
Tools for Stored Interactive Multimedia

Ole Vedel Villumsen

Thesis submitted for the PhD degree

July 1996

2

Acknowledgments

Thanks are due to my advisor Jørgen Lindskov Knudsen, Computer Science
Department at Aarhus University, for being available from the formulation
of my project until several months after it should have been finished, and
for many constructive comments, especially in the form of excellent and in-
dispensable methodological advice. Jørgen has been very good at asking the
right questions and leaving it to myself to provide the answers.

Thanks to Peter Bøgh Andersen, Bjørn Laursen, Søren Kolstrup and every-
one in the Jean de l’Ours, Wodan’s Eye, and ‘The Transparent Computer’
projects for the inspiration that eventually lead me into and through my
PhD study. More thanks to Peter Bøgh Andersen for many useful com-
ments. Thanks to Edvin Kau for assisting my literature search in narrative
theory related to non-textual media and for useful discussions.

I am indebted to David Madigan for arranging my invitation to spend six
months at University of Washington and Fred Hutchinson Cancer Research
Center in Seattle, USA, and for valuable co-operation and interaction while
I was there. Not least because of David Madigan and his wife Áine, they
also turned out to be very pleasant six months. My coauthors and I are
grateful to Jeff Bradshaw, Peter Dunbar, and Robert Jacobsen for helpful
contributions to chapter 10 on Talaria.

Many thanks to Helen Gray for proof-reading and for helping me translate the
sample output from the Petri net ‘Kristendom’ (Christianity) into English.
Thanks to Karen Kjær Møller for proof-reading. Thanks to Tim Caudery
and his colleagues at Institute of English, Aarhus University, for excellent
help with translating the extended layer model from Danish.

Thanks to Soren ‘Petri’ Christensen, Computer Science Department at Aarhus

3

University, for standing by while I learned to use Petri nets and the De-
sign/CPN tool, and for valuable discussions and criticism. Thanks to Torben
Bisgaard Haagh for assistance on ML. Thanks to Patrick Sénac for a useful,
kind and encouraging comment on the section on HTSPN.

I used to find it a bit ridiculous when authors in their acknowledgements
thank their parents, wife, husband, children and pets. I have had to change
my mind a bit. Since a PhD study is not compatible with a proper, wellord-
ered family life, I would like to thank my wife Annette Schachner for bearing
with me during the last three and a half years, including my six months’
absence when I was in Seattle. I promise to take on more of the cooking and
other housework from now on or at least tidy up after myself, and to join
Annette now and then for a horse ride in the woods too. Thanks also to my
father, Povl Vedel Villumsen, for comments and encouragement.

The Ph.D. study has been conducted within a scholarship (‘datalogistipen-
dium’ or ‘computer science scholarship’) from the faculty of natural sciences
at Aarhus University for most of the time. The study was finished in a leave-
of-absence for education from Magistrenes A-kasse (masters’ unemployment
fund). The work on Hejmdal was initiated while I was employed in a position
financed by the Danish Research Programme for Informatics, grant number
5.26.18.19. The research on Talaria is funded in part by a SBIR (Small Busi-
ness Innovation Research) grant from National Institute of Health, USA, to
Statistical Sciences Inc. and NCI grant CA 38552. The Computer Science
Department and the Devise project at Aarhus University have placed of-
fice, computers and computer software at my disposal. Forskerakademiet
(Danish Research Academy) supported my travel to and stay in Seattle. A
considerable tax reduction from Danish authorities also supported the stay.

What kind of language is that?

I attempt throughout the thesis to write a British English for an international
audience. I deliberately keep French accents, Danish letters æ, ø and å, etc.
in the text where appropriate. Though personally I like a personal style
(writing ‘I’ when I mean I), I have tried to avoid it in the thesis.

