally, has ignited

a shift from the supply to the demand side, viewing electricity consumers as active participants

in the industry. As such, interest in demand-side management (DSM) has grown exponentially.

With the subsequent rise of Smart Grids (SG) and advanced communication infrastructures, DSM

approaches have become more sophisticated and capable of dramatically enhancing power system

efficiency. There are three main categories of DSM: 1) On-Site Backup and Storage, 2) Energy

Efficiency and Conservation, and 3) Demand Response (DR) as can be seen in Fig. 1.1 and Fig.

1.2. Some studies seem to use both terms interchangeably and the source of this confusion is

caused by the early development stages of DSM and DR. This historical confusion leads to some

authors interchangeably using DSM and DR and is elaborated further in Section 1.3. However,

the current official definitions both in academic literature and in legislation are that DR is a subset

of DSM [17, 18, 19].

DSM approaches deal with the broader perspective of managing and decreasing energy

consumption from the consumer-side. On-site backup provides capacity for demand-side

generation and storage to participate in load-balancing or ancillary services. When DSM and

DR are confused as previously highlighted, it is rather energy efficiency and conservation that is

confused with DR. Fig. 1.1 highlights the difference between both approaches. While efficiency

and conservation measures aim at reduction of overall electricity demand (baseline and peak

alike), DR is concerned with specifically reducing peak demand, shifting load to off-peak periods

and smoothing out the demand curve. This, as explained earlier, contributes to economic and

environmental benefits and more reliable grid operation.

Figure 1.1: Comparing two of the DSM Approaches: Energy Efficiency and Conservation (left)
vs. Demand Response (right).
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Figure 1.2: Relationship between DSM and its subsets: On-Site Backup (and Storage), Energy
Efficiency and Conservation, and DR.

1.2 Origins of Demand Response

For most of its history, the electric power industry was a monopoly, with electricity companies

being largely state owned and vertically integrated (performing generation, transmission, and

distribution). This is because economies of scale have historically been the main driver of the

industry, and it was widely perceived that one large utility would be more efficient in delivering

electricity demands rather than several competing smaller ones [20, 21].

During the 1970’s technological advance caused generation economies of scale at the unit

level to be exhausted at 500 MW [22], thereby dismantling the long-held natural monopolistic

perception of energy generation [23]. Moreover, the 1960’s and 1970’s witnessed the beginning

of global environmental awareness.

This subsequently manifested in enaction of government environmental policies, best

characterized by the US Clean Air Act of 1970 [24] and the first European Action Program in

1973 [25], which both sought to restrict pollutants and greenhouse gas emissions. Meanwhile, the

1973 oil crisis raised concerns on security of electricity supply and the need to diversify the power

generation mix, which was largely dependent on fossil fuels, to incorporate renewable and clean

energy sources [26, 27].

This triad of events in the 1970’s (economic viability of small generation units, environmental

awareness of greenhouse gas emissions, and concerns on security of supply largely dependent

on fossil fuels) sparked a global wave of electricity market reform bent on socio-economic and

environmental sustainability of electrical power systems through two simultaneous motions: 1)

deregulation, unbundling, and liberalization of the electricity industry, and 2) incorporation of

clean and renewable energy sources into the energy mix. The atmosphere created by the combined

effect of competing electric utilities and proliferation of small renewable generation made it

necessary to start considering the demand side as active participants in the electricity industry

rather than passive users. It was during this period that the evolution of DSM (and subsequently

DR) as an effective policy began.

Two main historic drivers of DSM and DR were identified: 1) Markets and Legislation and 2)

Scientific Research; and the progress of DR was tracked in both through the past four decades to

highlight its evolution from its origins to the current state.
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1.3 Historical Evolution of Demand Response

1.3.1 Markets and Legislation

After the investigation of DR origins in the previous Section, it was possible to name three major

players: USA, UK, and the EU to focus on; as they were the first to incentivize and implement

DSM programs in general and DR programs in particular; and continue to be top influencers

of global energy markets and policies. By surveying the full body of legislative and statutory

publications of the USA, UK, and EU pertaining to energy and electricity, it was possible to

propose a general classification of five stages in the development of DR programs in legislation:

– Step 1: Market deregulation/liberalization;

– Step 2: Incentivization of RES and DG/DER (While not yet fully established at this stage, fully

developed DER services incorporate DG, Distributed Storage (DS), and DR services.);

– Step 3: Implementation of DSM programs for energy efficiency and decreased emissions;

– Step 4: Use of Smart Meters (SM) and emergence of DR capability as an additional DSM tool;

– Step 5: DR programs in Smart Grids (SG).

The following Sections present all energy and electricity-related legislation for the USA, UK,

and EU, identifying the legislations corresponding to the above five stages.

United States of America (USA)

The USA has been the pioneer in electricity market deregulation and liberalization. It is often

mentioned in literature that the first case of market liberalization happened in Chile by the Chile

Electricity Act of 1982 [6, 28]. However, that was found to be preceded by the Public Utility

Regulatory Policies Act [29] in the USA in 1978; which is the first case of legislation found

allowing non-utility generators to participate in an electric power market. While this opened the

door to a quasi-deregulated/liberalized US electricity market, it wasn’t until 1992 [30] that it was

fully so on the federal level.

It is important to mention that in the USA there is a distinction between federal law and state

law, so while this directs federal activities and strategies individual states have a good degree

of independence as to the degree of regulation they have on local electricity markets. This was

particularly evident after the California crisis in 2001, when many states chose to reverse or slow

down their motion towards deregulation at the time [21].

The first mention of DR in legislation was also found in USA Energy Policy Act of 2005 [31]:

“install time-based meters and communications devices for each of their customers which

enable such customers to participate in time-based pricing rate schedules and other demand

response programs.”,
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which coincides with the first mention of DSM (i.e., DR was the first DSM measure mentioned

by USA legislation). All legislations including subsequent ones which direct the development

of USA’s DR national action plan, in addition to rollout of SM and SG are detailed in Table 1.1

[24, 29, 30, 31, 32, 33].

Table 1.1: List of USA legislations pertaining to development of DSM and DR.

Year Legislation Title Description

1978
Public Utility Regulatory
Policies Act [29]

- Allowed “non-utility generators” to participate

in energy supply

- Created an electric power market with

“non-utility generators”

1992 Energy Policy Act of 1992 [30]
- Energy deregulation / allowing private

competition in the wholesale market

- Incentivize renewable energy production

2005 Energy Policy Act of 2005 [31]

- Incentivize installation of Smart Meters

(first mention of SM)

- Incentivize participation in demand response

programs, and request a study of the potential

benefits of DR (first mention of DR)

- Incentivize renewable energy production via

tax incentives

2007
Energy Independence and
Security Act of 2007 [32]

- Directs developing DR programs to reduce

peak loads and increase energy efficiency;

requests a study on the use of DR to provide

ancillary services

- Directs the establishment of a SG infrastructure

(first mention of SG), and provide funding for

Smart Grid applications

- Increase taxes on oil industries and promote

renewable energy sources.

2009
American Recovery and
Reinvestment Act of 2009 [33]

- Significantly increase funding and incentives

for Smart Grid applications.
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United Kingdom (UK)

The UK swiftly followed the US in implementing market liberalization policies in 1989 [34]. In

2006, “dynamic demand technologies” were first mentioned [35]:

“contribution . . . being made by dynamic demand technologies to reducing emissions of

greenhouse gases in Great Britain.”

While this corresponds to DR by current definitions, the objective was in fact to implement

DSM with an environmental focus rather than an economic one (as was the case with USA). All

relevant legislation for the UK was listed and cited in detail in Table 1.2 [34, 35, 36, 37]. The first

literal mention of DR only came much later, in 2011 [37].

Table 1.2: List of UK legislations pertaining to development of DSM and DR.

Year Legislation Title Description

1989 Electricity Act 1989 [34]
- Liberalization of electric power generation

in the UK

2006
Climate Change and Sustainable
Energy Act 2006 [35]

- Promotion of microgeneration / renewable sources

- The capacity of “dynamic demand technologies” to

reduce greenhouse gas emissions is requested to be

reported, and is defined (first mention of DR)

2008 Energy Act 2008 [36]
- Licensing Smart Meters (first mention of SM)

- Licensing Feed-in-Tariffs (FiT) for small-scale

generation

2011 Energy Act 2011 [37]
- Requested an assessment of, and defining,

“demand side response” (first literal mention of DR)

European Union (EU)

The EU was the last of the three to liberalize electricity markets, doing so in 1996 [38]. At the

same time, it was the first to mention DSM programs in 2003 [39]:

“‘energy efficiency/demand-side management’ means a global or integrated approach aimed

at influencing the amount and timing of electricity consumption in order to reduce primary energy

consumption and peak loads by giving precedence to investments in energy efficiency measures,

or other measures”
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When first introduced by legislation, DSM in the EU was confined to (the term even used

interchangeably with) energy efficiency and conservation (Fig. 1.2). Same as the UK (part of

EU at the time despite not being in Eurozone or EEA), the focus of EU was directed towards

environmental sustainability and security of supply, opposed to more economic and profit-driven

motives of the USA. An important observation to note is that all three (USA, UK, and the

EU) shared security of supply as a common motive when first enacting DSM / DR measures

in legislation.

This is more evident by realizing that despite being the first to mention DSM in legislation,

EU was the last to mention DR in 2012, as shown in Table 1.3 [38, 40, 39, 41, 42] and visualized

later in Fig. 1.5.

Table 1.3: List of EU legislations pertaining to development of DSM and DR.

Year Legislation Title Description

1996 Directive 96/92/EC [38]
- Liberalization and unbundling of electric utilities

- Establishing the European internal electricity market

2001 Directive 2001/77/EC [40] - Targets for renewable energy generation

2003 Directive 2003/54/EC [39]

- Expanded liberalization and unbundling of

the electricity market

- Directs the use of Demand-Side Management

(first mention of DSM)

2009 Directive 2009/28/EC [41]

- Set EU 2020 strategy with 20% target for renewable

energy generation, emissions reduction,

and consumption reduction

- Set 80% target for consumers with SM by 2020

(first mention of SM)

- Suggests the use of FiT to promote small-scale

renewable generation

2012 Directive 2012/27/EU [42]
- Directs use of DR (first mention of DR)

- Deployment of SG (first mention of SG)
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1.3.2 Scientific Research

To study the scientific research trends during the same time period, a Python web-crawler was

developed and was used to track the exact volume of literature pertaining to keywords/technologies

identified as directly influential to development of DR on the IEEE Xplore digital library.

Fig. 1.3 shows that scientific research on DG was first published in 1990, during the wave of

electricity market liberalization and after DSM has been studied in literature since 1985. DER first

appeared in literature in 2000, after market liberalization. This is probably due to motivations to

micro-generate and store energy amidst liberal markets.

Sparked first by the EU Directive 2001/77/EC [40] and then by the UK Climate Change &

Sustainability Act [35], research on MG began in 2001 and started increasing in 2005, respectively.

The enactment of EU Directive 2009/28/EU [41] (promoting small-scale generation), as expected,

tended to mark an exponential growth in research on both MG and DER.

Fig. 1.4 shows that although DR scientific research began in 1989, while that on SG was first

published more than a decade later, the two only started to attain a significant volume and increase

together. This is expected, since DR programs are an essential component of modern SGs [43].

Being low voltage distribution grids capable of operating isolated from the main grid and acting

as a controllable load, SG were an essential part of DSM development [44].

The series of legislations by the USA, UK, and EU as shown in the figure clearly ignited

the growth of scientific research on both SG and DR. The figure also shows the volume of

correlated research (DR & SG), with 40% of all DR research currently being directly related

to SG applications. This suggests that currently, DR is heavily influenced by SG technologies and

grid architectures.

Finally, the legislation and scientific research trends were combined in a complete timeline for

the historical emergence and evolution of DR, incorporating all milestones from previous analyses

(Fig. 1.5). The timeline provides a clearer visualization of the reasoning given in the previous

section about USA being more economically-driven while the EU being more environmentally

driven, shown by the emergence of DR much later in the EU, in-line with the expectation of [45].

Here, it is necessary to specify some limitations posed by the automated method that was

utilized to track the historical research trends, and clarify resulting ambiguities:

• The first captured publication with the IEEE keyword of "Smart grids" was from 1997 [46].

Here, the label of "Smart grids" is misleading, as the first paper on SG as intended was

actually published in 2004, titled "Transforming the U.S. electricity system" [47]. This is

captured in Fig. 1.4 and Fig. 1.5 with the discontinuity of research between 1997 and 2004

clearly visible.

• Conversely, while the first captured publication with the IEEE keyword of "Distributed

generation" was from 1990, scientific research on DG technologies was available before

1990 (and even before 1985), albeit under the name “dispersed generation” [48, 49, 50].

While it is important to duly clarify these two anomalies, they do not affect the performed analysis

and the relevant observations made.
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Figure 1.3: Research trends on IEEE Xplore for MG, DER, and DG.

Figure 1.4: Research trends on IEEE Xplore for DR, SG, and DR correlated with SG (DR + SG).
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Figure 1.5: Timeline showing all important legislative milestones (top) and tracking scientific research on IEEE Xplore (bottom) for each
topic/technology of relevance to DR and DSM development (dashed lines mean discontinuous research i.e., <1/year)
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1.4 Status-Quo of Demand Response and Future Prospects

As demonstrated, DR programs became an indispensable component of modern SGs. DR adoption

provides effective means of minimizing operating costs, enhancing reliability, and mitigating risk

in SGs. Today, numerous DR schemes exist, however the core concept remains unchanged:

contradict traditional strategies of increasing supply to match required demand by making users

adapt or change their electricity usage, shifting loads from peak to off-peak periods. Contemporary

DR programs all fall into two main categories [51, 13, 52]:

1. Mandatory DR - Incentive-Based Programs (IBP) (also known as system-led, emergency-

based, or direct DR).

2. Voluntary DR - Price-Based Programs (PBP) (also known as market-led, economic- based, or

indirect DR).

Mandatory DR (IBPs) involves contracting users to give a central operator the authority to

“schedule, reduce, or disconnect” their loads. Voluntary DR (PBPs) on the other hand lets

users reschedule their own usage motivated by fluctuating market prices, which would ideally be

cheaper during off-peak hours. In this way, consumers are stimulated to modify their consumption

behavior in a way that is more favorable for system operation as they "share" the economic

benefits by following the price signals [13]. Many PBPs exist, including but not limited to Time

of Use (ToU) tariffs, Peak Shaving, Critical Peak Pricing (CPP), Extreme Day Pricing (EDP),

and Real-Time Pricing (RTP), each designed for a specific purpose. The ToU scheme is the most

straightforward while RTP is the most sophisticated. In ToU, tariffs are defined for preset peak

and off-peak periods. In RTP schemes, customers pay hourly varying tariffs reflecting the real

conditions of the power market. In this respect, the day-ahead or hourly-ahead prices are given

to those customers participating in the RTP. Such a mechanism can be effectively implemented in

liberalized electricity markets [43].

With residential users constituting up to 40% of global energy demand and being the

significant contributors to peak demand periods and irregularities, DR scheme designers have

the traditionally specifically targeted residential usage across different economies [53]. For this,

Voluntary DR (PBPs) is more common since they are more compatible with and accepted by

residential users [45]. Despite being more sophisticated to implement, PBPs can substantially

impact the load profile favorably, especially with respect to hours of peak demand and price

fluctuations over different hours of the day. PBPs are capable of effectively influencing consumers

to adapt their consumption behavior to better match electricity supply conditions, and thereby

mitigate such effects [51].

Historically, Mandatory DR (IBPs) has been more popular in the other dominant energy

demand sectors (i.e., transport and industry). However, only recently have researchers paid more

attention to developing PBPs for these sectors, due to the current paradigm shift in the context of

the fourth industrial revolution (I4.0) and resulting intertwining of the different sectors [54, 55, 56].
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Increased IoT-enabling of SG and high penetration of scalable and distributed energy resources

in recent years is resulting in the emergence of the Internet of Energy (IoE) [57]. In this IoE

paradigm being a fully decentralized network of energy prosumers, DR will continue to be a

vital aspect of the grid in future Transactive Energy (TE) schemes [58], which aim for more

user-centered, energy-efficient, cost-saving, energy management approaches [59, 54].

Concurrently, the I4.0 paradigm shift is resulting in increased intertwining between sectors

that are the major consumers of energy (residential, transport, and industry). In addition, with

the electrification of transport being a top priority and smart industries emerging as vital pillars

of modern economies, the adaptation of DSM and DR schemes for cross-sector applications

becomes of paramount importance. More physically decentralized and interconnected energy

systems motivate the investigation of decentralized data models to manage them as opposed to

centralized operators. Motivated by the financial sector decentralization caused by the rise of

digital currencies and Blockchain as an enabling technology, there is an interest now in adapting

this new management model which is compatible with the emerging IoE paradigm. This is

investigated further in the next chapter.
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1.5 Chapter Conclusions

In this chapter, a thorough historical analysis of DR as a vital DSM approach was presented,

investigating the historical origins of DR along with the original motives for its inception. USA,

UK, and EU were identified as the pioneers of DSM and DR. Afterwards, an extensive historical

review of their legislations was performed, identifying all relevant legislation and milestones in the

evolution of DR. Research trends on IEEE Xplore were analyzed to track relevant technologies,

and a comparative analysis was performed between legislation and research trends. A clear

co-influence between both was demonstrated, and regional differences were highlighted. The

status of contemporary DR programs is discussed in detail. Finally, the emergence of the IoE being

a fully decentralized network of energy prosumers was identified, aiming for more user-centered,

energy-efficient, and cost-saving, energy management approaches. The IoE paradigm along with

the increased intertwining between sectors that are now the major consumers of electrical energy

(residential, transport, and industry) necessitates the adaptation of DSM and DR schemes for

cross-sector applications in this emerging paradigm.





Chapter 2

Decentralization of Power Systems: The
Internet-of-Energy Paradigm

It may be surprising to recall that Blockchain was largely unheard of merely a decade ago. Being

first launched in 2008 in the advent of Bitcoin (the world’s first digital crypto-currency), it is

indeed astounding how the technology rapidly became a major enabler of all sorts of decentralized

platforms, which are now ever so important in this digital era of extensive Internet-of-Things

(IoT) enabling. In order to understand how Blockchain-based systems took center stage in

modern electricity trading frameworks, it is necessary to look back at the sequence of events

which resulted in the need for Blockchain, its creation, success as the first fully decentralized

commercial platform, and subsequent expansion to the energy sector. In fact, Blockchain seems to

have emerged at the most convenient timing for the energy sector, which in itself was transforming

in favor of more decentralized structures and decision making. Therefore, Blockchain appeared

as a reliable solution to several challenges facing the energy sector, and with perfect timing. That

being said, this convenience is absolutely no coincidence. These simultaneous events happened,

and continue to happen, in the context of a much larger revolution, the fourth industrial revolution.

21
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Chapter Highlights and Novel Contributions:

• The fourth industrial revolution (I4.0) is introduced, and its design principles are listed.

• The Internet-of-Things (IoT) effect on the energy sector is studied in detail, and the emergence

of the Internet-of-Energy (IoE) with IoT-enabling of Smart Grids (SGs) is established.

• The design requirements for all technical models and processes developed for the IoE paradigm

are defined.

• Fully decentralized economies based on Blockchain technology are investigated, and the

adoption of Blockchain by the energy sector is discussed in detail.

• The decentralization of the energy sector in different dimensions (decentralization of generation,

information, and markets) is elaborated.

• The paradigm shift towards peer-to-peer energy trading, along with next-generation IoE systems

is discussed.
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Chapter Nomenclature
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2.1 Introduction

2.1.1 The Fourth Industrial Revolution

Previous industrial revolutions all had one thing in common: each of them was triggered by a

uniquely identifiable technological breakthrough. Steam engines fueled mechanization in the first,

electricity sparked mass production in the second, and electronics and computers made automation

possible in the third. The fourth industrial revolution currently underway is prominently different

from its predecessors for two main reasons.

First, it was not triggered by a single breakthrough; rather it is the result of a combination of

simultaneous technological and scientific advances. By increasingly overlapping digital, physical,

and biological systems (Fig. 2.1), it is giving rise to cyber-physical systems (CPS) [60]. These

fourth generation industry systems (I4.0) are designed based on the following principles [61]:

• decentralized decisions;

• information transparency (data analytics and information provision);

• interoperability and interconnection; and

• technical assistance (e.g., virtual assistance)

Figure 2.1: The fourth industrial revolution: a synergy of simultaneous technological
breakthroughs contributing to the rise of CPS by overlapping digital, physical, and biological
systems.
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The second difference between the fourth industrial revolution and its predecessors is the

rate at which technological advance has been occurring. With an exponential rate rather than a

linear one, it continues to be disruptive to almost all industries globally. This often left decision

and policy makers significantly lagging behind, often being caught in “traditional, linear (and

non-disruptive) thinking” [62, 63]. As such, the transfer of novel innovative solutions between

different sectors which are facing similar emerging challenges is often delayed. The adoption of

Blockchain by the energy sector is a perfect example of this. Having first appearing as an enabling

technology for decentralized commercial systems, it took time to attract the attention of the energy

sector which at the time was struggling to find a solution to manage increasing decentralization

caused by proliferation of micro-generation and the rise of small-scale prosumers. This section

presents the concurrent events which lead to Blockchain now being a key enabler of peer-to-peer

energy trading and show the exact series of milestones leading to the current status.

2.1.2 An Interconnected World: The Rise of the Internet-of-Things

In its earliest days, the Internet was originally developed to connect and transfer data between

computers. With the advent of smartphones (technically small computers), the Internet became a

network which also provided nonstop connectivity between people. As electronics and IT evolved,

“things” which are not by nature computing or communication devices started being connected to

the Internet. The term “Internet of Things” started circulating around 2003 but was first officially

used in 2005, when the International Telecommunication Union published a report titled “Internet

of Things,” describing the rise of IoT as follows [64]:

"developments are rapidly under way to take this phenomenon an important step further. . .

enabling new forms of communication between people and things, and between things
themselves. A new dimension has been added. . . : from anytime, any place connectivity for
anyone, we will now have connectivity for anything"

This changed everything. The emergence of IoT propelled global interconnectedness to an

unprecedented level, opening the door for previously inconceivable possibilities for technological,

social, and economic advancement. The IoT has been one of the main technologies driving the

fourth industrial revolution.
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Table 2.1: Number of IoT-connected devices (conventional and "things") and a summary of
predicted changes from 2016 to 2021.

Type of device IoT connected
in 2016 (billion)

IoT connected
in 2021 (billion)

Percentage
change

All 17.6
28 (Ericsson) [67]

30.7 (IHS) [68]
+60% <-> +75%

Conventional
(computers,
smartphones, etc.)

11.2
7.2 (Ericsson/

Gartner)
2.6 (IHS/IDC)

-35% <-> -75%

“Things” (appliances,
sensors, etc.) 6.4

20.8 (Gartner) [66]
28.1 (IDC) [69]

+225% <-> +340%

More than a decade later, IoT continues to grow at an exponentially increasing rate. In 2016,

there was a total of around 17.6 billion devices connected to the Internet of which 11.2 (64%) are

conventional devices such as smartphones and laptops while 6.4 (36%) are other devices, “things,”

such as appliances, meters, etc. [65]. In a press statement, Gartner stated its prediction of the latter

figure (nonconventional devices/things) growing to 20.8 billion by 2020 [66]. IDC published a

market forecast which put this number at 28.1 billion. Ericsson and IHS have both published

reports forecasting the total number of Internet connected devices (conventional and things) at 28

and 30.7, respectively [67, 68]. By analyzing those numbers (Table 2.1), one can see that the

number of new “things” to be IoT connected was set increase dramatically by 225% (by most

conservative forecasts), compared to a mere 60% growth in the overall number of IoT-connected

devices.

This rapid uncontrollable growth of IoT is unleashing unprecedented data traffic on the

Internet, creating two main problems: data redundancy and data security/privacy. In an IoT

stakeholders survey [70], 41% of respondents said “timely collection and analysis of data” was a

major challenge since there was “too much data to analyze effectively,” “difficult to capture useful

data,” and “data is analyzed too slowly to be actionable.” Those responses precisely describe the

data redundancy problem in modern IoT-enabled systems.

A major solution effort to data redundancy was the development cloud computing. IoT refers

to the connection of devices to the Internet and cloud computing refers to how those devices

work together to deliver data, applications, or services [71]. IBM defines cloud computing as the

“delivery of on-demand computing resources ... over the Internet on a pay-for-use basis” [72].

Another effort to tackle the data redundancy problem has been the development of more advanced

and efficient distributed data analysis algorithms.
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In fact, it is interesting to see that according to all forecasts the number of conventional devices

is expected to decrease, despite the enormous overall IoT growth. This can be attributed to the fact

that with the increased use of things like smart sensors or smart actuators, the need for many

computers currently used solely to provide the Internet link for such devices will cease to exist.

In addition, the emergence of cloud computing and more advanced data analytics will facilitate

shared processing and storage resources, reducing the required number of dispensable computing

and storage devices.

As for the second (security/privacy) problem, it is hardly possible to come across any

IoT-related discussion without the mention of the topic. With everything from personal appliances

to industrial machinery being connected to an extended global network, the potential damage of

cyberattacks and unsolicited disclosure could be devastating. It is therefore not surprising that

another report by Gartner [73] predicted that IoT security spending growth is set to overtake

overall IoT spending growth by 2017, which was an impressively accurate prediction. In the

survey of IoT stakeholders mentioned earlier, the top challenge in IoT projects reported by 58% of

respondents was “Business processes or policies” in which they complained that privacy concerns

over confidential data posed a major issue preventing data collection [70]. The approval of the

European Union’s General Data Protection Regulation (GDPR) in 2016 [74] and other similar

legislation worldwide made data security and privacy not only a concern, but also a legally binding

obligation for all sectors affected by IoT enabling.

Those sectors were therefore expected to explore and implement novel solutions to address

data redundancy and security issues. While the issue of data redundancy was quickly handled

early on, privacy and security issues remained a major concern. This was due to two reasons. One

of the main reasons for this is the fact that the latter is not only dependent on the availability of

feasible technical solutions, but also involves social, political, and economical debate.

The energy industry is and will continue to be one of the most affected by the growth of IoT. Of

the 20.8 billion nonconventional devices expected to be online by 2020/2021, around 1.4 billion

will be from the energy industry, and 1.5 billion from home energy management devices. This

meant that 10% of all IoT endpoints will be energy or energy management devices. Therefore, the

energy sector began to realize in that period that incorporating compatible and feasible solutions

for both data redundancy and privacy problems will be a necessity for the design future energy

system structures in an IoT-dominated world. This unstoppable IoT enabling of energy systems

on all levels reinforced an increasingly popular vision in scientific literature: the Internet of

Energy (IoE). This vision of IoE being the product of IoT enabling of smart grids (SGs) was

first mentioned in a news article in 2010 [75]. The article envisioned scalable and self-sufficient

energy networks through Internet enabling. Computational power required for coordination and

management of energy supply and demand is provided by cloud resources. The other stated

requirement was sufficient energy storage resources, which is becoming increasing efficient and

affordable.
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As such, scientific literature started showing great attention to this IoE paradigm [76, 77,

78, 79, 80, 81, 82] with multiple other associated variants such as Local Area Energy Networks

(E-LAN) [83] and Smart Grids 2.0 [84].

The consensus in the all the aforementioned scientific literature was that technical models
and processes developed in an IoE paradigm should be:

1. distributed (fully decentralized),

2. efficient at data analysis (with efficient forecasting and optimization capabilities),

3. scalable, and

4. user-friendly (plug and play).

Those correspond exactly with I4.0 design requirements listed earlier, making this IoE

framework a perfectly suitable as an I4.0 solution model.

2.1.3 Decentralized Economies: The Success of Blockchain

Following the 2008 global financial crisis, the world’s first digital cryptocurrency (Bitcoin)

was proposed [85]. The introduced platform allowed peer-to-peer (P2P) transactions to take

place, eliminating the need for intermediary financial authorities, being the world’s first fully

decentralized commercial system of its kind. It was a tremendous success. In 2010, 1 Bitcoin

was valued at 0.08 USD, and rose exponentially to reach a peak value of 17,000 USD in 2017,

maintaining a market capital well above 100 Billion USD since then. This astonishingly rapid

success is primarily attributed to the underlying technology: Blockchain, a cryptographically

secured distributed database containing blocks of transactions.

The platform possesses two distinguishing characteristics allowing it to provide a decentralized

system: security and global consensus. The latter is provided by the fact that everyone in the

network is constantly validating and updating the state of the system collectively. Since each block

in the chain is linked to the previous one, all users can verify if contents have not been modified.

Keys are function of both the encrypted contents of the block and the previous block’s key, thus

involve a puzzle to be solved requiring computational effort. Keys are generated by miners:

users providing the distributed computational effort and rewarded accordingly. The platform’s

decentralized nature makes it immune to many cyber attacks, even if a large number of users are

targeted.

With the conception of Ethereum in 2012 and its launch in 2015, Blockchain 2.0 introduced

smart contracts: digitally written and signed awaiting satisfaction of certain conditions to come

into effect [86]. Ethereum’s Blockchain 2.0 with its smart contracts was an equally massive

success, amassing a market capital of over 1 Billion USD within less than a year of its launch,

which exponentially grow to steadily remain above 10 Billion USD since 2017 (Fig. 2.2).
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Figure 2.2: The phenomenal success of blockchain technology is shown by the number of
daily transactions taking place on Bitcoin and Ethereum, currently the world’s two largest
cryptocurrencies.

With hundreds of billions of market capital, Blockchain-based trading platforms have clearly

gained society’s trust, which became impossible to miss. Official recognition of cryptocurrencies

and their underlying technology was inevitable. In 2012, the European Central Bank first

recognized digital currencies [87] and later in 2015 just before Ethereum was about to be launched,

a follow-up report was released with an extensive analysis of the success of their decentralized

platforms [88]. This consolidated the acknowledgement of Blockchain-based systems. During

the past 2 years (between June 2017 and June 2019), there has been an average of more than

250,000 daily Bitcoin transactions, and more than 600,000 Ethereum daily transactions. Bitcoin

and Ethereum continue to dominate as the two leading digital currencies with market capitals well

above 10 and 100 Billion USD since 2017, respectively. However, there are numerous other

Blockchain-based cryptocurrencies which have emerged, with hundreds of thousands of daily

transactions.

The massive success and recognition of Blockchain with its smart contracts as a decentralized

commercial system has led many people to investigate the application in different sectors,

particularly those that are shifting most toward a decentralized structures. The secure

cryptographic algorithm of Blockchain and its immunity to many cyberattacks is even more reason

why it is currently seen as an enabling technology as it may potentially offer a solution to many

data security/privacy problems caused by IoT enabling.
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2.2 Enabling the Decentralization of the Energy Sector

Around the same time when Blockchain-based commercial platforms were rising and gaining

global recognition, the energy sector was going through a massive transformation of its own.

Motivated by a triad of causes (security of supply, environmental protection, and economic

efficiency), legislation was being passed worldwide eagerly promoting demand-side management

(DSM) strategies, specifically demand response (DR) programs. DR inherently relies on the

availability of two main things: distributed energy resources (DERs) and SG infrastructure (with

smart metering and communication devices). In 2012, the EU passed a directive to direct the

rollout of SGs to implement DR programs (and multiple similar legislation was passed worldwide

contemporarily) [89]. This ultimately meant that power and energy systems were about to

rapidly witness two major transformations: physical decentralization due to DER installations

and information decentralization due to smart metering and SG rollout. It is important to elaborate

that decentralization occurs at three different and distinguishable layers:

• Decentralization of power systems: This is related to the physical disaggregation of power

generation, for example, DERs.

• Decentralization of information systems: Due to interconnection of even the smallest devices

as in the IoT paradigm.

• Decentralization of energy markets: Is the case with P2P trading of generated energy by

prosumers.

An advantage of decentralized systems is their capacity to make better use of the local

endogenous resources and reduce costs and losses of transporting these resources, consequently

leading to more environmental sustainability. Economic sustainability depends on the scale factor;

big centralized systems are more efficient with low unitary costs. Small decentralized systems are

less efficient with high unitary costs. However, recent technological developments of decentralized

systems are enabling them to be economically competitive with their centralized counterparts. The

three levels of decentralization are interinfluential and complementary.

Between P2P energy trading and IoE there is a clear emergence of what is referred to as

democratic energy systems in which fundamental aspects are (1) significant citizen participation

and (2) decentralized decision making in operation, management, planning, and trading, and (3)

RES dominated generation.
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2.2.1 P2P Energy Markets: The Emerging Paradigm Shift

Conventional electrical power systems had unidirectional energy flow from generation to

consumption. A centralized structure was best suited for this model with different utilities

managing operation, planning, and energy market operations. Increased penetration of prosumers

with DERs made electric power systems more decentralized and rendering the conventional model

obsolete. First, energy was now being generated at both ends of the conventional chain and

therefore roles of operators and utilities need to be redefined or the structure shuffled altogether.

Second, DERs are increasingly incorporated into energy networks without being given any

operational role or access to the wholesale market which is not sustainable [90].

In the beginning, feed-in-tariffs were offered with the intention of incentivizing small

consumers to install small renewable energy generation (e.g., rooftop solar PV). Consumers

generating electricity with renewable sources would be able to feed any surplus energy into the

grid and are paid for it, albeit at a rate which is significantly lower than the electricity market price.

This among other reasons started creating distrust between large utilities and system operators on

one hand and DER owners on the other. With the decreasing price of renewable installations and

the ease of acquiring them, small prosumers start looking for alternatives of trading electricity

which can eliminate need for a middle man such as P2P trading.

After witnessing its capability to provide fully decentralized commercial trading platforms,

it was clear that Blockchain offered the ideal solution for newly emerged prosumers and their

desire for citizen-run democratic energy systems. Multiple successful tests of Blockchain-based

P2P platforms started being carried out, albeit on small scales. Prior to the launch of Ethereum’s

Blockchain 2.0 and smart contracts in 2015, the role of Blockchain was limited to enabling a secure

and reliable distributed ledger of transactions, and thereby the early experiment with Blockchain

in P2P energy trading were strictly limited to its use to record financial transactions.

2012 was an important year in the transition to Blockchain-based applications in the energy

sector. The EU directive for SG rollout was approved, incentivizing researchers and stakeholders

to seek new innovative data models and manage these new smart interconnected microgrids with

DERs [89]. The first academic article putting forth the concept of “transactive energy” was

published in 2013, proposing a vision of decentralized and self-sustaining microgrids capable

of autonomous transactive operation [91].

This sparked a new trend in academic research, attempting and designing solutions based

on this transactive energy vision. It is important to recall that at the time of the first transactive

energy publication (early 2013), only first generation Blockchain platforms have been in operation.

Without smart contracts, and being limited only to financial transactions, the potential of

Blockchain being a suitable enabler for such a system was extremely limited. Thus, in the early

years of research on transactive energy, Blockchain was seldom mentioned.
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With the proposal of Blockchain 2.0 in late 2012 and the launch of Ethereum in late 2015,

successfully incorporating smart contracts, this second generation of Blockchain technology was

suitable to provide for the needs of the energy sector. Smart contracts made energy trading

possible in the way that was being envisioned by researchers on transactive energy networks.

Therefore, a few months after the successful launch of Ethereum and the witness of its success,

the first academic research papers proposing a validated methodology for Blockchain applications

to energy systems and peer-to-peer electricity trading were made toward the end of 2015 and the

beginning of 2016 (Fig. 2.3) [92, 93, 94].

2.2.2 Expansion of Blockchain Applications

Once the first proposals were presented for the application of Blockchain in the energy sector,

its expansion became exponential. In 2016, recognition of Blockchain as an inevitable enabler

of future energy grids and markets became obvious around the world. The major reports were

published in 2016 by global consultancy firms and governmental agencies which investigated the

status-quo of Blockchain applications at the time and predicated its great potential in the years to

come.

PricewaterhouseCoopers (PwC) released a report [54] in highlighting the opportunities

Blockchain offers for energy producers and consumers. The report started by stating that

Blockchain’s transaction model which shifts from centralized structures to P2P can reduce costs

and speed up processes resulting in more flexible systems. The report highlights that while some

level of maturity is being reached in the financial sector, the technology is still being developed

for other applications with some barriers in the way, primarily conflict resolution and legal and

regulatory requirements for fully decentralized systems. The Brooklyn Microgrid project was a

successful experiment in which a microgrid consisting of a group of 10 households directly traded

surplus solar energy generated using a Blockchain system. Smart meters were used in conjunction

with Blockchain’s smart contracts to keep track of energy produced and to automatically effect

transactions, respectively. An energy token system was used for energy payments. Most start-ups

working on Blockchain applications at the time were developing cryptocurrencies specific for

energy trading.

The report emphasized the opportunity Blockchain offers for prosumers of electricity in a P2P

system, by providing more flexible and autonomous systems. In addition, the report highlights that

Blockchain could potentially be employed to a wide range of uses other than energy transactions,

which include documentation of ownership (of energy generated), guarantees of origin, renewable

energy certificates, and others. While Blockchain could radically transform the energy sector,

the report stated that current legal and regulatory frameworks need to be adjusted to cope with

large-scale decentralized transactions models to be made possible.
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The German Energy Agency (dena) conducted a survey [95] among 70 decision makers

in the German energy industry regarding Blockchain applications; 69% said they had already

heard of existing Blockchain applications in the energy sector and 52% either have Blockchain

implementations or ongoing plans thereof; 81% of the respondents are confident that Blockchain

will likely have a significant influence on the industry. Potential use cases that they envision

were (in decreasing order of potential): security, decentralized generation, P2P trading, mobility,

metering and data transfer, trading platforms, automation, billing, grid management, and

communication. Blockchain’s potential in cost reduction and as an enabler for new business

models was reported. Since it was expected to be more disruptive compare to current technological

alternatives, it had a higher chance of being the dominant design in applications where P2P trading

has not yet been established on a large scale. Despite changing the structure of energy trading, if

Blockchain applications prove to have monetary or timely advantages over existing solutions, the

critical number of market participants would be convinced to abandon current platforms in favor of

Blockchain. Rapid successful launching of prototypes around the world might make Germany and

the EU lagging behind globally with current regulator frameworks being completely unsuitable

and uncompliant with Blockchain applications. Thus, they urged policymakers to consider it as a

top priority.

