3,141 research outputs found

    Correlated multi-streaming in distributed interactive multimedia systems

    Get PDF
    Distributed Interactive Multimedia Environments (DIMEs) enable geographically distributed people to interact with each other in a joint media-rich virtual environment for a wide range of activities, such as art performance, medical consultation, sport training, etc. The real-time collaboration is made possible by exchanging a set of multi-modal sensory streams over the network in real time. The characterization and evaluation of such multi-stream interactive environments is challenging because the traditional Quality of Service metrics (e.g., delay, jitter) are limited to a per stream basis. In this work, we present a novel ???Bundle of Streams??? concept to de???ne correlated multi-streams in DIMEs and present new cyber-physical, spatio-temporal QoS metrics to measure QoS over bundle of streams. We realize Bundle of Streams concept by presenting a novel paradigm of Bundle Streaming as a Service (SAS). We propose and develop SAS Kernel, a generic, distributed, modular and highly ???exible streaming kernel realizing SAS concept. We validate the Bundle of Streams model by comparing the QoS performance of bundle of streams over different transport protocols in a 3D tele-immersive testbed. Also, further experiments demonstrate that the SAS Kernel incurs low overhead in delay, CPU, and bandwidth demands

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Worst-case temporal analysis of real-time dynamic streaming applications

    Get PDF

    Tools for Stored Interactive Multimedia

    Get PDF
    Thesis submitted for the PhD degree

    Approximate Computing Survey, Part I: Terminology and Software & Hardware Approximation Techniques

    Full text link
    The rapid growth of demanding applications in domains applying multimedia processing and machine learning has marked a new era for edge and cloud computing. These applications involve massive data and compute-intensive tasks, and thus, typical computing paradigms in embedded systems and data centers are stressed to meet the worldwide demand for high performance. Concurrently, the landscape of the semiconductor field in the last 15 years has constituted power as a first-class design concern. As a result, the community of computing systems is forced to find alternative design approaches to facilitate high-performance and/or power-efficient computing. Among the examined solutions, Approximate Computing has attracted an ever-increasing interest, with research works applying approximations across the entire traditional computing stack, i.e., at software, hardware, and architectural levels. Over the last decade, there is a plethora of approximation techniques in software (programs, frameworks, compilers, runtimes, languages), hardware (circuits, accelerators), and architectures (processors, memories). The current article is Part I of our comprehensive survey on Approximate Computing, and it reviews its motivation, terminology and principles, as well it classifies and presents the technical details of the state-of-the-art software and hardware approximation techniques.Comment: Under Review at ACM Computing Survey

    Designing multimodal interactive systems using EyesWeb XMI

    Get PDF
    This paper introduces the EyesWeb XMI platform (for eXtended Multimodal Interaction) as a tool for fast prototyping of multimodal systems, including interconnection of multiple smart devices, e.g., smartphones. EyesWeb is endowed with a visual programming language enabling users to compose modules into applications. Modules are collected in several libraries and include support of many input devices (e.g., video, audio, motion capture, accelerometers, and physiological sensors), output devices (e.g., video, audio, 2D and 3D graphics), and synchronized multimodal data processing. Specific libraries are devoted to real-time analysis of nonverbal expressive motor and social behavior. The EyesWeb platform encompasses further tools such EyesWeb Mobile supporting the development of customized Graphical User Interfaces for specific classes of users. The paper will review the EyesWeb platform and its components, starting from its historical origins, and with a particular focus on the Human-Computer Interaction aspects

    User interfaces for anyone anywhere

    Get PDF
    In a global context of multimodal man-machine interaction, we approach a wide spectrum of fields, such as software engineering, intelligent communication and speech dialogues. This paper presents technological aspects of the shifting from the traditional desktop interfaces to more expressive, natural, flexible and portable ones, where more persons, in a greater number of situations, will be able to interact with computers. Speech appears to be one of the best forms of interaction, especially in order to support non-skilled users. Modalities such as speech, among others, tend to be very relevant to accessing information in our future society, in which mobile devices will play a preponderant role. Therefore, we are placing an emphasis on verbal communication in open environments (Java/XML) using software agent technology.Fundação para a Ciência e a Tecnologia – PRAXIS XXI /BD/20095/99 ; Germany. Ministry of Science and Education – EMBASSI – 01IL90
    • …
    corecore