4

Contents

1 Introduction 25

1.1 Background: interactive multimedia 25

1.2 Problems and contributions 26

1.3 Some concepts: multimedia, interactive multimedia and hy-
permedia . 30

1.3.1 Multimedia is orthogonal to hypermedia 32

1.4 Guide to the thesis . 34

1.4.1 How to read footnotes 35

2 Requirements for Tools 37

2.1 Introduction . 37

2.2 Metaphors in multimedia and in the tools 38

2.3 Skill requirements . 39

2.3.1 Different(-ly tailored) environments for different par-
ticipants and tasks . 39

2.4 Requirements for tools . 40

2.5 Media data in multimedia . 42

2.6 Summary of tool requirements 43

5

3 The Need for Programming 45

3.1 Conclusion . 47

4 Hejmdal: Object-oriented Handling of Interactive Media 49

4.1 Background . 51

4.1.1 QuickTime . 51

4.1.2 MacEnv . 52

4.2 Hejmdal . 53

4.2.1 Playing a movie . 54

4.2.2 Movies in files . 57

4.2.3 Movie fields . 59

4.2.4 Movie editors . 61

4.2.5 Time-based call-backs 62

4.2.6 Tracks and media . 62

4.2.7 Preview and poster . 63

4.2.8 Movies on the clipboard 64

4.2.9 Movies and resources 65

4.3 Discussion . 65

4.3.1 Use of Hejmdal . 66

4.4 Further requirements and future work 67

4.4.1 On the fly editing . 68

4.4.2 Defining interaction in the documents 69

4.5 Conclusion . 70

5 Theory of Narration 71

5.1 Choice of theory . 71

6

5.1.1 New Criticism . 72

5.1.2 Structuralist narratology 74

5.1.3 Marxist literature criticism 75

5.1.4 Impressionist literature criticism 76

5.1.5 Deconstruction . 76

5.1.6 Choice of theory . 77

5.2 New Criticism . 78

5.3 The extended layer model . 79

5.3.1 Composition . 80

5.3.2 Narrator issues . 81

5.3.3 Language issues . 85

5.4 Discussion . 87

6 A Model of Elastic Stories 89

6.1 Elastic stories . 90

6.2 User interface . 93

6.2.1 An action . 95

6.3 Concepts: story structure and requirements for tools 96

6.3.1 An event . 97

6.3.2 A thread . 97

6.3.3 Parallelism . 97

6.3.4 Synchronization . 98

6.3.5 Inter-event synchronization 98

6.3.6 Sub-event synchronization 99

6.3.7 A resumption . 100

7

6.3.8 Intra-event synchronization 101

6.3.9 A branching . 101

6.3.10 A fork . 101

6.3.11 A join . 102

6.3.12 A choice . 102

6.3.13 A merging . 103

6.3.14 Non-determinism . 103

6.3.15 A pause . 104

6.4 Discussion and summary . 105

6.4.1 Comparison with programming terms 105

6.4.2 Summary . 105

7 Elastic Stories in Petri Nets 107

7.1 An action . 109

7.2 An event . 110

7.3 A thread . 112

7.4 Parallelism . 112

7.5 Inter-event synchronization . 113

7.5.1 A generalization . 116

7.6 Sub-event synchronization . 120

7.7 Intra-event synchronization 121

7.8 A resumption . 123

7.9 A fork . 127

7.10 A join . 127

7.11 A choice and a merging . 128

8

7.12 Non-determinism . 129

7.13 A pause . 130

7.14 Conclusion . 131

8 Experiments with Elastic Stories in Coloured Petri Nets 133

8.1 Setting . 134

8.2 Thread, choice, merging and non-determinism 135

8.2.1 The story . 135

8.2.2 Input and output . 135

8.2.3 The process . 137

8.2.4 Style . 138

8.2.5 Results . 138

8.3 Parallelism, fork, join, pause and generalization 139

8.3.1 The story . 140

8.3.2 Input and output . 140

8.3.3 Results . 141

8.4 Synchronization and resumption 143

8.4.1 The story . 144

8.4.2 Input and output . 144

8.4.3 Results . 144

8.5 Summary of experiments . 147

9 Related Work on Elastic Story Telling and on Petri Nets 149

9.1 The work of Peter Bøgh Andersen on interactive narratives . . 149

9.2 Trellis . 159

9.3 Hierarchical Time Stream Petri Nets 163

9

9.4 Summary . 170

10 Repertory Grids for Hypermedia Navigation 171

10.1 Introduction . 171

10.1.1 Cancer pain and the AHCPR guideline 172

10.1.2 Talaria objective and requirements 174

10.1.3 Overview of the chapter 176

10.2 Navigation and the travel metaphor 176

10.3 An implicit linking scheme . 178

10.3.1 Repertory grids . 178

10.3.2 Triadic elicitation of traits 180

10.3.3 Grid analysis tools . 182

10.4 Implementing the scheme for the cancer pain guideline 183

10.4.1 Traits . 183

10.4.2 Rating procedure and grid analysis 184

10.5 Evaluation . 185

10.5.1 Evaluation methodology 185

10.5.2 Evaluation of linking scheme 187

10.5.3 Distance metric evaluation 188

10.5.4 Trait deletion . 189

10.6 Discussion and conclusion . 190

10.6.1 Discussion . 190

10.6.2 Summary . 191

11 Conclusion 193

11.1 Petri nets for elastic story telling 193

10

11.1.1 Problems, solutions and further possibilities 194

11.1.2 Future work . 198

11.1.3 Petri nets for elastic story telling: Summary 199

11.2 An object-oriented programmer’s platform for multimedia . . 199

11.3 Repertory grids for hypermedia linking 200

11.4 General multimedia tool requirements 201

11.5 Summary . 202

A Petri Net Experiments 205

A.1 Kristendom (Christianity) . 205

A.2 Swords, iron and millstones, first version 225

A.3 Swords and iron, second version 240

Bibliography 253

11

12

List of Figures

4.1 The most important MacEnv classes. 53

4.2 Hejmdal is an extension of MacEnv built on top of QuickTime. 54

4.3 File dialogue with preview. 59

4.4 A window containing a movie window. In cases where it is
field with a movie controller. 61

4.5 Movie, track and media. 63

4.6 Movie with preview and poster. 64

5.1 Example of a model from structuralist narratology: the con-
tract model.7 When breaching the contract (which may be
informal), the main character is expelled from society into the
outside space. Here, rules are different; magic may take place,
for example. Through a long and cumbersome process (of-
ten through three tests; the qualifying, the decisive and the
glorifying test) the main character shows that he (she?) de-
serves re-admittance into society (often as a hero). Hereby the
contract is finally re-established.8 74

13

6.1 Elastic media fill the gap between user-controlled and author-
controlled media. Putting the different media on a scale like
this is of course an oversimplification. Firstly, users can exer-
cise different kinds of control over different media. Hence it is
usually open to interpretation which of two media (for instance
a drawing program and a lump of clay) is more user-controlled.
Secondly, the same medium (especially a computer program)
may behave in a more user-controlled way at one time and a
more author-controlled way at another time. 91