Another report [96] studied the development of Blockchain use cases by assuming the role

of RD developers. First, global consensus was identified as the primary disruptive element of

Blockchain technology in the energy sector.

This makes it an enabler technology for platforms with fully decentralized control which

is particularly useful in situations where transacting parties lack trust. In addition, Blockchain

offers more efficient structures by removing the need for data to be synchronized with and

by an intermediary, which is particularly useful in industry-level applications. For global and

cross-country applications, the main potential of Blockchain technology lied in its ability to offer

interoperability between devices and systems. As such, the report identified that interoperability

and flexibility is the target state which Blockchain development in the energy sector must

aim for. A conceptual use case which involved using Blockchain in conjunction with smart

meters was made and evaluated with industry specialists. The report recommended that being a

disruptive technology to the energy sector, companies planning on developing Blockchain energy

applications should build strategic understanding of use cases in collaboration with Blockchain

technology developers by insourcing the knowledge.

An article [94] published in 2016 modeled and simulated a case of P2P energy trading in an

SG. The proposed model was a fully decentralized private trading platform based on Blockchain

with multisignatures and anonymous encrypted message propagation streams. The system was

resistant against significant common cyberattacks. In addition, the privacy of trading parties

was found to be well protected by the system. By comparison with the results with a simulated

centralized system, it concluded that the proposed system is a feasible application of Blockchain

technology to develop secure and efficient fully decentralized energy trading platforms.
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Another study [97] investigated new models for managing distribution grids. They proposed

creating virtual distribution grids as a layer above the physical one. A Blockchain-based platform

would be used for transactions of surplus energy from homes in a distributed architecture.

The proposed model was neither implemented nor tested. However, the paper attempted to

provide Blockchain usage model in the energy industry which is compatible with the current

market structures. A journal article published in 2017 [98] studied the energy market in

Perth, Australia, where a recent successful experiment with a Blockchain-trading platform was

performed (similar Brooklyn). It showed that proliferation of cheap renewable generation and

battery storage technologies are going to soon result in a paradigm shift in the energy industry

to what they referred to as “citizen utilities.” The paper states that an inevitable shift to distribute

and bidirectional energy systems and more decentralized energy markets will take place, where

Blockchain will be the basis of transactions such systems. The response of traditional market

players would be what the paper called a “fight, flight, or innovate” one: fight will be the case if

markets are resistant and in denial of the new paradigm shift; flight is if energy utilities take no

action and possibly divesting investment in traditional markets; and innovate is if current utilities

embrace the new technologies driving the paradigm shift.

This analysis concludes that there is a rapid change to a new energy market model which is

operated not by utilities, but by consumers and that this should be facilitated in what the author

called “democratization of power.”

2.3 Blockchain 3.0: The Enabler of Next-generation Energy Systems

Up to this stage, all published works and conducted experiments considered the capabilities

of Blockchain 2.0. The cryptographically secured, consensus-based, approach enabled the

elimination of financial mediators. Similarly, smart contracts enabled a fully decentralized market

where energy can be traded. However, there was still a major pillar missing from the IoE

vision for a fully autonomous transactive energy network. As mentioned earlier, there are three

distinguishable layers of energy systems: the grid, the markets, and the information infrastructure.

While Blockchain 2.0 solutions provided a way of managing the latter two in a fully decentralized

fashion, it was not sufficient to be applied on the first. Operation and control of power systems

require the solution of complex optimization and forecasting models, and it was still extremely

challenging at that stage to develop a fully decentralized operation or control framework for

electrical grids which would justify the dispensability of a (central) grid operator.
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Only one academic paper at the time (when this work began) had proposed a Blockchain-based

solution for distributed optimization and control of electric grids in a P2P market architecture [99].

A decentralized optimal power flow (OPF) model for scheduling DERs on a microgrid was built

and tested. Distributed optimization (namely ADMM) was used to decompose the OPF problem

making it compatible with Blockchain architecture. The cost function was decomposed into a set

of local functions, and a global function which is a function of the local ones. In this manner,

the scheduling and dispatch routine could be performed in a fully decentralized fashion using

Blockchain and smart contracts. The model was tested on a 55-bus microgrid with a dispatchable

central generator, uncontrolled plug loads, nondispatchable renewable energy sources, shapeable

loads, deferrable loads, and batteries. A day-ahead scheduling problem was considered with 1-h

intervals. Blockchain and smart contracts used to perform optimization and control actions, and

clearing prices, recording energy consumption (smart meters), and billing contracts (payment,

charges, and penalties). The optimal cost based on ADMM was 0.4% larger than the centralized

one. Shorter time horizons, ancillary services, or stochastic behavior were not considered. The aim

was providing proof of the feasibility of using Blockchain for distributed optimization and control

grid applications. The success was due to the combination of Blockchain 2.0 and ADMM and set

the standard for future studies which attempted to develop the next generation of Blockchain which

allowed not only for decentralized financial and information transactions, but also for autonomous

operation of power systems.

This set the stage for the development of what came to be known as Blockchain 3.0 platforms.

The evolution of Blockchain (Fig. 2.4) can thus be summarized as follows:

• Blockchain 1.0: A fully distributed ledger of transactions which are cryptographically secured

and rely on global consensus.

• Blockchain 2.0: Includes smart contracts, which are digitally written and signed awaiting

satisfaction of certain conditions to come into effect, executing peer-to-peer transactions.

• Blockchain 3.0: A fully decentralized platform capable of autonomous operation relying on

distributed mathematical models. This self-managing system can determine optimal strategies

to ensure global benefit, and thereby constructing smart contracts accordingly.

The ultimate objective of employing Blockchain 3.0 is to achieve the ideal structure of an

IoE transactive energy network, possessing fully autonomous and fully decentralized operation,

aiming at the benefit of end-users first and foremost.
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Figure 2.4: Timeline of major milestones and milestones taking place in the transition toward
blockchain-based energy trading.

2.4 The Cloud-Based Internet of Energy

Figure 2.5: Energy cloud services concept. Local optimization and forecasting is performed and
each agent, broadcasting signals into the cloud. The system state is updated iteratively through
this cooperative information exchange.

As mentioned earlier “If IoT refers to the connection of devices to the internet; cloud computing

refers to how those devices work together to deliver data, applications, or services” [72].

Extending this to the grid operation of the IoE paradigm, cloud services allow connected nodes,

or agents, to work cooperatively to deliver required data, applications, or services to the larger

energy system they are part of. Each agent broadcasts some local variables, contributing to a

collective state for participants of this energy cloud service, as illustrated in 2.5. This model will

be constructed in the next part of the thesis.
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2.5 Chapter Conclusions

Blockchain seems to have emerged at the most convenient timing for the energy sector, which in

itself was transforming in favor of more decentralized structures and decision making. Therefore,

Blockchain appeared as a reliable solution to several challenges facing the energy sector, and with

perfect timing. That being said, this convenience is absolutely no coincidence. These simultaneous

events happened, and continue to happen, in the context of a much larger revolution, the fourth

industrial revolution (I4.0). In this chapter, the latter is introduced, and its design principles are

listed. The Internet-of-Things (IoT) effect on the energy sector was investigated in detail, and the

emergence of the Internet-of-Energy (IoE) with IoT-enabling of Smart Grids (SGs) is established.

The design requirements for all technical models and processes developed for the IoE paradigm

were defined. Fully decentralized economies based on Blockchain technology were investigated,

and the adoption of Blockchain by the energy sector was discussed in detail. The decentralization

of the energy sector in different dimensions (decentralization of generation, information, and

markets) was elaborated. The paradigm shift towards peer-to-peer energy trading, along with

next-generation IoE systems was established.





Part II

Transition to Cloud-Based Operation of
Smart Grids
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Chapter 3

Synergistic Coordination of Smart City
Energy Management Systems

The smart cities paradigm is focused on optimizing resource management using modern software

tools and communication infrastructures. In this paradigm, Electric Vehicles (EVs) create an

everlasting link between the transport and power sectors. Optimal management of energy

resources is of key importance, and with mobile EVs playing a pivotal role in smart city power

flows, coordination of energy management systems (EMSs) at their parking locations can

bear global benefits. In this chapter, novel models for local EMSs are considered. Namely, a

home energy management system (HEMS) and an EV parking lot energy management system

(PLEMS) were implemented using mixed-integer linear programming (MILP). Cloud-based

coordination of the local EMSs is then conceptualized, being centered around the EVs arrival and

departure schedules, without sharing private information. The proposed coordination framework

is computationally implemented and simulated based on a real-life case study. The results show

that the proposed cloud coordination of local EMSs is both technically beneficial for power grids

and economically beneficial for EV owners.
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Chapter Highlights and Novel Contributions:

• A novel EV PLEMS model is presented as an EV aggregating agent participating in both energy

and ancillary markets.

• A novel HEMS model is presented to minimize both the homeowners’ electricity bill and their

discomfort levels, considering dynamic electricity tariffs.

• A cloud-based EMS coordination framework is proposed and different scenarios are defined.

• A real-world case study is simulated, accounting for traffic uncertainties affecting transit times,

real PV generation ,load profiles, and electricity market data. Power flow simulations are

performed to obtain a complete techno-economic evaluation.

• Synergistic coordination of the EMSs is evaluated. Technical and economic benefits for all

participants (grid operator, EV owners, and PLEMS aggregator) are demonstrated.

Relevant Publication(s):
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Energy Management Systems in Smart Cities with Electric Vehicles," in Applied Energy
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M. Lotfi, T. Almeida, M. Javadi, G.J. Osório, J.P.S. Catalão, "Coordinated Operation

of Electric Vehicle Parking Lots and Smart Homes as a Virtual Power Plant," 2020 IEEE

International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial

and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2020, pp. 1-6.

Published: https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160684

https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160684
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Chapter Nomenclature

Abbreviation Definition
ANN Artificial Neural Network

DER Distributed Energy Resources

DG Distributed Generation

DI Discomfort Index

DR Demand Response

DSM Demand Side Management

DSO Distribution System Operator

EMS Energy Management System

ERSE Portuguese Energy Regulation Services Entity

ESS Energy Storage System

EV Electric Vehicle

EVPL Electric Vehicle Parking Lot

GEMS Grid Energy Management System

HEMS Home Energy Management System

IoT Internet of Things

ISO Independent System Operator

MILP Mixed Integer Linear Programming

MIP Mixed Integer Programming

MPC Model Predictive Control

MPPT Maximum Power Point Tracking

MV Medium Voltage

PL Parking Lot

PLEMS Parking Lot Energy Management System

PV Photovoltaic

RES Renewable Energy Resources

SG Smart Grid

TSO Transmission System Operator
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3.1 Introduction

3.1.1 Background and Motivation: The Smart Cities Paradigm

Accelerated transition towards smart cities can clearly be observed globally. Severe environmental

alerts combined with exponential growth of human populations (and urban population densities)

makes it imperative to develop sustainable cities to manage resources as efficiently as possible

[100].

With modern day crises being mainly due to inefficient management of resources, smart cities

are no longer seen as a luxury, but a necessity for the sustained wellbeing of humanity.

The cornerstones of any smart city are 1) the employment of Internet-of-Things (IoT)-enabling

to collect data, 2) to use the collected data to optimize the resource management efficiency, and

3) iterate this process to improve the design of the processes by which resources are allocated and

used [101].

Indeed, the development of an IoT infrastructure has been a key enabler of the transition

towards smart cities. The other key enabler is cloud computing, allowing data to be stored,

accessed, and processed by different users simultaneously [102]. While the development of smart

cities impacts all sectors, some are more affected than others. The electrical power and transport

sectors are being heavily impacted by this transition.

In fact, both sectors are becoming increasingly intertwined in this new paradigm [103].

3.1.2 The Intertwining of Electric Power and Transport Sectors

The electric power sector has seen many profound changes in the past few decades. Concerns

over security of supply have led a wave of electricity market liberalization and the activation of

demand-side management (DSM) policies. In this competitive electricity market, DERs became

valuable assets in the demand-side. Typically, local DERs are small-scale distributed generation

(DG) and energy storage systems (ESSs) [89].

More recently, with the urgency of minimizing greenhouse gas emissions, renewable

energy sources (RESs) have become the preferred means of generating electricity, both on the

demand-side (e.g., DERs) and on the generation utilities side (e.g., wind and solar farms).

Meanwhile, the same government climate actions which mandated shifting to cleaner energy

production have also affected another emission-heavy sector: the transport sector. Electrification

of transport, particularly the proliferation of Electric Vehicles (EVs), has been at the forefront of

this change [104].

At the same time, transport electrification inherently creates an everlasting link between the

electric power and transport sectors, with the latter now becoming a major component of the

demand-side and DSM. In fact, EVs intersect multiple elements of smart cities: connection to the

power grid as a DER, asset of final energy users as citizen-owned vehicles for personal transport,

using road and transit infrastructure, and dependence on cloud services such as navigation services,

traffic and weather data, electricity prices, etc. This is illustrated in Fig. 3.1.
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Figure 3.1: Elements of a smart city interdependent through the presence of EVs.

The simultaneous proliferation of RESs and EVs has been proven (both in literature and in

real-life) to successfully reduce emissions significantly [105]. On the one hand: EVs eliminate

local emissions of their combustion engine counterparts, while on the other hand charging their

batteries from electricity generated by low-emission sources due to high levels of RESs.

However, having a high penetration of DERs and EVs causes multiple technical challenges

in the operation of the electrical power grid. While modern smart grids (SG) are designed taking

into account this fact, critical reliability issues are still encountered if the integration of both is

performed in an uncontrolled manner.

Energy Management Systems (EMS) have already been used ever since DSM measures,

especially Demand Response (DR) and dynamic pricing policies, were introduced. Their main

objective has been to schedule energy consumption in order to make the best of the off-peak low

electricity prices. In modern SGs, EMSs are developed accounting for technical constraints of the

power grid and therefore they are a great tool to mitigate the technical challenges of high RES and

EV penetration, while maintaining the economic incentives to the demand-side.

3.1.3 State-of-the-Art: Energy Management Systems EVs

Home Energy Management Systems (HEMS) which include EVs have been extensively studied

in scientific literature. With accurate modeling, the HEMS scheduling results in decreased

electricity bills through optimized utilization of local DERs (PV panels and EVs) and maximizing

self-consumption during peak hours, while increasing the grid-independence [106].
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A Mixed-Integer Linear Programming (MILP) model for a HEMS was introduced in [107].

The proposed model incorporated an ESS EV, PV, dynamic DR tariffs, and shiftable loads. By

considering the homeowners’ preferences for the usage time of each shiftable load, a discomfort

index (DI) was calculated as a proportional value to the amount of load shifted. Multi-objective

MILP optimization was then used to obtain the day-ahead schedule that provides the optimal

tradeoff between minimizing the electricity bill and user discomfort. The results showed that the

HEMS scheduling of the DERs and EV provided higher economic benefits for the homeowners

through increased self-consumption while contributing to grid stability. Another recent study [108]

investigated different operating strategies for another HEMS model, which also considered PV

installations, an EV, shiftable loads, an ESS, and dynamic DR tariffs, and reiterated the same

findings and conclusions.

A recent study [109] proposed a more complex HEMS model which addressed real-life

uncertainties in user behavior and solar generation using a combination of algorithms: Model

Predictive Control (MPC), Artificial Neural Networks (ANN), Markov chain, and conditional

probability techniques. The analysis performed clearly showed the capability of the HEMS

to significantly decrease the electricity bills compared to non-optimized rule-based methods

(e.g., homeowners manual scheduling by simply following the dynamic DR tariffs). The paper

also presented an important finding by simulating different time resolutions for the HEMS

implementation. It was found that decreasing the time resolution from 1 hour to 15 minutes had

little impact on the cost savings (<1%), while significantly increasing the computational effort

(40x). This sets an important guideline on the choice of the time resolution.

In [103], a novel analysis was presented in which the coordination between the HEMS and the

Grid Energy Management System (GEMS) was studied. The two EMSs shared information such

as day-ahead driving schedules of the EVs and forecasted power profiles. The paper demonstrated

that by coordinating the operation between the HEMS and GEMS, the electricity bills of the

homeowners can be further decreased in addition to reduced PV curtailment.

All previous works [103, 106, 107, 108, 109] demonstrated techno-economic benefits of

employing HEMSs incorporating EVs and DERs. However, in smart cities with high EV presence,

traditional parking lots (PLs) can be converted to grid-connected EVPLs. EVPLs provide parking

and charging services to EV owners at an agreed-upon tariff. By aggregating a large number of

EVs, they are also capable of making a significant profit by being an ancillary services provider

to the grid at a medium-voltage (MV) level. Being commercial establishments, their EMSs have

one objective: maximize profits. In addition, the EVPLs make use of installed local generation

(rooftop PVs) to further increase their net profits. Accordingly, recent works have proposed models

for EVPL EMSs (PLEMSs). Recent studies on PLEMSs are surveyed subsequently.
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A dynamic programming algorithm for a PLEMS was proposed in [110]. The intended

application was the commercial areas where EVs are parked during power grid’s peak hours.

By using the aggregated potential of stationed EVs, the PLEMS was capable of determining

the optimal charging schedule for each EV, which maximized the owner’s profits by providing

ancillary services to the grid while committing to the agreed upon charging rate for the total parked

duration of each EV.

A PLEMS was implemented in [111] using fuzzy logic inference. In this study, the main focus

was not to assess the PL’s profitability, but rather its capability to mitigate grid overloading (which

would be the case in uncontrolled EV charging at the EVPL) without sacrificing the charging

commitments made to the EV owners. The PLEMS was shown to be successful at achieving this

goal.

A combined EMS which aimed at maximizing the parking lot owner’s profit while minimizing

the distribution system operator’s (DSO’s) costs was proposed in [112]. In this sense, the PL

would be incorporated as a subproblem in the GEMS. A stochastic MILP optimization model

was used to account for the uncertainty of grid-connected RESs using a weighted-scenario based

approach. The results showed that the implemented EMS effectively reduced the DSO’s costs

while maximizing the EVPL profits. In [113], an EVPL with rooftop PV installations was modeled

and a real-time PLEMS was proposed, taking into account power grid constraints and dynamic

electricity pricing. The PLEMS determined near-optimal charging/discharging of the parked EVs

to increase the EVPL’s profit.

Building on [112] and [113], a PV-equipped EV parking lot was modeled in [114]. The

proposed MILP model for day-ahead operational planning showed that the designed PLEMS

significantly increasing the EVPL’s profits, without sacrificing neither the EVs’ charging

requirements, nor the grid constraints. On the contrary, a significant portion of the additional

profit came from providing ancillary services to the grid, which enhanced grid reliability and

reduced power losses.

From the conducted literature survey, the following is noted:

• HEMSs have been extensively studied in literature, demonstrating their capability to

minimize electricity bills (with minimal sacrifice of comfort) by shifting loads and

optimizing EV charging/discharging according to dynamic DR tariffs.

• PLEMSs have been proposed in recent studies, mainly aiming at either maximizing the

EVPL’s profit or that of the grid operator. The aggregated capacity of parked EVs allow the

EVPL to do so by participating in the ancillary services market.

• Only one study [103] considered the coordination between two EMSs (HEMS and the

GEMS) in the presence of consumer EVs. No studies were found that studied the

simultaneous operation of PLEMSs and HEMSs.
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3.2 Methodology

3.2.1 Conceptual Model

The conceptual model devised for this study is shown in Fig. 3.2. In this model, residents of

different neighborhoods commute daily to an EVPL. The latter has rooftop PV installations and a

PLEMS. Individual houses have their own DERs (specifically, PV panels and ESSs) and a HEMS.

The EVPL and all houses are connected to the same SG, with dynamic DR electricity prices,

bidirectional power flows, and open access to participate in providing ancillary services.

The following scenarios will be studied and compared:

• Scenario 1 – No EMSs: In this (base) scenario, the houses have neither DERs nor an EMS

installed. In this case, the houses are “traditional” homes with unscheduled operation of the

appliances and uncontrolled charging of the EVs (i.e., once they arrive, they are plugged in until

fully charged). In this scenario, the parking lot is nothing more than a parking space for the EVs.

• Scenario 2 – HEMS only: In this scenario, the houses are smart homes, with DERs (PV panels

and batteries) installed and a HEMS operating to schedule all electricity usage (including EV

charging). Each home has its own HEMS. The parking lot still exists only as a parking space

for the EVs.

• Scenario 3 – PLEMS only: In this scenario, the houses are traditional houses, as they were in

Scenario 1. The EVPL is converted to a commercialized smart EVPL, which has its own DERs

(rooftop PV panels) and an EMS.

• Scenario 4 – All EMSs: In this scenario, both the houses and the parking lot are converted to

their smart versions, equipped with DERs and EMSs. In this scenario, the EMSs coordination

is studied. The EV owners include their arrival and departure times in the HEMS preferences,

which shares this information with the PLEMS. The latter in turn shares back the expected SoC

of the EV upon departure from the PL.

The techno-economic benefits of DERs, HEMSs, and PLEMSs, separately, have all been

already established in previous studies and in the real world. Since the objective of this study

is to investigate the synergies that can be obtained through the coordinated operation of these

systems in the presence of EVs, the main comparison to be performed is between scenarios 1

and 4. With this being said, scenarios 2 and 3 are important to include as control scenarios, to

identify if any observation is due to the synergy of the EMSs or if it already results from one of

the individual EMSs on its own. The mathematical formulation used to model these scenarios is

presented subsequently.

It duly noted that the PLEMS and HEMS models, detailed subsequently, have been developed

as original work also throughout the course of this thesis.
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Figure 3.2: Conceptual model for the interaction between various EMSs with EVs.

3.2.2 Parking Lot Energy Management System

The EVPL and its grid interaction are modeled using a MILP formulation. The optimal day-ahead

charging and discharging schedule of parked EVs is determined to maximize the EVPL’s profit.

The model considers the presence of rooftop PV panels and DR participation to sell energy to the

grid or participate in the reserve and regulation markets in response to offers by the independent

system operator (ISO). The day-ahead schedule is obtained by discretizing the 24 hours into

NT PLEMS time slots of size ∆T PL hours, as shown in (3.1).

∆T PL =
24

NT PLEMS (3.1)

During each timeslot t = 1 . . .NT PLEMS, there are NPL
t EVs parked in the PL, which changes

every timeslot as shown in (3.2).

NPL
t = NPL

t−1 +Narr
t −Ndep

t ∀t = 1 . . .NT PLEMS (3.2)

In every timeslot there is a number of Narr
t and Ndep

t newly arriving and departing EVs,

respectively. The total number of EVs which use the PL is expressed as NEV PL, and each individual

EV is assigned an index EV ID = 1. . .NEV PL. A binary variable ΦEV ID
t indicates whether or not

an EV EV ID is inside the PL during timeslot t or not, as shown in (3.3).

ΦEV ID
t =

{
1, TARRPLEV ID ≤ t ≤ T DEPPLEV ID,

0, otherwise
,

∀EV ID = 1 . . .NEV PL, t = 1 . . .NT PLEMS

(3.3)
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Each EV’s arrival and departure time to/from the EVPL is expressed as TARRPLEV ID and

T DEPPLEV ID , respectively. In (3.4) the total aggregated stored energy by the EVPL in timeslot

t EPL
t is calculated as the sum of energy stored of individual batteries of parked EVs (EEV ID

t ).

Similarly, in (3.5) the maximum storage capacity of the EVPL (EPL,cap
t ) is the sum of that of all

parked EVs (EEV ID,cap
t ). The corresponding SoC of individual EVs and the PL is defined in (3.6)

and (3.7), respectively.

EPL
t =

NEV PL

∑
EV ID=1

(
Φ

EV ID
t ·EEV ID

t
)

(3.4)

EPL,cap
t =

NEV PL

∑
EV ID=1

(
Φ

EV ID
t ·EEV ID,cap

t

)
(3.5)

SOCEV ID
t =

EEV ID
t

EEV ID,cap
t

,∀EV ID = 1 . . .NEV PL, ∀t = 1 . . .NT PLEMS (3.6)

SOCPL
t =

EPL
t

EPL,cap
t

,∀t = 1 . . .NT PLEMS (3.7)

For each timeslot, the total power injected from the grid to the PL and the total power injected

from the PL to the grid are expressed in (3.8) and (3.9), respectively.

PG2PL
t = PG2PL,en

t +PG2PL,reg,down
t (3.8)

PPL2G
t = PPL2G,en

t +PPL2G,reg,up
t +PPL2G,res

t (3.9)

In (3.8), the total power injected to the PL (PG2PL
t ) is equal to that corresponding to the energy

purchased from the grid (PG2PL,en
t ) and that injected by the grid for the regulation-down offer

(PG2PL,reg,down
t ). In (3.9), the total power injected from the PL to the grid (PPL2G

t ) is equal to

the sum of that: 1) sold to the energy market (PPL2G,en
t ), 2) injected for the regulation-up offer

(PPL2G,reg,up
t ), and 3) providing the reserve market offer (PPL2G,res

t ).

In (3.10)-(3.12), a condition is set such that the PL can either be injecting energy to or

absorbing energy from the grid during each timeslot.

FPL2G t =

{
1, PPL2G

t > 0

0, otherwise
, ∀t = 1 . . .NT PLEMS (3.10)

FG2PLt =

{
1, PG2PL

t > 0

0, otherwise
, ∀t = 1 . . .NT PLEMS (3.11)

FPL2Gt ·FG2PLt = 0, ∀t = 1 . . .NT PLEMS (3.12)
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The binary variables FPL2Gt and FG2PLt correspond to whether power is being injected from

or to the PL in timeslot t, respectively. Constraint (3.12) allows only one of the two to be true at the

same time. With all previous definitions, the power balance constraints can be defined as shown

in (3.13)-(3.15).

PG2PL
t +PPV 2PL

t ≤ γ
PL,ch ·NPL

t ∀t = 1 . . .NT PLEMS (3.13)

PPL2G
t ≤ γ

PL,dis ·NPL
t ∀t = 1 . . .NT PLEMS (3.14)

∆T PL ·PPV 2PL
t ≤

(
SOCPL,max ·EPL,cap

t−1 −SOCPL
t−1 ·EPL

t−1

)
−Earr

t +Edep
t ,

∀t = 1 . . .NT PLEMS
(3.15)

For each timeslot, the sum of the power injected from both the grid and the local PV

installations to the PL (PG2PL
t and PPV 2PL

t , respectively) must be less than or equal to the number of

EVs currently stationed multiplied by the charging rate (γPL,ch).This constraints the power injected

to the PL to the maximum charging capability of EVs currently stationed.

Similarly, PPL2G
t must not exceed the maximum discharge capability (γPL,dis · NPL

t ). The

presence of local PV generation makes it necessary to add the third power balance constraint

shown in (3.15).

The energy charged by the PV panels is equal to the power injected (PPV 2PL
t ) multiplied by the

size of the time slot (∆T PL). The energy charged by the PV panels during any time slot must not

exceed the difference between the maximum allowable energy capacity and actual energy level of

the previous timeslot (SOCPL,max ·EPL,cap
t−1 −SOCPL

t−1 ·EPL
t−1), minus the energy to be added by newly

arriving EVs (Earr
t ), plus that removed by departing ones (Edep

t ).

The aggregated energy stored by the PL at each timeslot can be related to the previous

timeslot using (3.16), where η
PL,ch
t and η

PL,dis
t correspond to the overall charging and discharging

efficiencies of the parked EVs, respectively.

EPL
t = EPL

t−1 +∆T ·ηPL,ch
t

(
PG2PL

t +PPV 2PL
t

)
−∆T · 1

η
PL,dis
t
·
(
PPL2G

t
)
,

∀t = 1 . . .NT PLEMS
(3.16)

Finding the optimal charging and discharging schedule for parked EVs involved the amount to

be charged or discharged from each EV, as shown in (3.17) and (3.18), respectively. For each

stationed EV at timeslot t, the SoC increment or decrement (SOCEV ID,up
t ) and SOCEV ID,down

t ,

respectively) is defined such that the EV can only be either charging or discharging.
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SOCEV ID,up
t =


0, ΦEV ID

t = 0

0, SOCEV ID,dep
t ≤ SOCEV ID

t −SOCEV ID
t−1

SOCEV ID,dep
t −SOCEV ID

t −SOCEV ID
t−1 , otherwise

,

∀EV ID = 1 . . .NEV PL,∀t = 1 . . .NT PLEMS

(3.17)

SOCEV ID,down
t =


0, ΦEV ID

t = 0

0,SOCEV ID
t −SOCEV ID

t−1 ≤ SOCEV ID,dep
t

SOCEV ID,dep
t −SOCEV ID

t −SOCEV ID
t−1 , otherwise

,

∀EV ID = 1 . . .NEV PL,∀t = 1 . . .NT PLEMS

(3.18)

In (3.19) and (3.20), the set of all EVs’ charging and discharging schedules are compiled,

respectively.

SOCup
t =

{
SOC1,up

t ,SOC2,up
t , . . . ,SOCNEV PL,up

t

}
(3.19)

SOCdown
t =

{
SOC1,down

t ,SOC2, down
t , . . . ,SOCNEV PL,down

t

}
(3.20)

The MILP model for the PLEMS is now fully constrained. Additional constraints such as the

active and reactive power flows (power factor limits) and voltage limits are added according to the

grid requirements [114, 115].

To maximize the EVPL’s profit, incomes and costs must first be defined. Those are listed and

described in detail in Table 3.1. Unit prices are based on the electricity market being considered

[114, 115]. Accordingly, the objective function ( Profit EVPL) is presented in (3.21), and the

decision vector (XPL) is defined in (3.22)-(3.23).

maxXPL
(

Profit EVPL)=
maxXPL ∑

NT PLEMS

t=1 (IN1t + IN2t + IN3t + IN4t + IN5t + IN6t

−C1t−C2t−C3t−C4t−C5t−C6t−C7t−C8t)

(3.21)

XPL = {XPL1,XPL2, . . . ,XPLNT PLEMS} (3.22)

XPLt =
{

SOCup
t ,SOCdown

t ,

PPV 2PL
t ,PG2PL,en

t ,PPL2G,en
t ,

PG2PL, reg,down
t ,PPL2G, reg,up

t ,PPL2G, res
t

} (3.23)
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Table 3.1: Profit and cost terms for the PLEMS.

Term Description Unit Price

Income: IN1t Energy sold to grid as active power injection from the PL, ∝

(
PPL2G,en

t

)
λ en

t €/kWh

Income: IN2t Energy sold for the ISO-requested reserve, ∝

(
PPL2G,res

t

)
λ res

t €/kWh

Income: IN3t Tariff paid by EV owners for energy charged to their EVs, ∝
(
PG2PL

t +PPV 2PL
t

)
λ

EV,ch
t €/kWh

Income: IN4t Hourly tariff paid by EV owners for to park in the PL, ∝
(
PG2PL

t +PPV 2PL
t

)
λ

EV,park
t €/h

Income: IN5t Energy exchanged for the ISO-requested regulation-up, ∝

(
PPL2G,reg,up

t

)
λ

reg,up
t €/kWh

Income: IN6t Energy exchanged for the ISO-requested regulation-down, ∝

(
PPL2G, reg, down

t

)
λ

reg,down
t €/kWh

Cost: C1t Energy purchased from the grid as active power injection to the PL, ∝

(
PG2PL,en

t

)
λ en

t €/kWh

Cost: C2t Tariff paid to EV owners for energy discharged from their EVs. λ
EV, dis
t €/kWh

Cost: C3t Compensation paid to EV owners for battery degradation by V2G in energy market. Cden €/kWh

Cost: C4t Compensation paid to EV owners for battery degradation by V2G in reserve market. Cd en €/kWh

Cost: C5t Compensation paid to EV owners for battery degradation by V2G in regulation market. Cd reg €/kWh

Cost: C6t Penalty paid for failing to provide the ISO-requested reserve 0.02 ·λ res
t €/kWh

Cost: C7t Penalty paid for failing to deliver the ISO-requested regulation-up 0.02 ·λ reg, up
t €/kWh

Cost: C8t Penalty paid for failing to deliver the ISO-requested regulation-down 0.02 ·λ reg,down
t €/kWh

3.2.3 Home Energy Management System

The implemented HEMS models a smart home incorporating an EV, local PV generation, dynamic

DR tariffs, and shiftable loads. By considering the homeowner’s preferences for the usage time of

each shiftable load, MILP optimization is used to obtain the day-ahead schedule that minimizes

the electricity bill. The mathematical formulation of the model is presented in this section.

With residential DR participation, the final electricity bill is the difference between energy

bought from the grid and energy sold back. The objective function (Z), to be minimized, is

defined in (3.24): The total power injected from the grid to the home (bought) for each timeslot

t is represented as PG2H
t at a unit price of λ

buy
t . In this model, the energy stored by the ESS is

used directly for self-consumption never injected into the grid. Therefore, PH2G
t (total power sold

to the grid at a unit price λ sell
t ) is equal to excess PV generation. Similar to the PLEMS, the

HEMS day-ahead time discretization is shown in (3.25), Such that scheduling is performed for

each timeslot t = 1 . . .NT HEMS, and the duration of each timeslot is ∆T HEMS.

minZ = min
NT HEMS

∑
t=1

∆T HEMS
(

PG2H
t λ

buy
t −PH2G

t λ
sell
t

)
(3.24)

∆T HEMS =
24

NT HEMS (3.25)
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Two stages are defined: 1) before HEMS implementation, which are the baseline operation

intervals based on the end-user preferences; and 2) after HEMS implementation, where the flexible

loads are optimally scheduled based on the DR tariffs.

The initial stage (before HEMS implementation) is first modeled by defining the operating

intervals of each load i from a total number of Nshi f t shiftable loads. This is defined as the baseline

interval for each load i as shown in (3.26), with LBi,b and UBi,b being the baseline lower and upper

bounds, respectively. The binary variable Bi,t is set to 1 during the timeslots t when the load i is

operating and 0 for all timeslots outside its operating interval.

Bi,t =


0 t < LBi,b

1 LBi,b ≤ t ≤UBi,b, ∀t = 1 . . .NT HEMS

0 t >UBi,b

(3.26)

In the second stage (HEMS implementation), flexible loads are shifted from the baseline

intervals to reduce costs according to dynamic DR tariffs (i.e., shifting from peak to off-peak

periods). However, not all loads are indefinitely shiftable and so users set allowable lower and

upper intervals for each load to operate, represented as LBi,u and UBi,u, respectively. The output

of the HEMS would include the new scheduled slots for each load as shown in (3.27). The binary

variable Si,t corresponds to the timeslots that the load i is scheduled to operate by the HEMS, in

the interval between LBi,s and UBi,s. The scheduled operating interval must lie within the limits

set by the user, as set by constraints (3.28) and (3.29).

Si,t =


0 t < LBi,s

1 LBi,s ≤ t ≤UBi,s,

0 t >UBi,s

∀t = 1 . . .NT HEMS (3.27)

LBi,S ≥ LBi,u, ∀i = 1, . . . ,Nshift (3.28)

UBi,s ≤UBi,u, ∀i = 1, . . . ,Nshift (3.29)

Moreover, (3.30) indicates that while the scheduled of each shiftable load is shifted, the

operating duration is unchanged.

NT HEMS

∑
t=1

Si,t =
NT HEMS

∑
t=1

Bi,t , ∀i = 1, . . . ,Nshift (3.30)

The total day-ahead energy demand of the house (EHD) is shown in (3.31) and is the sum of

two terms: the energy demand of scheduled loads and the base load (PHBase
t ). Due to the constraint

by (3.30), the total energy demand before and after scheduling is unchanged. The power demand

for each timeslot (PHD
t ) is expressed in (3.32).

EHD =
Nshift

∑
i=1

NT HEMS

∑
t=1

(
Si,t ·Pi

∆T HEMS

)
+

NT

∑
t

PHBase
t

∆T HEMS (3.31)
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PHD
t =

Nshi f t

∑
i=1

(Si,t ·Pi)+PHBase
t (3.32)

The model considers the presence of an ESS and local PV generation. For the ESS, constraints

(3.33)-(3.38) are applied. Binary variables ESSCH t and (ESSDIS t) indicate whether the ESS is

charging or discharging during timeslot t, respectively. The ESS can only be either charging or

discharging in a given timeslot as indicated by (3.33).

In (3.34) and (3.35), the charging and discharging power (PHESS,ch
t and PHESS,dis

t , respectively)

of the ESS are limited by the maximum charging and discharging rates (γHESS,ch and γHESS,dis,

respectively). In (3.36), the energy stored by the ESS is updated for timeslot t, considering that

of the previous timeslot and charged/discharged energy. The SoC in (3.37) is the ratio of current

energy stored to the rated capacity (HESS,Cap) and is constrained by the minimum and maximum

allowable limits in (3.38). While EV charging is considered a shiftable load to be scheduled by the

HEMS, the technical constraints (3.33)-(3.38) apply to the EV battery while it is parked at home.

ESSCH t · ESSDIS t = 0, ∀t = 1 . . .NT HEMS (3.33)

PHESS,ch
t ≤ ESSCHt · γHESS,ch, ∀t = 1 . . .NT HEMS (3.34)

PHESS,dis
t ≤ ESSDIS t · γHESS,dis, ∀t = 1 . . .NT HEMS (3.35)

EHESS
t = EHESS

t−1 +

(
η

HESS,ch ·PHESS,ch
t − 1

ηHESS,dis ·P
HESS,dis
t

)
·∆T HEMS, ∀t = 1 . . .NT HEMS

(3.36)

SOCHESS
t =

EHESS
t

EHESS,Cap , ∀t = 1 . . .NT HEMS (3.37)

SOCHESS,min ≤ SOCHESS
t ≤ SOCHESS,max, ∀t = 1 . . .NT HEMS (3.38)

The net power generated by the home PV panels (PHPV
t ) in a given timeslot must either be

self-consumed (PHPV 2H
t ) or sold to the grid (PHPV 2G

t ) as indicated by (3.39).

PHPV
t = PHPV 2H

t +PHPV 2G
t , ∀t = 1 . . .NT HEMS (3.39)

The final constraint for the HEMS is the power balance constraint, which is shown in (3.40)

for each timeslot t.