7.1 Executing an action, e.g., playing a sound, is done using two
transitions with a place between them in the Petri net.3 109

7.2 An event consisting of three actions: playing a speech (top),
panning to person A (middle) and a showing a close-up picture
(bottom).4 . 111

7.3 A thread is represented by a linear sequence of sub-pages. . . . 112

7.4 Three parallel threads. 113

7.5 The intuitive idea used for inter-event synchronization: a syn-
chronization place is inserted between events A and B so that
event B can only occur after event A has occurred. The idea
is further developed in figures 7.6–7.8. 114

7.6 Inter-event synchronization: In the original threads, the events
A and B are replaced by subpages A’ and B’. The contents of
A’ and B’ are shown in figures 7.7 and 7.8, respectively. 115

7.7 The contents of A’ from figure 7.6: after event A a transition is
inserted that puts a token on the synchronization place. The
synchronization place is a a global fusion place (ABSynch in
the example). 115

7.8 The contents of B’ from figure 7.6: a transition inserted before
B takes a token from the synchronization place. If no token is
present, the thread is blocked. 116

7.9 Alternative contents of B’ which only allows B to occur once
after each time A has occurred. 116

14

7.10 Each example used in a generalization is moved to a separate
subpage on which it is succeeded by a transition that places a
coloured token on the synchronization place, the colour repre-
senting the example that has just been presented. 117

7.11 A generalization G1 over a number of examples can only be
triggered after at least two of the examples have occurred, its
continuation G2 not until three of them have. The generaliza-
tion is an example of inter-event synchronization. 118

7.12 Generalizations G1 and G2 can occur in any order.7 119

7.13 A ‘speak module’. A fusion place with initially one token on
it ensures that only one speech is played at a time. 120

7.14 Use of the speak module in figure 7.13 from within an event
is straightforward. The name of the speech is provided as the
colour of the token on the top place. 121

7.15 An event with intra-event synchronization. The code region
of a single transition starts all the actions. 122

7.16 The flow of a resumption. The resumption (the two events to
the right) is only executed when needed. 123

7.17 The first event after the resumption. If the time now is more
than a specified amount (here 15 seconds) later than the time
when the previous event was completed, the time stamped
token is returned to the place r and nothing else happens. . . . 125

7.18 A fork is realized by two or more output arcs from a transition.127

7.19 A join: two or more input arcs to a transition. 127

7.20 A choice and a subsequent merging. A choice, as opposed to a
fork, is realized by several output arcs from a place. A similar
difference exists between a join and a merging. 128

7.21 Two choices and two mergings. 130

7.22 A pause is two guarded transitions. 131

15

8.1 The order of speech and pan actions in a sample run of the
second version of the ‘Swords and Iron’ story. The time pro-
gresses from left to right. The figure shows the order of the
starts and ends of speeches and pannings. ‘SW’ refers to the
sword thread, ‘Ir’ to the iron thread. ‘IrRes’ means the event
in the resumption of the iron thread. There is no ‘scale’; no
information about the duration of actions or spaces between
them should be inferred. The vertical lines connecting pairs
of actions (for instance, the speech and panning of the event
‘Sw1’) denote that intra-event synchronization was used to
make the two actions start at the same time. 146

8.2 In one run, the two resumptions were repeated four and five
times respectively. 146

9.1 The prerequisite of a parenthesis is ‘wrapped’ on its own page
with a transition that changes the marking of the synchroniza-
tion place to fulfilled. 154

9.2 The parenthesis is ‘wrapped’ on a separate page with a choice
and two transitions that control the choice. If the prerequisite
is not fulfilled, the token on the synchronization place is
unfulfilled and the transition to the left cannot fire. In this
situation, the one to the right fires, which makes the thread
continue without the parenthesis. By contrast, if the token is
fulfilled, only the left route can be chosen, including the
parenthesis. 155

9.3 An escalation. The transition at the top produces a time
stamped token. The first hint can repeat until the user finds
the slave, at which point the transition to the left can start
the slave story (bottom). If the user does not find the slave
within two minutes (120 seconds), a guarded transition brings
the time stamped token down to the place beside the second
hint, which can now execute repeatedly. When the user sees
the slave or after a total of five minutes (300 seconds), the
next transition fires and starts the slave story. 156

16

9.4 Petri net of a hypermedia document with two separate concur-
rent browsing paths, after David Stotts and Richard Furuta.
The example corresponds to an elastic story with two subse-
quent pairs of parallel threads. 160

9.5 Petri net for a hypermedia document with access restrictions.
With an initial marking of s1 only, a user can access s1 and
s3, but not s2. A user with unlimited access to the document
will have an initial marking where both s1 and s4 are marked.
(s4 is not mapped to any content element.) 161

9.6 Example multimedia presentation from Patrick Sénac and Michel
Diaz. ti represents a title. tx1 and tx2 represent successive
texts, i1 an image to be shown concurrently with the two texts,
i2 another image to follow the first and the texts, and v a voice
to accompany the texts and images throughout. The time in-
scriptions in square brackets give the minimum, the nominal
and the maximum duration of the presentation of each ele-
ment. The two transitions with multiple inputs are assigned
the strong-or and weak-and firing rules respectively. These are
explained in the text. 164

10.1 34 MDS 2-Dimensional view of context space. This shows 18
sections from the AHCPR Cancer Pain Guideline. The plot
has a similarity with the spatialized text plots of Marshall and
Shipman35. 182

10.2 Linkplots for the 136 nodes in Talaria. Each dot represents
a link. The plot to the left uses a neighbourhood size of 16
nodes while the right plot uses 30 nodes. The nodes are num-
bered in the order in which they appear in the cancer pain
guideline. The rectangular structures in the plots reveal the
chapter structure of the book. Note the linking scheme makes
many links between nodes in different chapters in the guideline.185

17

10.3 Plot of the percentage of the links made by the users in the
protocol analysis against neighbourhood size. Ideally, small
neighbourhoods would capture most or all of the links made
by the subjects. A neighbourhood of size n includes the n
nearest nodes. 188

A.1 Page ‘Hierarchy#1’ 0, the page hierarchy page: overview of the
pages in the net. 207

A.2 Page ‘Globale#2’, containing the global declarations. 208

A.3 Page ‘Scene#3’, the scene with five actors. The scene is used
for marking actors when they speak and for user input. The
box at the bottom containing SML code is for use during con-
struction and modification of the net. 209

A.4 Page ‘Historie#4’. The highest level view of the Petri net;
the only prime page of the net. The topmost transition is for
initialisation, while the entire story is contained in the subpage
at the bottom (page ‘Kristen#5’.) 209

A.5 Page ‘Kristen#5’. Overview of the story, with the choice be-
tween reject (left) and accept (right) of Christianity. Probably
a better modularization would have been obtained if the choice
to the right had had its own subpage, as the left one has. . . . 210

A.6 Page ‘Intro#6’. Introduction to the story. 211

A.7 Page ‘Krig#7’. Torsten rejects Christianity and pays the price.
The choice at the top is between trying to kill the king in a
fire (left) and meeting him in an open fight (right). The choice
at the bottom is between execution and outlawry 212

A.8 Page ‘Rival#8’. 213

A.9 Page ‘Ild#9’. (Ild means fire). 214

A.10 Page ‘Kamp#10’ (fight). 215

A.11 Page ‘Ulykke#11’. 216

A.12 Page ‘Tingsted#12’. 216

18

A.13 Page ‘Halshug#13’ (execution). 217

A.14 Page ‘Fredloes#14’ (outlaw). 218

A.15 Page ‘Torstens#15’. Torsten accepts Christianity, eighter by
being marked by the sign of the cross (left), or by baptism
(right). 219

A.16 Page ‘Daab#16’. (D̊ab means baptism.) 220

A.17 Page ‘Primsign#17’. (The ‘primsignelse’ was a precursor of
baptism in which one was marked by the sign of the cross. . . 221

A.18 Hierarchy#1. 226

A.19 Globals#2. 227

A.20 Ship#3. 228

A.21 All#4. 228

A.22 Story#5. 229

A.23 Fork#6. 230

A.24 Swords#7. 231

A.25 Iron#8. 232

A.26 Millstone#9. 233

A.27 Join#10. 234

A.28 SwVis#11. 234

A.29 SwInvis#12. 235

A.30 SwFirst#13. 236

A.31 IronVis#14. 236

A.32 IronInvs#15. 236

A.33 IrFirst#16. 237

A.34 MSVis#17. 238

A.35 MSInvis#18. 238

19

A.36 MSFirst#19. 238

A.37 Repeat#20. 239

A.38 Generali#21. 240

A.39 Hierarchy#1. The pages at the bottom contain text output
from 23 of the runs. 241

A.40 Ship#3. 243

A.41 All#4. 243

A.42 Stories#5. 244

A.43 Swords#6. 245

A.44 Iron#7. 246

A.45 Sw1#8. 247

A.46 SwResump#9. 248

A.47 Sw2#10. 248

A.48 Ir1#11. 249

A.49 IrResump#12. 249

A.50 Ir2#13. This construction turned out to be the culpit when
the text line ‘Start Iron 2’ was missing completely from the
output. Instead of the if statements on almost all its input
and output arcs, the if statement in the code region should
control which tokens are delivered when the transition fires.
Tokens from input places can be taken unconditionally; it only
requires that output arcs are added to put them back in the
case where they should not have been taken. 250

A.51 SpeakMdl#14. 251

A.52 PanMdl#15. 251

A.53 . 252

A.54 . 252

20

A.55 . 252

21

22

23

24

Chapter 1

Introduction

1.1 Background: interactive multimedia

The field of computer-based multimedia seems to be emerging from at least
two end-points: On the one hand, ordinary computer applications include
more and more elements of graphics, sound and animation, just as they have
been including more and more graphics over the last decade. Live video is be-
coming widely available on computers and can be expected to be included in
all kinds of computer applications. On the other hand, computer-based mul-
timedia presentations which have their closest relatives in the media worlds
are appearing.

As an example of the latter, more and more museums use computers to
communicate information to visitors. These computers seem to come as a
supplement to the slide show with an audio tape. One reason is probably
the possibilities of interaction, which can make the presentations more inter-
esting. Often, a kind of menu is used to let the user go to different parts of
the presentation, but new kinds of interaction are also evolving. The new
kinks of interaction appearing in this field are often used to simulate the user
exploring a world. Depending on the kind of museum, it could be the world
of Pablo Picasso or the world of the bronze age.

As an example of ordinary computer applications including new media, many
hypermedia systems now include video with sound besides text, graphics and

25

sometimes animations (hypermedia will be discussed more closely shortly).