PHPV 2H
t +PG2H

t = PHD
t +PHESS,ch

t −PHESS,dis
t +PHPV 2G

t , ∀t = 1 . . .NT HEMS (3.40)
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3.2.4 Coordinating the Energy Management Systems

The primary link between the individual EMSs are the EVs. In (3.41) and (3.42), the

arrival/departure times to/from the home and PL are related using TCOM (commuting time)

for each EV. Given the arrival and departure time from only one of the two locations, accurate

commuting times can be obtained by means of online cloud applications such as map and

navigation services, which account for real traffic data. Thus, the EV owner can only provide

the departure time from home and departure time from the PL, and the other times can be

automatically computed. Similarly, the SoC of the EV battery at the destination is equal to that

upon departure from the source minus the SoC lost during the commute, as in (3.43) and (3.44).

tEV ID,arr,PL = tEV ID,dep,H +TCOMEV ID,2PL, ∀EV ID (3.41)

tEV ID,arr,H = tEV ID,dep,PL +TCOMEV ID,2H , ∀EV ID (3.42)

SOCEV ID,arr,PL = SOCEV ID,dep,H −∆SOCEV ID,2PL, ∀EV ID (3.43)

SOCEV ID,arr,H = SOCEV ID,dep,PL−∆SOCEV ID,2H , ∀EV ID (3.44)

The SoC lost during the commute (∆SOC) can be calculated based on the commute distance

(DCOM) and average driving efficiency of the EV model (ηdrive,EVID , %/km), as shown in (3.45)

and (3.46).

∆SOCEV ID,2PL = DCOMEV ID,2PL ·ηdrive,EV ID, ∀EV ID (3.45)

∆SOCEV ID,2H = DCOMEV ID,2H ·ηdrive,EVID , ∀EV ID (3.46)

Using (3.41)-(3.46), it is possible to coordinate the operation of the PLEMS and individual

HEMSs without needing to share private information by either side. The HEMS only needs to

share the EV arrival time at PL, EV departure time from PL, and arrival SoC. Meanwhile, the

PLEMS shares each EV’s departure SoC with its HEMS. Any extra information needed by the

EMSs (e.g., PV forecasts, electricity market data, traffic data, etc.) is obtained through public

cloud/web applications and repositories. The interaction and information flow between the EMSs

and different elements is illustrated in Fig. 3.3.
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Figure 3.3: An illustration of the interactions and information flow between the PLEMS, HEMSs,
cloud/web public services and repositories, and the power grid in the considered scheme.

3.3 Case Study

To simulate the proposed scheme, a case study based on real-world conditions was designed. By

computationally simulating the four scenarios described in Section 3.2.1, possible synergies (or

drawbacks) resulting from the interaction between the EMSs can be observed and evaluated.

The modeled EVPL was based on one of the parking spaces of the Faculty of Engineering of

University of Porto (FEUP). This EVPL, along with variations of it, has been used in [114] to test

the PLEMS system. It is assumed that a total of 108 EVs are enlisted in this EVPL (students and

staff members). The EVPL has PV panels installed with a rated output power of 100 kW [116].

As a common EV model in Portugal, the Nissan Leaf, with a 30 kWh battery was used to model

all EVs. The full specifications of the Nissan Leaf can be found in [105].
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Table 3.2: Average SoC lost in commute and expected variations.

Location Mean SoC Lost in
Commute to/from EVPL

Variation with Traffic
(as std. deviation)

Neighborhood 1 0.2 0.02
Neighborhood 2 0.3 0.03

The smart homes corresponding to each of the 108 EVs have local PV installations with a 3

kW rated output power and the LG RESU 6.5 kWh lithium-ion ESS. The complete specifications

of the home PV panels and ESS can be found in [117] and [107], respectively. The homes are

in one of two neighborhoods located in different places of the metropolitan area of Porto. In this

way, the effect of different commuting times can be compared. Neighborhoods 1 and 2 have 72

and 36 homes, respectively (total of all 108 homes).

The average SoC lost when commuting between the EVPL and each of the neighborhoods is

shown in Table 3.2. In this table, the variation of the SoC lost (accounting for traffic conditions)

is represented as a standard deviation from the mean value. Given the nature of study and work

times at the faculty, some EV owners have a morning schedule, while others have an afternoon

schedule.

On average, the ones with morning schedules arrive at the EVPL at 9:00 and leave by 18:00,

while the ones with an afternoon schedule arrive at 14:00 and leave by 21:00. Variations in

the individual arrival and departure times of individual EV owners were considered, with the

arrival and departure times varying from the average ones as show in Table 3.3. The “Max” value

represents the latest possible arrival time (11:30 for the morning and 16:30 for the afternoon).

By accounting for the uncertainties in both the commuting times and commuting time and

the arrival/departure times, real-life conditions are captured. A code script was made to generate

individual arrival/departure times and transit times for each EV, for each day simulated.

Finally, power grid is simulated using the IEEE 33-bus test system. The locations of the EVPL

and the neighborhoods both on the map and on the power grid are illustrated in Fig. 3.4.

Table 3.3: Morning and afternoon schedules and variations.

Work Schedule Mean Std. Deviation Max

Morning Arrival Time 9:00
50 min

11:30
Departure Time 18:00 -

Afternoon Arrival Time 14:00
50 min

16:30
Departure Time 21:00 -
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Neighborhoods 1 and 2 are connected to buses 22 and 25, respectively, and the EVPL to bus 33.

Typical commercial and residential load profiles provided by the Portuguese Energy Regulation

Services Entity (ERSE) [118] were used for the other buses as shown in Table 3.4. The power

exchange at buses 22, 25, and 33 is according to the EMSs output. All parameters assumed for

the PLEMS and HEMS are according to those in [116, 117]. Accordingly, one day of operation is

simulated using the following steps:

• Step 1: Generate individual schedules for each EV: arrival, departure, and transit times.

• Step 2: Run PLEMS code to determine departure SoC of each EV, and power exchange

with the grid at bus 33.

• Step 3: Run HEMS code for each individual home to determine power exchange with the

grid at buses 22 and 25.

• Step 4: At each timestep, run AC optimal power simulation for the power grid.
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Figure 3.4: The map location of the EVPL and two neighborhoods used in the case study, and the
corresponding buses on the IEEE 33-bus test system.



64 Synergistic Coordination of Smart City Energy Management Systems

3.4 Simulation and Results

In this section, the results of the simulations are shown and discussed. Two separate studies were

performed. The first is done from the technical perspective, where the objective is to analyze the

effect of the EMSs coordination on the power flow in the grid. The second analysis is performed

from an economic perspective, illustrating the point of view of the EV owners to analyze the

cost-efficiency of the proposed EMS coordination scheme. All simulations were run on a standard

laptop computer with an Intel Corei7-8550U CPU @ 1.80 GHz, 16.0 GB RAM, and a Windows 10

64 bit operating system. The General Algebraic Modelling System (GAMS) environment was used

to implement the PLEMS and HEMS, applying the Mixed Integer Programming (MIP) solver.

MATPOWER 7.1 on MATLAB 2019b was used for the power flow simulations.

3.4.1 Technical Viability: Power Flow Analysis

To incorporate effects of seasonal variations, two working days were analyzed: a winter day

(21-Jan-2019) and a summer day (01-Jul-2019), both a Monday for consistency.

For the homeowners, the summer and winter residential tariffs are shown in Fig. 3.5, according

to commercial tri-hourly electricity tariffs in Portugal, which can be seen found in [119]. For the

EVPL, the energy, reserve, and regulation prices are according to the Iberian market, which are

available online by the Portuguese TSO (REN) [120]. The energy price in the Iberian market is

also plotted in Fig. 3.5. It is assumed that both the PL and homes use maximum power point

tracking (MPPT) PV installations, and it is also assumed the normalized (unit) MPPT generation

is the same for both.

Accordingly, real PV generation data was obtained from a smart home [116] in Porto for

the given days and the normalized MPPT generation is shown in Fig. 3.6. After generating the

daily arrival/departure and commuting schedules for all 108 EVs, the aggregated load profiles of

Neighborhood 1 and 2 are shown in Fig. 3.6. It is noteworthy that the two neighborhoods do not

have the same profile, due to the variations of the individual schedules. The energy exchanged

between the grid and each of the EMSs installed is shown for the neighborhoods and the PL in

Fig. 3.8 and 3.9, respectively.

In Fig. 3.10, active power losses are plotted for all four scenarios. As mentioned in II.A,

evaluating these intermediate scenarios can provide some insight of the contribution of each EMS

to the final result. In Figs. 3.11 and 3.12, scenarios 1 (base) and 4 (final) are compared for all

variables of interest (voltages at buses 22, 25, and 33, total power supplied by grid, and total

power losses) between the summer and winter cases.

In Fig. 3.10 it is observed that applying only the HEMSs has a slight but consistently favorable

effect on grid losses. This is expected, since the HEMS favors self-consumption and only injects

to the grid in times of excess PV generation, which is also a time of high load demand.
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Table 3.4: Loads connected to the simulated power grid.

Bus Load Bus Load Bus Load

1 Slack Bus 12 Commercial - BTN 23 Residential – BTE1
2 Commercial - BTN 13 Commercial - BTN 24 Residential – BTE1
3 Commercial - BTN 14 Commercial - BTN 25 *Neighborhood 2*
4 Commercial - BTN 15 Commercial - BTN 26 Residential – BTE1
5 Commercial - BTN 16 Commercial - BTN 27 Residential – BTE1
6 Commercial - BTN 17 Commercial - BTN 28 Residential – BTE1
7 Commercial - BTN 18 Commercial - BTN 29 Residential – BTE1
8 Commercial - BTN 19 Residential – BTE1 30 Residential – BTE1
9 Commercial - BTN 20 Residential – BTE1 31 Residential – BTE1
10 Commercial - BTN 21 Residential – BTE1 32 Residential – BTE1
11 Commercial - BTN 22 *Neighborhood 1* 33 *EVPL*

By looking at Fig. 3.11(c)-(d) and 3.12(c)-(d), it can be seen that very minimal (barely

observable) change occurs in the voltage profiles at the neighborhoods buses. With or without

EMSs, the p.u. voltage at the neighborhood buses is very close to 1 for both the winter and

summer days. Meanwhile, the PLEMS can be seen to have a more significant impact on the power

flow results.

Figure 3.6: Normalized MPPT PV output for the summer and winter days.
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Figure 3.5: Residential tariffs and Iberian market prices for summer and winter days.

Figure 3.7: Active power load profile with no EMSs (scenario 1) in the summer day for a)
Neighborhood 1 and b) Neighborhood 2.
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Figure 3.8: Active power exchanged with grid with coordinated EMSs (scenario 4) in the summer
day for (a) Neighborhood 1 and (b) Neighborhood 2.

Figure 3.9: Active power exchanged with grid with coordinated EMSs (scenario 4) in the summer
day for the EVPL.

From Fig. 3.10 it can be seen that the intermediate scenario 3 (with the PLEMS and without

the HEMSs) is very similar to the final scenario 4 (with all EMSs). In scenario 3, during the

summer day the power losses are dramatically decreased in the morning (at 09:00). In this time

the majority of EVs are arriving to the PL and are available to operate in V2G modes, and PV

generation starts. With both factors combined, the EVPL starts to inject power to the grid and this

is met with the observed drop both in power losses and power supplied by the grid.
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Figure 3.10: Comparison of active power losses for all scenarios (summer).

In Fig. 3.11(d) it can be seen that this corresponds to an observable over-voltage due to the

injected power to the grid. In the winter, the exact opposite occurs at this time, since the morning

surge of EVs occurs when PV generation is not enough and an undervoltage occurs since power

has to be consumed from the grid.

Figure 3.11: Power flow results for the summer day: (a) grid active power losses, (b) active power
supplied by the grid, (c) voltage at Neighborhood 1, bus 22 (d) voltage at Neighborhood 2, bus 25,
and (e) voltage at EVPL, bus 33. Black line represents base scenario (no EMSs) red line represents
final scenario (all EMSs).

Figure 3.12: Power flow results for the winter day: (a) grid active power losses, (b) active power
supplied by the grid, (c) voltage at Neighborhood 1, bus 22 (d) voltage at Neighborhood 2, bus 25,
and (e) voltage at EVPL, bus 33. Black line represents base scenario (no EMSs) red line represents
final scenario (all EMSs).
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Table 3.5: Results from the power flow analysis.

Season Winter Summer

Scenario No EMSs All EMSs No EMSs All EMSs

Total Energy Supplied (MWh) 59.8 58.6 59.8 57.2
Total Energy Losses (MWh) 1.8 1.8 1.8 1.7

Around 12:00, the opposite occurs. The PL is full at this time and requires energy from

the grid to charge the parked EVs (as seen in Fig. 3.9). However, due to PV generation and

self-consumption, this is still met with a decrease in system losses and power supplied by the grid;

and an undervoltage can be observed. Since this is around the peak PV generation time, the same

effect is observed in the winter albeit with less magnitude.

The total power loss and power supplied by the grid for both days are reported in Table 3.5.

This effect results in the observed shift of the peak power losses time of the day. From this study,

the following inferences can be drawn:

• A synergistic effect is observed in which an added benefit is obtained by applying all the

EMSs compared to each one separately.

• Overall, all observed power flow variables show added benefits for the summer day

compared to the winter one.

• The employed HEMSs have a slight but consistently favorable effect on the power grid.

• The employed PLEMS has a more significant effect on the power grid. During the summer

the morning surge results in a drop in grid power losses and an overvoltage at the PL bus.

During the winter, the morning surge causes a significant undervoltage due to insufficient

PV generation.

• The employed PLEMS has a more significant effect on the power grid. During the summer

the morning surge results in a drop in grid power losses and an overvoltage at the PL bus.

During the winter, the morning surge causes a significant undervoltage due to insufficient

PV generation.

• All voltages in the network, for all cases, are well within the allowed safety range (0.9-1.1).
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3.4.2 Economic Viability: Cost Analysis for EV Owner

With the technical viability of the proposed scheme confirmed, a second study was performed to

analyze the economic aspect from the EV owners’ point of view. As it is advised to investigate

the worst-case scenario for economic purposes, the winter case was used. The simulations

were extended for the entire week, rather than one day, for the working week corresponding to

21/25-Jan-2019. A single EV was extracted and analyzed to obtain the total electricity costs for

the full working week. The results of this study are shown in Fig. 3.13 (a)-(d), and Table 6. By

tracking the full SoC variation during the working week, the total electricity bill for the EV owner

can be calculated based on the: i) cost of purchasing electricity at home, ii) profit from selling

energy to grid at home, iii) tariffs paid to the PL for parking and charging, iv) income from the

parking lot for V2G compensation.

The breakdown of the week electricity bill for the EV under study is shown in Table 3.6.

Figure 3.13: SoC variation during the full winter working week for the EV under study in the case
of (a) no EMSs, (b) only HEMSs, (c) PLEMS only, (d) all EMSs.

• Employing the HEMS introduces a significant reduction in the weekly electricity bill

compared to the base case (-14%).
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Table 3.6: Total electricity bill for the owner of the EV.

Scenario
Day

Total
1 2 3 4 5

S1 C 1.37 C 1.08 C 1.03 C 1.11 C 1.21 C 5.79
S2 C 1.25 C 0.93 C 0.81 C 0.96 C 1.05 C 4.99
S3 C 1.61 C 1.48 C 0.87 C 0.94 C 1.21 C 6.11
S4 C 1.46 C 1.32 C 0.64 C 0.82 C 1.05 C 5.30

• Employing the PLEMS alone has a negative effect on the EV owner. This is expected since

the PLEMS’s objective function is to maximize the EVPL’s profit.

• Employing the HEMS along with PLEMS overcomes the adverse effect of the previous

scenario and results in a net reduction in the bill compared to the base scenario (-9%).

Overall, the employment of the coordinated EMSs has been shown to be both technically

beneficial for the power grid and economically beneficial for the EV owners.
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3.5 Chapter Conclusions

An innovative coordination framework was proposed and implemented for different EMSs in a

smart city. The model was conceptualized based on the coordination between individual HEMSs

belonging to the EV owners and a PLEMS at their workplace. The HEMS only needed to share

the EV arrival time at the PL, EV departure time from the PL, and arrival SoC. Meanwhile,

the PLEMS shared each EV’s departure SoC with its HEMS. Any extra information needed by

the EMSs (e.g., PV forecasts, electricity market data, traffic data) was obtained through public

cloud/web applications and repositories. The individual EMSs and the proposed coordination

framework were implemented and tested based on real-world data and by simulating a day-ahead

operation. Two studies were performed. In the first, a power flow analysis was made to analyze

the technical viability of the proposed approach. In the second, an economic analysis was made

by calculating an EV owner’s electricity bill for a full working week under different scenarios

of EMS coordination. The results of both studies showed that the proposed EMS coordination

framework was both technically beneficial for power grids and economically beneficial for the

EV owners.

In this chapter, the cloud-based coordination of modern day SG EMSs was investigated and the

techno-economic benefits analyzed. In the next two chapters, the transition to a fully cloud-based

operation of future SGs is demonstrated through the development of novel fully decentralized

algorithms for forecasting (chapter 4) and power flow management (chapter 5).





Chapter 4

Fully Decentralized Forecasting of
Renewable Power Generation

A novel ensemble algorithm based on kernel density estimation (KDE) is proposed to forecast

distributed generation (DG) from renewable energy sources (RES). The proposed method relies

solely on publicly available historical input variables (e.g., meteorological forecasts) and the

corresponding local output (e.g., recorded power generation). Given a new case (with forecasted

meteorological variables), the resulting power generation is forecasted. This is performed by

calculating a KDE-based similarity index to determine a set of most similar cases from the

historical dataset. Then, the outputs of the most similar cases are used to calculate an ensemble

prediction. The method is tested using historical weather forecasts and recorded generation of

a real PV installation located in Portugal. Despite only being given averaged data as input, the

algorithm is shown to be capable of predicting uncertainties associated with high frequency

weather variations, outperforming a deterministic prediction based on solar irradiance data.

Moreover, the algorithm is shown to outperform a neural network (NN) in most test cases while

being exceptionally faster (32 times). Given that the proposed model only relies on public and

locally-metered data, it is a convenient tool for use by owners or operators of DG installations,

including small-scale prosumers, to effectively forecast their expected generation without

depending on private/proprietary data or divulging their own. In this manner, the proposed

algorithm can be deployed in a fully decentralized cloud-based system, providing highly accurate

forecasting capability locally and without the need for a central coordinating entity.

75
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Chapter Highlights and Novel Contributions:

• A novel KDE-based method for fully decentralized local forecasting is developed, relying only

on publicly available historical variables and locally metered data.

• The algorithm can run despite inconsistency or loss of data points. Using KDE, the most suitable

inputs are “activated” from the historical dataset based on a newly proposed similarity index.

• The proposed method was tested by considering meteorological and recorded power generation

from a real PV installation around the city of Coimbra, in the center region of Portugal.

• The method was capable of predicting uncertainties associated with high frequency variations,

outperforming both a deterministic prediction and a NN forecast.

• The developed method enables fully decentralized local forecasting for prosumers without

depending on private/proprietary data or divulging their own, being compatible with the cloud

based IoE paradigm.

Relevant Publication(s):

M. Lotfi, M. Javadi, G. J. Osório, C. Monteiro, and J. P. S. Catalão, "A Novel Ensemble

Algorithm for Solar Power Forecasting Based on Kernel Density Estimation," Energies, vol. 13,

no. 1, p. 216, Jan. 2020.

Published: http://dx.doi.org/10.3390/en13010216

http://dx.doi.org/10.3390/en13010216
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Chapter Nomenclature

Abbreviation Definition
ANN Artifical Neural Network

DER Distributed Energy Resources

DG Distributed Generation

EMD Empirical Mode Decomposition

GFS Global Forecasting System

KDE Kernel Density Estimation

MAE Mean Absolute Error

ML Machine Learning

MPPT Maximum Power Point Tracking

NN Neural Network

NRMSD Normalized Mean Root Square Deviation

PV Photovoltaic

RES Renewable Energy Resources

RF Random Forest

RMSD Root Mean Square Deviation
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4.1 Introduction

Accurate prediction of power generation from renewable energy sources (RES) is a challenging

task, posing problems for short-term operation of modern power systems [105]. This difficulty is

due to the high uncertainties and complexity of both the associated variables and the equipment

used for generation and grid connection. On the one hand, generation from RES is a function

of multiple meteorological factors (temperature, humidity, wind flow, etc.) which are in and

of themselves highly chaotic in nature and difficult to quantify [121, 122]. On the other hand,

the equipment used is also a source of significant uncertainty with reliability issues and failures

commonly occurring in installed power electronics, inverter-side, grid-side, and even the metering

apparatus [123].

The combined effect of chaotic input variables and complex energy conversion models render

deterministic approaches infeasible for the prediction of distributed generation (DG) from RES.

As such, statistical and/or probabilistic models are commonly employed not only to forecast DG

but also to predict market behavior in the case of high RES deployment [124, 125] which allows

for a computationally efficient way of accounting for uncertainties in inputs.

In recent years, there has been increased interest in the use of ensemble methods for power

system applications. Ensemble techniques have a decades-long track record in meteorological

prediction, proving their potential to effectively predict highly chaotic processes [126]. The main

premise of ensemble methods is to overcome both input and model uncertainties by compiling

a set (ensemble) of separate predictions into a forecast of most likely outcomes. Each separate

prediction is a result of varying input variables within their uncertainty range in addition to the

model uncertainty. Therefore, a combination of these separate predictions yields a range of

possible outputs representing a confidence/uncertainty region surrounding a most likely scenario.

In Fig. 4.1, the concept of an ensemble forecast is visualized considering the case of DG

production from RESs. Various meteorological factors are independent input variables and are

associated with a significant level of uncertainty. In addition, the physical energy conversion

models of DG units are also associated with a high uncertainty, leading to a significant change

in energy generation as a result of small perturbances in the meteorological variables. Ensemble

methods combine different scenarios based on both input and model uncertainties and establish

a confidence interval around a most likely outcome. One can see that the employment of an

ensemble technique involves the (continuously improving) prediction of some variable based on

historical data, without knowledge of the physical model relating the inputs with the outputs. This

is, in fact, the definition of machine learning (ML), and, as such, ensemble methods are often

classified accordingly [127].
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Figure 4.1: Visualization of an ensemble forecast. Rather than employing a deterministic/point
method (thick lines) to obtain the output from input variables, an ensemble of predictions is made
from varied input conditions (dashed lines), constructing an uncertainty region and most likely
output value(s).
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4.2 State-of-the-Art

As mentioned, the use of ensemble methods is gaining popularity with the increased complexity

and uncertainty of distributed energy resources (DERs). Before presenting the proposed method, a

review of recent works is presented to highlight the state-of-the-art scientific literature on ensemble

methods applications to power systems in recent years.

In Reference [128], different strategies for combining forecasts of solar photovoltaic (PV)

generation were presented. In this study, the ensemble prediction was obtained by combining

different probabilistic models rather than an ensemble of results of the same model. It used three

models (i.e., QKNN, QRF, and QR) and the inputs were historical PV power and weather data.

By testing using the GEFCOM 2014 data, the results showed that the use of an ensemble of

various probabilistic forecasts resulted in a significant increase in forecasting accuracy for solar

photovoltaic (PV) systems as opposed to the use of individual ones, regardless of the ensemble

strategy and/or scenarios considered.

In Reference [129], the advantages and disadvantages of applying an ensemble to improve

empirical mode decomposition (EMD) techniques were reported, which are mentioned as being

commonly applied to wind forecasting. While the ensemble improved EMD models are

associated with additional computational burden, they are reported to outperform other techniques,

specifically in tackling the challenge of mode mixing. In addition, the authors reported it was

significantly more beneficial to apply ensemble decomposition to artificial neural network (ANN)

models as compared to using optimization methods to tune the ANN parameters. The previous

statements were shown to hold for all time resolutions in wind power forecasting. In Reference

[127], a comparison of numerous commonly used ensemble, ANN, and other ML techniques was

performed for solar power forecasting. Random Forest (RF), an ensemble method, was found to

exhibit the best performance. Two main conclusions were made by the study: (1) a seasonal

bias was shown with spring and winter being more challenging to forecast than summer and

autumn (keeping in mind that the data were from Norwich, UK) and, more importantly, that (2)

a combination of simple algorithms yielded better and more reliable results than any individual

algorithm on its own, regardless of its complexity.

In Reference [130], a short-term probabilistic forecasting method was proposed based on a

competitive ensemble of different base predictors of PV power. The method was implemented

using different probabilistic approaches which were trained as base predictors in order to obtain

an ensemble of the predictive distribution with optimal characteristics of accuracy and reliability.

In Reference [131], the reliability, robustness, and computational burden of a proposed PV

power forecasting model based on the RF method was combined with the extra trees technique

on an hourly basis and compared against supervised support vector regression. For a fair and

comparative analysis, the models used comparable forecasting data, applicable for forecasting

hourly PV power.
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A probabilistic PV power forecasting model was proposed in Reference [132] and applied to

several French PV plants considering six days of lead time with a resolution of thirty minutes. The

proposed model was derived from multiple forecasts considering the national numerical weather

predictions and including ensemble forecasts. Then, a free online parameter learning technique

generated a weighted combination of the individual PV outputs, and the resulting weights were

later sequentially computed before each forecast, using only historical data, with the goal of

minimizing the continuous ranked probability score criterion.

An analog ensemble forecasting method for day-ahead regional with hourly resolution was

presented in Reference [133]. The proposed model considered publicly available weather forecasts

and power measurement data, considering some historical sets of temperature, irradiance, and

terrain slopes as well, among others. To process the input data, clustering and blending strategies

were used to improve the PV forecasting results which were compared and validated against

several numerical models based on weather forecasts.

Photovoltaic power variability was studied in Reference [134], proposing a data-driven

ensemble modeling technique to improve the forecasting of PV output. Also, three different

models were analyzed within a recursive arithmetic average technique, considering stand-alone

forecasting results. To prove the superiority of the proposed model, the comparison was carried

out considering a considerable number of different training and testing samples, showing that the

ensemble model generally outperforms different stand-alone forecasting models.

A PV forecasting model in Reference [135] used an ANN ensemble scheme based on

particle swarm optimization with trained feed-forward neural network. The proposed model was

constructed considering five different structures with varying network complexities, in order to

improve the forecasting results. Then, the model was combined using trim aggregation after

removing the error boundaries. Exogenous data, such as physical specification and environmental,

were used as model inputs. Moreover, a clearness index was used to classify days accordingly

with their features, considering a yearly basis analysis with a real case study. It was shown that

ensemble schemes improve the forecast results in comparison with benchmark models.

In Reference [136], an hourly PV power forecasting model was presented based on clustering

and ensemble prediction using the RF method. First, clustering was used to improve the

computational burden by selecting the necessary weather variables. Then, the RF method with

different parameters was implemented as a component model to find weather regimes making

up the ensemble prediction. Finally, weighted computation was carried to analyze the different

forecasting weather regimes in order to obtain the final results. Ridge regression was used to

determine the weight of each weather variable automatically.

In Reference [137], a hybrid PV forecasting model combined the ML method with the Theta

statistical method. Multiple ML components were used: long short-term memory, gate recurrent

unit, and unsupervised learning. Structural and data diversity were key to improving the accuracy

of the model. Four different approaches were implemented for validation, considering two real

case studies. The proposed hybrid model was shown to be superior to traditional ML without

statistical components.
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In Reference [124], a new ensemble technique was employed to improve probabilistic

forecasting of day-ahead price forecasting of the Iberian market. An approach based on kernel

density estimation (KDE) was used to “activate” the best set of input variables which minimize

the forecasting error. This study is an example of numerous others applying probabilistic and

ML techniques for electricity price forecasting which has been increasing exponentially in the

past decade as shown by Reference [6]. The latter shows that, while non-existent before 2003,

probabilistic methods (or hybrid ones) have quickly gained ground as one of the main approaches

used contemporarily for price forecasting [138, 139, 140].

The analysis in Reference [141] has shown that, for the case of price forecasting, while

combining different forecasts in an ensemble framework does not necessarily always bring about

improved accuracy, it does contribute to more reliable forecasting by decreasing the risk associated

with an individual method.

Based on the conducted literature review, the following points were noted and were carried

forth in the formulation, analysis, and discussion made throughout this chapter:

• The use of combinatorial ensemble techniques is shown to significantly improve the

accuracy of RES-based DG forecasting in addition to guaranteeing a more reliable and/or

robust prediction;

• An ensemble of simple probabilistic/statistical techniques is shown to produce better and

more robust DG forecasting than individual complex models;

• KDE has been recently employed to “activate” input sets for probabilistic price forecasting

models, showing great success in improving the accuracy. This was only found to be tested

on price forecasting, and no studies were found using this methodology for DG forecasting

[124].

4.3 Proposed Methodology

Consider an output variable P that has a value which depends on a set of inputs V:= {v1,v2, . . .NV}
through some unknown model f :

P = f ( V) = f (v1,v2, . . .NV ) (4.1)

where NV is the number of independent variables which affect output P. For the purpose of

generalization, the inputs V are considered multidimensional, such that:

v1 = {v1,1,v1,2, . . .v1,H1} (4.2)

In this case, H1 is the number of dimensions of v1. Now, consider scenario “new” for which

we are trying to predict the output Pnew, given a set of conditions Vnew:

Pnew = f ( Vnew ) = f (vnew
1 ,vnew

2 , . . .Nnew
V ) (4.3)
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The goal is to predict the value of Pnew given only the new conditions Vnew and a historical set

of No cases (with no knowledge of f ):

Pold,o = f
(

Vold,o
)
= f

(
vold,o

1 ,vold,o
2 , . . .Nold,o

V

)
, ∀ o = 1,2, . . . ,No (4.4)

While the model function f is assumed to be chaotic, in this model we assume that the number

of independent input variables and their dimensions remain constant and, therefore, the following

equations hold:

Nnew
V = Nold ,o

V = NV ;Hnew
i = Hold ,o

i = NH ; ∀o = 1,2, . . . ,No; i = 1,2, . . . ,NV (4.5)

At this stage, the objective was to select a subset of Ns cases which were most suitable to

form an ensemble prediction of Pnew. To do this, the KDE function similar to Reference [124] was

used to calculate a similarity index sold,new between the new case and each of the old cases in the

historical dataset. In this case, the most similar Ns cases (with the highest similarity index) can be

activated by means of the product of kernel functions of each variable. This is visualized in Fig.

4.2.

The Gaussian kernel functions were used to construct the similarity index KDE, as they are

most suitable for cases when little or no knowledge of the model is known.

sold,new =

 NV

∏
i

NH

∏
j

e
− 1

2

(
vold
i,h −vneu

i,h
bi

)2
1

N
V NH

(4.6)

The bandwidth value bi can be used to increase or decrease the sampling window (relative to

the full range of the historical samples) for each variable in the same manner that KDE works, i.e.,

the narrower the bandwidth, the higher assumed correlation between variable v and the output P.

Therefore, the value of bi for each variable i can be expressed by means of a tuning coefficient αi:

bi = αi

(
max

o

(
vold,o

i

)
−min

o

(
vold,o

i

))
; ∀ o = 1,2, . . . ,No; i = 1,2, . . . ,NV (4.7)

In this way, this normalized tuning coefficient is varied from 0 (exclusive) to 1 (inclusive),

corresponding to a bandwidth value between zero (exclusive) and the maximum range of the

historical value of the variable (inclusive):

0 < αi ≤ 1 ∀ i = 1,2, . . . ,NV (4.8)

The similarity index in (4.6) can be simplified in case all input independent variables are

scalars. In this case, NH is equal to one, and the equation is reduced accordingly:
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Figure 4.2: Demonstration of how the proposed Kernel Density Estimation (KDE)-based
similarity index is used to extract Ns cases to form an ensemble prediction of the new output
value.

sold,new =

 NV

∏
i

e
− 1

2

(
vold
i −vnew

i
bi

)2
 1

NV

(4.9)

Given a new case, the similarity index is calculated for all old cases in the historical dataset.

We can now construct a sorted array S which has elements that correspond to the index of the old

case; this array thus contains the indices of the historical dataset, sorted from most to least similar

to the current case based on their calculated similarity index in (4.9):

S = [k1,k2 . . .kNo ] (4.10)

In this case, k1 is the index o of the historical case with the highest, k2 to the second highest,

etc. Now, the top Ns samples can be selected to perform the ensemble prediction. The simplest

prediction is to calculate the mean value of the top Ns Pold values:

P̂new ≈
∑

Ns
i=1 Pold

ki

Ns
(4.11)

To obtain a confidence/uncertainty interval around this expected output, percentile ranks can

be used by constructing a cumulative distribution function of the top Ns values. By doing so, a

confidence interval can be determined as follows:

P̂new
lb,x% ≤ P̂new ≤ P̂new

ub,x% (4.12)

P̂new
lb,x% = ρ 1

2 (100−x)%

({
Pold

k1
,Pold

k2
, . . . ,Pold

kNs

})
(4.13)

P̂new
ub,x% = ρ 1

2 (100+x)%

({
Pold

k1
,Pold

k2
, . . . ,Pold

kNs

})
(4.14)
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What (4.12) means is that for a confidence of x%, Pnew lies between the lower and upper

bounds equal to P̂new
lb,x% and P̂new

ub,x%, respectively; which are calculated, as per (4.13) and (4.14), by

means of the percentile ρ 1
2 (100−x)% and ρ 1

2 (100+x)% of the top Ns values
({

Pold
k1

,Pold
k2

, . . . ,Pold
kNs

})
,

respectively. These constitute the confidence bounds of the forecast.

It must be noted that there are clearly more complex means of calculating x%, Pnew, and

the confidence bounds. However, the main focus of this study was to highlight the use of the

similarity index to extract the set S, and the choice of the simplest ensemble prediction afterwards

was intentional to demonstrate the power of such a selection algorithm even with the most basic

ensemble applied.

4.4 Case Study and Validation

4.4.1 PV Installation in Portugal

In order to test and validate the proposed algorithm, a real case study was used based on solar

PV installations located in the vicinity of the city of Coimbra in the center region (“Região do

Centro”) of Portugal as shown in Fig. 4.3. The technical specifications of the plant are listed in

Table 4.1. Historical forecasts and measurements are available for the same installation for a full

year from 15 March 2015 to 15 March 2016 as detailed in Table 4.2. Annual plots of all variables

are provided in Appendix A.

In this case, the historical weather forecasts were the input variables (V) and are publicly

provided by the Global Forecasting System (GFS) model with a 22 km resolution. The GFS’s data

are available for any region of the world and is publicly available online [142]. The forecasts are

made at 18:00 (UTC time) of each day for the day-ahead with a 3 h resolution (average of each

3 h interval of the day: 0:00, 3:00, 6:00, ..., 21:00). The provided forecasts are for wind speed,

temperature, solar irradiance, precipitation, and humidity.

The output AC power of the inverter was recorded for the same year. A 20 kW SMA Sunny

Tripower inverter was installed with 2 maximum power point trackers (MPPTs) installed (4 strings

per inverter). The logging frequency of the AC power output was approximately 5 min. For this

study, the recorded AC power was synchronized with the forecasts by applying a 3 h average

(averaging can be seen in Figure A.6). It is important to stress that the proposed prediction method

was only given the averaged output power as input. However, high-resolution data were used for

validation to test if uncertainties associated with high frequencies were captured.
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Figure 4.3: Region in the center of Portugal used as a case study. The PV installations used in the
current analysis were located within a 10 km radius of the city of Coimbra (40◦12’ N, 8◦25’ W).

Table 4.2: Variables in the historical dataset provided (from 15 March 2015 to 15 March 2016).

Historical Variable Data Source Spatial Resolution Temporal Resolution Units
Wind Speed Meteorological Forecast 22 km 3 h m/s

Temperature Meteorological Forecast 22 km 3 h °C

Solar Irradiance Meteorological Forecast 22 km 3 h W/m2

Precipitation Meteorological Forecast 22 km 3 h mm

Humidity Meteorological Forecast 22 km 3 h %

Inverter AC Power (Output) Real Measurement - ∼5 min kW

Table 4.1: Technical specifications of the PV plant used as a case study.

Parameter Value Units
Number of Panels (300 kWp each) 53 -
Panel Area (each) 1.713 m2.
Total Installed Capacity 18 kWp
Inverter Capacity 20 kW
Nominal DC Voltage 600 V
Overall Efficiency 20 %
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4.4.2 Numerical Irradiance-Based Forecast

Given that the GFS data and the output power were synchronized, and since MPPTs were installed

with the inverters, one can use the following equation to predict the maximum possible power

output from the current installation for each data point.

Pt ≈ Pirr
t = ηavgNpApRw f

t (4.15)

where Pirr
t is the predicted power output at time t calculated numerically from the irradiance

forecast, ηavg is the overall average energy conversion efficiency of the PV plant (accounting for

the PV conversion and inverter efficiency), Np and Ap are the number of panels and the area of

each panel (in m2), respectively, and Rw f
t is the direct incident solar irradiance (in W/m2) obtained

from the weather forecast for time t.

4.4.3 Seasonal Test Weeks

Also, in order to check for seasonal effects and/or bias, four test weeks were extracted from

the annual data corresponding to all four seasons. The annual measured output power, annual

predicted maximum output (based on irradiance estimation in (4.15), and detailed plots thereof for

all four representative weeks are shown in Fig. 4.4.

By inspecting the plots shown in Fig. 4.4, particularly comparing the maximum theoretical

output based on irradiance and recorded power, two important observations are worthy of noting:

• During the summer, the maximum power output prediction based on (4.15) was greater than

the recorded value. This is what one would expect, and the operating efficiency and/or

reliability of the installation would seldom reach the maximum theoretical power output;

• During the winter, the prediction based only on solar irradiation failed to predict any value

of output power (one can see that the predicted values were zeros throughout the winter and

also by looking at the plot of the winter week). This is due to the fact that the meteorological

forecasts provided by GFS are averaged over large temporal and spatial resolutions. As a

result of the averaging, the forecast irradiance dissipates to zero during the winter.

As such, it is clear that relying solely on the irradiance models, is insufficient to make any

prediction of the expected power output of the solar PV installations.