Stored computer-based multimedia is rapidly spreading. They are used for
communication in many different areas, including museums, education, ad-
vertising and entertainment. Stored multimedia, though interactive, is most
often used in a one-way communication from a group of authors or devel-
opers to an audience of users. (By contrast, live multimedia is more often
used in two-way communication, e.g., computer conferencing with video.)
One reason for this situation is the relatively high cost of producing stored
multimedia presentations; only if there are a number of potential readers is
the production of multimedia worthwhile.

Interaction is important in computer-based multimedia. The above exam-
ples show that interaction with multimedia is useful. While non-interactive
multimedia is not much different from traditional films or slide shows with
audio tapes, interactive multimedia is a whole new world. Interactive multi-
media constitutes a way for an author to convey new experiences to the user;
experiences that have neither been possible with traditional media (film,
animation, etc.), nor with traditional interactive computer programs. New
kinds of interaction in multimedia are evolving and will probably continue
to evolve in the years to come.

Computer-based multimedia is a new world arising between the world of
computing and the worlds of different media. Interactive, computer-based
multimedia is expected to be used in more and more fields in the future. Re-
search in computer-based multimedia is ongoing in many different directions,
both within the uses of computer-based multimedia and within the software
and hardware used.

1.2 Problems and contributions

On this background, the demand for advanced tools for working with inter-
active multimedia is increasing. This thesis explores tools for development
of stored, interactive multimedia. The thesis first makes some general ob-
servations about requirements for such tools. Since a common complaint
among multimedia authors is that available tools always require some script-
ing or programming, the thesis goes on to investigate the need for scripting

26

or programming in multimedia development. The rest of the thesis develops
tools and techniques for specific purposes and for specific developers within
the area of multimedia. The largest part of the thesis is concerned with
tools for building a kind of story known as elastic stories in multimedia.
Other parts present tools for semi-automatic generation and maintenance of
links in hypermedia documents, and an object-oriented multimedia tool for
programmers.

Many observations were made about requirements for multimedia tools. These
will be reported. Many of the requirements correspond to requirements for
system development tools in general. In addition, it was found that the mul-
timedia development team must have tools for digitizing, creating and editing
material in each medium including time-based media. The tools should be
separate in the sense that one can work with one of them at a time, inde-
pendently of the others, still integrated in the sense that thev can work on
the same materials, and in the sense that they have a similar user interface
where appropriate.

It has been an interesting question how far one can expect to help multimedia
authors many authors by development of new and better tools. Specifically,
since dislike programming or cannot program, or both, it has been found
worthwhile to investigate questions such as: Is it a necessity that multimedia
tools always require some scripting or programming, at least as soon as the
developer wants to go just a little bit beyond the core of the tool’s intention
and metaphor? If so, how much scripting is necessary, or how far can we
limit the requirement that the author has to program? It has been found that
programming has its place in most including the most interesting multimedia
development projects; but it is still worth striving for tools that are more
powerful and easier to use than the tools available on the market today.

The main new feature of multimedia is the introduction of time-based me-
dia in computers: media that can only be meaningfully recorded and played
back over time, such as sound, animation and video. There is a challenge in
developing techniques and tools for dealing with time-based media in mul-
timedia development. On this background, the thesis presents Hejmdal, an
object-oriented class library for interactive editing and play-back of Quick-
Time1 movies, a de-facto standard architecture for time-based documents.

1QuickTime is a trademark of Apple Computer Inc.

27

QuickTime movies can consist of graphics, photographs, live video and ani-
mations and sounds. The interactive playback facilities offered by Hejmdal
are start and stop playing, random positioning within a movie, and stepping
a single frame forward and backward. Movie segments can be interactively
cut, copied and pasted. Movies are stored in digital files, thus avoiding the
need for additional hardware during playback and editing. It turns out that
the object-oriented model in Hejmdal is simple, clear, powerful and flexi-
ble. Especially concerning interaction, use of an object-oriented model is
advantageous. Hejmdal was originally developed for use in the remainder of
the thesis work, where new and more powerful tools were planned on top of
Hejmdal.

Hejmdal is built on the Macintosh2 extension QuickTime. QuickTime movies
cannot include definition of interaction. The thesis suggests that a standard
document architecture should be developed which allows interaction to be
defined in the multimedia documents, not only in the application programs.

The systems known as elastic systems were found to be a particularly inter-
esting class of multimedia systems. Elastic systems form a middle ground
between user-controlled and developer-controlled systems, the two paradigms
traditionally used in multimedia and other computer systems. The use of
elastic systems for telling elastic stories is explored. An elastic story is an
interactive story in which the reader can try to influence the course of events,
without any guarantee that he or she will succeed every time. An elastic story
gives both the author and the user some control, but gives none of them the
unconstrained power over the course of events. It is believed that elastic
systems have a great potential, since the radically new in computer-based
multimedia is rather with these than with traditional user-controlled and
author-controlled systems. Elastic stories constitute a new use of multime-
dia. Current multimedia tools do not support the construction of elastic
stories very well, which is the rationale behind exploring tools specifically for
this purpose.3 The thesis shows that Petri nets are well suited for formal
description of elastic stories. Purposes of describing an elastic story as a

2Macintosh is a registered trademark of Apple Computer Inc.
3Glorianna Davenport writes: ‘What fascinated me over the years is the complemen-

tarity which binds the generation of content and the design of tools. In fact we cannot talk
about form without discussing content and the tools for accessing that content.’ Glorianna
Davenport: Bridging Across Content and Tools. Computer Graphics, newsletter of ACM
SIGGRAPH, Volume 28, number 1, February 1994, pages 31–32.

28

Petri net may be:

1. To give a precise, formal specification of the story.

2. To implement the story in a computer system.

Some advantages of using Petri nets for elastic stories are:

1. Petri nets have formal, precise semantics.

2. Petri nets model elastic stories in a straightforward way, thus building
elastic stories in Petri nets is relatively easy. While Petri net construc-
tion may be considered programming, using Petri nets specifically for
elastic stories is considered easier than other forms of implementation.

The vision carrying the work presented here is to be able to fulfil both of
the above purposes with one computerized tool. A current obstacle to im-
plementation using Petri nets is the lack of Petri net tools with multimedia
capabilities. Work is going on to remove that obstacle, some of it building
on Hejmdal.

For the sake of the study, only one style of multimedia interface is under con-
sideration in the work on elastic stories. This multimedia interface has a big,
scrollable background picture with moveable objects on it, with additional
windows for pictures and video, and it includes sound.

Attention will be given to the question: is the Petri net formalism easy
enough to use so that multimedia authors with no background in program-
ming, Petri nets or similar formal specifications can learn to use them for
building interactive stories? If this is found not to be the case, other options
exist:

1. Petri nets may be used in an informal way in a multimedia project and
a Petri net programmer be hired to formalize and refine them into nets
that work as the formal descriptions they are intended to be.

2. A syntactic layer may be defined on top of the Petri nets that is easier
to use and specifically targeted towards describing elastic stories. In
this case, the Petri net constructs given in this thesis can be used to
give a precise semantics for the new syntactic layer.

29

Both options will relieve the author of programming and yet retain the ad-
vantages of Petri nets given above.

Finally, the thesis includes a chapter on hypermedia. Hypermedia is often
advantageously used in conjunction with multimedia. In practice, it can be
difficult to separate the two concepts at all (a theoretical separation of them
follows in the next section). One problem with large hypermedia documents
is that creation and maintenance of links is difficult and timeconsuming.
Motivated by an application to an American federal clinical practice guideline
for cancer pain management, the mentioned chapter develops a scheme for
automatic linking based on repertory grids.

To evaluate the scheme, a protocol analysis is conducted. Six users of the
guideline addressing typical cancer pain management tasks made 25 different
links. The repertory grid using a neighbourhood size of 17 captures 20 of
these links. With optimization, it captures 23 of the links within a neigh-
bourhood size of 13.

1.3 Some concepts: multimedia, interactive

multimedia and hypermedia

Computer-based multimedia is combinations of more than one medium on
a computer. Each medium may be text, graphics, photographs, animations,
videos or sound. Multimedia can be divided into stored multimedia pre-
sentations and multimedia data that are transmitted with no intermediate
storing. When the developer and the user or viewer of multimedia are tem-
porally separated, we talk about stored multimedia. The opposite could be
called live media. The focus of this thesis is on the stored multimedia and
the word ‘multimedia’ is often taken to mean stored multimedia.

Some multimedia systems, such as virtual reality systems, flight simulators
and certain computer games, generate images and other material ‘on the fly’,
while the program is running. They are still considered stored multimedia,
as long as the author and user are temporally separated.

Often people involved in multimedia development view it as an authoring
process. They may see themselves as multimedia authors rather than mul-

30

timedia developers. The two terms are used interchangeably in the thesis.
The people who are not in a project as programmers or computer specialists
are sometimes referred to as content persons. In the thesis, user means the
receiver in the communication, even though it can be argued that an author
is a kind of multimedia user too.

As already mentioned, computer-based multimedia includes one or more new
media, i.e. video, sound and animation, besides the traditional computer-
based media of text and graphics. An important characteristic of the new me-
dia is that they are time-based, which the traditional media are not. They are
sometimes referred to as dynamic, as opposed to traditional static (non-time-
based) media. Time-based data are also called temporal, and their media are
known as temporal media. Seen from the view of a multimedia programmer,
the distinction between time-based and non-time-based data is a major dis-
tinction. Time-based data are those that can only be recorded and played
back over time: video, animation and sound. Non-time-based data are sta-
tionary in time, like graphics and text. ‘Classic’ electronic data (numbers,
text and graphics) are not time-based. That is, one of the new things in
multimedia is the handling of time-based data, and techniques for doing this
are being developed. (Strictly speaking, the classic beep is time-based. It
has traditionally been conveniently handled as non-time-based data, e.g. like
a character in the character set.)

Another distinction is between analogue and digital multimedia data. Most
often, a multimedia presentation consists solely of digital data. Multimedia
authors often use analogue material, but digitize it for use with the computer.
However, analogue data have been used in multi-media presentations, too,
e.g. as a video tape or a video disc, controlled from the computer.

A good reason for using analogue data can be the storage space that digital
video and audio data occupy, or more precisely, the lower cost of analogue
storage media. As better compression schemes for digital video and audio
become commercially available, the use of digital data becomes even more
widespread, since these are more easily integrated in a computer system.

31

1.3.1 Multimedia is orthogonal to hypermedia

Hypermedia is the generalization of hypertext to other media than text.
This means that hypertext is an example of hypermedia. Ted Nelson de-
fines hypertext in turn as ‘a combination of natural language text with the
computer’s capacity for interactive branching, or dynamic display . . . of a
nonlinear text . . . which cannot be printed conveniently on a conventional
page’4. The Dexter hypertext reference model5 is a widely accepted attempt
to capture the essence of existing and future hypertext systems. Akscyn,
McCracken and Yoder6 state that most hypermedia systems can be charac-
terized by the following features:

• The material (text or other media, such as images, sound and anima-
tion) is ‘chunked’ into small units or nodes.