Therefore, the objective of this case study was to check if the proposed method, taking

into consideration GFS data as input variables and the recorded (and synchronized) AC power

output of the plant, would be capable of accurately forecasting the power output under different

meteorological conditions.
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Table 4.3: Description of input variables for the historical dataset and value chosen for bandwidth
coefficient for the KDE-based similarity index calculator.

Bandwidth Coefficient Value

αv1 (hour of the day) 0.4
αv2 (day of the year) 1.0
αv3 (wind speed forecast) 0.8
αv4 (temperature forecast) 0.5
αv5 (solar irradiance forecast) 0.1
αv6 (precipitation forecast) 0.8
αv7 (humidity forecast) 0.5

The GFS meteorological data are plotted for the entire year in Fig. A.1, Fig. A.2, Fig. A.3,

Fig. A.4, Fig. A.5 and Fig. A.6 in the Appendix A. Zoomed-in plots are also provided for each

test week in order to show the seasonal differences and highlight some visible correlation between

the weather conditions and the recorded AC power output. The plots of spring, summer, autumn,

and winter are shown in Fig. 4.5, Fig. 4.5, Fig. 4.5 and Fig. 4.5, respectively.

4.4.4 Implementation and Validation

To test the proposed algorithm in Section 4.3, the power output for each of the four test weeks was

forecasted, only taking as input variables the meteorological forecasts provided by GFS. The hour

of the day and day of the year were appended to the array of input variables in order to give the

potential of favoring closer times/dates. The input variable array for this case was as follows:

V = {v1,v2,v3,v4,v5,v6,v7} (4.16)

The description of each variable and the choice of the bandwidth tuning coefficients, as in (4.7)

and (4.8), are provided in Table 4.3. As explained in Section 4.3, the smaller the value of α , the

higher the assumed correlation between the output variable and its corresponding input variable.

The values used in this study were assumed based on the well-established physical relationships

between each meteorological variable and the target one (PV output power). For instance, solar

irradiance was associated with the most dependence and thus a value of 0.1 was chosen, etc. This

can heuristically be set based on visual inspection of Fig. 4.5, Fig. 4.6, Fig. 4.7, and Fig. 4.8.
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In order to investigate the performance of the proposed algorithm, the results obtained for

the four test weeks are against the numerical irradiance-based forecast based on (4.15), and an

ANN (trained using the same data). A feed-forward ANN was used with 1 hidden layer and 10

neurons. The performance of all three methods was compared in terms of computational time

and accuracy. Since the ANN was trained using the Levenberg–Marquardt algorithm [143], its

results and computational time both varied in every run due to the random data division and

training process employed. Therefore, to evaluate the results in a fair manner, the ANN was run

a sufficiently large number of times (10,000 runs), and the average runtime and forecast results

were used for comparison.

To quantify the forecast error, three criteria were used: the mean absolute error (MAE), root

mean square deviation (RMSD), and the normalized root mean square deviation (NRMSD). The

MAE provides a simple overall measurement of the mean error between forecasted P̂ and real P

values:

MAE =
∑

Nt
t=1

∣∣P̂t −Pt
∣∣

NT
(4.17)

where the subscript t corresponds to the value at time step t and Nt is the total number of time

steps. The RMSD is based on the on the quadratic mean:

RMSD =

√
∑

Nt
t=1

(
P̂t −Pt

)2

NT
(4.18)

Both the MAE and RMSD provide a scale-dependent measure of the deviation between the

forecasted and real values. The NRMSD provides a normalized measure as a percentage which is

sometimes more favorable when comparing different models.

NRMSD =
RMSD

(Pmax−Pmin)
·100% (4.19)

Pmax and Pmin are the maximum and minimum values of the real data, respectively. As such, the

NRMSD provides a scale-independent measure. The MAE, RMSD, NRMSD, and computational

time are all used to assess the performance of the different approaches for all four test weeks.

The proposed algorithm was developed as original code by the authors using the MATLAB

R2019b environment on a standard laptop computer with the following specifications: Intel Core

i7-8550U CPU @ 1.80 GHz, 16.0 GB RAM, Windows 10 64 bit operating system. The neural

network used for validation was based on the MATLAB 2019b Statistics and Machine Learning

Toolbox [143].
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Figure 4.4: Annual plot of recorded AC power output, annual plot of maximum theoretical
power output based on solar irradiance estimation and average efficiencies, and four test weeks
representing all four seasons (top); and for each test week, zoomed-in plots of recorded AC power
output (un-averaged), 3 h averaged recorded AC power output (synchronized with GFS data), and
maximum theoretical power output based on solar irradiance estimation and average efficiencies
(bottom).
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Figure 4.5: Plots of recorded output power and Global Forecast System (GFS) meteorological data
for the spring test week.

Figure 4.6: Plots of recorded output power and GFS meteorological data for the summer test week.



4.4 Case Study and Validation 93

Figure 4.7: Plots of recorded output power and GFS meteorological data for the autumn test week.

Figure 4.8: Plots of recorded output power and GFS meteorological data for the winter test week.
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4.5 Results and Discussion

4.5.1 Results of the Proposed Ensemble Algorithm

The results of the proposed ensemble algorithm are shown in Fig. 4.9. The predicted value was

plotted, along with confidence intervals of 68%, 95%, and 99.7%. The following points are noted:

• The proposed ensemble algorithm successfully managed to forecast the PV power output,

relying only on the historical GFS meteorological data, for all four tests weeks of all seasons;

• The power production in cases when the deterministic model based on irradiance was

inadequate (i.e., winter season) was successfully predicted;

• Despite only being provided averaged data, the confidence intervals successfully managed

to cover high-frequency fluctuations during most days;

• The confidence interval grows and shrinks in response to such fluctuations even within the

same day (e.g., Summer week, day 5);

• The forecasts mostly underestimated the power output. This is favorable to overestimation

particularly from the point of view of operators of DG installations.

4.5.2 Comparison and Validation

A comparison between the forecast obtained and that of an irradiance-based numerical model (in

(4.15)) and an ANN was used to validate the proposed method. As elaborated in the previous

section, the same data were used to train the ANN. Since a random data division and training

method was employed (which aimed to minimize the computational time of the ANN), the average

of a sufficiently large number of runs of the ANN (i.e., 10,000 runs) was used for a fair comparison.

The comparison was made considering the MAE, RMSD, and NRMSD error criteria for each

of the test weeks and is shown in Table 4.4. The different forecasts are visualized in the plots

shown in Fig. 4.10. The computational time to forecast all four weeks by the proposed method

and the ANN (average of 10,000 runs in each case) is shown in Table 4.5.

By comparing the results of the different models, the following points can be verified:

• According to all error criteria used, the proposed method outperformed the irradiance-based

prediction for all seasons. It outperformed the ANN in all seasons except winter;

• Both the ANN and the proposed method managed to provide a reasonably accurate

prediction of the output power in the winter, where a numerical irradiance-based model

completely fails;

• Despite the ANN being capable of providing a better average error for the winter, the

capability of the proposed method to capture high-frequency fluctuations in its confidence

intervals provides an advantage over the ANN;
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Table 4.4: Comparison of the MAE, RMSD, and NRMSD error criteria for the results obtained
for each of the test weeks from the irradiance forecast, ANN, and the proposed method.

Criterion Method Winter Spring Summer Autumn

MAE (kW)
Irradiance Forecast 34.6 15.7 17.4 15.3

Neural Network 10.7 15.5 8.4 7.9
Proposed Method 12.6 14.0 3.6 7.7

RMSD (kW)
Irradiance Forecast 3.062 2.138 2.508 1.857

Neural Network 0.949 2.114 1.203 0.951
Proposed Method 1.115 1.914 0.523 0.928

NRMSD (%)
Irradiance Forecast 34.6 15.7 17.4 15.3

Neural Network 10.7 15.5 8.4 7.9
Proposed Method 12.6 14.0 3.6 7.7

• The proposed method was extraordinarily fast in terms of computational time, being 32

times faster than the ANN while outperforming the ANN in the majority of situations.

4.5.3 Prospects for Future Work

After testing the proposed method, confirming its validity, and taking note of its superior

performance particularly in terms of providing an accurate forecast with high computational

efficiency, the following recommendations are provided for future work following on this study:

• The effect of using additional meteorological variables (e.g., absolute and relative

atmospheric pressure) should be investigated in terms of the forecast accuracy and

computational burden;

• Optimal tuning of the bandwidth coefficients should be studied. This can be performed

in a pre-processing stage (e.g., with correlation analysis) or using a reinforcement

learning-based design in which the values are self-tuned every time the code is run. In

the latter, using an optimization method to determine the optimal values may be an option

for a hybrid structure;

Table 4.5: Comparison of the computational time between the proposed method and the ANN.

Computational Time to Forecast all Four Weeks
(Average of 10,000 runs)

Neural Network 1.46 s
Proposed Method 0.045 s
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• Due to the fact of its high computational efficiency and its reliance only on publicly available

historical weather forecasts, the proposed method seems to have great potential to be applied

to forecast RES-based DG. As such, follow-up work should test the proposed method

on other RES technologies such as wind power. Moreover, while the study focused on

RES-based DG forecasting, the method can be employed for any local forecasting (e.g. load

demand forecasting), paving the way to the fully decentralized energy system paradigm.

Figure 4.9: Results of the proposed algorithm for all four seasons, showing real output power
(un-averaged) and predicted output power. Confidence intervals of 68%, 95%, and 99.7% are
highlighted.
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Figure 4.10: Comparison of results obtained by irradiance forecast estimate, ANN, and the proposed method for all four seasons.
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4.6 Conclusions

In this chapter, a novel ensemble algorithm based on kernel density estimation (KDE) was

proposed to forecast RES-based DG. The proposed method relies solely on publicly available

historical series of independent input variables (i.e., historical meteorological data) and the

corresponding local output (i.e., recorded power generation). Given a new case (with forecasted

meteorological variables), the resulting power generation was forecasted. For the new case to

be forecasted, a KDE-based similarity index was used to determine a set of most similar cases

from the historical dataset. Then, the corresponding outputs of the most similar cases were

used to calculate an ensemble prediction for the forecasted power generation. The proposed

method was tested by considering meteorological and recorded power generation from a PV

installation around the city of Coimbra, in the center region of Portugal. Despite only being

given averaged data as inputs, the developed algorithm was capable of predicting uncertainties

associated with high frequency variations in weather conditions, outperforming deterministic

prediction based on solar irradiance forecasts. The proposed method outperformed an ANN in

most cases while being exceptionally faster (32 times). Given its exceptional computational

efficiency and its reliance solely on public data (weather forecasts) and local metered data (power

generation), it is a convenient tool for use by owners or operators of DG installations, including

small-scale prosumers, to effectively forecast their expected generation without depending on

private/proprietary data or divulging their own.

The method developed in this chapter enables fully decentralized local forecasting, compatible

with the cloud-based IoE paradigm. While the study focused on RES-based DG forecasting, the

method can be employed for any local forecasting (e.g. load demand forecasting).

In the next chapter, the KDE-based similarity index concept is extended to develop a novel

machine learning method for fully decentralized power flow management.





Chapter 5

Cloud-based Power Flow Management
with Cooperative Information Exchange

Traditional power systems continually employed probabilistic methods to address uncertainties

in an accurate and computationally efficient manner. The modern dismantling of the centralized

operation paradigm is creating a renewed interest in probabilistic methods and their machine

learning (ML) successors as potential enablers for fully decentralized smart grids (SG). In this

chapter, a conceptual model is constructed for the transition from a fully centralized operation

of a SG to a decentralized one, proposing the transition scheme between the two paradigms. A

novel ML algorithm for fully decentralized operation is proposed, formulated, implemented and

tested. The proposed algorithm relies solely on local historical data for local agents to accurately

predict their optimal control actions without knowledge of the physical system model or access to

historical data of other agents. The capability of cloud-based cooperative information exchange

was augmented through a new concept of s-index activation codes, being encoded vectors shared

between agents to improve their operation without sharing raw information. The proposed

algorithm was evaluated using a modified IEEE 24-bus test system and synthetically generated

historical operation data based on typical load profiles. A week-ahead high-resolution (15-minute)

fully decentralized operation case was tested. The proposed algorithm is shown to guarantee less

than 0.1% error compared to a centralized operation case and outperforming a NN model. The

proposed algorithm is shown to be exceptionally accurate while being highly computationally

efficient, and has great potential as a versatile model for fully decentralized operation of SGs.

101
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Chapter Highlights and Novel Contributions:

• A conceptual model is constructed for the transition from a fully centralized operation of a SG

to a decentralized one, proposing the transition scheme between the two paradigms.

• In a fully decentralized SG run by local agents, a novel ML algorithm is proposed and formulated

(building on the method developed in chapter 4) to enable this transition and into cloud-based

fully decentralized system operation.

• The proposed algorithm relies solely on the local historical data for each agent to accurately

predict optimal control action without being given any information on the physical system from

outside their local zones (i.e., full grid structure is unknown), and without access to historical

data from other agents. As such, the proposed algorithm is designed not only to deal with

variable uncertainties, but also missing / lacking information in a decentralized system.

• The proposed algorithm incorporates the capability of cloud-based cooperative information

exchange without sharing private/raw data (e.g., local historical datasets or control actions

taken locally). This is performed by proposing a new concept of an s-index vector, which

is an encoded information that can be shared between agents to improve their control action

predictions without sharing raw information.
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Chapter Nomenclature

Abbreviation Definition
DR Demand Response

DSM Demand Side Management

DER Distributed Energy Resources

FFT Fast Fourier Transform

IoE Internet of Energy

IoT Internet of Things

KDE Kernel Density Estimation

ML Machine Learning

MAPE Mean Average Percentage Error

MC Monte Carlo

NW-KDE Nadarya Watson Kernel Density Estimation

OPF Optimal Power Flow

P2P Peer to Peer

ERSE Portuguese Energy Regulation Services Entity

pf Power Factor

PLF Probabilistic Load Flow

P-OPF Probabilistic Optimal Power Flow

PPF Probabilistic Power Flow

PDF Probability Distribution Function

RTS Reliability Test System

RES Renewable Energy Resources

SG Smart Grid
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5.1 Introduction

5.1.1 Background and Motivation

Despite the profound differences between modern smart grids (SG) and traditional power systems

of the past, the primary function remains unchanged: Achieve a balance between power generation

and demand, doing so at the minimal possible cost while ensuring system reliability and stability.

Optimal power flow (OPF) management is at the heart of this, aiming at identifying optimal

generation capacity of controllable/dispatchable generators in a power grid such that the total

demand is met. OPF ensures that an electrical power grid is operating at a minimal total cost given

the current demand profile and its technical and security constraints. OPF analysis is indispensable

for power system operators, being continuously employed to ensure that the system is running at

minimal or near-minimal operating costs [144].

In a traditional power system, the system operator is a single central entity with access to all

measurable variables in the power grid. Accordingly, constructing a deterministic AC power flow

model is possible [105]. The AC-OPF thus incorporates all constraints, including the available

generators’ costs and limitations, grid structure, and associated safety constraints (e.g. bus

voltage angle and transmission line power limits), to obtain the exact solution for ideal generation

levels of individual generators. However, a deterministic AC power flow and the resulting

AC-OPF models are both highly complex and highly non-linear, making it a formidable task to

mathematically construct for each specific case, in addition to being computationally expensive to

solve. Therefore, there has always been an interest in scientific literature to develop simplified and

computationally efficient models, popularizing linear programming approaches [145, 146].

Linearized OPF models do alleviate the mathematical complexity and computational expense.

However, they suffer from critical drawbacks. First, the obtained solution, while deterministic in

nature, is approximate and may lack in accuracy. Furthermore, linearization approaches can only

be applied if the objective function(s) are differentiable and continuous, and they do not consider

uncertain or unknown variables model [147].

The presence of the latter has been an issue even for traditional power systems. While a

centralized system operator would have access to all measurable variables in the grid, uncertain

parameters in the model persist for two reasons. First, in conventional power systems not all

variables are constantly being metered or measured. Second, the increased presence of renewable

energy sources (RES) as non-dispatchable sources inherently creates uncertain parameters in the

model [148].

Alternatively, quasi-deterministic and probabilistic methods have been developed to solve for

power flow and OPF in the presence of missing / unmeasurable data and RESs uncertainties

[149]. Quasi-deterministic methods, such as Monte-Carlo (MC) simulations, account for uncertain

variables by randomly generating a sufficiently large number of input samples to cover the entire

uncertainty range and obtaining a deterministic solution for each sample. Thus, the uncertainty

range of input variables is used to generate an uncertainty range of the outputs. While this provides

accurate and complete information on grid behavior, it is often computationally expensive [149].
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Probabilistic approaches employ statistical models to convert probability distributions of input

parameters to those of the outputs. Those have a significantly higher computational efficiency

and do not necessitate constructing a physical system model, however they require knowledge of

the uncertain variables’ probability distributions from a historical dataset, being predecessors to

modern machine learning (ML) algorithms [150].

In order to clearly identify the state-of-the-art progress on the development of probabilistic and

ML methods for new SG management paradigms, a review of historical literature of the original

probabilistic methods was first performed and is presented.

5.1.2 Historical Literature Review: History of Probabilistic Methods for
Traditional Power Systems

Decades ago and prior to proliferation of renewable/non-dispatchable generation, stochastic

behavior in electrical power grids existed essentially on the load side; hence the original name:

“Probabilistic Load Flow” (PLF) which is still used interchangeably with probabilistic power flow

(PPF). In 1974, Borkowska [151] published one of the pioneering papers to propose, implement,

and test a PLF method for power system operation and planning.

The proposed method was used to obtain probability distribution functions (PDF) of branch

(transmission line) power flows given those of input loads. First, three assumptions were made to

simplify complex nonlinear equations: 1) linear relationship between branch flows and net nodal

loads (linearized around expected values), 2) independence of active and reactive power, and 3)

power balance is a function of the sum of input and output powers only (i.e. independent of

individual nodal values).

Branch flow PDFs were then obtained by evaluating a recursive set of convolution integrations

of the input and output PDFs. This could be used to obtain practically valuable information

such as the probability of a line flow exceeding a certain value (e.g. capacity limit) or the

realistically possible range for line loads. A major drawback of Borkowska’s technique was that

a very large number of convolution integrations (number of branches multiplied by the number of

input and output PDFs) that had to be evaluated. This restricted the method to smaller networks

due to limitations of both computational speed and memory, especially at the time, limiting its

applicability to real life scenarios.

In 1981, Allan et al. [152] realized this issue and exploited frequency-domain multiplication,

with Fast Fourrier Transforms (FFT), as a computationally efficient alternative to time-domain

convolution integration. The results proved FFT to be superior to convolution both in terms of

computational efficiency and accuracy. In addition to proposing a more efficient PLF method, the

study performed multiple important validation studies. First, the results of PLF were compared

against those of MC-5000 1 for a case of high load value uncertainty (15x usual standard

deviation). The results were highly similar with a slight skew in the PDFs which was not

significant for practical applications where realistic uncertainties are much lower.

1Monte-Carlo simulations are labeled as MC-X, where X is the total number of samples generated.
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Second, the use of central limit theorem was considered. Results showed that even when all

input variables had a normal distribution, the output did not due to the inherent non-linearity of

the system. Therefore, it was concluded that the theorem should not be used regardless of the

system size. This method was later extended by Hatziargyriou et al. in 1993 [153] incorporating a

probabilistic model for wind turbines. The PLF method of Allan et al. [152] was adapted to radial

distribution networks and considered uncertainties in short-term (hourly) wind speed forecasts and

corresponding uncertainties in produced active power and absorbed reactive power.

An alternative to convolution/FFT was proposed by Zhang & Lee in 2004 [154]. The proposed

algorithm relied on the statistical premise that two distributions with equal moments must also

have equal cumulants. Thus, one can be computed from the other. The algorithm started by

calculating moments, thereby the cumulants, of injected power. Linearized equations are then

used to calculate cumulants, thereby the moments, of line flows. PDFs of line flows are finally

constructed from their moments using Gram-Charlier expansion. The study found that at least 7th

order Gram-Charlier expansions should be used to provide accurate output PDFs. The proposed

approach was significantly faster than MC simulations.

The different variations of PLF mentioned so far are all characterized as analytical PLF

methods (refer to Fig. 5.2). Analytical PLF methods still perform deterministic power flow

calculations, however they employ statistical theories and probabilistic approaches to model the

input uncertainties and determine the corresponding output uncertainty range in a computationally

efficient manner (compared to quasi-deterministic methods).

Following the development of PLF techniques in literature, another category of PLF –

approximate PLF – was being proposed. As will be shown subsequently, those are the

direct predecessors of state-of-the-art work on probabilistic and ML algorithms of most recent

literature. The main reason for the delay in developing approximate PLF techniques is that

the statistical/mathematical theories they are based on were first discovered around the same

time as PLF itself (the first point estimation method was published in 1975 [155], one year

after Borkowska’s [151] paper). Moreover, more modern computing technologies motivated the

application of such methods in the field of electrical power systems (the first point estimation

method applied to PLF was in 2005 by Su et al. [156]).

While many point estimation methods were developed since then, they are all based on the

same premise. Consider some variable y which is a function of random variables {v1,v2, . . .vNv}.
Let y = f (v1,v2, . . .vNv) with f being a deterministic function and NV being the number of random

variables. A point estimation method is intended to approximate the first few moments of y and

thereby estimate its PDF by evaluating f a number of times around each random input variable.
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Figure 5.1: Historical timeline of pioneering papers in literature to apply statistical and
probabilistic theories to power flow and OPF problems in traditional/centralized power systems.

While this may seem similar to a MC simulation, the main and crucial difference lies in point

estimation methods concentrating statistical information calculated on the points for each random

input and thereby only requiring a significantly lower number of evaluations for a large number

of random inputs. For comparison, MC has a complexity 2 of O(MN), varying exponentially with

the grid size, or number of buses M, and the number of random variables N.

On the other hand, even the earliest point estimation methods are between O(2N) and O(4N)

[157], varying linearly with larger problems, which is the same as analytical PLF methods, all

while deterministic methods being more computationally efficient than convolutions, FFT, or

cumulant-based evaluations. In addition, the linearization of the power flow equations ceases to

be necessary, so in the case of high variance random variables in a network the original equations

can be used, unlike analytical PLF.

Su [156] was the first to propose a PLF algorithm based on a point-estimation method in

2005. The method used is a “two-point” estimation one. I.e., two samples are evaluated for each

random/uncertain variable, and therefore it is O(2N), equivalent to Hong’s point estimation [157].

The method was 25 times faster than MC with the results being in very good agreement. It should

be noted that a relatively small network (6-bus) was used as the test case, so the implemented

algorithm was assumed to run exponentially faster than MC for larger more complex networks

2MC simulations can be run with an infinitely large number of samples. The time complexity is based on the number
of samples, more that which no numerically significant improvement is obtained (solution is converged).
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This was verified a year later when Morales & Pérez-Ruiz [157] performed a more detailed

analysis using four different point estimation schemes, including the one proposed by [156].

A significantly larger network (118-bus) was used, and by comparing the resulting PDF’s with

MC simulations, it was concluded that 2N + 1 estimation schemes perform the best in terms of

computational efficiency and provide high accuracy results even with a large number of random

input (continuous or discrete) variables. The 2N + 1 point estimation was found to significantly

outperform the 2N scheme used by [156] especially with a large number of random inputs, by

performing only one additional calculation, and therefore it was recommended for use with large

networks.

A simultaneous effort was underway to develop probabilistic models for the OPF and optimal

dispatch problems. One of the pioneering papers to propose a probabilistic OPF (P-OPF) method

was that of Viviani & Heydt in 1981 [158]. Dispatchable generators were modeled using

second-order cost functions, and the control vector (for ideal generation levels) was modelled

as a vector of PDFs by using Gram-Charlier expansion. The results showed excellent agreement

with MC simulations for a small (8-bus) system, which was used as a test case due to limited

computational capabilities of the time.

More than two decades later, in 2005, Schellenberg et al. [159] combined the work of Viviani

& Heydt [158] and Zhang & Lee [154] to propose a cumulant-based P-OPF method. More modern

computing technology allowed the method to be tested on a much larger 118-bus system. The

simulations showed the proposed method provided highly accurate results with a computational

efficiency an order of magnitude better than MC.

This section provided a review of some of the most influential papers in historic literature

which pioneered the application of probabilistic and statistical theories to power flow and OPF

methods (represented in Fig. 5.1). From this historical literature review, one can categorize power

flow and OPF methods in traditional/centralized power systems into four categories (as shown in

Fig. 5.2): deterministic, quasi-deterministic, analytical PPF, and approximate PPF. The different

advantages and drawbacks of these methods are qualitatively compared in Table 5.1, according to

the evaluated literature.

5.1.3 State-of-the-Art Review: Operation of Modern Smart Grids

In modern SGs, Internet-of-Things (IoT) enabling creates an abundance of measured data from

even the smallest devices in the system, which is in fact the main identifier of SGs compared to a

traditional grid: implementation of smart metering and communication infrastructures [89, 160].

This largely eliminates uncertainty caused by missing/unmeasurable variables in SGs.

However, the combined effect of distributed energy resource (DER) proliferation, increased RESs

penetration, and highly dynamic loads due to demand-side management (DSM) and demand

response (DR) policies results in new sources of uncertainty, even for a centralized system operator

with global data access [105, 161].
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Figure 5.2: Illustration and description of different categories of methods employed for power
flow and OPF in traditional/centralized power systems.

On top of that, recent technological, societal, and policy changes are resulting in a call

for decentralized operation of SGs, associated with paradigms whose names are increasingly

seen in scientific and technical literature such as citizen-run energy communities, peer-to-peer

(P2P) energy trading, and the Internet-of-Energy (IoE). In these paradigms, a transition from a

centralized operation structure to a decentralized one is advocated [98].

Table 5.1: Qualitative comparison of different categories of methods employed for power flow and
OPF.

Category of
PF/OPF Method Deterministic Quasi-

Deterministic
Probabilistic
(Analytical)

Probabilistic
(Approximate)

Complexity of mathematical
model / equations.

  #   #     ##

Complexity of computational
implementation / program.

 ##  ##   #    

Computational expense
(running time and memory)

 ##      #  ##

Capability to incorporate
uncertain / random variables.

7 3 3 3

Grid physical model replaceable with
historical data (ML extension possible).

7 7 7 3
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While there are several technical, economical, and environmental benefits of this shift, it adds

an additional layer of operational challenges. Contrary to a central operator, decentralized agents

would only have access to local data, adding a significant level of uncertainty and inaccessible

information from other parts of the grid. In this case, a deterministic power flow or OPF model

is not possible to construct by multiple individual agents to whom information (including the

physical model) on other regions of the grid may not always be known [162].

To deal with this challenge, two solution efforts exist. The deterministic approach involves the

use of decomposition techniques, in which deterministic power flow or OPF global functions are

decomposed into a set of local ones to be solved by individual agents, with each local function

being dependent on the solutions of the local functions of other agents. Therefore, an iterative

procedure is employed where local solutions are interchanged between agents until a convergence

is achieved for all local functions i.e., global consensus found.

However, multiple drawbacks are associated with this approach. First, decomposition

techniques often suffer from convergence issues and are difficult to generalize for use with a

generic power system configuration (i.e., they must be tuned/configured for each system to achieve

acceptable convergence). Second, the exchange of local function solutions between local agents

must be highly synchronized for real-world applicability, making it heavily reliant on secure

communication infrastructures with low latency. Finally, the incorporation of uncertain variables

is very complex, if not impossible, in real-world applications [163, 164, 99].

This leads to the second solution effort, revisiting probabilistic methods and their

ML successors as viable solutions for the decentralized operation of SGs without the

aforementioned problems. IoT-enabling and cloud computing capabilities now make it possible for

probabilistic/ML algorithms to replace centralized system operators [150]. In traditional systems,

the main drawback of these methods was reliance on historical data, which is no longer an issue in

modern SGs (on the contrary, data redundancy is often brought up as an issue in the IoT paradigm).

The challenge in this case is to develop new algorithms in which agents can cooperate to

achieve optimal global performance (as in OPF analysis), without sharing private/personal data

to fit the new fully decentralized SG management paradigm. Probabilistic and ML techniques

make use of historical data to provide fast and accurate predictions of solution variables even

in the presence of high levels of uncertainty. Moreover, these methods rely solely on statistical

relationships between input and output variables without requiring a deterministic model of the

physical system to be constructed.

This makes them ideal to deal with the aforementioned problems of decentralized operation.

Moreover, they do not suffer the drawbacks of deterministic decomposition-based techniques

(lack of general applicability, convergence issues, reliance on low-latency communication

infrastructures, and difficulty to incorporate uncertain parameters) [165].

From the conducted review of pioneering works and subsequent categorization of methods

employed to traditional / centralized power systems, it was evident that the fourth category, the

"approximate" PPF/P-OPF methods are the predecessors of modern day probabilistic and ML

algorithms [150].
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A major step in this evolution is the replacement of simple point estimates with non-parametric

methods, which does not assume any statistical properties of the inputs to be known a priori.

Moreover, a point estimation (i.e., a deterministic calculation at the sampled points) is not

needed and can be fully replaced with a historical dataset of input/output pairs, from which

non-parametric methods directly estimate density distributions and corresponding output PDFs.

Thus, the approach becomes purely a ML one where knowledge of a grid physical model is

unnecessary. Kernel density estimation (KDE) has become the most popular non-parametric

method in scientific literature, not only in the field of power systems but across the different

applications of ML due to its reliability and computational efficiency [166].

Cao & Yan [167] performed a two-stage P-OPF analysis on a grid with multiple wind farms.

First, input PDFs of wind generation were estimated, followed by MC simulations in which

sampling was done based on the generated PDFs. By constructing a combined PDF for all wind

farms with wind speed dependence, its effects were analyzed on the P-OPF results as compared

to using individual PDFs of the wind farms. By comparing KDE (non-parametric) and parameter

estimation, the PDF produced by KDE and corresponding P-OPF results was found to be more

accurate than parameter estimation.

Other studies such as [168, 169] have performed similar analyses, in which KDE was used to

estimate the PDFs of uncertain input variables (particularly from renewable generation).

The results of these studies are all in agreement with [167], reaffirming that using

non-parametric methods in general and KDE in particular to estimate uncertain input variables in

PPF is superior to parametric techniques. The aforementioned studies solely employed KDE as a

pre-processing method, performing quasi-deterministic power flow analysis rather than exploiting

KDE’s full potential to replace MC simulations for PPF, which was performed by other works in

literature.

Another study [170] applied KDE for PPF analysis of 14 and 118- bus systems with high levels

of uncertainty and relying on historical operation data measurements. The method demonstrated

accurate results with respect to the field measurements. In [171], a KDE-based method was

proposed for PPF of unbalanced distribution networks. The method was tested on modified IEEE

13- and 37- bus test systems and compared against MC-3000 and 2N+1 point estimation. The

results showed that the proposed KDE-based PPF method was superior to both MC and point

estimation both in terms of computational time and results accuracy.

A recent study [172] proposed and tested PPF algorithms based on holomorphic embedding,

KDE, and saddle point approximation. The study compared various approximate PPF techniques

to analytical and quasi-deterministic ones. The proposed methods were tested on modified IEEE

14- and 118-bus test systems with high levels of uncertainty, and compared against MC-150000,

2N+1 point estimation, and other methods.
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The results clearly show the effectiveness of the proposed PPF methods and their superiority

in terms of computational effort, while providing the same level of accuracy as MC simulations.

The paper recognized the potential of approximate PPF methods in terms of their independence

of the physical system model and flexibility in application, recommending their use for complex

networks and energy management in modern SGs where historical operation data is available.

Aside from operation, the application of KDE-based methods is recently observed in other

areas of SGs research, namely in forecasting. Indeed, by employing PPF/P-OPF based on

historical data with a ML model, the problem is modeled similar to a forecasting problem in

which a desired output is to be predicted based on historical inputs. Examples of this are [124]

which proposed a cooperative forecasting model for electricity market prices based on KDE and

[173] which proposed a KDE-based ensemble algorithm for solar power forecasting (the work

presented in the previous chapter).

5.1.4 Novel Contributions

In this chapter, a novel ML algorithm for fully decentralized power flow management of SGs

is proposed, formulated, implemented, and tested. The proposed method was inspired by the

forecasting model of [124] and [173] (work presented in the previous chapter), combining the

cooperative approach of the former and the ensemble prediction of the latter.

5.2 Proposed Methodology

In this section, the conceptual model for decentralized operation of a SG is described. Then, the

mathematical formulation of the proposed ML method for fully decentralized OPF management

in this paradigm is presented. Finally, the cooperative information exchange capability of the

proposed algorithm is illustrated.

5.2.1 Conceptual Model

In Fig. 5.3, an illustration of the conceptual model for a transition between a centralized (left)

and decentralized (right) operation paradigm for an electrical power grid is illustrated. In the

centralized paradigm, the system operator would have global access to all measurable variables in

the system, and issue control signals to all controllable ones.

For a given grid, multiple overlaying models exist (e.g. corresponding to functions of real-time

operation and dispatch, operation planning and unit commitment, voltage and frequency control,

etc.). For each of those functions, the system operator would have a historical log of all input

(measured) variables from the grid and the corresponding control actions taken (historical system

states). In the case of OPF management, the logged historical system states can correspond to load

values of the network and the corresponding ideal generation levels of all dispatchable generators.
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Figure 5.3: Illustration of the conceptual model for a transition between a centralized (left) and
decentralized (right) operation paradigm of power grids. Green lines correspond to information
exchange.

On the right of Fig. 5.3, the decentralized paradigm is illustrated, in which the centralized

system operator is replaced by individual agents. Agents control local regions, where the agent

has direct access to measured variables and can issue control actions. The agents in this fully

decentralized operation paradigm are speculated to be individual utility operators, small-scale

energy communities, or autonomous microgrids as demonstrated by [160, 99, 174].

In the transition from the centralized to the decentralized paradigm, each agent would be

handed over a subset of the system operator’s historical dataset, only containing input/output

variables specific to their respective zone. From this point onwards, agents utilize their individual

historical datasets to manage local zones of control using a ML approach which continuously

updates their datasets as new control signals are issued for new system states.

At the beginning of the transition the information inherited from the retired system operator,

although partial, can guarantee accurate prediction of control actions which lead to both local and

global optimization of system performance. However, with time the information provided from

the time of the centralized paradigm becomes obsolete, and thus a continuous cooperation scheme

between the agents is required to exchange useful information without having to share private

and/or raw local data.
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5.2.2 Generalized Mathematical Formulation

Consider a system that at any given instant has a set of measurable independent input variables

V. To ensure global applicability of the developed ML method, all the system input variables are

considered as uncertain variables (i.e., |V| = NV ) as shown in (5.1). Moreover, no knowledge of

the physical system model is known a priori, and thus no input variable interdependencies are

assumed.

V = {v1,v2, . . . ,vNV } (5.1)

A set Y is defined in (5.2), containing Ny output variables, each of which is a function of the

input vector, through an unknown system model, as shown in (5.3).

Y = {y1,y2, . . . ,yNY } (5.2)

Y = f (V) = f ({v1,v2, . . . ,vNV }) (5.3)

Thus for all recorded system states, a historical dataset of operation H exists for the system

matching the input and output vectors as shown in (5.4)-(5.5).

H = {H1,H2, . . .HNH} (5.4)

Hk = {yhist,k
1 ,yhist,k

2 , . . . ,yhist,k
Ny︸ ︷︷ ︸

historical outputs at timestep k

,vhist ,k
1 ,vhist,k

2 , . . . ,vhist ,k
NV︸ ︷︷ ︸

historical inputs at timestep k

} ∀k = 1,2, . . . ,NH (5.5)

For an updated system state, a new set of input variables Vnew is measured as shown in (5.6),

for which a corresponding set of output variables Ynew exists as shown in (5.7).

Vnew =
{

vnew
1 ,vnew

2 , . . . ,vnew
NV

}
(5.6)

Ynew = f (Vnew ) = f
({

vnew
1 ,vnew

2 , . . . ,vnew
NV

})
(5.7)

The objective of the proposed ML algorithm is to predict the value of Ynew, provided only

Vnew and H, without any knowledge of the physical system model. The proposed ML algorithm

(visualized in Fig. 5.4) is comprised of three main steps.

In the first step, a similarity index (s-index) between each historical system state and the new

one is calculated using Nadarya-Watson KDE (NW-KDE), which evaluates a product of Gaussian

kernel functions of all variables [124], as shown in (5.8), to obtain an s-index with a value between

0 and 1 for each historical state, resulting in the vector of s-indices S as shown in (5.9)-(5.10).
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sk =

 NV

∏
i

e
− 1

2

(
vhist,k
i −vnew

i
bi

)2
1

NV

, ∀ k = 1,2, . . . ,NH (5.8)

0≤ sk ≤ 1, ∀ k = 1,2, . . . ,NH (5.9)

S = {s1,s2, . . .sNH} (5.10)

For each variable i, the Gaussian kernel function bandwidth bi determines the sampling

window relative to the statistical range of the historical samples of this variable. A coefficient

αi can be used to tune the individual bandwidth value for each variable as shown in (5.11).

bi = αi

(
max

k

(
vhist,k

i

)
−min

k

(
vhist,k

i

))
; ∀k = 1,2, . . . ,NH , i = 1,2, . . . ,NV (5.11)

Accordingly, αi serves as a normalized tuning coefficient, whose value can be set between 0

(exclusive) and 1 (inclusive) as shown in (5.12), corresponding to a bandwidth value between zero

(exclusive) and the maximum range of the historical values of the variable (inclusive).

0 < αi ≤ 1 ∀ i = 1,2, . . . ,NV (5.12)

The second step in the proposed method is to generate an activation vector for the most similar

historical cases based on the calculated s-index vector. This can be done in two ways. First, a

cut-off value can be set to activate all cases with an s-index above a certain value. The second, and

the one used in this study, is to activate a fixed number of the top NS historical cases from (highest

NS s-indices). In both cases, the result is an activation vector A, whose elements are binary values

as shown in (5.13)-(5.14).

A = {A1,A2, . . . ,ANH} (5.13)

Ak ∈ {0,1} ∀ k = 1,2, . . . ,NH (5.14)

The activation vector is used to extract the most similar cases from the historical dataset. Thus,

a subset HS is extracted by discarding all cases whose corresponding activation value is zero. The

original indices of the extracted cases HS (in the original set H) are preserved in vector IS. This is

represented mathematically using (5.15)-(5.17) and is illustrated in Fig. 5.4.