• Nodes are displayed one per window.

• Nodes are interconnected by links. Users navigate in a hypermedia
database by traversing links.

• Users can create structures by creating, editing and linking nodes.

(This characterization may not cover hypermedia in general; but it does cover
the concept as it is used in this thesis.) Links, or hyperlinks, connect nodes
that have a semantic connection: if one node triggers an association with
another, then a user links them and potentially all users can get from one
node to the other. (Each link may be private or shared.) It is said that the
user traverses the link from the source node to one or more destination nodes.
A link can have two or more endpoints. Each endpoint of a link may serve
as source or destination or both. The location in a hypermedia document

4From Theodor H . Nelson: Getting It Out of Our System. In G. Schechter (editor):
Information Retrieval: A Critical Review. Thompson Books 1967. Here quoted from Jeff
Conklin: Hypertext: An Introduction and Survey, IEEE Computer, vol. 20 no. 9, pages
17-41, September 1987.

5F Halasz & M Schwartz: The Dexter Hypertext Reference Model. In Communications
of ACM, vol. 37 no: 2, pages 30-39. 1994.

6Robert M Akscyn, Donald L. McCracken and Elise A. Yoder: KMS: A Distributed
Hypermedia System for Managing Knowledge in Organizations. In Communications of
the ACM, vol. 31 No. 7, July 1988.

32

where a link can start or end is known as an anchor. Each anchor may serve
as endpoint for zero or more links.

Nielsen7 and Balasubramaniar8 give brief histories of hypertext and descrip-
tions of the best known applications.

Some hypermedia documents distinguish between two kinds of users; authors
and readers. The author or authors create the document, while readers can
read node contents and (most often) create and edit their own links. In
some cases they can also add their own annotations. In other hypermedia
documents, all users can create and edit nodes on an equal footing. Mixtures
of the two approaches exist too.

Hypermedia is interactive by its nature, since user input steers the navigation.
In addition, nodes and links may be interactively edited. On the other hand,
interactive multimedia may include other kinds of interaction than editing
and link traversal.

Multimedia and hypermedia are orthogonal; ‘multimedia’ refers to the con-
tent belonging to different media; ‘hypermedia’ refers primarily to a chunking
and navigation principle. The two are often advantageously used in combi-
nation. On the one hand, most multimedia presentations until now can be
conveniently described as hypermedia. In particular, all the four primary
navigational structures used in multimedia according to Tay Vaughan9 pre-
suppose a hypermedia perspective on the multimedia.

On the other hand, the term ‘hypermedia’ presupposes the existence of other
media than text. Thinking in terms of hypermedia rather than hypertext,
the need for mixing the media arises naturally in many applications. On the
World Wide Web (WWW), maybe the best known example of hypermedia,
images are often embedded in the text. Many web pages offer downloading
of sound files, QuickTime movies or other files containing video and sound.
These cannot be played back in real time over the net, only because net

7J. Nielsen Hypertext and Hypermedia. New York: Academic Press, 1990.
8V Balasubramanian Hypermedia issues and Applications, A State-of-the-Art Review,

Independent Research Report as part of Ph.D. Program, Graduate School of Management,
Rutgers University, December 1993.

9Tay Vaughan. Multimedia: Making It Work. Second edition. Macromedia/Osbome
McGraw-Hill 1994. Pages 390-91. The four primary navigational structures are called
linear, hierarchical, non-linear (neither linear nor hierarchical) and composite (a mix of
the three).

33

capacity is insufficient.

1.4 Guide to the thesis

Chapter 2 discusses requirements for tools for developing stored interactive
multimedia programs. The following requirements are identified: Editors are
needed for each medium used in the multimedia. Editors should allow the
importing and digitizing of analogue material, as well as on-line creation and
editing of digital material. The editing tools should be separate (allowing use
of one at a time), yet integrated with each other (sharing the same material)
and with the programming environment. Conventional database technology
seems insufficient for building a well-structured media database. The need
for interpretative execution of the program during development is found to
be even greater in multimedia than in other fields. At the same time it is
advantageous also to have a compiler.

Furthermore, the following requirements are found to be little or no different
from the requirements for programmer’s tools in other fields: strong typing,
integration of code and media data, and facilities for structuring of code and
data.

Chapter 3 discusses the role of programmers in development of computer-
based multimedia. It argues that scripting or programming is necessary in
most multimedia development projects, and that the multimedia developer
who wants to exploit the computer’s potential and his or her own creativity
should learn programming.

Chapter 4 presents Hejmdal, an object-oriented platform for working with
interactive multimedia. Hejmdal supports interactive playback and editing of
multimedia. The chapter discusses the benefits of using an object-oriented
platform and the requirements for a platform for working with interactive
multimedia, and future work in the field. It argues that the object-oriented
model is simple, clear and powerful. It suggests that a platform for working
with multimedia should support various kinds of interaction with multimedia.

Chapters 5 through 9 present work on the use of Petri nets for telling a kind
of stories known as elastic stories.