Hk ∈HS⇔ Ak = 1 ∀ k = 1,2, . . . ,NH (5.15)

IS =
{

IS
1 , I

S
2 , . . . , I

S
NS

}
(5.16)
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HS =
{

HIS
1
,HS

I2
, . . .HIS

NS

}
(5.17)

The third and final step is to predict the output variables Ynew using an ensemble of the

extracted most similar historical cases. The simplest approach is to calculate the mean value

of each output variable from the extracted historical values as shown in (5.18).

Confidence intervals can be obtained by applying simple univariate KDE to obtain the out

variables’ PDFs and the corresponding confidence interval bounds as represented mathematically

in (5.19)-(5.21), where ρ1/2x% corresponds to the xth percentile. The lower and upper bounds of

the xth percentile for each predicted output ynew
j are expressed as ŷnew

j,lb,x% and ŷnew
j,ub,x% as shown in

(5.20) and (5.21), respectively.

ynew
j ≈ ŷnew

j =
∑

NS
l=1

(
yhist ,IS

l
j

)
NS

∀ j = 1,2, . . . ,NY (5.18)

ŷnew
j,lb,x% ≤ ŷnew

j ≤ ŷnew
j,ub,x% ∀ j = 1,2, . . . ,NY (5.19)

ŷnew
j,lb,x% = ρ 1

2 (100−x)%

({
yhist,IS

1
j ,yhist,IS

2
j , . . . ,y

nist,IS
NS

j

})
∀ j = 1,2, . . . ,NY (5.20)

ŷnew
j,ub,x% = ρ 1

2 (100+x)%

({
yhist,IS

1
j ,yhist,IS

2
j , . . . ,y

hist,IS
NS

j

})
∀ j = 1,2, . . . ,NY (5.21)

5.2.3 Application to Decentralized OPF with Cooperative Information Exchange

In the case of an OPF problem, the input variables are the bus loads and the output variables are

the ideal generation levels. In the decentralized operation paradigm, each agent would only have

a historical dataset with variables in their regions of operation. From the presented mathematical

formulation it can be seen that the proposed ML model is independent of the physical grid model,

and thus even with a limited number of historical variables the prediction of the outputs can still

be obtained.

One of the novel contributions of this work is the capability of the proposed method to

enable the cooperative information exchange without sharing private/raw data (e.g., local historical

datasets or control actions taken locally). With the proposed method, this can effectively be

performed by publicly sharing the activation vector A or the corresponding indices IS.

In this way, the exchanged indices of activated historical cases would greatly improve the

output prediction of other agents by giving them insight on relevant historical cases from the

perspective of other agents and thereby the global performance of the system, without exposing

any local/private information from the transacting agent’s local database or the need for any central

coordination. Accordingly, a distributed energy cloud operation scheme is enabled by the proposed

method, as illustrated in Fig. 5.5.
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Figure 5.4: Illustrative flowchart of the proposed and implemented ML algorithm.

The activation functions (A) therefore serve as encoded, yet useful, information which is

broadcast into a public energy cloud and can be shared with other agents in the decentralized

system. A few final remarks about the proposed algorithm and cooperation scheme are noted

before proceeding to the case study and analysis:

• The size of the historical database does not need to be the same for all agents. In case

a distributed energy cloud operation is adopted, standardized implementation is foreseen.

However, even in the unlikely case where no standard database size is present activated

historical cases can be shared based on their timestamps rather than index in the dataset.

• The tunable parameters of the proposed method are the normalized bandwidth coefficients

αi and NS. While tuning of these parameters can improve the prediction accuracy, it will be

shown in the next sections that the proposed algorithm is highly versatile, such that applying

default values for all the parameters still guarantees highly accurate output predictions.

• The proposed method is highly computationally efficient. While the computational

implementation is demanding, all operations are based on simple direct array multiplications

and manipulations. The high computational efficiency of the implementation will also be

demonstrated in the next sections.
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Figure 5.5: Illustration of the cooperative information exchange made possible by the proposed
and implemented ML algorithm, enabling a distributed energy cloud operation scheme.

• The proposed algorithm was proposed and implemented as original code by the authors

using MATLAB R2020b, on a standard laptop computer with an Intel Core i7-8550U CPU

@ 1.80 GHz, 16.0 GB RAM, and a Windows 10 64-bit operating system.

5.3 Case Study and Validation Analyses

5.3.1 Modified IEEE 24-Bus Test System

To demonstrate and validate the proposed algorithm, a case study was constructed based on a

modified IEEE 24-bus reliability test system (RTS), whose single line diagram is shown in Fig.

5.6. The 24-bus network has 33 transmission lines, in addition to five transformers separating the

two voltage levels in the network (138 kV and 230 kV). A total of 33 generators (G1, G2, . . . ,

G33), including one synchronous generator (G15), are incorporated.

For the purpose of power flow analyses, active power generators that are both 1) connected to

the same bus, and 2) have the same cost functions, are aggregated as a single generation station

or utilities [175]. Applying this to the considered 24-bus RTS results in 14 utilities (U1, U2, . . .

, U14) being the active power generation stations of the system. In the decentralized operation

paradigm, these generation utilities are considered to be the decentralized operating agents of the

system, spread across five zones of operation (Z1, Z2, Z3, Z4, Z5) as is also shown in Fig. 5.6.

The zones are listed in Table 5.2, including the corresponding buses and utilities therein.

Accordingly, in the case of an OPF analysis, each utility as a decentralized operating agent has

access only to historical load values from its own zone (i.e., loads at buses inside its zone).
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Figure 5.6: Modified IEEE 24-bus test system showing the defined zones.
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Table 5.2: Zones of the test system under analysis, and the corresponding buses and utilities within.

Zone Buses Utilities

Z1 1, 2, 3, 5 U1, U2, U3, U4
Z2 7, 8 U5
Z3 11, 12, 13, 20, 23 U6, U13, U14
Z4 18, 21, 22 U10, U11, U12
Z5 14, 15, 16, 19, 24 U7, U8, U9

The utilities do not have knowledge of each other’s historical generation values (only their

own). Table 5.3 lists all 14 utilities, the corresponding zone, incorporated generators, and

their respective operating costs represented as coefficients of a quadratic cost function model as

described in [176]. In the decentralized operation paradigm, the utilities do not have knowledge

of the full grid topology (incidence matrix is unknown), only having knowledge of transmission

line connections inside their respective zones.

It can be observed that the designated zones are diverse in terms of both size and structure.

This was intended to test the versatility of the proposed algorithm. Furthermore, load buses 4, 6,

9, and 10 are not incorporated in any zone and therefore historical information from them is only

provided when the energy cloud / cooperative information exchange is enabled.

This way, they are considered as self-managing microgrids (with self-consumption) which can

still share their activation vectors in the proposed scheme for every new system state, however

have no control actions over the system. In this sense, the case study can also demonstrate

the applicability of the proposed algorithm for the decentralized management of interconnected

multi-microgrids with varying sizes, local generation capacity, and self-consumption.

Table 5.3: Utilities of the test system under analysis (considered the decentralized operating
agents) including the zone association, incorporated generator number, and the coefficients for
the individual generator cost functions.

Utility Bus Zone Incorporated Generators PGmin PGmax a b c MUT MDT RD, RU SU SD IH

U1 B1 Z1 G1, G2 16 20 400.7 130 0 1 1 30 5 5 -10
U2 B1 Z1 G3, G4 15.2 76 212.3 16.1 0.01414 8 4 20 596 596 10
U3 B2 Z1 G5, G6 16 20 400.7 130 0 1 1 30 5 5 -10
U4 B2 Z1 G7, G8 15.2 76 212.3 16.1 0.01414 8 4 20 596 596 10
U5 B7 Z2 G9, G10, G11 25 100 781.5 43.7 0.05267 8 8 70 566 250 6
U6 B13 Z3 G12, G13, G14 69 197 832.8 48.6 0.00717 12 10 30 775 443 -8
U7 B15 Z5 G16, G17, G18, G19, G20 2.4 12 86.4 56.6 0.32841 4 2 10 68 38 -3
U8 B15 Z5 G21 54.3 155 382.2 12.4 0.00834 8 8 30 953 260 12
U9 B16 Z5 G22 54.3 155 382.2 12.4 0.00834 8 8 30 953 260 12
U10 B18 Z4 G23 100 400 395.4 4.42 0.00021 1 1 200 0 0 20
U11 B21 Z4 G24 100 400 395.4 4.42 0.00021 1 1 200 0 0 20
U12 B22 Z4 G25, G26, G27, G28, G29, G30 10 50 0.001 0.001 0 0 0 50 0 0 8
U13 B23 Z3 G31, G32 54.3 155 382.2 12.4 0.00834 8 8 30 953 260 8
U14 B23 Z3 G33 140 350 665.1 11.9 0.0049 24 48 40 4468 1915 8
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5.3.2 Synthetically Generated Historical Data

To synthetically generate the historical dataset of centralized operation (as described in Section

5.2.1), that reflects realistic conditions, a typical transmission systems’ annual load profile

provided by the Portuguese Energy Regulation Services Entity (ERSE) was used [118]. The load

profile is high resolution (15-minute) for the full year of 2019 (35040 time steps).

To apply the normalized load profile to the current network, the annual peak load was set

to correspond to the marginal operation of the network at maximum loadability (considering bus

voltage angle and transmission line power limits). To determine this, the network is modeled

and simulated using MATPOWER 7.0, and the total load of the system is gradually increased by

incrementing individual bus loads while maintaining their original power factor (pf).

The maximum loadability occurs at the point when any infinitesimal increase in individual bus

loads would render an AC-OPF solution infeasible (violating network constraints). By performing

this, the maximum loadability of this network was found to be 3334.50 MW (total load). The

maximum (active power) loadability of individual load buses (PDmax) and their pf is detailed in

Table 5.4 (note that non-load buses have a pf of zero).

In this way, the normalized typical load (based on Portuguese transmission systems) can

be applied to the current network by setting the annual peak load at each bus to its maximum

loadability. A synthesized historical dataset could now be generated by performing the following

steps:

Step 1: Calculate active power load at each bus b, and the corresponding reactive power load, for

each timestep in the load profiles.

PDhist ,t
b = Ptypical

t ·PDmax
b ∀b ∈ {1,2, . . .24}, t ∈ {1,2, . . . ,35040} (5.22)

QDhist,t
b = PDhist,t

b · p fb ∀b ∈ {1,2, . . .24}, t ∈ {1,2, . . . ,35040} (5.23)

Step 2: Perform a deterministic AC-OPF calculation to determine the corresponding active power

generation levels of each utility, for each timestep in the load profiles.

{
PGhist,t

U1 ,PGhist,t
U2 , . . . ,PGhist, t

U14

}
AC−OPF←−

{
PDhist,t

1 ,PDhist,t
2 , . . . ,PDhist,t

24

QDhist,t
1 ,QDhist,t

2 , . . . ,QDhist,t
24

}
∀t ∈ {1,2, . . . ,35040}

(5.24)

With this a historical dataset for a full year (15-minute resolution) is obtained. The day of the

year and hour of the day are added as independent input variables in addition to the power loads

at all buses. The total load for the generated historical operation is plotted in Fig. 5.7.

Two assumptions made to construct this case study are duly noted and justified. The first

assumption is regarding the presence of renewable generation in the system. In a modern SG

renewable generation sources are indispensable and therefore must be incorporated.
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Table 5.4: Maximum loadability (peak annual load) at each load bus and corresponding pf.

Load Bus pf PDmax (MW) Load Bus pf PDmax (MW) Load Bus pf PDmax (MW)

1 0.9799 126.36 7 0.9806 146.25 15 0.9802 370.89
2 0.9794 113.49 8 0.9797 200.07 16 0.9806 117.00
3 0.9795 210.60 9 0.9795 204.75 18 0.9798 389.61
4 0.9801 86.58 10 0.9796 228.15 19 0.9797 211.77
5 0.9811 83.07 13 0.9799 310.05 20 0.9800 149.76
6 0.9795 159.12 14 0.9804 226.98 Peak Annual Load 3334.50

Figure 5.7: Plot of the historical total load (1 year with 15-minute resolution.)

This is done by choosing the ERSE profiles which correspond to aggregated users with

self-consumption by local generation, and therefore the considered load profiles for the

transmission system already account for renewable generation and self-consumption on the

distribution system level, according to Portuguese electrical systems design and operating

conditions.

Second, the synthetically generated historical operation data does not consider events such as

outages, line failures, unit maintenance, etc. While these events have an impact on power flow, the

proposed method is a pure ML one. I.e., their presence in the historical data does not affect the

algorithm and/or results since there is no physical model, only a statistical one.

Such events would simply be additional input variables in the NW-KDE activation function

generator if the new case corresponds to the same situation. The scope of this chapter is to propose,

implement, and validate the proposed algorithm. For the purpose of having a benchmark study

and a control experiment, such events are therefore not considered to ensure proper testing and

validation of the implemented algorithm, but are recommended to be studied in future work.
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Step 3: In accordance with the conceptual model presented in Section 5.2.1, decompose the

historical dataset into local datasets available for each agent/utility in the system according to

their local variables. With the local datasets extracted, each agent can then employ the proposed

methodology in Section 5.2.2. and participate in the cooperative information exchange cloud

model described in Section 5.2.3.

To demonstrate the local datasets available to each agent U1 is taken as an example, which is

located at bus 1 (B1) in zone 1 (Z1). By referring to Table 5.2, Z1 contains buses 1, 2, 3, and 5.

Therefore, for U1, NV is equal to 6 (load values at four buses, hour of the day, day of the year).

By applying this to all utilities, the local historial datasets are represented in (5.25)-(5.38), being

the extension of (5.5) considering locally available information. With this, the proposed algorithm

can now be implemented locally at each utility.

at U1: Hk

=

 PGhist,t
U1︸ ︷︷ ︸

historical generation U1

,PDhist,t
1 ,PDhist,t

2 ,PDhist,t
3 ,PDhist,t

5︸ ︷︷ ︸
historical load values in Zone 1 (U1)

, τ(t)︸︷︷︸
hour of the day

, δ (t)︸︷︷︸
day of the year


∀t ∈ {1,2, . . . ,35040}

(5.25)

at U2: Hk

=

 PGhist,t
U2︸ ︷︷ ︸

historical generation U2

,PDhist,t
1 ,PDhist,t

2 ,PDhist,t
3 ,PDhist,t

5︸ ︷︷ ︸
historical load values in Zone 1 (U2)

, τ(t)︸︷︷︸
hour of the day

, δ (t)︸︷︷︸
day of the year


∀t ∈ {1,2, . . . ,35040}

(5.26)

at U3: Hk

=

 PGhist,t
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historical generation U3

,PDhist,t
1 ,PDhist,t

2 ,PDhist,t
3 ,PDhist,t
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(5.27)

at U4: Hk

=

 PGhist,t
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historical generation U4

,PDhist,t
1 ,PDhist,t

2 ,PDhist,t
3 ,PDhist,t
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historical load values in Zone 1 (U4)
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hour of the day
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∀t ∈ {1,2, . . . ,35040}

(5.28)
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at U5: Hk

=

 PGhist ,t
U5︸ ︷︷ ︸

historical generation of U5

, PDhist ,t
7 ,PDhist ,t
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(5.29)

at U6: Hk

=

 PGhist ,t
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historical generation U6
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(5.30)

at U7: Hk

=

 PGhist ,t
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historical generation U7
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(5.31)

at U8: Hk
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 PGhist ,t
U8︸ ︷︷ ︸

historical generation U8

,PDhist ,t
14 ,PDhist, t

15 ,PDhist ,t
16 ,PDhist ,t

19 ,PDhist ,t
24︸ ︷︷ ︸

historical load values in Zone 5( U8 )

, τ(t)︸︷︷︸
hour of the day

, δ (t)︸︷︷︸
day of the year


∀t ∈ {1,2, . . . ,35040}

(5.32)

at U9: Hk

=

 PGhist ,t
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historical generation U9
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(5.33)
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at U10: Hk

=

 PGhist ,t
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at U11: Hk
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at U12: Hk
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at U13: Hk
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at U14: Hk
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(5.38)
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5.3.3 Performed Analyses

The case study is now fully constructed and validation studies can be performed. Using the

generated historical datasets, the proposed algorithm is tested by employing a fully decentralized

week-ahead operation planning for OPF in the grid with very high-resolution (15 minute). The

total system load profile for the test week, shown in Fig. 5.8, was generated based on the average

summer values of the yearly load profile. Individual input variables (bus loads) at each time step

are generated by maintaining the ratio of load buses in the test system and dividing the total system

load accordingly. Three studies were performed:

Study 1: In the first study the validity of the proposed algorithm is demonstrated, and the

influence of tunable parameters is showcased. In this study, the full algorithm is employed,

including the cooperative information exchange scheme between the agents. Coefficients αi were

defined as follows:

• αin: coefficient for historical input variables from sources which are physically connected

to the utility (i.e. load values of the same bus).

• αout : coefficient for historical input variables which are not physically connected to the

utility (i.e. load value of bus other than that of the utility).

• αhour,αday: coefficients the day of the year and hour of the day for each historical case,

respectively.

Study 2: In the second study, the proposed cloud-based cooperative information exchange is

investigated by comparing the results for each agent with and without the exchanged activation

functions.

Study 3: In the third and final case study, the performance of the proposed algorithm is

assessed in comparison with a NN.

For all studies, the results are compared against the centralized scenario with a deterministic

AC-OPF model. The results of all three studies are presented subsequently in the next section.
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Figure 5.8: Total load profile for the considered test week (15-minute resolution).

5.4 Simulation Results

5.4.1 Study 1: Validation and Parameter Tuning

In this study, the proposed algorithm is validated and the effect of tunable parameters (normalized

bandwidth coefficients αi and NS) is assessed. Two scenarios are compared. In the first, all

normalized bandwidth coefficients αi are set to 0.5. This can be considered the “default” value

of the coefficients. In the second scenario, the coefficients are tuned by generating random value

combinations until the error falls below a certain threshold. Here, it is noted that on the machine

used for implementation, the algorithm run time was recorded to be less than 4 seconds.

Tuning the parameters ran in less than 1 minute for each utility. This was around the same

time that the training time of the NN used in the third study . Therefore, the tuning process was

very fast, even for the demanding high resolution week-ahead test case considered. Plots of the

results of selected utilities are shown in Fig. 5.9, and the detailed results for all utilities are listed

in Table 5.5. It is noted that U1, U3, and U12 are found to have a zero load factor throughout the

test week (refer to Fig. 5.10) and are therefore they excluded from the results of this study and

subsequent ones. Multiple observations are made:

• The proposed algorithm is shown to have exceptionally high accuracy. With tuned

parameters, the moving average percentage error (MAPE), relative to centralized AC-OPF,

was well below 0.1% for all utilities. From the plots in Fig. 5.9, it can be seen that the exact

and predicted values are tightly overlayed, being hardly distinguishable.

• Even with untuned parameters set to a default value of 0.5 arbitrarily, for the majority of the

cases the predicted generation profile was still estimated with reasonable accuracy.
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• The utilities predictions most affected by parameter tuning were U5 and U6 which

incorporate large high cost generators resulting in the high-frequency fluctuations during

peak load hours which were only predicted accurately after parameter tuning. U7 was

similarly critical due to the three acute ramps in generation during the test week, which

were accurately predicted after parameter tuning. Finally, U10 and U11 being high load

factor utilities (Fig. 5.10) and in an energy exporting zone (Fig. 5.11) were sensitive to

parameter tuning (although the untuned solution still had a 1% error, which is satisfactory).

By performing this study, the validity of the proposed algorithm is demonstrated, and the

influence of tunable parameters is showcased. The tuned algorithm is validated to be exceptionally

accurate in predicting the ideal generation levels in the decentralized operation paradigm.

5.4.2 Study 2: Effect of Cooperative Information Exchange

In this study, the effect of the incorporated cloud-based information exchange model was assessed.

The results of this study are shown in Fig. 5.12 and Table 5.6. The following observations are

made:

• The results show that the cooperative information exchange between the decentralized

agents has a profound impact on the accuracy of their predicted generation values.

• By comparing the results against the information provided in Fig. 5.10 and 5.11, it can be

seen that this is especially the case with utilities that have: a) a high load factor (expensive

generators) and b) exist in zones that are net exporters of energy in the grid. This is expected,

since such utilities would heavily rely on any information from other parts of the grid since

they mainly respond to peak loads from zones that are net importers of energy in the grid.

• Another important observation is made by comparing the results of this study with the first

one. It can be seen that the impact of the implemented cooperative information sharing

model is significantly higher than parameter tuning, both in terms of the confidence intervals

(shaded parts of the plots), and overall accuracy (MAPE).
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(a)

(b) (c)

(d) (e)

Figure 5.9: Results of the first study: predicted week-ahead generation profile (15-minute
resolution) by (a) U5, (b) U6, (c) U7, (d) U10, and (e) U11, with and without parameter tuning,
compared against a centralized solution.
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Figure 5.10: Average load factors of the utilities.

Figure 5.11: Total energy import/export by each zone for the considered week.
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Table 5.5: Results of the first study: tuned parameters and MAPE.

Utility Scenario Tunable Parameters MAPE
NS αout αin αday αhour

U2 (Zone 1) U2 - Default 10 0.50 0.50 0.50 0.50 0.3790 %
U2 - Tuned 9 0.05 0.60 0.90 0.70 0.0386 %

U4 (Zone 1) U4 - Default 10 0.50 0.50 0.50 0.50 0.3788 %
U4 - Tuned 9 0.05 0.95 0.70 0.95 0.0383 %

U5 (Zone 2) U5 - Default 10 0.50 0.50 0.50 0.50 2.2590 %
U5 - Tuned 16 0.05 0.55 0.90 0.40 0.0573 %

U6 (Zone 3) U6 - Default 10 0.50 0.50 0.50 0.50 6.1020 %
U6 - Tuned 25 0.05 0.45 0.75 0.80 0.0534 %

U7 (Zone 5) U7 - Default 10 0.50 0.50 0.50 0.50 0.9695 %
U7 - Tuned 4 0.05 0.30 0.85 0.35 0.0628 %

U8 (Zone 5) U8 - Default 10 0.50 0.50 0.50 0.50 0.3234 %
U8 - Tuned 36 0.05 0.40 0.95 0.55 0.0328 %

U9 (Zone 5) U9 - Default 10 0.50 0.50 0.50 0.50 0.3041 %
U9 - Tuned 9 0.05 0.35 0.75 0.65 0.0338 %

U10 (Zone 4) U10 - Default 10 0.50 0.50 0.50 0.50 0.9498 %
U10 - Tuned 36 0.05 1.00 0.70 0.40 0.0500 %

U11 (Zone 4) U11 - Default 10 0.50 0.50 0.50 0.50 1.0449 %
U11 - Tuned 25 0.05 0.10 0.95 0.55 0.0474 %

U13 (Zone 3) U13 - Default 10 0.50 0.50 0.50 0.50 0.3104 %
U13 - Tuned 25 0.05 1.00 0.55 0.95 0.0275 %

U14 (Zone 3) U14 - Default 10 0.50 0.50 0.50 0.50 0.2732 %
U14 - Tuned 25 0.05 0.15 0.80 1.00 0.0221 %

5.4.3 Study 3: Comparison with other Methods

In the final study, the proposed algorithm was compared against another ML approach: a NN

algorithm. In this scenario, each agent would utilize a feed-forward NN, as the one used in [177],

to predict their generation profiles from their local historical datasets. The choice of a NN for

comparison is apt for several reasons. First, the proposed algorithm is a ML one, and thus a

comparison with a fundamental ML approach is due.

Second, the same local historical datasets can be used for the NN training process. Finally, the

utilized feed-forward FF NN is well-established and robust so it would provide a solid benchmark

comparison for an implemented ML algorithm. Five critical (worst) cases from the previous two

analyses (i,e, U2, U5, U6, U7, and U10) were used for this current study, with one representative

utility from each zone. The results are shown in Table 5.7.
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(a)

(b) (c)

(d) (e)

Figure 5.12: Results of the second study: predicted week-ahead generation profile (15-minute
resolution) by (a) U5, (b) U6, (c) U7, (d) U10, and (e) U11, with and without information
exchange, compared against a centralized solution.
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Table 5.6: Results of the second study: MAPE for each utility with and without the implemented
cooperative information exchange.

Utility Scenario MAPE

U2 (Zone 1) Proposed Cooperative Information Exchange 0.0386 %
Without Information Exchange 0.6760 %

U4 (Zone 1) Proposed Cooperative Information Exchange 0.0383 %
Without Information Exchange 0.9969 %

U5 (Zone 2) Proposed Cooperative Information Exchange 0.0573 %
Without Information Exchange 3.6187 %

U6 (Zone 3) Proposed Cooperative Information Exchange 0.0534 %
Without Information Exchange 0.0694 %

U7 (Zone 5) Proposed Cooperative Information Exchange 0.0628 %
Without Information Exchange 0.9695 %

U8 (Zone 5) Proposed Cooperative Information Exchange 0.0328 %
Without Information Exchange 0.4277 %

U9 (Zone 5) Proposed Cooperative Information Exchange 0.0338 %
Without Information Exchange 0.0321 %

U10 (Zone 4) Proposed Cooperative Information Exchange 0.0500 %
Without Information Exchange 8.0720 %

U11 (Zone 4) Proposed Cooperative Information Exchange 0.0474 %
Without Information Exchange 0.7267 %

U13 (Zone 3) Proposed Cooperative Information Exchange 0.0275 %
Without Information Exchange 1.1598 %

U14 (Zone 3) Proposed Cooperative Information Exchange 0.0221 %
Without Information Exchange 0.2732 %

Table 5.7: Results of the third study: MAPE with the proposed algorithm compared to a NN result.

Utility Scenario MAPE

U2 (Zone 1) Proposed Algorithm 0.0386 %
Neural Network (averaged) 0.2252 %

U5 (Zone 2) Proposed Algorithm 0.0573 %
Neural Network (averaged) 0.4193 %

U6 (Zone 3) Proposed Algorithm 0.0534 %
Neural Network (averaged) 0.1678 %

U7 (Zone 5) Proposed Algorithm 0.0628 %
Neural Network (averaged) 0.1126 %

U10 (Zone 4) Proposed Algorithm 0.0500 %
Neural Network (averaged) 0.1822 %
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By inspecting the results of this study the following points are noted:

• The proposed algorithm outperforms the NN for all cases. The NN is shown to guarantee a

MAPE < 0.5% , while for the proposed method MAPE < 0.1%.

• It was mentioned that the training time of the NN was around the same time as the tuning

process of the proposed algorithm. However, a key difference is the fact that the NN training

process must be rerun for any new output variable introduced, while the proposed algorithm

is tuned once for each utility / agent.

• With this being said, the proposed algorithm not only outperforms the NN in terms of

accuracy but also in terms of computational time, since the proposed method’s average

running time is 4 seconds (for the high resolution week-ahead test case considered).

• The NN network results are dependent on the training process which contains random

elements. I.e., the results of the NN are different each time the training process is re-run

(hence the averaged results presented in Table 5.7). This is not the case for the proposed

algorithm, which provides the same results given the same historical dataset being used,

being more reliable than a NN.

• A final important point to note is that one of the main novel contributions of the proposed

algorithm is its capability to accommodate cooperative information exchange to enhance the

results of individual agents.

• A NN implementation (and other ML algorithms) do not accommodate this, since local

datasets are used to train the NN. Therefore to improve the NN results it would be required

to further augment or pre-process the historical data itself, and afterwards reperform the

training process.

• In the case of the proposed algorithm, the designed cooperative information exchange

framework allows agents to dynamically improve their results dynamically while the

algorithm is running, adding a significant level of versatility to the proposed approach

as opposed to a NN and other ML algorithms (not to mention the higher computational

efficiency).
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5.5 Conclusions

In this chapter, a novel ML algorithm for fully decentralized power flow management of SGs

was proposed, formulated, implemented, and tested. The proposed algorithm relies solely on the

local historical data for each local agent to accurately predict their optimal control actions without

being given any information on the physical system from outside their local zones (i.e., full grid

structure is unknown), and without access to historical data from other agents. The capability

of cloud-based cooperative information exchange without sharing private/raw data (e.g., local

historical datasets or control actions taken locally) was incorporated through a new concept of an

s-index vector, calculated using NW-KDE and represents the similarity between each historical

case and the one being predicted.

The s-index and corresponding activation codes of historical cases are encoded vectors which

can be shared between agents to improve their control action predictions without sharing raw

information. The algorithm was tested using a modified IEEE 24-bus test system and synthetically

generating historical operation data based on typical load profiles from Portuguese transmission

networks. Based on a demanding, high-resolution (15-minute) week-ahead fully decentralized

operation case, the results showed that the proposed algorithm guarantees an accurate prediction

with less than 0.1% error compared to a centralized operation case.

The proposed cooperative information exchange also provides opportunities for transactive

information exchange using peer-to-peer or cloud-based platforms for cooperative operation by

decentralized agents.





Part III

Adapting End-User Energy
Management Models
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Chapter 6

Residential Prosumer Scheduling in
Transactive Energy Networks

In this chapter, a novel fully distributed strategy for joint scheduling of consumption and trading

within transactive energy networks is proposed. The aim is maximizing social welfare, which

itself is redefined and adapted for peer-to-peer prosumer-based markets. In the proposed scheme,

hourly energy values are calculated to coordinate the joint scheduling of consumption and trading,

taking into consideration both preferences and needs of all network participants. Electricity

market prices are scaled locally based on hourly energy values of each prosumer. This creates a

system where energy consumption and trading are coordinated based on the value of energy use

throughout the day, rather than only the market price. For each prosumer, scheduling is done by

allocating load (consumption) and supply (trading) blocks, maximizing the energy value globally

and locally within the network. The proposed strategy was tested using a case study of typical

residential prosumers. It is shown that the proposed model could provide potential benefits for

both prosumers and the grid, albeit with a user-centered, fully distributed management model

which relies solely on local scheduling in transactive energy networks.

141
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Chapter Highlights and Novel Contributions:

• A novel algorithm for fully distributed joint scheduling of energy consumption and trading in

residential transactive energy networks is proposed.

• "Energy Value Signals" are proposed as an alternative means of quantifying social welfare,

which is redefined and adapted for peer-to-peer prosumer-centered networks.

• The scheduling tool runs locally at each prosumer in order to achieve a maximum global "energy

value" throughout the network, simultaneously leveraging consumption scheduling preferences

and minimizing costs.

• It is shown that the proposed model provides potential benefits for both the prosumers and the

grid, albeit with a user-centered, fully distributed approach.

• Since all calculations run locally at each prosumer, no exchange of private information is needed

to achieve fully distributed management of the network, enabling a cloud-based approach for

residential prosumer energy management in the IoE paradigm.

Relevant Publication(s):

M. Lotfi, C. Monteiro, M.S. Javadi, M. Shafie-khah and J.P.S. Catalão, "Optimal Prosumer

Scheduling in Transactive Energy Networks Based on Energy Value Signals," 2019 International

Conference on Smart Energy Systems and Technologies (SEST), 2019, pp. 1-6.

Published: https://doi.org/10.1109/SEST.2019.8849017

https://doi.org/10.1109/SEST.2019.8849017
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Chapter Nomenclature

Abbreviation Definition
DER Distributed Energy Resources

DR Demand Response

DSM Demand Side Management

EP Energy Premiums

FiT Feed in Tariff

IEP Indexed Electricity Price

IoT Internet of Things

NM Net Metering

RTP Real Time Pricing
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6.1 Introduction

It is no secret that energy systems are undergoing a substantial paradigm shift, unleashing societal

and economic chain reactions rivaled in magnitude by no less than those of the 18th Century

industrial revolution. Three centuries and three industrial revolutions later, engineers and policy

makers find themselves facing a wave of unprecedented technical breakthroughs and societal

changes to which existing structures and mechanisms need to be adapted. The ability to harness

and use energy has been the backbone of human development ever since discovering the controlled

use of fire. With human civilization now taking a similar leap into advancing the way energy is

harnessed and used, it is necessary to revisit energy quantification as a resource, and the way it is

managed and traded [178, 179].

6.1.1 State-of-the-Art

The rise of “prosumers” (producers and consumers of energy, simultaneously), was driven by the

many recent technological advancements for energy generation (primarily electrical) from local

resources, and those to store it, both of which were seldom possible at an economically adequate

level of conversion efficiency for small-scales before the current decade [180]. Simultaneously,

the increased attention towards the “demand”-side by means of the development of new enabling

technologies, and more importantly by the enactment of legislation to direct demand side

management (DSM) and demand response (DR) policies, has inspired the mindset of moving

towards more user-centric and decentralized energy systems [89]. This was further enabled by the

rise of the Internet of Things (IoT), and strengthened information infrastructures which allow for

real-time communication, data analysis, and decision-making to take place in modern smart grids

[76].

The most pressing issue is adapting existing structures and frameworks to this proliferation

of small-scale resources. This gives more power to prosumers, dismantling established structures

of energy markets, especially with regards to the relationship between the grid and the prosumer

sides [98]. With prosumer-centered energy trading emerging as a disruptive scenario, there is

little literature available with concrete solutions to this paradigm shift. Most offered solutions are

based on traditional approaches such as the Feed-in-Tariff (FiT) or Energy Premiums (EP). These

models are vastly outdated and were initially meant as incentives in the early days of distributed

energy resources (DER) penetration, and never meant as a permanent approach upon which new

management tools are to be developed [180, 181]. The proposed solutions so far can be said to

exist between two extremes.

The first, more outdated, extreme is where prosumers with installed local generation either

store any surplus generation or feed it into the grid, either for no payment at all (especially in the

case of EPs or DER-subsidy programs) or in exchange for a flat-rate (the case of FiT). In all cases,

this class of solutions is economically unfair for the prosumers as they are seldom compensated

for services they provide to the grid [98].
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The other, recently more popular, extreme is referred to as net-metering (NM) in which the

grid pays prosumers the full grid price for feeding-in their surplus generation, acting as their

“battery” [182]. This approach is inherently interlinked with the implementation of price-based

DR programs, particularly real-time pricing (RTP), which is the only current framework of

establishing a link between market conditions and the prosumers [183].

Many DR programs are already implemented in different markets around the world. Although

DR was not originally established for this purpose, it can temporarily suffice as a way of

managing this sudden proliferation of prosumers in order to ensure an economic benefit for both

sides. Moreover, almost all currently implemented DR programs are based on centralized or

hierarchical structures in which the grid-side operator is in control [89, 181, 45]. However, a

shift towards more user-centric systems with fully distributed management is inevitable in case

of prosumer-dominated energy networks. As such, the use of DR as a temporary solution will

have to be replaced soon by a more permanent energy management framework. One solution

rapidly gaining interest is peer-to-peer trading, which is now enabled by distributed ledger and

optimization technologies [98, 99, 184, 185].

6.2 Methodology and Formulation

Being inherently a “social” concept, it is important to reestablish the underlying definition of

social welfare before proceeding to quantify it mathematically or incorporate it in any model. The

Oxford dictionary defines social welfare as:

“The well-being of a community or society,

especially with regard to

health and economic matters.” [186]

From there, the concept is extended to the definition used in the domain of economics:

“The well-being of the entire society.

Social welfare is not the same as standard of living

but is more concerned with the quality of life.” [187]

Here we can establish that social welfare emphasizes the way in which resources are allocated

and used within a society, i.e. quality, rather than the collective availability or cost of this resource

i.e., quantity or total standard of living. This is important to establish before proceeding to

mathematically modeling and quantifying social welfare for application in the context of electrical

power systems.
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6.2.1 Status-Quo of Social Welfare Models

In power systems scientific research, a vast majority of the literature uses the Bergson-Samuelson

function [188] (or an adaptation thereof) to quantify social welfare [189, 58, 190]. In this model, a

number of individuals in a society (i = 1,2, . . . ,n) require some commodity (x) which is allocated

in different amounts to each of them (xi). The desire or need of each individual to this utility (i.e.,

how much they would be willing to pay for every additional unit of this utility) can be expressed

using a utility function for each individual and their allocation: ui(xi). The opposite applies for

the supplier of a utility: the utility function in this case represents how much it would cost for

them to generate an additional unit of the commodity (in this case the value is negative). The

Bergson–Samuelson model thereby defines social welfare as a function of all individual utility

functions in the society [188]:

WBS = f (u1 (x1) ,u2 (x2) , . . .un (xn)) (6.1)

This general definition was adapted for double-sided bidding competitive electricity markets

by the majority of literature, to obtain the form shown in (6.2).

WBS = ∑
i

Ui (Q2(i))−∑
j

C j (Q0( j))−CT (6.2)

In this case, the social welfare function represents the sum of utility functions of consumers

and generators of energy, in addition to the transmission and/or grid costs (CT ). The benefit of a

consumer to use purchased energy is incorporated by means of their utility function [188].

6.2.2 Social Welfare of Prosumers

It is clear that the existing approach of quantifying this benefit of energy use does not apply to the

newly emerging paradigm of prosumer-based transactive energy networks. First, in this paradigm,

there is no clear distinction between the supply and demand sides in the same manner quantified

by the utility functions.

Secondly, a prosumer’s benefit of using energy may not always depend only on their desire to

use their loads/appliances, but may depend also on current market conditions which may make it

more profitable for them to transact their generated energy rather than use it, or vice versa.

6.2.3 Energy Value Signals

Consider a residential prosumer that has a varying number of schedulable appliances αi. These

loads are scheduled for different timeslots t of each day. The scheduling of the appliances can be

mathematically represented by means of an allocation matrix A, described as follows:

Aα
t := A(t,α) =

{
1, if α is on in t

0, if α is off in t
(6.3)
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Based on their preferences, the prosumer can control an energy value signal for each load,

which reflects the value of allocating energy consumption to this load during various timeslots of

the day. In our proposed model, we define this energy value signal ζt as follows:

ζ
α
t = µ

α
t · γ +PG

t (6.4)

In this case, the prosumer’s value of allocating energy to an appliance α during timeslot t is

obtained by scaling the current price of electricity from the grid (PG
t ) by means of a user-defined

preference of (µα
t ) and a rigidity factor R. The energy value matrix can then be compiled as

follows, with the same dimensions as the allocation matrix.

Zt,α := Z(t,α) = ζ
α
t (6.5)

The preference µα
t defined as a real number between one and the maximum value of Rmax:

µ
α
t ∈ R∩ [0,1] (6.6)

The rigidity R is defined as an integer between one and a upper limit value of Rmax:

R ∈ Z∩ [1,Rmax] : 2 < Rmax (6.7)

This rigidity factor determines a prosumer’s flexibility to allocate a load to different hours. A

scaling factor is then used:

γ = f
(
γb,R,PG

t
)

:=
(R−1)

(Rmax−1)
· γb ·PG

t (6.8)

On the other hand, the total energy supply available throughout the day consists of contracted

power the grid and all prosumers making offers for the decision-making window:

σ ∈ S = {G,Ψ} (6.9)

And the set of prosumers is defined accordingly:

ψ ∈Ψ =
{

ψ1,ψ2, . . . ,ψNψ

}
(6.10)

Each prosumer offers a price to supply electricity for every hour. In our proposed framework,

this price needs to be less than the grid price, but also higher than the price to feed-in to the grid.

Operating between both extremes of FiT and NM, we choose a more moderate indexed electricity

price (IEP).

Pψ

t = κ
ψ

t ·PG
t (6.11)
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The competitiveness coefficient κ reflects the “greediness” of each prosumer when making

their offers: i.e., the higher the offer, the greater the profit made by this prosumer albeit with a

greater risk of not selling their energy due to better offers. This value drives the competitiveness

between prosumers in the proposed transactive energy market model.

This limitation is based on the IEP as a fraction of the grid price. In this sense, if the

competitiveness of a prosumer is too high and fails to transact their energy offer, the alternative is

feeding their surplus energy to the upper level of the grid.

φ
IEP
t =

PIEP
t

PG
t

(6.12)

Looking back to the reference prosumer, the amount of energy transacted from a supplier

(prosumer or the grid) is expressed as:

τ
σ
t ∈ R∩ [0,ωσ

t ] (6.13)

As such, partial transactions from each supplier can be made with a maximum amount equal

to the offered quantity ωσ
t from that prosumer for that timeslot. An important aspect of this

model is that the reference prosumer enters the market themselves by making energy offers from

locally generated energy. The self-consumption of the prosumer is thereby a result of them

self-transacting the energy. I.e., there is no discrimination between the prosumers offering energy

supply in the scheduling model; it is only based on the offered prices for each timeslot.

6.2.4 Prosumption Scheduling

With all relevant definitions now established, it is possible to implement a tool for coordinated

scheduling between energy consumption and trading scheduling which can be summarized in

threes steps as follows:

Step 1: Sort incoming offers from suppliers in ascending order of cost for each timeslot.

Step 2: Schedule consumption blocks based on defined energy value of each block for each

timeslot, such that the maximum energy value is achieved for the day, constrained by the

maximum available power supply.

Step 3: Execute consecutive energy transactions from suppliers in descending order of cost based

on calculated consumption schedule.
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Table 6.1: Schedulable loads in the reference prosumer’s residential household.

α - Load Description Power (kW) Duration (h)

α1 - Space Heaters 3.0 6
α2 - Oven and Stove 2.0 2
α3 – Clothes Iron 1.0 1
α4 - Clothes Dryer 3.0 3
α5 - Clothes Washer 1.0 3
α6 - Dishwasher 2.0 1
α7 - Refrigerator 0.5 20
α8 - Entertainment (TV / PC) 0.4 4
α9 - Base Load 2.0 24
α10 - Lighting 0.6 16

6.3 Case Study and Analysis

To demonstrate the proposed framework, we consider a typical household with the schedulable

loads listed in Table 6.1. The scheduling is performed for a 24-hour-ahead period with hourly

timeslots for energy consumption and transaction scheduling. In Fig. 6.1, the total available

energy offered from the grid or prosumers for each hour is shown. The prosumer is assumed to

have a contracted power of 10.35 kW with the grid, which sets their maximum hourly load. The

green bars show the energy offers made from different prosumers connected to the transactive

energy network for this decision- making horizon.

Table 6.2: Hourly prices for energy offers from the grid (G) and prosumers (Ψ1,Ψ2, ...,Ψ10) in the
transactive energy network.
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In this case, nine prosumers are making offers with different maximum energy quantities and

prices for each hour. Different prices (including transmission costs) offered by each supplier

are shown in Table 6.2, with the reference prosumer (the one doing the scheduling) personally

participating in this market, being represented as prosumer one, or Ψ1. The hourly prices from

the grid are shown in red, with darker values being higher. For each hour, the prices offered by

prosumers are shaded from lightest to darkest, relative to how much less they are compared to the

grid price of that hour.

It is obvious that all prosumers have solar-based generation. Different generation scenarios,

in addition to different randomized uncertainties have been modeled for each prosumer to reflect

a realistic case. As previously elaborated in Section 6.2.3, the values in Table 6.2 show that the

prosumers offer energy at hourly prices, which are between the grid price and the IEP: refer to (9)

and (10). In this case, we assume the IEP to be 10% of the grid price. Different prosumers make

more or less competitive offers each hour based on their strategy.

In this case study, we assume the hourly competitive coefficient, κ , for each prosumer to vary

randomly. The hourly energy offers are visualized in Fig. 6.2, which clearly shows multiple

aspects of the considered transactive energy market.

First, the grid hourly prices reflect the implementation of some real-time pricing (RTP) DR

program, reflecting higher prices in times of higher demand for residential consumption. This

will be re-emphasized shortly with the introduction of the prosumer preferences for appliance

scheduling.

As such, the existence of both a fully decentralized transactive energy market for prosumers

and a market for large utilities will be shown to not be mutually exclusive. Rather, the interaction

between the two may very well lead to more efficient systems. While this is out of the scope of

this study, this interaction will be the focus of future studies on this proposed framework, in which

this model can be scaled to what is sometimes referred to as “fractal” energy systems.

This brings up the second aspect to infer from Figure 2. A prosumer’s bidding strategy

can have a significant effect on market dynamics, including strategies of other prosumers. This

dynamic interaction is not only confined within the prosumers transactive network, but extends

to the grid. The main motive of DR programs and RTP was to incentivize active participation

from consumers. This idea can be extended to this prosumer-based model, with the prosumers’

bidding strategies within their network having a significant effect on grid prices, enabling a

two-way interaction between grid prices, prosumer prices, and a dynamically changing IEP index,

resulting in a varying bidding margin for prosumers. This will be addressed in future studies on

this framework.

The final step to setup up the case study is for the reference prosumer to indicate their

preference for the allocation of the appliances. This is shown in Table III, in which these values

are normalized and transformed to calculate the value signals.
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Figure 6.1: Hourly available energy from suppliers in the transactive network: Grid (purple) and
Prosumers (green).

Figure 6.2: Hourly values of energy price corresponding to: grid supply (solid black line),
grid-indexed electricity price (dashed black line), and prosumers in the transactive network
(different colored dots corresponding to different prosumers). Hours with prosumer offers (during
the day hours due to reliance on solar generation) are zoomed in on the bottom-right corner.
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6.4 Results and Discussion

The optimal schedule is obtained using the approach highlighted in Section 6.3.4. In this study,

an exhaustive search code implemented using Python was used. The model takes a fraction of a

second to run, showing that by employing a more superior optimization algorithm it can run in

real-time. Table IV shows the resulting allocation matrix A(t,α).

It can be seen that the scheduling tool attempted as much as possible to adhere to user

preferences, subject to also minimizing the energy cost and thereby maximizing the total value

of energy for each hour (the objective function of the optimization model).

For instance, the space heater (α1) was scheduled two hours before the preferred hours for the

prosumer, due to the significantly higher availability of (cheaper) energy supplied through other

prosumers in the transactive network. The same applies to the refrigerator (α7), scheduled at 1:00.

This can be seen in Fig. 6.3.

Table 6.3: Reference prosumer preferences for applicance allocation (1->lowest, 3->highest).



154 Residential Prosumer Scheduling in Transactive Energy Networks

Table 6.4: Obtained allocation matrix for appliances.

It can be seen that from 11:00 to 15:00, the energy is 100% supplied from the prosumers in the

transactive network. This corresponds to a significant reduction of energy cost during those hours,

as shown in Fig. 6.4.

Concerning energy trading, it can be seen that while energy cost was minimized as much as

possible, this did not come at the cost of sacrificing the reference prosumer’s welfare, with the

peak load occurring at 19:00, when there was in fact no supply from the transactive network of

prosumers. However, the maximum possible utilization of cheaper energy from the transaction

energy was achieved as can be seen in Fig. 6.3. This can also be seen in Fig. 6.4, where the

maximized energy value signal can be compared to the hourly energy cost.

By being more flexible in their consumption preferences (refer to Table 6.3), the reference

prosumer can guide the scheduling tools to give more weight to cost reduction, and vice versa.
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Figure 6.3: Hourly scheduled load and transacted energy. The total hourly load is shown using the
black dotted line, the energy purchased from the grid is shown using the purple bars, and the total
transacted energy from the prosumers in the transactive network is shown using the green bars.

Finally, we can now compare our proposed framework with the traditional approaches existing

on both extremes as discussed in Section 6.1. By comparison with the case of net metering, our

model exhibits a potential benefit for the upstream grid as it does not have to pay for energy

generated locally by the consumers as they pay each other locally within the transactive network.

In addition, our framework provides the coordinated scheduling of prosumers in a fully distributed

manner, without the need of a central operator, while always providing a guarantee that the

generated electricity will be paid for regardless of the “presumption” schedules of the users in the

network. The only thing that varies (maximized) is the global value of energy, but in all cases, any

locally generated energy will be paid for, with the worst-case scenario corresponding to the lower

bidding margin of the IEP. On the other hand, comparison with systems where the prosumers are

not paid for fed-in energy, it is obvious that this framework provide a benefit for the prosumers.

In fact, the proposed framework can be directly applied to such systems, as an extreme case of

having a zero-valued IEP bidding margin. All in all, the proposed model can provide potential

economic benefits to both the grid and prosumer, while being user- centric and fully distributed.
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Figure 6.4: Hourly energy price paid by reference prosumer (red line), electricity price from the
grid (black) and the maximized energy value signal (pink dashed line).

An important aspect to note is that the reference prosumer is participating in the transactive

energy market, and with no discrimination between buying energy from themselves or other

prosumers. The only deciding factor is offered price from each prosumer. This is important

for the market dynamics, as there are hours when the prosumer can profit more by selling it to

another rather than self-consuming (or in this case, self-transacting) it. In this study, we consider

all the offered prices already including the transmission and grid connection costs. However, the

transactive network can be a virtual one rather than physical, and follow-up work can investigate

the effect of the presence of prosumers from different low-voltage networks.
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6.5 Conclusions

In this study, we propose and test a novel framework for distributed management of transactive

energy networks. Energy value signals are proposed as an alternative means of quantifying social

welfare for prosumer-centered networks. Afterwards, a coordinated scheduling algorithm for joint

scheduling of energy consumption and trading is formulated. The scheduling tool runs locally at

each prosumer in order to achieve a maximum global energy throughout the network. Rather than

minimizing energy costs as traditional models do, in this case we maximize energy value, which

we propose as a new way of quantifying social welfare for prosumer networks, simultaneously

leveraging consumption scheduling preferences and minimizing costs. Energy value reflects the

value set by the user of allocating energy for a certain usage at a certain time. These user

preferences are input locally resulting in the optimal schedule of each prosumer, which in turn

affects the price of energy globally in a similar manner to demand response programs. The local

energy transactions are guided within a margin relative to the upstream grid prices. It was shown

that the proposed model could provide potential benefits for both prosumers and the grid, albeit

with a user- centered, fully distributed approach to schedule energy consumption and trading in

transactive energy networks of prosumers. Since all calculations run locally at each prosumer, no

exchange of private information is needed to achieve fully distributed management of the network.

For future work, the effect of employing such a model on power flow and grid connection costs

should be investigated in detail in order to confirm the applicability of this approach on existing

power systems. Moreover, investigation of the effect of employing different bidding strategies

by the prosumers should be performed, in order to ensure transparency and verification can be

guaranteed between the prosumers.
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Chapter 7

Design of Fully Electric Public
Transport Systems and Charging
Infrastructures

In this chapter, a generalized mathematical formulation is proposed to model a generic fully

electric public transport system, and a mixed-integer linear programming (MILP) optimization is

used to determine the optimal design of the system in terms of charging infrastructure deployment

(with on-route and off-route charging), battery sizing, and charging schedules for each route in

the network. Three case studies are used to validate the proposed model while demonstrating its

universal applicability. First, the design of three individual routes with different characteristics is

demonstrated. Then, a large-scale generic transport system with 180 routes, consisting of urban

and suburban routes with varying characteristics is considered and the optimal design is obtained.

Afterwards, the use of the proposed model for a long-term transport system planning problem

is demonstrated by adapting the system to a 2030 scenario based on forecasted technological

advancements. The proposed formulation is shown to be highly versatile in modeling a wide

variety of components in an electric bus (EB) transport system and in achieving an optimal design

with minimal TOC.
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Chapter Highlights and Novel Contributions:

• A universal mathematical model for fully electric public transport networks is developed using

mixed-integer linear programming (MILP) to minimize the total ownership cost (TOC).

• The proposed model determines the optimal design of transport networks in terms of charging,

battery sizing, and charging schedules for each route in the network. Dynamic electricity tariffs

are incorporated in the model.

• Three case studies are considered: optimization of individual routes (case study 1), design

of large-scale system (case study 2), and long-term planning of large-scale transport systems

adapting to a 2030 scenario based on forecasted technological advancements (case study 3).
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Chapter Nomenclature

Abbreviation Definition
AML Algebraic Modeling System

CC City Center

DC Depot Charger

DER Distributed Energy Resource

EB Electric Bus

ESS Energy Storage System

EV Electric Vehicle

FC Flash Charger

FLC Fuzzy Logic Controller

GA Genetic Algorithm

HF High Frequency

LD Long Distance

LF Low Frequency

LV Low Voltage

MD Medium Distance

MILP Mixed Integer Linear Programming

MIP Mixed Integer Programming

MPC Model Predictive Control

MV Medium Voltage

NLP Non Linear Programming

SD Short Distance

SoC State of Charge

SU Suburban

TC Terminal Charger

TOC Total Ownership Cost
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7.1 Introduction

7.1.1 Background and Motivation

In the context of public transport systems, the transition to a fully electric fleet is quite easy to

carry out for three main reasons: First, due to heavy usage, public transport buses are frequently

replaced and thus EBs can gradually replace conventional buses in the fleet without causing any

interruption. Second, public transportation schedules are largely fixed (on the short-to-medium

term), and thus individual upgrades to EBs can be seamlessly performed. Third, investment

stability is mostly guaranteed in the public transportation sector, which facilitates the acquisition

of new EB technologies [1]. In addition to the aforementioned facts, EB fleets have been shown

to have a lower total ownership cost (TOC) compared to their conventional counterparts [191].

With all this being said, the main challenge hindering the transition thereto is the complexity

involving designing an optimal charging infrastructure which meets the needs of the transport

system and adheres to techno-economic constraints while maintaining the minimal TOC of the

system [1]. With this being the primary motivation behind this work, a survey or recent scientific

literature has been performed to identify the state-of-the-art progress on this topic.

7.1.2 State-of-the-Art Survey

In a recent study [192], the design of an EB transport system was optimized in terms of the fleet

size and mix (with specifications of different bus types), and the charging infrastructure. The study

identified that range limitation is indeed a main hurdle in electrification of public transport systems

and that optimal design thereof is of paramount importance. By modeling the transport network

of two European cities, a genetic algorithm (GA) was used obtain the optimal mix of EB models

and the required number of each. The objective function of the GA was formulated as the TOC.

The authors in [193] used an enhanced GA algorithm combined with a departure time

adjustment procedure to optimize EB deployment scheduling for a given bus route. The proposed

model was applied to a bus route from a real-world public transit system in Nanjing, China. The

results of the study showed that by applying the proposed model to optimize EB deployment and

scheduling on that route, the operating costs are decreased due to the reduced number of deployed

buses and drivers, as compared to experience-based scheduling used in the real-world scenario.

Another study [194] utilized a GA as an optimization approach for EB-based public transport

systems. A realworld transit network in China was modeled, and the objective was to determine

the optimal EB scheduling and charging infrastructure in order to meet the (constraint) scheduled

routes with minimal charging costs. A sensitivity analysis was used to assess the economic

viability of the charging power and discharging depth (direct functions of charging infrastructure

and EB schedules, respectively).
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Table 7.1: A synopsis of recently published studies addressing the optimization of electric bus
public transportation networks.

Reference Computational
Model

Charging
Infrastructure

Charging
Schedule Routes Battery

Capacity Bus Deployment

[193] GA Constraint Constraint Constraint Constraint Decision Variable
[194] GA Constraint Decision Variable Constraint Constraint Decision Variable
[195] NLP Constraint Decision Variable Constraint Constraint Constraint
[196] FLC Constraint Decision Variable Constraint Constraint Constraint
[197] MILP Decision Variable Constraint Constraint Decision Variable Constraint
[198] MIP Decision Variable Constraint Constraint Constraint Constraint

In [195], the target of the study was to evaluate the interaction between EB public

transportation networks and the electrical grid, in the presence of dynamic pricing. A nonlinear

programming (NLP) model was used to determine the optimal charging schedule for EBs of eight

EB routes in Shenzhen, China. The proposed optimization framework was employed to determine

the charging schedules which would provide a tradeoff between meeting the transportation

network constraints and minimizing the power grid congestions.

Similarly, [196] aimed at optimizing the power exchange between the public transport network

and the power grid through the use of fuzzy logic control (FLC) to control the energy flow between

the charging infrastructure and the EBs in the predefined transport network. The proposed model

was used to perform simulations based on EB routes in Assam, India, and was shown to improve

the voltage profile of the power grid while adhering to the transport network requirements and

route schedules.

While the main focus of some studies was optimizing the EB schedules, others were concerned

with optimizing the charging infrastructure, given a specified EB fleet. The previous studies [192,

194], like many others, considered only the presence of a charger at the EB depot, meaning they to

return to the original depot in order to recharge. Other studies tackled this problem by considering

other locations for energy storage systems (ESSs) and/or fast chargers throughout the network

which can be used to charge the EBs without having to make a full trip back.

In [197], mixed-integer programming (MIP) was used to minimize the TOC of a real world

transportation network of a town in the United States. The optimal deployment of fast charging

stations and ESS throughout the network was achieved. Similarly, another study [198] utilized

MIP to for optimal charging station planning for a transport network of a city in China. The

objective in this case was to determine the optimal sizing and siting of the charging stations,

which minimizes the total cost at each stage of the planning problem.

The most recent scientific literature addressing the problem of optimizing EB public transport

networks have been surveyed, and compiled in Table 7.1. The conducted literature survey led to

two main findings:

• All surveyed scientific publications have been concerned with the optimization of one or

two elements of the transport system, with the other aspects being considered as model

constraints.
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• All studies were performed on specific case studies based on existing transport networks in

real-world cities. No studies were found to model generic networks or testing the universal

applicability of the proposed model.

Accordingly, in this work a universal mathematical model for fully electric public

transportation networks is developed and formulated as a mixed-integer linear programming

(MILP) optimization problem with the objective of minimizing the TOC. The nature of the

proposed model is universal, i.e., any set of routes, buses, and type of charging infrastructure

can be considered as a parameter or a decision variable. In this sense, the model is highly versatile

and can be used to optimize existing systems or to design new ones.

7.2 Public Transport Network Model

In Fig. 7.1, a public transport system is illustrated along with its components. A generic system is

comprised of the following components:

• Depot: The depot is where the buses are dispatched from, and is where they park and charge

while they are not in service.

• Electric Bus: The electric buses (EBs) are the backbone of the network, traversing the routes

with passengers on board. EBs have onboard batteries which are recharged at designated

charging locations in the network.

• Routes: The routes are the paths which EBs must traverse to transport passengers. Routes are

made up of bus stops and are scheduled. The scheduling can be based on a specific time at

which the EB must arrive/depart from/to each spot, or a frequency for the EBs to traverse the

route (e,g. 1 bus to pass by a stop every X minutes).

• Terminals: Terminals are usually bus stops at which several routes intersect and therefore have

an allocated area and infrastructure for use by the EBs

• Charging Infrastructure: The charging infrastructure provides the energy needs of the system.

The chargers where buses can recharge their batteries can be off-route (e.g. at depots) or on-route

(e.g. at terminals).

As illustrated in Fig 7.1, three main types of chargers are currently available commercially

[199, 200, 201]. The first is the depot charger (DC), typically used to charge the buses during the

time when they are out of service and parked at the depot (off-route). DCs typically have rated

powers ranging from 50 kW to 100 kW, intended for slow charging of the batteries overnight or

while they are out of service.
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Figure 7.1: Illustration of a generic public transport network and its components: depots, buses,
routes, stops, terminals, and charging infrastructure.

The second type of chargers is the terminal charger (TC). As the name suggests, a TC is

typically installed for on-route charging at main terminals, with its rated power ranging from 500

kW to 600 kW. The TC charges the onboard battery through a converter, typically connected to the

medium voltage (MV) power grid through a substation transformer at the terminal, as illustrated

in Fig 7.2.

Figure 7.2: Schematic of a TC grid connection.

Figure 7.3: Schematic of a FC grid connection.

The third type is the flash charger (FC) illustrated in Fig. 7.3, used for on-route fast charging

at regular stops, typically has a rated power ranging from 400 kW to 500 kW. Unlike the TC, the

FC is installed at regular stops, and thus is connected to the low voltage (LV) power grid, typically

coupled with a battery to avoid causing a load spike on the LV grid, which would be more sensitive

to such load fluctuations as opposed to the MV ones. Another reason is that buses spend more time

stopped at terminals (a few minutes) compared to regular stops (a few seconds).

In fact, this is the main technical difference between TCs and FCs. Although their costs and

rated powers are similar, the main different influencing the choice between the maximum time at

which EBs can spend charging at either.
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From a cost perspective, on-route chargers are typically associated with much higher (an order

of magnitude) capital costs than depot chargers. The investment is justified by their fast charging

rates, which allow EBs to charge onroute, decreasing the parking time at the depot, and thereby

minimizing the number of idle buses in the network and total investment in batteries. This is one

of the trade-offs which upholds the need for an optimization model for designing the charging

infrastructure.

Accordingly, all three types of commercially available charging infrastructures (DC, TC, and

FC chargers) and their aforementioned technical and economic characteristics are to be considered

in the current model.

Most commercially available EBs are fitted with batteries with capacities ranging from 80

kWh to 320kWh [202, 203]. As such, in the current model the battery capacity of EBs assigned to

each route are modeled as a design variable for the optimization problem.

Defining generic routes is crucial to establish an adequate framework for the optimization

model. Routes can be categorized based on two key parameters [192, 202]:

Average Distance Between Stops: This parameter is an indicator of the route location. Routes

within large cities or densely populated areas are associated with shorter average distances between

stops compared to those in suburban areas. This is expressed as:

ds
r =

Lr

Ns
r −1

(7.1)

where ds
r is the average distance between stops for route r. Lr is the length of route r, and Ns

r

is the number of stops in route r.

Average Daily Distance: Considering normal operation in which an EB is assigned a specific

route each day, this is expressed as:

dd
r =

Hr

Tr
·Lr = Nt

r ·Lr (7.2)

where dd
r is the average daily distance on route r. Hr is circulating hours of route r (difference

between first and last bus of the day), Tr is the average duration of the route, and Nt
r is the daily

number of trips in route r.

Having defined these two key parameters, generic routes can be categorized into different

types to provide physical meaning. In this study, the categorization defined in Table 7.2 is used to

describe different routes in the case studies. Accordingly, generic routes can be categorized into

city (CC) or suburban (SU) routes based on ds
r , or as short (SD), medium (MD), or long distance

(LD) based on dd
r .
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Table 7.2: Categorization of generic routes into: city center (CC), suburban (SU), short distance
(SD), medium distance (MD), and long distance (LD).

dd
r (km)

<200 200-250 >250

ds
r (km)

<0.3 CC-SD CC-MD CC-LD

>0.3 SU-SD SU-MD SU-LD

7.3 Optimization Model

As any optimization problem, the proposed MILP model consists of two main elements: the

objective function and problem constraints, which are detailed subsequently.

7.3.1 Objective Function

Note that in the current formulation the TOC is calculated as an annual value. Electricity charging

costs are operating costs and therefore the annual value can be calculated directly. However, the

charging infrastructure and battery costs have capital investments, and therefore the capital cost

is divided by the equipment lifetime and summed to the yearly operating costs to obtain their

equivalent annual cost:

annual cost =
capital cost

li f e time
+annual operating cost (7.3)

The objective function to be minimized represents the TOC of the transport system and is

shown in (7.4). For each route in the system, the annual TOC is calculated as the summation of

five cost terms. The five cost terms, from left to right, correspond to: the annual running cost of the

depot station(s), annual ownership costs of batteries for all buses in circulation, annual ownership

cost of all the entire charging infrastructure, annual electricity cost for on-route charging (by TCs

and FCs), and finally the annual electricity cost for off-route charging (by DCs). Each of the five

terms is elaborated in (7.5)-(7.9).

minTOC = ∑
r∈R

(
Cdepot

r +Cbatteries
r +Cchargers

r +Conroute
r +Co f f route

r

)
(7.4)

Cdepot
r = dr ·Cd (7.5)

Cbatteries
r = ∑

k∈Br

(
bk,r ·CB) (7.6)

Cchargers
r = ∑

i∈Ir
∑

h∈H
xi,h,r ·CC

h (7.7)
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Conroute
r = ∑

i∈Ir
∑
j∈Jr

(
ei, j,r ·CE

i, j,r
)
·dyear ·nbus

r (7.8)

Co f f route
r = eend,r ·CE

end,end,r ·dyear ·nbus
r (7.9)

The first term (Cdepot
r ) corresponds to the depot charger annual TOC for each route r and is

expressed in (7.5). The term is a multiplication of a binary variable (dr) representing the existence

of the depot charger (for route r) multiplied by the annual ownership cost of running a depot

charger (Cd).

The second term, (Cbatteries
r ) , is the annual TOC of all batteries in route r and is shown in (7.6).

For each route, this is the summation of the battery costs of each bus k deployed to this route (Br

is the set of all buses deployed to route r) which is calculated as the capacity of each battery bk,r

multiplied by its annual ownership cost (CB) per-kWh.

The third term (Cchargers
r ) is shown in (7.7) and corresponds to the annual cost of the charging

infrastructure on each route r. Here, i and h are the positive integer indices for the stops and

charger type, respectively, and Ir and H are the set of all stops in route r and set of available

on-route charger types, respectively. For each route r, xi,h,r is a binary variable indicating the

presence of a charger of type h at stop i, and CC
h is the annual ownership cost of a charger of type

h. Accordingly, Cchargers
r is calculated for each route r as the sum of the annual cost of all present

charger types (decided by the binary variable) at each stop, and is summed for all stops.

The fourth and fifth terms in (7.8) and (7.9) correspond to the total cost of energy supplied to

recharge the batteries through on-route and off-route chargers, respectively.

In (7.8), j corresponds to the index of the trip in Jr, which is the set of all daily trips made on

route r (the number of daily trips made on each route is determined by the frequency of the route).

For each route r, ei, j,r and CE
i, j,r are the energy charged at stop i during trip j, and the corresponding

cost per unit of electricity, respectively. dyear is the number of days in a year, set as 365, and nbus
r is

the total number of buses traversing the route. This last value can be calculated based on the two

parameters of each route which were introduced in (7.1) and (7.2), as is shown in (7.10):

nbus
r =

Hr

Nt
r
·Fb

r (7.10)

In (7.10), Fb
r is the frequency of buses is route r and the other variables have been defined

previously. Accordingly, Conroute
r is calculated for each route r as the sum of the annual cost of

electricity charged at all stops, for all trips.
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In (7.9), the final term of the TOC objective function is shown (Co f f route
r ) which is the cost

of electricity charged offroute (while the EBs parked or are not in service) for route r. In this

equation, eend,r and CE
end,end,r and correspond to the energy charged at the end of the route (i.e.,

off-route), and the corresponding cost per unit of electricity, respectively. It is important to note

that in this formulation, the last stop in a bus schedule corresponds to the depot. However, this

does not dictate the presence of a charger at the depot (DC), which is a decision variable dependent

on the binary variable dr . With all the terms being defined, the objective function for the transport

system TOC is evaluated as the summation of the total costs of all routes in the network, denoted

by set R.

7.3.2 Constraints

The constraints of the optimization problem can be divided into four groups:

7.3.2.1 Infrastructure Constraints

The first constraint is associated with the charging infrastructure, and guarantees that at each stop

there is only one type of charger installed (based on the binary decision variable xi,h,r which was

previously introduced), as is represented in (7.11).

∑
h∈H

xi,h,r ≤ 1, ∀r ∈ R, ∀i ∈ Ir (7.11)

7.3.2.2 Battery Constraints

The second set of constraints are associated with the batteries onboard the EBs, and are represented

by (7.12)-(7.14). To protect the health of the batteries, for each bus , the battery State-of-Charge

(SoC), denoted by Ei, j,k,r , must be within the upper and lower bounds B̄ and B, as set by (7.12)

and (7.13), respectively. As defined in the previous section, bk,r is the capacity of the battery

installed on bus k deployed to route r. Constraint (7.14) sets the SoC boundary conditions to be

at the maximum value (B̄ · bk,r), i.e., the EB starts each trip from the depot with full charge. It is

important to note that with the circular bus route nature, the first and last stops are the same (i.e.,

stop i = 1 is the same as i = end) . Hence, the SoC at both, E1, j,k,r and Eend, j,k,r are equal as set

by (7.14). Constraints (7.12)-(7.14) are applied globally: at each stop in each route for all buses

deployed to all routes.

Ei, j,k,r ≤ B̄ ·bk,r, ∀r ∈ R,∀i ∈ Ir,∀ j ∈ Jr,∀k ∈ Kr (7.12)

Ei, j,k,r ≥ B ·bk,r, ∀r ∈ R,∀i ∈ Ir,∀ j ∈ Jr,∀k ∈ Kr (7.13)

E1, j,k,r =Eend, j,k,r = B̄ ·bk,r,

∀r ∈ R, ∀i ∈ Ir,∀ j ∈ Jr,∀k ∈ Kr
(7.14)
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7.3.2.3 Charged Energy Constraints

The third set of constraints in (7.15)-(7.21) are related to the energy exchange between the EBs

and the charging infrastructure. First, (7.15) ensures that energy can only be injected from the

electrical grid to the EBs through the chargers and not vice-versa. This constraint can easily be

modified or removed in case bi-directional energy flow with the power grid is possible and to be

considered. Constraint (7.16) dictates that if there is no charger installed at a stop (xi,h,r = 0), then

the energy exchanged at that stop must be equal to zero (ei, j,r = 0). Constraint (7.17) sets the

charging power according to the charger type installed at a stop (xi,1,xi,2,etc.), matching it to the

corresponding maximum charging capacity of this charger type (Ē1, Ē2, etc.).

Constraints (7.18) and (7.19) impose xi,h,r that there can only be one type of charger at each

stop in each route. In case there is a depot charger (dr = 1), the constraint (7.20) limits charging at

the end of each trip to correspond to the maximum charging capacity of the depot charger (ĒDC).

Constraint (7.21) imposes that there must be a charger installed at the first/last stop of each route,

such that if there is no depot charger (dr = 0), charger type 1 (e.g. terminal charger) is imposed

on that stop to comply with constraint (7.14). In this sense, the model optimizes the design of the

system by choosing between the depot charger and the cheapest opportunity charger depending on

which is more cost effective. In real-life terms, this is seen in the case that some routes start/end

at terminal (with a TC) and other start and end at the main depot (with a DC).

ei, j,r ≥ 0, ∀r ∈ R,∀i ∈ Ir,∀ j ∈ Jr (7.15)

∑
h∈H

xi,h,r = 0 =⇒ ei, j,r = 0, ∀r ∈ R,∀i ∈ Ir,∀ j ∈ Jr (7.16)

xi,h,r = 1 =⇒ ei, j,r ≤ Ēh, ∀r ∈ R,∀i ∈ Ir,∀ j ∈ Jr (7.17)

∑
h∈H

xi,h,r ≥ 0, ∀r ∈ R,∀i ∈ Ir (7.18)

∑
h∈H

xi,h,r ≤ 1, ∀r ∈ R,∀i ∈ Ir (7.19)

dr = 1 =⇒ eend, j,r ≤ ĒDC, ∀r ∈ R,∀ j ∈ Jr (7.20)

dr = 0 =⇒,xend ,1,r = 1, ∀r ∈ R (7.21)

7.3.2.4 Energy Balance Constraints

The final constraint in (22) is associated with the total energy balance of the system, such that the

total SoC consumed by all buses is equal to the total SoC charged.
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The equation is applied for all buses deployed to all routes in the network, such that for each

bus, the sum of the SoC difference between all subsequent stops (Ei, j,k,r−Ei−1, j,k,r) must be equal

to the total energy charged at all stops (including the terminal or depot).

∑i=2...end
(
Ei, j,k,r−Ei−1, j,k,r + ei, j,k,r

)
= 0

∀r ∈ R, ∀ j ∈ Jr,∀k ∈ Kr
(7.22)

7.3.3 Computational Implementation

The YALMIP package (version R20181012) was used as the algebraic modeling language (AML)

for the proposed model, on MATLAB (version R2019b). The Gurobi solver (version 8.0) was

used to optimize the system using MILP.

Here it is important to note that the model of the system and the optimization algorithm

employed are distinct. The main objective of this work is to formulate a generalized mathematical

formulation which allows the modeling of all components of any generic fully electric public

transport network. Given that the design problem is offline in nature, the choice of deterministic

optimization is generally favored over a meta-heuristic one, which would yield sub-optimal

solutions. The choice of a MILP optimization solver was due to its deterministic nature which

guarantees the global optimal value for any given case using the proposed formulation

7.4 Case Studies

7.4.1 Description of the Different Case Studies

In order to validate and demonstrate the universal applicability of the proposed optimization model

on a wide range of problems, three case studies were performed:

1. In the first case study, three generic routes are constructed with different lengths. The

proposed model is used to determine the optimal design, sizing, and siting of the charging

infrastructure in addition to the sizing of the batteries for each of the given routes.

2. In the second case study, a generic transportation network is constructed based on a

combination of 180 different routes, belonging to all six categories (CC-SD, CC-MD,

CC-LD, SU-SD, SU-MD, and SU-LD). The optimal design, sizing, and siting of charging

infrastructure in addition to the sizing of the batteries for all deployed EBs and routes in the
entire system is determined.

3. In the third case study, a long-term transport network planning problem is investigated, by

studying the effect of long-term (10-year ahead) forecasted change on battery, energy,

and other technology costs on the results obtained in the second case study. A comparative

analysis is then performed between the present-day (2020) and future (2030) scenarios in

terms of the TOC of the network and its respective breakdown.
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Table 7.3: Specifications of routes used for the first case study.

Route A Route B Route C

Number of Trips (per day) 5 15 15

Number of Stops (per trip) 75 60 80

Total Number of Stops (per day) 375 900 1200

Trip Length (km) 20 15 20

Bus Size (m) 18 18 24

Average Consumption (kWh/km) 1.8 1.8 2.2

Table 7.4: Classification of commercially available EBs according to average energy consumption
[1, 2, 3].

Bus Type Average Consumption (kWh/km)

12-meter 1.2

18-meter or articulated 1.8

24-meter or double articulated 2.2

Table 7.5: Techno-economic specifications of chargers.

DC TC FC

Charger Classification Depot On-Route On-Route

Model Standard Slow Fast Slow Fast

Rated Power (kW) 50 400 600 400 600

Maximum Charging Time 5 hours 3 minutes 10 seconds

Capital Cost (EUR) 98k 278k 280k 278k 280k

Operating Cost (EUR/year) 100 2k 2k

Lifetime (years) 20 20 20

Table 7.6: Techno-economic specifications of the batteries.

Capital Cost (EUR/kWh) 250

Operating Cost (EUR/year) -

Battery Lifetime (years) 5

State-of-Charge Upper Boundary (%) 90

State-of-Charge Lower Boundary (%) 10
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The three defined case studies allow the validation of the proposed model in terms of its

applicability on different classes of transport system design problems, namely the optimization
of specific routes (case study 1), design of large-scale system (case study 2), and long-term
investment planning of large-scale transport systems (case study 3).

7.4.2 Case Study Definition and Results

7.4.2.1 Case Study 1: Optimal Design of Individual Bus Routes

In this first case study, the objective is to test and validate the proposed mathematical formulation,

by attempting to determine the optimal charging infrastructure deployment and battery sizing for

individual EB routes. For this purpose, three generic routes are constructed with different lengths,

as detailed in Table 7.3. Based on length of the route, different bus sizes are needed for each

route, whose specifications are in accordance with Table 7.4. Techno-economic specifications of

commercially available chargers to choose from and the batteries are provided in Tables 7.5 and

7.6, respectively (based on information by Siemens and ABB Canada [200, 201]). The latter are

constrained between 80 kWh and 320 kWh with 20 kWh increments. In the first case study, nbus
r

is set to unity for all routes, i.e. one EB dispatched to each route.

The result for the optimal charger deployment in Route A is shown in Fig. 7.4a. As can be

seen, only the depot charger with a 50 kW power rating is sufficient to sustain the energy demand

of the EB throughout its 5 cycles of the route per day. The result of the optimal battery capacity

was 260 kWh. In Fig. 7.4b, one can see that a full charge at the depot can sustain the full daily

cycle of the route by the EB before reaching the minimum bound of 10

With Route B being significantly longer (threefold the distance of Route A), investment in a

higher charging power is necessary. In Fig. 7.5a, the optimal deployment is shown to be that of one

600 kW TC to sustain the route. With this, only a 80 kWh battery is needed. As such, the optimal

solution as here as opposed to Route A consisted of investing in a more powerful charger while

saving the costs by using smaller batteries on the deployed EB The optimal charging schedule is

shown in Fig. 7.5b, where it can be seen that the EB occasionally stops at charges at the TC to

recharge its battery throughout the day, guaranteeing a full SoC at the end of the route for its next

deployment.
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(a) Charger deployment.
(b) Battery SoC variation (top) and energy
charged at each station (bottom).

Figure 7.4: Results for Route A.

(a) Charger deployment.
(b) Battery SoC variation (top) and energy
charged at each station (bottom).

Figure 7.5: Results for Route B.

(a) Charger deployment.
(b) Battery SoC variation (top) and energy
charged at each station (bottom).

Figure 7.6: Results for Route C.
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Table 7.7: Resulting optimal design and total ownership cost breakdown for each of the first case
study routes.

Route A Route B Route C

Optimal Battery Size (kWh) 260 80 200

Number of DC (50 kW) 1 0 1

Number of TC (500 kW) 0 0 0

Number of TC (600 kW) 0 1 1

Number of FC (400 kW) 0 0 0

Number of FC (500 kW) 0 0 0

Cost of Chargers (EUR/year) 5000 16000 21000

Cost of Batteries (EUR/year) 13000 4000 10000

Cost of Electricity (EUR/year) 3918 11181 18614

Annual TOC (EUR/year) 21918 31181 49614

Figure 7.7: Breakdown of the optimal design TOC for the first case study routes: Route A TOC
(left, total of 21918 EUR/year), Route B TOC (center, total of 31181 EUR/year), Route C TOC
(right, total of 49614 EUR/year).

For Route C (the longest of the three), the optimal charger configuration consisted of both a

600 kW TC and a 50 kW DC (as shown in Fig. 7.6a), with a medium-sized 200 kWh battery

capacity for deployed EBs. The SoC variation throughout the day (Fig. 7.6b) shows that the EB

stops to recharge its battery every cycle of the route, gradually decreasing the SoC at the end of

every cycle. Finally, at the end of the day, the EB is recharged at the depot to a full SoC for its

next deployment.

The optimal annual TOC (objective function of the model) and its breakdown for each route

are illustrated in Fig. 7.7 and detailed in Table 7.6.

One can observe that for the shortest Route (A), the lowest TOC is encountered and investment

in high capacity batteries on board the deployed EB is sufficient to support the route requirements.

In this case, investment in high power and/or fast chargers is not cost-effective, with only the DC

sufficing.
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As the length of the route increases as in Route B, one can see that the optimal design involves

investing more in the charging infrastructure, and the trade-off between battery capacity and

charging power becomes cost-effective. However, as the route length is further increased in Route

C, a more complex design is needed in terms of charger types and battery sizing. It is noteworthy

that for these three routes, (all being CC-type routes), the installation of a FC is not found to be

cost-effective.

7.4.2.2 Case Study 2: Optimal Design of Electric Bus Transport Systems

In the second case study, the proposed optimization model is tested and validated for the design of

a full electric bus transport system. While the objective is to test the applicability of the proposed

model for any generic transport network, it is important to also maintain the true-to-life nature of

the case study.

Therefore, two major cities with high EB presence who also publicly provide their full bus

route information have been analyzed: Paris, France [204] and London, UK [205]. The routes

were categorized based on the categories proposed in Table II, and the corresponding statistics

are presented in Fig. 11. Due to the large metropolitan nature of both transport networks, it was

predictable that the routes would be almost equally divided between CC and SU types (44% and

56%, respectively). Also, as expected, the majority of city routes were short-distance (CC-SD),

while the majority of suburban routes were long-distance (SU-LD), with the two types combined

making up more than half of the total routes (53%).

Following this analysis, it is possible to generate a set of routes which represents a generic

public transport system, while maintaining its realism by emulating the route category distribution

of real-life public transport systems. Accordingly, a generic public transport network consisting of

180 routes was constructed. The routes were generated based on random pairs of ds
r and dd

r values

(defined in Section 7.2 and Table 7.2), while maintaining the share of the route categories as per

the real world systems (as in Fig. 7.8). The key parameters (ds
r and dd

r ) for each of the 180 routes

forming the generic public transport network are shown in Fig. 7.9.

With the routes defined, the proposed MILP model can be used to optimize the design

of the charging infrastructure and battery sizing to achieve a minimum TOC of this generic

transport network. The techno-economic specifications of the EBs, chargers, and batteries are

used according to Table 7.4, Table 7.5, and Table 7.6, respectively.

Average hourly electricity prices for the European energy market [206] are used (distributed

based on respective scheduling of stops). In addition, due to the nature of urban environments

with frequent breaking and stopping, an added penalty of 10% increased electricity consumption

per kilometer driven is used for CC routes to estimate these effects in the generic network. The

frequency for all the routes is set to a high frequency (HF) of 15 minutes, and the EB deployment

is calculated according to (7.10).
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Figure 7.8: Breakdown of the different route categories based on the networks of RATP and TFL.

Figure 7.9: Key parameters (ds
r , and dd

r ) for each of the 180 routes making up the generic public
transport network for the second case study.

The results for the optimal charger deployment and battery sizing for the entire network are

shown in Fig.7.10. For CC-SD and CC-MD routes, the charging infrastructure is seen to be mainly

comprised of TCs along with low-capacity batteries, with a few exceptions where an additional

DC and augmented battery capacity is needed, when the distance between stops is larger and the

bus type has a higher consumption. Only one CC-LD route requires the use of a FC, and this can

be attributed to the high energy consumption of this route. For suburban routes, it is clear that there

is an increased reliance on on-route charging with increased battery capacities. This is especially

the case for longer-distance routes, when the use of FC becomes common, as the distance between

stops and the total length of the routes become very large.

The results in Fig. 7.11 for the TOC breakdown shows that for all SD routes (CC or SU),

the majority of the TOC corresponds to battery costs, followed by charging infrastructure and

electricity costs. For MD and LD routes, the majority of the TOC becomes that of the charging

infrastructure, followed by electricity (more prominent due to larger distances), and then batteries

(less prominent due to more frequent on-route charging).
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Figure 7.10: Results for the optimal charging infrastructure (top) and battery sizing (bottom) for
all 180 routes of the generic public transport network under study, with a HF.

Figure 7.11: Breakdown of the resulting TOC for all 180 routes of the generic public transport
network under study, with a HF.

Figure 7.12: Results for the optimal charging infrastructure (top) and battery sizing (bottom) for
all 180 routes of the generic public transport network under study, with a LF (reduced by a factor
of 4 compared to the HF case).

These patterns appear to be the same for both CC and SU routes. That is, despite the fact that

suburban routes have a higher TOC than their city counterparts, the TOC breakdown (percentage

share of batteries, charging infrastructure, and electricity consumption) is significantly more

dependent on the length of the route (SD/MD/LD) rather than the distance between stops (CC/SU).



180 Design of Fully Electric Public Transport Systems and Charging Infrastructures

In order to analyze the effect of the route frequencies, the simulation is repeated for the same

network, albeit with a low frequency (LF) 1 hour instead of 15 minutes (i.e., all routes reduced

by a factor of 4 compared to the former HF case). The results are shown in Fig. 7.12. For the

most part, the solution is very similar to the HF case, with a few differences noted. First, for

SD routes, it can be observed that with a lower overall number of buses traversing the routes, it

becomes more cost-effective to invest in DCs and larger battery capacities. Overall, HF routes

have a higher number of TC due to their larger bus fleet, prioritizing cost reduction in batteries

while LF ones with smaller bus fleets rely on bigger batteries with the additional DCs.

7.4.2.3 Case Study 3: Long-Term Investment Planning for a Fully Electric Public Bus
Transport System - 2030 Scenario

The final case study used to validate the proposed model is based on a long-term planning

problem, in which investment options are analyzed considering the forecasted change in the cost

of acquiring and operating technologies.

By considering the predictions made in the report by Bloomberg [207], the constructed

network in the previous case study is modified for a 2030 scenario (10 years ahead) by making the

following modifications:

• Battery cost reduced to 62 EUR/kWh.

• Upper range of battery capacities increased to 400 kWh.

• Decrease in flash charger cost by 40% for stops close in proximity (due to increased ease of

sharing one transformer and converter for FCs closer to each other).

• Decrease in terminal charger cost by 10% due to technological advancements.

• Remove the electricity consumption penalty for CC routes (due to the foreseen advance in

regenerative breaking technologies).

For this updated 2030 scenario, the model is re-run for both the HF and LF cases, and the

results are shown in Fig. 7.13 and Fig. 7.14, respectively. Three main changes are observed:

First, there is a clear increase in DC deployment, with larger battery capacities in CC-SD and

SU-SD routes, regardless of the bus frequency. This effect is to be expected as the estimated

decrease in battery cost overcomes the advantages of TCs.

Secondly, despite their (future) costs being sharply reduced in this scenario, FCs appear even

less often than they did (being deployed rarely and only for SU-MD and SU-LD due to high energy

consumption requirements).

Third, for LF routes there is a significant increased reliance on larger battery capacities and less

on fast charging infrastructure, with batteries taking up a larger percentage share of the route TOCs

as opposed to the 2020/present-day scenario. This may suggest that according to the assumptions

used for the 2030 scenario, benefits from cost reductions in battery technologies will outweigh

those in fast charging technologies.
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Figure 7.13: Results for optimal charging infrastructure (top) and battery sizing (bottom) for all
180 routes of the generic public transport network under study, with HF, for 2030 scenario.

Figure 7.14: Results for optimal charging infrastructure (top) and battery sizing (bottom) for all
180 routes of the generic public transport network under study, with LF, for 2030 scenario.

Figure 7.15: Route TOC decrease in 2030 scenario (relative to the 2020/present-day scenario),
shown for the HF (top) and LF (bottom) cases.
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In Fig. 7.15, the percentage decrease in the TOC (relative to the 2020/present-day scenario)

is shown for all the routes and for the HF and LF cases. It is clear that there is a considerable

decrease (>30%) in the TOC of SD routes, and a smaller decrease (>10%) for LD ones. This is due

to the same reasons expressed above, with SD being shown to be more dependent on larger battery

capacities and thereby achieving more saving with advanced and cheaper technologies thereof.

HF routes can be seen to expect higher cost reductions, although this can be attributed to the fact

that a larger fleet translates to higher contribution from batteries, leading to a greater impact of

the aforementioned points, increasing the overall cost reduction. Overall, from this analysis one

can see that the current trend and policies in electrification of public transport systems are well

justified for long-term prospects.

It is important to note that this case study is merely used here to showcase the applicability of

the proposed model in analyzing future scenarios. The assumptions made for the 2030 scenario

were for demonstration purposes, and an exact analysis of forecasted techno-economic values is

a very complex problem and indeed out of the scope of the current work. With this being said,

the applicability of the proposed model to analyze different forecasts for future scenarios has

been validated, and is indeed recommended for future research building up on this work, which is

discussed in more detail in the next section.

7.5 Discussion and Recommendations for Future Work

The proposed MILP optimization model’s applicability on any generic EB route or public transport

system was demonstrated. In the first case study the model was shown to determine the optimal

charging infrastructure deployment, battery sizing, and charging schedule for individual routes.

In the second case study, the proposed model was shown to determine the optimal design on the

level of a full system, determining the optimal charging infrastructure deployment, battery sizing,

and charging schedule for all routes which guarantee the minimal TOC. Finally, in the third case

study, it was shown that the proposed model can be used to analyze different future scenarios for

long-term planning of planning of public transport systems.

As such, the proposed model was shown to be versatile in the sense that it can be used for a

wide spectrum of problems and applied on any generic transport network. This also presents a

lot of opportunities for future research building up on this work. Several recommendations can be

made for future and follow-up studies by discussing the findings of this work:
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• The case studies were purposefully chosen as generic cases in order to emphasize that the

proposed model is not case-specific and not specifically fitted to any existing network structure

or problem. While this is useful to showcase the versatility and universal nature of the proposed

mathematical model, one limitation of the use of generic case studies is the lack of a benchmark

to compare the optimal solution against. In other words, if no optimization model is employed,

then in this case the system would be an “arbitrarily” or “heuristically” designed one (in

literature this is sometimes referred to as an “experience-based” approach [193]), and in the

case of a generic system there would be an infinitely large number of sub-optimal possible

designs to consider. With MILP optimization employed, being a deterministic method in nature,

the global optimal solution is guaranteed, so this does not retract any of the conclusions made

from the performed case studies. However, since most real-life systems are designed using

said “experience-based” approaches [193], it would be insightful to model full-scale real-life

public transport networks and highlight the potential benefit of applying the proposed to improve

their design. Moreover, using the proposed model to optimize real-life transport networks from

different countries/regions may provide valuable insight on regional differences to consider and

evaluate design considerations in different regions.

• Although hourly varying electricity prices corresponding to modern SGs and their demand-side

management strategies were considered in this model and the case studies, more complex grid

interaction can be modeled between EB networks and the power grid. Previous studies such as

[195] have evaluated such “grid-interactive” bus operation problem for existing networks. The

benefits of grid-interaction can be leveraged if considered early-on in the design phase, and can

increase profitability since ancillary services provided to the grid can bring about considerable

profit for the network owner [114]. No studies were found to consider this aspect. As such, its

incorporation into the optimization model is recommended for future studies building up on this

current study.

• Accounting for resource sharing can be an interesting and valuable point to consider. For

instance, sharing the charging infrastructure with other transport networks (belonging to

different owners/companies), or other facilities such as EV parking lots [208] can be mutually

beneficial to both parties and help decrease overall TOC, and thereby recommended to be

analyzed in future work. Moreover, battery swapping strategies for EVs were shown to improve

the techno-economic operation of consumer-owned EVs, as shown in [209], and therefore a

potentially viable strategy to be used to further improve EB systems.

• In the third case study, a 2030 scenario was analyzed based on several assumptions for future

technology advancements. A similar sensitivity analysis is recommended to be performed for

present-day scenarios, albeit in different countries or regions. Globally, costs of acquiring

and operating different technologies, in addition to implemented socioeconomic policies

significantly vary between different regions. This is recommended as a future analysis as it

can provide insight on different transport electrification strategies required.
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• The impact of regenerative braking as a future technological advancement which can decrease

city route electricity consumption was briefly highlighted in the third case study. Recently

published works [210, 211, 212, 213] have investigated the use of intelligent control algorithms

to enhance the driving strategies, also with the objective of decreasing losses due to frequent

braking in urban settings. The incorporation of such algorithms in this model is recommended

for future follow-up work, in order to analyze the cost-efficiency of acquiring these technologies

on the design of the EB transport systems.

• The proposed model was developed to consider any type of on-route or off-route charging

infrastructures with any techno-economic properties. However, in the performed case studies,

only the two most common on-route charges commercially available were considered. It is

recommended that follow-up work consider other newly emerging fast charging technologies

[214]. On-site storage devices (which can be modeled as a generic off-route charging

infrastructure in the proposed formulation), especially newly emerging technologies such as

fuel cells [215] or flywheels [216], should also be considered in the design of public transport

systems.
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7.6 Conclusions

In this chapter, a mathematical model for fully electric public transport networks was formulated,

and MILP optimization was implemented to minimize the TOC of a public transport system. The

generic nature of the model was guaranteed by allowing the consideration of any set of routes,

different EB models, battery capacities, and different charging technologies as input for the model.

In this sense, the model is versatile and can be used to optimize already existing systems or design

new ones due to its generic formulation. Three case studies were used to validate the proposed

model while demonstrating its universal applicability. First, the design of three individual

routes with different characteristics was demonstrated. Then, a large-scale generic transport

system with 180 routes, consisting of urban and suburban routes with varying characteristics

was considered and the optimal design was obtained and analyzed in detail. Afterwards, the

use of the proposed model for a long-term transport system planning problem was demonstrated

by adapting the system to a 2030 scenario based on forecasted technological advancements. The

proposed model and formulation was shown to be highly versatile in modeling a wide variety

of components in an EB transport system and in achieving an optimal design with minimal

TOC. A number of recommendations for future work were made, including the incorporation of

power grid-interactive designs for future transport systems, considering the interaction with other

transport networks or EV parking lots, or the consideration of on-route charging through newly

emerging technologies.





Chapter 8

Energy Management in Smart
Industries with Optimal Task
Scheduling

An original graph-based model and algorithm for optimal industrial task scheduling is proposed

in this chapter. The innovative algorithm designed, dubbed “Dijkstra Optimal Tasking” (DOT), is

suitable for fully distributed task scheduling of autonomous industrial agents for optimal resource

allocation, including energy use. The algorithm was designed starting with the fundamentals of

graph theory, from the ground up, to guarantee a generic nature, making it applicable on a plethora

of tasking problems and not case-specific. For any industrial setting in which mobile agents

are responsible for accomplishing tasks across a site, the objective is to determine the optimal

task schedule for each agent, which maximizes the speed of task achievement while minimizing

the movement, thereby minimizing energy consumption cost. The DOT algorithm is presented

in detail in this chapter, starting from the conceptualization to the mathematical formulation

based on graph theory, having a thorough computational implementation and a detailed algorithm

benchmarking analysis. The choice of Dijkstra as opposed to other shortest path methods

(namely, A* Search and Bellman-Ford) in the proposed graph-based model and algorithm was

investigated and justified. An example of a real-world application based on a refinery site is

modeled and simulated and the proposed algorithm’s effectiveness and computational efficiency

is duly evaluated. A dynamic obstacle course was incorporated to effectively demonstrate the

proposed algorithm’s applicability to real-world applications.

187
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Chapter Highlights and Novel Contributions:

• Model a generic tasking problem using graph theory to guarantee applicability to a wide range

of modern problems (particularly in the industrial and transportation sectors).

• Design and implement an original graph-based model and algorithm for task scheduling by a

limited number of autonomous mobile agents.

• Perform several benchmarking analyses to determine the computational complexity of the

proposed algorithm, optimal setting of tunable parameters, and assessing the performance of

the proposed algorithm incorporating different shortest path methods (Dijkstra, A* Search and

Bellman-Ford).

• Ensure the computational efficiency of the algorithm to enable application in real-time.

• Demonstrate the proposed algorithm considering a case study based on a real-world industrial

site, including the effect of dynamic (moving) obstacles.
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Chapter Nomenclature

Abbreviation Definition
CD Cooldown

CDF Cooldown Function

DER Distributed Energy Resources

DOT Dijkstra Optimal Tasking

DR Demand Response

DRW Directed Random Walk

EB Electric Bus

EV Electric Vehicle

FCD Fixed Cooldown

SCD Scaled Cooldown

SoC State of Charge

SPF Shortest Path First

ZCD Zero Cooldown
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8.1 Introduction

In an exceedingly dynamic and digital world, the old saying of “time is money” presents itself in

all modern problems. Energy systems witnessed momentous change during the past few decades

[89], which in turn affected all sectors that are heavily energy-dependent, including industrial and

transport sectors [217].

Despite the advancement of technologies leading to overall abundance or resources, increased

social and technical complexities associated with the availability of resources make the optimal

management thereof of paramount importance [218].

In addition to the added complexity of the energy supply infrastructure, process automation

levels are at an all-time high, making it necessary to develop and deploy new algorithms for

optimized task management in order to guarantee cost-efficiency and reliability of these automated

processes [219, 220].

8.1.1 Literature Review

A rundown of recent scientific studies is performed and subsequently presented to establish

the state-of-the-art of scientific literature addressing optimal task scheduling and management

in modern automated systems. As previously mentioned, two of the most affected sectors are

the industrial and transport sectors [217], with maximizing cost-efficiency already of pivotal

importance for the two.

For the transport sector, there has been a lot of recent focus on developing optimal

management algorithms for consumer-owned electric vehicle (EV) fleets [221], with an emphasis

on cost-optimal energy management in the presence of hybrid technologies [3] and considering

smart homes [222] and other modern solutions for optimal utilization of distributed energy

resources (DERs) [114]. This is especially important with dynamic electricity pricing schemes

adopted through demand response (DR) implementation [89, 217].

Recent research on this matter was not only confined to consumer-owned EVs, with a lot of

research also investigating smart public transport systems with increased proliferation of electric

buses (EBs) and smart charging infrastructures [196]. The priority is ensuring cost-efficiency of

the systems [192] through optimal scheduling [194]. This has been thoroughly addressed in the

previous chapter and associated publication [56].

In industrial applications, optimal management of time and resources is even more critical due

to the profit-centered character of industry, throughout the wide-ranging spectrum of industrial

specializations. In the context of smart factories, multi-agents systems are proposed as a model

for coordination between autonomous systems working on performing preset tasks in factories

with high levels of automation and a smart communication infrastructure [223].

The adoption of intelligent algorithms for optimal task scheduling in industry has been shown

to result in significant cost savings, whether performed by automated mobile agents or human

labor. Such saving are crucial for industries and economic growth [224].
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Algorithms for optimal task-handling are being investigated for a wide array of applications,

ranging from coordinating autonomous self-driving EVs [225], to cooperative robotics [226],

industrial site inspection [227], and the management of modern warehouses [228]. As such, the

development of these algorithms for optimal cost-efficiency of task handling, regardless of the

type of task, becomes imperative for modern industries.

With increased intertwining of modern systems and cross-industry designs it becomes even

more important to design algorithms for generic systems [61], which are not application-specific,

and could be employed regardless of the target sector, be it smart factories, modern warehouses,

EV fleet management, etc.

In this study, we propose, implement, and validate a novel algorithm for optimal task

scheduling, dubbed “Dijkstra Optimal Tasking” (DOT), initially conceptualized (by the author

of this thesis) in [55]. The proposed algorithm is generic in nature, meaning that it can be adapted

to different problems in which a limited number of mobile agents are required to perform a number

of tasks, with minimal energy consumption.

In this chapter the proposed algorithm is documented in detail, including: the conceptual

model, mathematical formulation, algorithm design, and computational implementation. A

thorough benchmarking analysis is performed to determine optimal settings of tunable parameters

and determine the time complexity. A case study is used to demonstrate a real-world application.

8.2 Algorithm Design

8.2.1 Conceptual Model

A generic task scheduling problem in a modern industrial setting is illustrated in Fig. 8.1. The

main elements thereof can be defined and listed as follows:

Map: is a confined space where all the tasks and mobile agents are located. All events and

scheduling are performed within this local environment.

Mobile Agent: is an agent which can move around the map and perform tasks. The agent is

electric, meaning it consumes electric energy on a local battery as a cost of movement. This agent

could be autonomous or human-operated (e.g. Segway, electric pallet jack, or golf cart).

Charging Station: is where the mobile agent is stationed to recharge onboard batteries. Although

commonly found on the edges of the maps, they can be located anywhere across the traversable

map.

Tasks: must be reached by a mobile agent in order to be accomplished. This is generic, i.e., in

inspection problems the task is merely for the agent to be there every period of time. In handling

problems, the agent must stay until task completion.

Obstacles: are non-traversable areas. The mobile agent must plan a path around them to reach

tasks or charging stations.
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Figure 8.1: An illustration of a generic tasking problem: A mobile agent needs to perform specified
tasks located at different locations in a confined map, in the presence of non-traversable obstacles.
The movement is associated with energy consumption and recharging is performed at set locations.

8.2.2 Mathematical Formulation: Graph Theory Model

These are the defining elements of any generic industrial task scheduling problem, and an

algorithm aiming to provide a non-case-specific solution must be capable of incorporating them in

a versatile and flexible manner.

Graph theory provides the tools to mathematically model such a problem and is therefore

chosen to construct the basis of the proposed algorithm. The first step is to divide the map into a

mesh of equidistant and isomorphic “cells”. The size of each cell should be based on the smallest

element in the map. By doing so, the problem can be defined as a graph G whose elements are

mathematically defined subsequently.

G = (V,E) (8.1)

8.2.2.1 Graph Vertices

The graph defined in (8.1) consists of a set of vertices V (which correspond to the “cells”), and a

set of edges E.

i ∈ V, ∀i ∈ Z∩ [0, |V|−1] (8.2)
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Figure 8.2: An illustration of five-by-five map modeled as a lattice graph. Cells are assigned as
vertices in the graph, and connections between adjacent vertices correspond to edges of the graph.

As defined in (8.2), V is a set of vertices i : {0,1, . . . , |V |− 1}. At this stage it is established

that a zero-based numbering convention (initial element assigned index 0) is used throughout this

chapter, due to its compatibility with graph theory modeling and algorithm design. The vertices

are numbered sequentially, row-by-row, as shown in Fig. 8.2.

The equidistant and isomorphic division of the map results in a “lattice graph” (illustrated in

Fig. 8.2), a unique type of graph whose properties can be exploited. First, the size of the graph is

decided by the number of rows m and number of columns n. The total number of vertices is easily

expressed as in (8.3).

|V|= m ·n (8.3)

Afterwards, each vertex in the lattice graph can be uniquely mapped to a row and column

value R(i) and C(i) in a set of rows R and columns C, respectively. Being a single-values unique

mapping between the sets, no two different vertices (i, j) can have both the same row and column

values as shown in (8.4), and the sets have the same size as shown in (8.5).

The mapping functions of the row and column values for each vertex i is done using (8.6) and

(8.7), respectively. In (8.6) the row number of node i is obtained by applying the modulo operator

of i to n (remainder of division), while the column is calculated using integer (truncated) division

in (8.7). This is a simple demonstration of the advantage of using zero-based numbering to obtain

simple and computationally efficient operations within the graph.

(C(i) =C( j))∧ (R(i) = R( j))↔ i = j (8.4)

|C|= |R|= |V| (8.5)



8.2 Algorithm Design 195

R(i) = (i mod n) (8.6)

C(i) = [(m · i)/|V|] (8.7)

The x and y coordinates of each vertex on the original (physical) map can be retrieved using

(8.8) and (8.9), where dx and dy correspond to the horizontal and vertical spacing between cells,

respectively.

x(i) =C(i) ·dx (8.8)

y(i) = R(i) ·dy (8.9)

For equidistant and isomorphic spacing, this is simplified by setting dx = dy = ∆v.

Furthermore, the relationship between row and column values of adjacent vertices the graph is

defined using (8.10)-(8.13).

R(i) = R(i−1)↔ row(i)> 0 (8.10)

C(i) = 1+C(i−1)↔ R(i)> 0 (8.11)

C(i) =C(i−n)↔C(i)> 0 (8.12)

R(i) = 1+R(i−n)↔C(i)> 0 (8.13)

Finally, vertices are identified as boundary vertices (set B) or interior domain (set D) nodes

according to (8.14) and (8.15).

i ∈ B↔ i ∈ V∧ ((R(i) ·C(i) = 0)∨ ((R(i)−m+1) · (C(i)−n+1) = 0) (8.14)

i ∈ D↔ i ∈ V∧ i /∈ B⇒ D = V−B (8.15)

8.2.2.2 Graph Edges

The other main element of the graph is the set of edges, E. An edge is a set of two vertices i, j that

are connected in the graph. The set of all possible edges E can be defined using the condition in

(8.16).
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While loops (an edge connecting a node to itself, or subsequently a path which starts and ends

at the same node) are mathematically possible in a generic graph, they do not exist in this mode,

as it would correspond to indefinite circling in a closed “loop” within the map. Thus, the condition

i 6= j is imposed in (8.16). Moreover, the modeled graph is an undirected one, hence the condition

in (8.17).

E⊆ {{i, j} | (i, j) ∈ V∧ i 6= j} (8.16)

{i, j}= { j, i}∀(i, j) ∈ V (8.17)

Based on this property, all edges of the lattice graph can be constructed by defining an

edge between all interior domain vertices and their adjacent neighbors. This is mathematically

expressed using the interjection in (8.18).

∃{i, j} ∈ E↔ (i ∈ D)∧ ((|i− j|= 1)∨ (|i− j|= n)) (8.18)

The total number of edges in the graph can be obtained using the expression in (8.19).

|E|= (m−1) ·n+(n−1) ·m = 2 ·m ·n−m−n (8.19)

8.2.2.3 Shortest Paths

The constructed lattice graph is a connected graph, meaning that any two set of vertices i, j can

connected using a number of edges. The simplest connection is a walk, in which a sequence of

edges joins two vertices. A walk can either be finite or infinite, in which the edges contained in

the sequence need not to be unique.

A path is defined as a walk in which all the elements are unique, i.e., every vertex in the path

is only visited once. Some path P(i, j) connecting i and j is therefore defined in (8.20), with K

being the number of elements in the path.

P(i, j) = (P0,P1, . . .PK−1) | {P0,P1, . . .PK−1} ∈ V∧ (P0,PK−1) = (i, j) (8.20)

For every set of vertices i and j, there exists a finite number of paths between them, where Πi, j

is a set containing all possible paths P(i, j). In a weighted graph every edge E is associated with

a weight value ω(E) such that E 7→ ω , with the latter being the set of edge weights. Accordingly,

the weighted length l(P) of a path can be calculated as shown in (8.21).

l(P) =
K−1

∑
k=0

ω ({Pk,Pk+1}) (8.21)

This function can be used to map Πi, j 7→ Li, j (set of corresponding path weighted lengths).

The graph distance between two vertices is defined in (8.22) as the weighted length of the shortest

path between them:
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d(i, j) = min
{

Li, j
}

(8.22)

Dijkstra’s algorithm [229] is one of the most popular and well-established fundamental SPF

algorithms in graph theory. The algorithm is a highly computationally efficient algorithm finding

the shortest path between two nodes in a graph as expressed in (8.23).

SPF : (i, j)→ P(i, j) 3 l(P(i, j)) = d(i, j) (8.23)

It is duly noted that the proposed model accommodates the use of any shortest path method,

and not necessarily Dijkstra. The choice of Dijkstra as opposed to other alternatives is discussed

and analyzed in detail in Section 8.3.3. With the mathematical formulation being specified, the

designed algorithm can now be expressed in terms of the graph elements and defined relations.

8.2.3 Designed Algorithm and Computational Implementation

Recalling the original motive, the objective of the proposed algorithm is to be generic in nature,

easily adaptable to different problems with elements defined in 8.2.1. To do this, the designed

algorithm was implemented in an object-oriented programming environment. The pseudocode is

shown in Algorithm 1, followed by a detailed description of the implementation.

Algorithm 1: Pseudocode of the developed DOT algorithm.
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1. Map (Class): The industrial site map model is implemented as a class. A map object

contains all information about the graph (edges and vertices) and the class methods to update

them.

2. Agent (Class): Each agent is modeled as a class. The class contains information about the

agent, e.g. its current location, battery state-of-charge (SoC), current path and the class

methods to update all the aforementioned values.

3. Checkpoints (Class Property of Map, Agent): Checkpoints are locations in the map where

the agents stop between map traversals. Checkpoints don’t necessarily have to also contain

a charging stations, whilst all charging stations are checkpoints, since the agent can stop at

a station and not charge depending on its current path or schedule.

4. Timer (Global Variable): The time t is constantly incremented as a global counter in the

implemented program with any update in the map. Given a lattice graph, the movement

time from one node to the other can be used as the unit of time if all agents are the same

model (i.e., same speed), which is common in most industrial facilities. MAXTIME can be

used as a termination criterion for the program.

t ∈ t = (0,1, . . . MAXTIME ) (8.24)

5. Traversal Timer (Class Property of Map, Agent): A second time variable is incorporated to

increase the versatility of the algorithm. Since the algorithm relies on the agents traversing

between checkpoints, the flow of time can be alternatively tracked as a counter of the number

of traversals the agent makes. This traversal time τ is the one used to keep track of the vertex

properties and update the heat values in the map. A good feature of this implementation,

which provides the versatility, is that τ can always be set simply as τ = t in the code,

switching back to real time in the dependent functions according to the type of tasking

problem at hand. Like MAXTIME, TMAX can also be used as a termination criterion. A

mapping τ(t) can give the current increment time at any t.

τ ∈ τ = (0,1, . . . TMAX ) (8.25)

6. Heat Values (Class Property of Map): Each vertex has a time-varying “heat” value H(i, t)

assigned to it in the Map class. The movement cost through an edge is defined as the mean

of the heat values of the two connected vertices as in (8.26).

ω({i, j}, t) = 1
2
(H(i, t)+H( j, t))∀{i, j} ∈ E, t ∈ t (8.26)
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This heat property is the main premise of the designed algorithm and is used to establish all

other relations to model a given problem and calculate the task scheduling. Heat values of

the vertices are continuously updated to “guide” each agent through the shortest path in the

graph such that all tasks are achieved while traversing between its checkpoints (Fig. 3).

7. Obstacles are directly incorporated by setting a very large number as heat value in that

vertex. In this manner, obstacles can be modeled in a very computationally efficient way (as

opposed to the use of exceptions or conditional statements), since the movement to/from that

vertex is never chosen over any other alternative. This number is imposed as the largest float

value of the machine where the algorithm is running, which for most modern processors is

1.7976308.

8. Tasks, on the contrary, are by setting a low value, depending on the type and/or urgency of

each task. This acts as an “attractor” for the mobile agent since the Dijkstra SPF algorithm

will be attracted to pass through that vertex when constructing the path instead of other

alternatives. Once an agent has reached a vertex with a task, the heat value of this vertex is

incremented. In this way, the movement cost to/from this location is increased, removing

the “attractor” as the task is accomplished. A “cooldown” effect is applied by decrementing

heat values of all vertices with each increment of t, such that for an idle map with no activity,

heats are eventually reset to their initial values.

Figure 8.3: Vertex properties being updated as the mobile agent moves and follows a path through
the map.



200 Energy Management in Smart Industries with Optimal Task Scheduling

To sum up the flow of the algorithm:

• The industrial site or facility is modeled as a lattice graph.

• Each vertex has a heat property that is updated with every increment of time t based on the

mobile agents’ movement through the map, the flow of time, and nature of the tasks to be

performed (as visualized in Fig. 8.3). The heat value update is done by incrementation and

cooldown.

• Tasks and obstacles are modeled by setting the heat value accordingly to guide the agents.

• The heat values set the edge weights for the graph.

• The pathing of each mobile agent between its checkpoints is determined using Dijkstra’s

SPF (or an alternative shortest path method) every increment of traversal time τ .

The algorithm was implemented using Python 3.6.7. All subsequent tests were run on a

standard laptop computer with an Intel Core i7-8550U CPU @ 1.80 GHz, 16.0 GB RAM, and

Windows 10 64-bit operating system.

8.3 Parameter Tuning and Benchmark Testing

In this section, tuning parameters of the algorithm are identified, and a benchmark analysis is

performed to test the proposed algorithm on a benchmark case, assess the appropriate values for

the parameters, and analyze the computational performance and time complexity of the algorithm.

Finally, the choice of the most adequate shortest path method (Dijkstra is justified by

discussing other commonly employed shortest path methods is graph theory (A* Search and

Bellman-Ford) and performing a comparative analysis between feasible candidates.

8.3.1 Identifying Tunable Parameters

From the algorithm description it can be seen that there are two main parameters which can be

used to tune the algorithm:

1. Increment Value: The first tuning parameter is the incremental heat value of a vertex once

an agent completes a task there. This is defined as INC in (2.27). Note that this function is

only invoked once an agent reaches a vertex marked with a task.

H(i, t) = H(i, t)+ INC, if task completed (8.27)

2. Cooldown Function: This second tuning parameter is how the vertex heat values of the

whole graph are updated every time increment t. This is defined as a function CDF in

(2.28).

H(i, t) =CDF(i,H(i, t), t) (8.28)
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In this study, four different types of functions are considered. A Fixed Cooldown (FCD)

decrements the H(i, t) by a constant value CD every time increment, while a Zero Cooldown

sets CD = 0 as in (8.29) and (8.30). In (8.31) and (8.32), exponential functions are used

instead for a scaled cooldown (SCD), making the cooldown value increase exponentially

with every traversal time. In SCD1 and SCD2, the initial decrement values are 1 and 0,

respectively. Tob j scales the function, increasing the exponential growth as Tob j → 0, as

shown in (8.33).

CDFFCD(i,H(i, t), t) = H(i, t)−CD (8.29)

CDFZCD(i,H(i, t), t) = H(i, t)−CD, CD = 0 (8.30)

CDFscd1(i,H(i, t), t) = H(i,τ(t)−1)− eCDS ·τ(t)+1 (8.31)

CDFScd2(i,H(i, t), t) = H(i,τ(t)−1)− eCDS ·τ(t) (8.32)

SCD = |V | · log
(

Tob j

TMAX

)
(8.33)

8.3.2 Benchmark Analysis and Limit Testing

The objective of benchmark analysis is limit-testing the proposed algorithm by conducting a

parametric study to assess the performance and stability of the solution A generic case study

is used based on the facility inspection problem [227].

In this problem, a mobile agent travels between the charging stations, at the top-left and

bottom-right corners of the map. The mobile agent must inspect the site, making sure all areas are

frequently visited and no areas are ignored. The inspection problem makes for an ideal benchmark

case study for limit testing, since it is an extreme case of the task scheduling problem: every vertex

of the map is itself a task since the goal is to patrol the full map continuously.

The ideal solution in this case is for the agent to be pathed across the map to avoid any areas of

the map being neglected on the long term (i.e., avoid some areas being visiting more than others

as much as possible). Three benchmark studies and limit tests were performed.

8.3.2.1 Benchmark Test 1: Time Complexity Analysis

When proposing a new computational algorithm, one of the most important features to establish is

its time complexity. The time complexity of the Dijkstra SPF (computing only one traversal of the

map) is Θ(|V| · log |V|). Using analytical analysis of the implemented code, the time complexity

of the proposed algorithm was determined to be Θ
(
|V| · (log |V|)3

)
.
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Figure 8.4: Results for the first benchmark test: time complexity analysis showing the recorded
run time vs. other time complexities in big-Θ notation. The designed algorithm is confirmed to be
Θ
(
|V| · (log |V|)3

)
.

The benchmark problem is run for a grid size of 10x10, 25x25, 50x50, 75x75, and 100x100.

The ZCD function was used (chosen for simplicity, since the choice is irrelevant and doesn’t affect

the time complexity results since all the CDF functions are Θ(1)). The termination criterion was

set as TMAX=100 (100 traversals). For each map size the code is run 10 times, and the average

run time is recorded.

The results are plotted in Fig. 8.4 in comparison to other common time complexities of

graph algorithms, expressed in big-Θ notation. From the results, it is indeed confirmed to be

Θ
(
|V| · (log |V|)3

)
.

The small offset for larger values is attributed to approaching physical limits of memory

allocation on a laptop PC. Thus, the proposed algorithm is deemed computationally efficient,

being marginally slower than Dijkstra’s SPF for a single shortest path solution, yet faster than any

Θ
(
N2
)

algorithm, i.e., Θ(|V| · log |V|) < Θ
(
|V| · (log |V|)3

)
< Θ

(
N2
)
.
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8.3.2.2 Benchmark Test 2: INC and CDF Selection

The second benchmark test aims to test the effect of varying the value of INC and the choice of

the CDF. To perform a full parametric analysis which considers the grid size as well, the testing

is performed and comparatively evaluated on small (10x10), medium (25x25), and large (50x50)

maps.

For each map size, ten different INC values are tested, varying from 0.5·|V| to 5·|V| with

increments of 0.5·|V|. For each value of INC, the problem is run using each of the four proposed

CDF functions (i.e., a total of 3 maps x 10 INC values x 4 CDF runs). For each run, the termination

criterion was set as TMAX=100 (100 traversals). As a performance metric the number of times

each vertex was visited/inspected by the agent is counted, recalling that the anticipated solution is

to have no uninspected parts of the grid.

In Fig. 8.5, the number of uninspected nodes at the end of each run (at τ = T MAX = 100)

is plotted for all cases. Another performance metric is associated with the frequencies of vertex

inspections. The ideal solution is for the number of visits for the maps vertices to be as close to

the median value as possible (i.e., no parts are neglected compared to others).

To analyze this, a box plot with summary statistics for each run of the medium map is shown in

Fig. 8.6. In this sense what is desired is to have: 1) no zero values; and 2) minimum inter-quartile

range. From the results in Fig. 8.5 and Fig. 8.6, the following points can be made by observing

both performance metrics:

• ZCD is the only CDF that provides a stable operation, being independent of the grid size.

• If a FCD is to be chosen, its value should be set as a function of INC (proportional thereto)

to guarantee improved performance.

• In comparison, SCD1 and SCD2 do not perform as well and are less stable. SCD1 shows

more stability than SCD2, but better tuning of the function is necessary.

The results of this third benchmark test strengthen the points made previously. ZCD and FCD

both provide stable performance, with the number of traversals required converging to a finite

value as the grid size is increased. However, FCD is dependent on the INC value, thus being

proportional to the grid size for a stable operation. SCD1 and SCD2 are shown to have stability

problems in their current form for large maps.

It can be argued that the SCD function may provide better performance depending on the type

of tasking problem involved. While this may be true, the objective of this test is to determine the

choice of parameters that guarantee a reliable and stable operation for any type of tasking problem,

thus establishing a “benchmark” for the designed algorithm. Nevertheless, the implementation

makes it flexible for users to freely tune these parameters to best fit the specific problem.
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Figure 8.5: Results for the second benchmark test: number of uninspected vertices at
τ=TMAX=100. Results are shown for the total of number of runs corresponding to: 3 maps x
10 INC values x 4 CDF choices.

Figure 8.6: Results for the second benchmark test: box plot to show summary statistics of the
number of vertex inspections at τ=TMAX=100. A box plot for each of the 10 INC values x 4
CDF choices is plotted for the medium 25x25 map. The blue boxes correspond to the 25th to
75th percentile range. The red line is the median value, and the whiskers show the maximum and
minimum values. Outliers (>1.5 times inter-quartile range) are shows as red crosses.

Therefore, from the benchmark analysis it is possible to show that: 1) the proposed algorithm

is Θ
(
|V| · (log |V|)3

)
and 2) ZCD is recommended as the “default” option for the CDF, being the

most reliable and least dependent on other parameters.

8.3.2.3 Benchmark Test 3: Stability and Termination Criteria

By using TMAX as the termination criterion in the previous study, it was observed that the number

of required traversals to fully span the map is dependent both on the tunable parameters and the

grid size. It is very critical to verify that the number of traversals required to fully span the map

does not diverge with the grid size, i.e., it is critical to establish the stability of the algorithm and

the CDF functions and INC values.

Therefore, another limit test is performed by letting the simulation run for a very large number

of traversals (TMAX = 500) and recording the number of traversals required to inspect the full grid

once all nodes have been inspected at least once. The results are listed in Table 8.1 and plotted in

Fig. 8.7.
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Figure 8.7: Results for the third benchmark test: number of traversals required to inspect the full
map relative to the map size, for each CDF selection. Dotted, dashed, and solid lines correspond
to INC=1|V|, 3|V|, and 5|V|, respectively.

Table 8.1: Results for the third benchmark test: the number of traversals required to inspect the
full map with different sizes, INC values, and CDFs.

CDF Map Size (|V|)
INC

1|V| 3|V| 5|V|

FCD
100 36 16 14

625 >500 96 74

2500 >500 289 113

ZCD
100 14 14 14

625 58 58 58

2500 108 108 108

SCD1
100 170 16 15

625 381 393 438

2500 >500 >500 >500

SCD2
100 14 14 14

625 349 426 422

2500 >500 >500 >500
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8.3.3 Choice of the Shortest Path Method

In the designed and implemented algorithm, for each traversal of a mobile agent through the

modeled map, Dijkstra’s SPF method is used to determine the path taken of the mobile agent.

Since the shortest path is guided by the node values set iteratively according to the designed

algorithm (as the map dynamically changes), the obtained path would maximize the tasks being

achieved while minimizing the movement cost (and hence, electricity consumption).

Indeed, numerous other shortest path methods exist in graph theory applications, with common

well-known alternatives to Dijkstra’s SPF being A* Search and Bellman-Ford [230].

All the aforementioned methods achieve the same objective: find the shortest path between

two nodes in a weighted graph.

The designed graph-based model and algorithm are versatile such that any shortest path

method can be used, and the same results would be achieved, since the shortest path for a given

state of the map (node values and corresponding edge weights) would be the same regardless of

the method used to find it.

In this case, the choice of the most suitable shortest path method to incorporate in the proposed

algorithm depends on the computational burden. To justify the choice of Dijkstra as opposed to

other alternatives, a discussion thereof and a comparative analysis is performed in this section.

By reperforming the benchmark analysis considering all three candidates (Dijkstra, A*

Search, and Bellman-Ford), Dijkstra was shown to guarantee the best performance in terms of

computational complexity (and thereby scalability) for the proposed algorithm. In Fig. 8.8, A*

Search and Bellman-Ford are seen to have a similar performance, being significantly slower than

Dijkstra, especially for larger maps.

Another critical point to note is that with the proposed model and algorithm, Bellman-Ford is

unable to converge to a solution when all the edge weights are equal (e.g., in the first iteration),

and an alternative method must be employed whenever this occurs.

This issue does not occur neither with Dijkstra nor with A* Search, which both robustly find

the shortest path in all iterations for all map conditions. Therefore, the use of Bellman-Ford is not

recommended, and the two feasible candidates are Dijkstra and A* Search.

Both methods provide the same results for the designed model and algorithm, with Dijkstra

being superior in terms of computational time, especially for larger maps (i.e., better scalability).

Therefore, Dijkstra’s method is shown to guarantee a reliable performance while providing the

fastest computational time (which is critical as the proposed algorithm is intended for real-time

application).

Nevertheless, the implementation of the proposed model and algorithm makes it flexible for

users to use any shortest path method at their convenience. A comparison between the choice

of Dijkstra and A* Search in the proposed model and algorithm is revisited in the next section

considering a real-world application.
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Figure 8.8: Comparing the performance of the proposed algorithm while using Dijkstra, A*
Search, and Bellman-Ford for different map sizes.

8.4 Real-World Application

In this section, a real-world case study is used to demonstrate the applicability of the proposed

algorithm to real-life problems. An oil refinery located at coordinates (53.090, 14.254) is

considered. Due to their nature, oil refineries require constant safety inspection, particularly with

the hazardous nature involving the oil tanks and pipelines on the site. These refineries span very

large areas, and so automating the safety inspection process is highly desired.

8.4.1 Validation Case Study with Stationary Obstacles

In this case study, one autonomous mobile agent is allocated to perform the security inspection

and patrolling the refinery, as shown in Fig. 8.9 (left). The SMP S5.2 series security robot 2020

model [4] is considered as a commercially available option for an autonomous mobile agent,

with its specifications listed in Table 8.2. Thus, the objective is to test the performance of the

proposed DOT algorithm in effectively scheduling its fully autonomous operation in the sites’

safety inspection. In this first case study, only stationary obstacles are considered.
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Figure 8.9: Satellite image of the oil refinery located at coordinates (53.090, 14.254) used as for
the case study (left), and modeling as a lattice graph (right) with the obstacles/non-traversable
vertices highlighted in yellow. The real-life area of the site is 350x350 m2.

The physical limitations of the agent’s motion must be considered to determine the correct

discretization of the lattice graph. The dimension of each grid element ∆v must be larger than both

the minimum width of the patrol path (S3) and the minimum turning radius (S4). Meanwhile,

the grid elements must also be smaller than the minimum object recognition range of the onboard

cameras and detection systems (S5). This is expressed in (8.34).

max(S3,S4)≤ ∆v≤ S5 (8.34)

With the real site area being 350x350 (m2), a spacing ∆v=7m would satisfy (8.38), thus

resulting in a 50x50 grid as shown in Fig. 8.8 (right). The graph can then be constructed as

formulated in Section 8.2. As mentioned, obstacles (in this case being the tanks) are modeled

by setting the vertex heat values to 1.7976308. Each time step would correspond to the average

traveling time between two vertices at the agent’s average autonomous traveling speed (S2), as

shown in (8.35).

∆t = ∆v ·S2 = 0.035h (8.35)

The agent’s onboard battery SoC is updated according with each timestep to (8.36). The

charging and discharging values (per timestep) are calculated according to (8.37) and (8.38). The

minimum allowed SoC is 0.1. Accordingly, the maximum range of a fully charged agent is be

obtained in (8.40).

SoC(t) =

{
SoC(t−1)−SoCdisharge , if moving

SoC(t−1)+SoCcharge , if charging
(8.36)

SoC discharge = 100 · ∆v
S1

% = 0.029% (8.37)
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Table 8.2: Specifications of the mobile agent used for the case studies (SMP S5.2 series 2020
model) [4].

S1 - Cruising Range 24 km

S2 - Autonomous Traveling Speed (average) 5 km/h

S3 - Width of Patrol route path (minimum) 0.9 m

S4 - Turning Radius (minimum) 5 m

S5 - Object Recognition Range (minimum) 50 m

S6 - Operating Time (average) 12 h

S7 - Charging Time (average) 5 h

S8 - On-Board Battery Capacity 3 kWh

S9 - Charger Power 600 W

SoC charge = 100 · ∆t ·S9
S8

% = 0.7% (8.38)

max range = (1−SoCmin) ·S1 = 19.2 km (8.39)

The algorithm is run for this problem with ZCD and INC=1. In order to simulate the real-life

case, the termination criteria is set according to the maximum range at full charge, by setting

MAXTIME=3085. In this sense, the case study aims to assess the effectiveness of the algorithm in

scheduling the agent’s inspection paths through the map, making the best use of one full battery

charge.

It has been mentioned that the proposed algorithm is the first of its kind in generically model

the industrial task scheduling problem for autonomous agents. While this is a novel contribution,

it does add a difficulty since there were no similar existing algorithms to use for comparison at the

time of this work, especially in terms of the problem modeling.

Obtaining a deterministic solution is not possible, as it would require a full graph search to

be performed being Θ(|V|!), corresponding to more than 1.67411 path determinations, which is

infeasible even on high-performance computers.

However, there are multiple graph theory algorithms for path spanning and sampling that can

be modified for this purpose. Accordingly, the directed random walk (DRW) algorithm [231],

[232] was used with two variations: normal (DRW1), and brute-force (DRW2). Those algorithms

are detailed in Appendix B.

In addition, the case study is used to reaffirm the choice of Dijkstra’s SPF as opposed to the

other feasible alternative (A* Search) in the proposed model and algorithm. While it is anticipated

that both Dijkstra and A* Search would yield the same results and the main advantage of choosing

Dijkstra would be in the computational efficiency, this is revalidated by comparing the results of

the proposed algorithms using both shortest path methods.
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The objective now is to evaluate a) how effectively is the site being inspected by the assigned

agent and b) how efficiently is this being done by limiting the operation to one full battery charge.

Four evaluation criteria are used:

• Percentage of Site Area Inspected [%].

• Mean number of vertex visits.

• Mean Area per Charge Consumed [m2/kWh]

• Ratio of Algorithm Running Time to Real Operating Time.

Snapshots of the resulting paths through the site by the DOT algorithm are visualized in Fig.

8.10, and the performance metrics are compared with those of DRW1 and DRW2 in Fig. 8.11. The

latter are also listed in Table III. The proposed algorithm outperforms the others in all performance

metrics.

Figure 8.10: Snapshots visualizing the resulting paths through the site by the DOT algorithm at
τ=(0,3,6,9,12,18,21,24,27,28) on a single onboard battery charge. Dark and light colored nodes
correspond to inspected vs. uninspected vertices, respectively.

Figure 8.11: Comparison between the proposed DOT algorithm vs. DRW1 and DRW2 in terms
of the performance metrics: a) Percentage of Site Area Inspected [%], b) Mean number of vertex
visits, c) Mean Area per Charge Consumed [m2/kWh], and d) Ratio of Algorithm Running Time
to Real Operating Time.
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Table 8.3: Performance metrics for DOT (proposed algorithm with Dijkstra), proposed algorithm
with A* search, DRW1, and DRW2 with stationary obstacles only (using only one full battery
charge).

Performance Metric
Method Used for Task Scheduling

Proposed Graph Model and Algorithm
DRW1 DRW2

With Dijkstra SPF With A* Search

Algorithm Running Time (s) 3.99 4.5 36.6 17.2
Mean number of vertex visits 1.20 1.20 0.43 0.83

Total area inspected (m2) 57526 57526 13083 26313

Percentage site area inspected (%) 60% 60% 14% 27%

Area per Charge Consumed (m2/kWh) 22103 22103 13874 14569

It is noted that the algorithm run time is calculated per map traversal as a normalized figure.

As anticipated, the choice of Dijkstra or A* has no effect on the performance metrics except the

computational time, where the choice of Dijkstra outperforms A* Search (by 12.5%).

Note that the DRW algorithms have a random element and the results shown are for optimized

runs (best cases). Therefore, the actual real-life performance of DRW is worse than shown here,

as opposed to the deterministic solution of the proposed DOT.

The results shown are for an operation limited to one full battery charge to simulate a real-life

restriction. Removing this constraint (with recharging or a substitute agent) results in even better

performance by DOT compared to DRW. Finally, it is worth noting that the ratio of scheduled

real time to the algorithm running time is 1000, confirming that DOT is deployable for real time

scheduling of autonomous agents.

It can be seen in Fig. 8.10 how the obstacles were provided directly in the map data input file

without the need for any conditional statement modifications to the code. Applying a heat value of

1.7976308 guaranteed that the obstacle vertices are never selected in computed paths. This provides

great versatility, since new obstacles can be introduced or moved in real-time, a feature which is

not possible by other graph methods that construct random paths such as DRW. To demonstrate

this, a second case study with dynamic (mobile) obstacles is performed.

8.4.2 Case Study with Stationary and Mobile Obstacles

In this case study, two dynamic (mobile) obstacles are introduced into the map. In the real-world

setting, this would correspond to construction work along the pipelines in the oil refinery, which

would in untraversable by the mobile agent during its inspection patrols. This is illustrated in Fig.

8.12, with dynamic obstacles 1 and 2 set on a path that is eastbound and westbound, respectively.

The speed of the obstacles is set to 3m/h, corresponding to a realistic relocation of maintenance

workers along the pipelines.

Snapshots of the resulting paths through the site by the DOT algorithm is visualized in Fig.

8.13, and the performance metrics are shown in Table IV.
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Figure 8.12: Satellite image of the oil refinery located at coordinates (53.090, 14.254), including
mobile obstacles used as for the second case study (left), and modeling as a lattice graph (right)
with the obstacles/non-traversable vertices highlighted in yellow (stationary and mobile). The
real-life area of the site is 350x350 m2.

The presence of dynamic obstacles slightly increases the computational burden (due to the

necessity of updating the node heat values every time the obstacle moves). Moreover, the presence

of the moving obstacles seems to (very slightly) facilitate the inspection problem, since it forces

the mobile agent to cover a wider area to avoid the additional obstacles present.

It is verified that the resulting paths for the agent never intersect with neither the stationary

nor the dynamic (moving) obstacles, while successfully maximizing the inspected area for an

operation limited to one full battery charge to simulate a real-life restriction.

To reaffirm the statements made in Section III.C regarding the choice of Dijkstra as opposed

to other shortest path, the case study with dynamic obstacles is re-simulated using the proposed

method, incorporating A* Search instead of Dijkstra. As anticipated and previously stated (also

as the results of the first case study showed), the choice of the shortest path method does not

affect the results. Dijkstra is demonstrated again to guarantee the best computational efficiency

and algorithm stability.

The objective of this chapter was to clearly describe the proposed model and algorithm present

the mathematical formulation. A thorough limit testing was performed to recommend the set of

parameter settings (i.e., INC and CDF) and the choice of the shortest path method (i.e., Dijkstra),

that guarantees reliable and stable execution of the algorithm, in addition to minimal computational

burden.

However, the algorithm was designed such that the building blocks can be easily changed by

the users (e.g., choice of the shortest path method), without influencing the results). This is in

fact a compelling advantage of the proposed graph model and algorithm, being that the obtained

solution is independent on the choice of the shortest path function.
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Figure 8.13: Snapshots visualizing the resulting paths through the site by the DOT algorithm at
τ=(0,3,6,9,12,18,21,24,27,28) on a single onboard battery charge. Dark- and light-colored nodes
correspond to inspected vs. uninspected vertices, respectively. Blue and red squares correspond to
stationary and mobile obstacles, respectively. The dotted path corresponds to the agent’s current
path at the given time.

Figure 8.14: Comparing the computational performance of the proposed algorithm while using
Dijkstra vs. A* Search in the presence of stationary obstacles only (left) and stationary and
dynamic obstacles (right).
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Table 8.4: Performance metrics for DOT (proposed algorithm with Dijkstra) vs. Proposed
algorithm with A* considering dynamic obstacles (using only one full battery charge).

Performance Metric
Proposed Graph Model and Algorithm

With Dijkstra (DOT) With A*Search

Algorithm Running Time (s) 4.25 4.85
Mean number of vertex visits 1.21 1.21

Percentage site area inspected (%) 61% 61%

Area per Charge Consumed (m2/kWh) 22235 22235

In this way, the designed algorithm is versatile and can be easily adapted or modified by

users for different industrial tasking problems cases while guaranteeing a reliable and robust

performance for real world applications.
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8.5 Conclusions

An innovative graph-based model and algorithm for optimal task scheduling was proposed,

implemented and tested. The designed DOT algorithm was designed based on graph theory to

guarantee a generic nature, making it applicable on a plethora of tasking problems and not being

case-specific. For any industrial setting where mobile agents are responsible for accomplishing

tasks across a site, an optimal task schedule for each agent is obtained to maximize the speed

of the task achievement with high energy consumption efficiency. The algorithm’s versatility in

modeling different problems and high computational efficiency make it perfectly suitable for a

fully distributed task scheduling of autonomous agents. A real-world case study has demonstrated

the effectiveness of the proposed algorithm for an industrial site inspection problem, including

the presence of dynamic (moving obstacles). In future work, the algorithm can be applied to other

problems in smart industries with dynamic environments where energy consumption efficiency is

required as a top priority.

This concludes the third part of this thesis, where new energy management models for the

residential, transport, and industry sectors are developed. The next and final part revisits the

research questions, summarizes the work performed in the thesis listing the main innovations,

summarizes the conclusions, and presents prospects for future work.





Part IV

Final Remarks and Recommendations
for Future Work
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Chapter 9

Final Discussion and Response to
Research Questions

In this chapter, the research questions of the this thesis are revisited and answered in detail based

on, and referencing to, the research work presented in all previous chapters. The secondary

research questions are each individually addressed first, aggregating a comprehensive answer to

the primary research question.

9.1 Secondary Research Questions

1) Can individual and proprietary data models from the IoE paradigm be used to leverage
DSM and DR services from individual prosumers and microgrids (cluster of prosumers)
thereby improving global operation of dispersed energy systems?

In Chapter 1, the origins of Demand-Side Management (DSM) and Demand Response (DR)

and initial motives for their inception were identified and regional differences investigated. The

historical evolution of DR and DSM were analyzed using a novel scientometric approach of both

legislative and scientific research literature from the past four decades.

It was shown that DR has historically emerged globally as a subset of DSM only through

smart meter (SM) roll-out, the establishment of Smart Grids (SG) advanced communication

infrastructures, and the market rules that promoted the willingness of the consumers to increase

their active participation. Thus, it is established that even historically, the use of data models

involving individual prosumers is a key enabler to DR implementation.
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Increased Internet-of-Things (IoT)-enabling of SG and high penetration of scalable and

distributed energy resources in recent years is resulting in the emergence of the Internet of Energy

(IoE), seen as the SG 2.0. In this IoE paradigm being a fully decentralized network of energy

prosumers, DR will continue to be a vital aspect of the grid in future Transactive Energy (TE)

schemes, which aim for more user-centered, energy-efficient, cost-saving, energy management

approaches. More physically decentralized and interconnected energy systems motivate the

investigation of decentralized data models to manage them as opposed to centralized operators.

In Chapter 2 it was concluded that technical models and processes developed in an IoE

paradigm should be:

1. distributed (fully decentralized),

2. efficient at data analysis (with efficient forecasting and optimization capabilities),

3. scalable, and

4. user-friendly (plug and play).

Therefore data models developed to leverage DR and DSM services should follow these design

requirements in the IoE paradigm.

The use of Blockchain and cloud computing has been shown to enable successful

implementation of peer to peer (P2P) based models to leverage DR and DSM services from

individual prosumers and microgrids (cluster of prosumers) and thereby indeed improve global

operation of dispersed energy systems.

In Chapter 3 a complex analysis is conducted where a cloud-based Energy Management

System (EMS) coordination framework is proposed. The EMS of both individual prosumers

and aggregators, Electric Vehicle (EV) parking lot operators, both actively participated in a fully

implemented DR and DSM services of a considered SG. Synergistic coordination of the EMSs is

evaluated through a cloud-based data model. Technical and economic benefits for all participants

(grid operator, EV owners, and parking lot EMS aggregator) have been demonstrated.

Therefore, the answer to this research question is: Individual and proprietary data models from

the IoE paradigm can indeed be used to leverage DSM and DR services from individual prosumers

and microgrids (cluster of prosumers) and improve global operation of dispersed energy systems.
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2) Can local (fully decentralized) optimization and data analytics functions enable global
integration of demand-side flexibility in the energy market, system operation, and planning?

In Chapter 3, the developed and considered EMSs all aimed at leveraging demand-side

flexibility. The home energy management system (HEMS) for homeowners considered real-time

pricing for active DR implementation. The parking lot energy management system (PLEMS)

provided ancillary services (namely in the reserve and regulation markets).

Through the presence of implemented DSM and DR measures, local optimization and data

analytics can indeed enable global integration of demand-side flexibility in the energy market.

Furthermore, coordination between these local optimization systems through a cloud-based

approach can further leverage flexibility and enhance system operation.

In Chapter 7 this is also demonstrated for the case of a fully electrified public transport

networks, showing that the development of the generalized optimization algorithm leverages

the demand flexibility (through optimal charging schedules with dynamic pricing considered),

system operation (through optimal design of the systems and dispatching to reduce costs), and

planning (through optimal battery sizing and charging infrastructure deployment). In addition, the

optimization model is shown to enable long term planning (10-year ahead).

Therefore, the answer to this research question is: Local (fully decentralized) optimization and

data analytics functions can indeed enable global integration of demand-side flexibility in the

energy market, system operation, and planning.

3) Can optimal prosumption scheduling of individual agents in a decentralized energy system
(using information signals from other individual agents contrary to top-down centralized
control) result in global optimal operation?

In Chapter 5, a conceptual model was constructed for the transition from a fully centralized

operation of a SG to a decentralized one, proposing the transition scheme between the two

paradigms. In a fully decentralized SG run by local agents, a novel machine learning (ML)

algorithm was proposed and formulated (building on the method developed in Chapter 3) to

enable this transition and into cloud-based fully decentralized system operation. The proposed

algorithm incorporates the capability of cloud-based cooperative information exchange without

sharing private/raw data (e.g., local historical datasets or control actions taken locally).

This is performed by proposing a new concept of an s-index vector, which is an encoded

information that can be shared between agents to improve their control action predictions without

sharing raw information. Based on a demanding, high-resolution (15-minute) week-ahead fully

decentralized operation case, the developed algorithm guarantees an accurate prediction of optimal

operation with less than 0.1% error compared to a centralized operation case.
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In addition, in Chapter 6 a novel framework for distributed management of TE networks

was proposed and tested. A coordinated scheduling algorithm for joint scheduling of energy

consumption and trading was developed. The scheduling tool runs locally at each prosumer in

order to achieve a maximum global energy throughout the network. It was shown that the proposed

model could provide potential benefits for both prosumers and the grid, albeit with a user-centered,

fully distributed approach to schedule energy consumption and trading in transactive energy

networks of prosumers. Since all calculations run locally at each prosumer, no exchange of private

information is needed to achieve fully distributed management of the network.

Therefore, the answer to this research question is: Optimal prosumption scheduling of individual

agents in a decentralized energy system (using information signals from other individual agents

contrary to top-down centralized control) can indeed result in global optimal operation.

4) Do decentralized data models provide an effective and sustainable solution for the
operation of physically decentralized energy systems?

In Chapter 2, it was elaborated that decentralization occurs at three different and

distinguishable layers:

• Decentralization of power systems: Physical disaggregation of power generation.

• Decentralization of information systems: Distributed data as in the IoT paradigm.

• Decentralization of energy markets: Is the case with P2P energy trading between prosumers.

Moreover, it was demonstrated that decentralization of information systems creates two main

problems: data redundancy and data security/privacy. Therefore, developed decentralized data

models must handle address both problems to offer an effective solution for the operation of

decentralized power systems.

The latter is made possible with the development of Blockchain-based systems, enabling

fully decentralized, cryptographically secured, and consensus-based networks. It is important

to elaborate here that Blockchain is not necessarily associated with energy markets, and the

technology can be used to provide a secure communication infrastructure (for information

"transaction") regardless of the energy market structure. The application of Blockchain to energy

systems has been discussed in detail in Chapter 2.

Meanwhile, cloud computing capabilities now make it possible for probabilistic and ML

algorithms to overcome the data redundancy problem. This was extensively studied and proved

through the novel methods developed and analyses conducted in Chapters 3, 4, and 5.

Therefore, the answer to this research question is: Decentralized data models provide an effective

and sustainable solution for the operation of physically decentralized energy systems; enabled by

cloud computing capabilities, ML algorithms, and secure communication infrastructures.
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5) Could new models be created and developed to enable a fully decentralized P2P energy
and information trading platform?

In Chapter 5, the developed ML algorithm for fully decentralized power system operation

incorporates the capability of cloud-based cooperative information exchange without sharing

private/raw data (e.g., local historical datasets or control actions taken locally) of the individual

agents. This is performed by proposing a new concept of an s-index vector, which is an encoded

information that can be shared between agents to improve their control action predictions without

sharing raw information. The results of the conducted case study have shown that the cooperative

information exchange between the decentralized agents has a profound impact on the accuracy

of their predicted generation values. Therefore, this model provides opportunities for transactive

information exchange using peer-to-peer or cloud-based platforms for cooperative operation by

decentralized agents, assessing the "value" of traded / transacted information.

In the case of small-scale residential prosumers: In Chapter 6 a novel algorithm for fully

distributed joint scheduling of energy consumption and trading in residential transactive energy

networks was proposed. An alternative means of quantifying social welfare was conceptualized,

which is redefined and adapted for peer-to-peer prosumer-centered networks. With all calculations

performed locally at each prosumer, the energy transactions are performed using peer-to-peer

trading within a decentralized energy market (e.g. on Blockchain), with no exchange of private

information needed to achieve fully distributed management of the community of prosumers.

Therefore, the answer to this research question is: New models can indeed be created and

developed to enable a fully decentralized P2P energy and information trading platform; both

for grid operation and small-scale prosumer management.

6) In the future cloud-based IoE paradigm, how can energy management models be adapted
for end-users in different sectors (namely: residential, transport, and industry).

This research question has been addressed explicitly and extensively in Part III of the thesis.

For the residential sector: In Chapter 6, "Energy Value Signals" were proposed and formulated

as an alternative means of quantifying social welfare for residential prosumers, which is redefined

and adapted for peer-to-peer prosumer-centered networks. Based on this, a fully distributed joint

scheduling of energy consumption and trading in residential transactive energy networks was

proposed. It was shown that the proposed model provides potential benefits for both the prosumers

and the grid, albeit with a user-centered, fully distributed approach. Energy value reflects the value

set by the user of allocating energy for a certain usage at a certain time. These user preferences are

input locally resulting in the optimal schedule of each prosumer, which in turn affects the price of

energy globally in a similar manner to DR programs in modern-day SGs. The developed model

enables a cloud-based approach for residential prosumer energy management in the IoE paradigm.
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For the transport sector: In Chapter 7 a universal mathematical model for fully electric public

transport networks was developed to minimize the total ownership cost (TOC). This addressed

critical gaps in scientific literature, where: 1) all surveyed literature were found to construct

case-specific models (non-generalizeable), and 2) the optimization models targeted only one or

two elements of the transport system, with the other aspects being considered as model constraints.

Accordingly a universal model was developed model in this thesis, i.e., any set of routes, electric

buses, and type of charging infrastructure can be considered either as a parameter or a decision

variable. The optimization model accounts for real-time dynamic electricity pricing.

In this sense, the model is highly versatile and can be used for 1) optimal operation of

existing systems (through optimal charging schedules with dynamic pricing considered), 2)

system operation (through optimal design of the systems and dispatching to reduce costs), and

3) investment planning (through optimal battery sizing and charging infrastructure deployment).

Three case studies were used to validate the proposed model while demonstrating its universal

applicability. First, the design of three individual routes with different characteristics was

demonstrated. Then, a large-scale generic transport system with 180 routes, consisting of urban

and suburban routes with varying characteristics was considered and the optimal design was

obtained and analyzed in detail. Afterwards, the use of the proposed model for a long-term

transport system planning problem was demonstrated by adapting the system to a 2030 scenario

based on forecasted technological advancements. Due to the universal nature of the developed

optimization model, it can be applied to any public transport network, including electric vehicle

(EV) fleets and other emerging electric transport technologies.

For the industry sector: In Chapter 8 an innovative graph-based model and algorithm for optimal

task scheduling was proposed, implemented and tested. As with the transport sector, a critical gap

in literature was found where all developed solutions are case-specific and not generalizeable. The

designed algorithm based on graph theory guarantees a generic nature, making it applicable on a

plethora of tasking problems. For any industrial setting where mobile agents are responsible for

accomplishing tasks across a site, an optimal task schedule for each agent is obtained to maximize

the speed of the task achievement with high energy consumption efficiency. The algorithm’s

versatility in modeling different problems and high computational efficiency make it perfectly

suitable for a fully distributed task scheduling of autonomous agents.

The developed algorithm is applicable in the context of smart industries, where autonomous

multi-agent systems are deployed to perform preset tasks with high levels of automation and a

advanced communication infrastructures (i.e., IoT-enabled agents with cloud-based coordination).

A real world case study has demonstrated the effectiveness of the proposed algorithm in

maximizing the task accomplishment of the autonomous industrial agent on one full battery

charge, maximizing the energy consumption efficiency.
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Therefore, the answer to this research question is: In the future cloud-based IoE paradigm,

cross-sector end-user energy management must be adapted with a focus on the new models being

universal and not case specific to ensure interoperability. The models must make also make

use of advanced communication infrastructures. These focal aspects are in accordance with the

requirements defined earlier for methods developed for the IoE paradigm. Moreover, in the case of

the transport and industry sectors the upcoming full electrification thereof. With this mindset, new

and innovative optimization scheduling models have been developed in this thesis for the energy

management in the residential, transport, and industry sectors.

9.2 Primary Research Question

Can fully decentralized distributed data models (based on IoT and P2P networks) ensure
techno-economic sustainability for electric power systems and cross-sector end-users?

Part I of the thesis (Chapter 1 and Chapter 2) provided a comprehensive and clear definition of

the first part of the question "Can fully decentralized distributed data models (based on IoT and

P2P networks) ensure techno-economic sustainability". Part II (Chapter 3, 4, and 5) addressed

this question for "electric power systems", and Part III (Chapter 6, 7, and 8) for "cross-sector

end-users".

With all the secondary research questions addressed, the answer to the primary research

question emerges with confidence as an aggregated conclusion of all the outcomes of the work

performed in this thesis.

Therefore, the answer to the primary research question is: Fully decentralized distributed data

models (based on IoT and P2P networks) can indeed ensure techno-economic sustainability for

electric power systems and cross-sector end-users. The designed models must adhere to the design

requirements defined for the IoE paradigm.





Chapter 10

Final Conclusions and Prospects for
Future Work

The work presented in this thesis built on architectures, approaches, and emerging technologies in

the IoE paradigm to develop disruptive energy management tools that cover the full spectrum and

dimensions of this transition: 1) grid operation (cloud-based coordination, forecasting, and power

flow management tools), and 2) cross-sector end-user energy management adaptation to future

scenarios (namely: the residential, transport, and industry sectors).

First, the emergence of the IoE paradigm and energy prosumers was exhaustively investigated

by conducting a thorough analysis of scientific literature, legislations, and expert reviews. The

necessary criteria for tools and methods developed to be compatible with the IoE paradigm have

been defined.

Then, cloud-based coordination, forecasting, and power flow management tools are developed

for energy management in power systems of the IoE paradigm. First, the coordination of

modern-day energy management systems through a cloud based approach to achieve synergistic

benefits both for the global system and the end-users (local prosumers) was demonstrated. Then,

new disruptive algorithms for fully decentralized forecasting and power flow management of

next-generation power systems were developed. A novel KDE method was developed and enables

fully decentralized local forecasting for prosumers without depending on private/proprietary data

or divulging their own, being compatible with the cloud based IoE paradigm. Afterwards, a

novel machine learning algorithm was proposed and formulated to enable the transition into a

cloud-based fully decentralized power system operation.
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In the next part of the thesis, the adaption of energy management models for cross-sector

end-users to future scenarios was investigated. For the residential sector, a combined prosumption

scheduling and trading tool based on a new energy value signal concept was developed. For the

transport sector, a comprehensive and universal optimization model for charging infrastructure

deployment, charge scheduling, battery sizing, and route design for fully electric public transport

networks was developed and used to analyze future scenarios. For the industrial sector, an original

graph-based model for fully autonomous task scheduling in smart industries was presented to

minimize energy consumption.

With complex and disruptive tools developed in this thesis, it opens the door for several paths

for future work thereon:

• For economic research: The method developed in Chapters 5 and 6 raised intriguing possibilities

regarding the prospects of building business models for information transactions. The "value"

of information can be quantified in cooperative operation and forecasting frameworks.

• For systems research: The literature reviews leading to the work in Chapters 7 and 8 have

shown a clear delay in the transfer of knowledge between the power systems research on one

hand, and the transport and industrial sectors on the other. Very little research was found

to investigate the effect of demand response on smart industries and multi-agent autonomous

task allocation. Similarly, very little research considers dynamic SG interaction with transport

networks. Most SG research focuses on the residential side and consumer-owned EVs.

Therefore it is recommended that future work further investigates synergies that can be attained

from multi-disciplinary research between these fields as a global system model in the IoE.

• For legal research: The analysis presented in Chapter 1 and 2 clearly show that the legislation

was the main instigator to the scientific research and development on DR, DSM, and

SGs. Accordingly, if the scientific community is to pursue the development of innovative

multi-disciplinary tools to accelerate the development of the IoE, proper legislation should be

enacted prompt it.
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Appendix A

Annual GFS and PV Generation Data

This Appendix is associated with Chapter 4

.

Figure A.1: Annual wind speed data for the case study provided by GFS.
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Figure A.2: Annual temperature data for the case study provided by GFS.

Figure A.3: Annual solar irradiance data for the case study provided by GFS.
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Figure A.4: Annual precipitation data for the case study provided by GFS.

Figure A.5: Annual humidity data for the case study provided by GFS.
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Figure A.6: Annual recorded AC output power data for the case study: recorded (left) and averaged
for GFS synchronization (right).



Appendix B

Directed Random Walk Algorithm

This Appendix is associated with Chapter 8

.

In a random walk, the next vertex j in a path is chosen at random from the neighbors of a

vertex i. In this study a variation of this is used for comparison with DOT, a directed random walk

(DRW) [231, 232]. In a DRW the next vertex is chosen randomly, but the probability of a vertex

being chosen is inversely proportional to its distance from the destination. This is illustrated in

Fig. B.1, where the current vertex i has four neighbors 1, 2, 3, and 4, with the distances (Cartesian)

to the destination being d1, d2, d3, and d4, respectively.

The next vertex in the path is selected using a roulette wheel approach. The aim is to have a

random selection while assigning a higher priority to vertices closer to the destination. Therefore,

the selection probability is proportional to d’, which is the inverse (1/d) of the Cartesian distance.

A random variable X is generated such that X=U(0,sum(d1’,d2’d3’,d4’), based on an uniform

distribution. As illustrated in Fig B.2, the probability of each of the neighbors being selected is

proportional to its inverse distance from the destination. With the random element performed,

the results reported in this study are based on the 25th percentile (best case) of 1000 runs. The

DRW guarantees to provide a finite path; however, the random element can result in excessively

long ones. Therefore, two variations of the DRW were used in this work: normal (DRW1) and

an improved brute force one (DRW2). At the beginning of every traversal while stationed at a

checkpoint, a path is calculated. Once a path requires the agent to drop below SoC minimum, the

pathing is halted. With DRW2, ten trials are attempted at finding a shorter path until the solution

is halted, in which case the agent must recharge before proceeding, since no shorter path can be

found that can be traversed with the remaining SoC.
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Figure B.1: Illustration of current node i , neighboring nodes, and their Cartesian distance to the
destination.

Figure B.2: Constructing the roulette wheel selection.
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