34

Chapter 5 is devoted to narratology, the theory of narration. The purpose is
to establish an understanding of what a narrative (story) is, which in turn will
be used to develop a model of a narrative of sufficient quality for use in the
following chapters. In the context of story construction it is highly relevant
to look at concepts and tools developed to analyse narratives. It is assumed
that the same concepts and tools are useful in synthesis and construction
of stories, and thus can serve as a good inspiration for computerized tool
support. Chapter 5 gives a brief account of a common theory of narration:
New Criticism, with emphasis on the Extended Layer Model.

Chapter 6 explains what an elastic story is. It describes the user interface
employed and elicits from the theory of narration a set of concepts that is
considered sufficient for covering elastic stories in the described interface as
they are known today. That set of concepts constitutes the model of an
elastic story on which the following chapters are based.

Chapter 7 demonstrates how the elicited concepts are modelled in a straight-
forward and convenient way using Coloured Petri Nets.

Chapter 8 describes experiments implementing three small elastic stories in
Coloured Petri Nets, thereby using all the concepts in the model.

Chapter 9 contrasts this work with related work in interactive story telling
and in Petri nets.

Chapter 10 presents Talaria, a multimedia reference tool on cancer pain man-
agement for health care providers. The chapter develops a linking scheme
based on repertory grids. Harnessing knowledge acquisition techniques es-
tablished in the field called artificial intelligence, the repertory grid assigns
each node a location in ‘context space’. A node links to another node if they
are both close in context space. Chapter 10 also presents an evaluation of the
linking scheme. The final chapter 11 summarizes and discusses the results
and elaborates on the connections between them.

1.4.1 How to read footnotes

Some passages of the work contain many footnotes. To avoid interrupting
the reading, many readers can benefit from ignoring the footnotes. Only the
reader who seeks more depth, explanation or evidence, for instance in the

35

form of references, should read a given footnote.

When several language versions of the same work exist, the footnote typically
only gives one of them. Sometimes, other language versions can be found in
the bibliography in the back of the thesis.

36

Chapter 2

Requirements for Tools

2.1 Introduction

As discussed in the thesis introduction, the demand for advanced tools for
working with multimedia is increasing. This chapter embarks on the discus-
sion of requirements for such tools. It turns out that in some, but not all,
cases the requirements are not very different from requirements for program-
mer’s tools in development of conventional computer systems.

The chapter takes on the perspective that multimedia development (or mul-
timedia authoring or production) is a kind of computer system development.
This is only one of a number of valid perspectives on multimedia develop-
ment. One obvious different perspective would view multimedia development
as an authoring activity, parallel to book writing, moving picture production,
etc.1

Most of the observations contained in this chapter were made during the
work on Talaria, which is reported in chapter 10.

Section 2.2 describes an important characteristic of many multimedia pro-
grams, namely the use of metaphors. Section 2.3 lists the different roles in a

1Erling Maartmann-Moe writes in ‘Multimedia’ (Universitetsforlaget, Oslo 1991. (In
Norwegian)) that multimedia is developed in the intersection between broadcasting, pub-
lishing, computing and telecommunication. Each of these four areas can probably provide
perspective(s) on multimedia development.

37

multimedia development team and derives from them some requirements for
tools. Section 2.4 presents a number of further observations of requirements.
Section 2.5 presents characteristics of media data in multimedia and derived
tool requirements. Section 2.6 summarizes the observations.

2.2 Metaphors in multimedia and in the tools

Metaphors are used in multimedia, maybe more extensively than in other
computer programs. As in these, metaphors in multimedia seem to help the
user by allowing him or her to transfer experience from some familiar domain
to the new one, the multimedia. As in other domains, metaphors have their
serious limitations though. Firstly, they break down quickly; multimedia
systems do include features that are in no way related to their metaphor.
Secondly, multimedia systems built entirely on metaphors of familiar phe-
nomena can only convey experiences of those familiar phenomena. Thus to
be truly innovative, multimedia will have to go beyond the metaphors.

A common metaphor in multimedia is that if a book or magazine. In hy-
permedia, a travel metaphor is often used. An example is Talaria, where a
travel metaphor structures the navigation tools and provides the user with an
intuitive context mechanism. Each node represents a place to visit. The user
can travel alone or take guided tours. Section 10.2 pages 176–177 explains
the use of the travel metaphor in Talaria.

The tools used for building multimedia often have their own metaphors,
which are sometimes visible in the presentations (programs) produced with
those tools.2 Again, such metaphors can allow inexperienced developers to
use the tool within the limits of the metaphor.

2The best known tool metaphors may be the movie metaphor (QuickTime), the card
index metaphor (HyperCard among other programs) and the animation metaphor (Macro-
media Director).

38

2.3 Skill requirements

Multimedia development is often carried out in a cross-disciplinary co-operation,
since many different skills are needed. A development team may include:3

• an artist or different kinds of artists;

• for non-fiction (and conceivably for fiction), a subject matter expert;

• for educational multimedia, a teacher or other person with didactic
knowledge;

• a programmer and/or computer specialist;

• and an end-user representative and/or person with an understanding
of users’ background, qualifications and expectations.

2.3.1 Different(-ly tailored) environments for different
participants and tasks

As such diverse skills are involved in a multimedia development project,
hardly any one development platform will serve all participants unless it is
tailored to each participant’s needs. Furthermore, often during development
the developer focuses on a narrower part, e.g. only one medium, and does
not want to deal with functionality not related to the part in focus. The
developer may for instance spend a day or more doing video capture, in
which case a good video capture tool is essential, and really nothing else.
He or she may want to experiment with video size and resolution (number
of pixels in each dimension), frame rate, different compression schemes and
different tools for doing the job.

Therefore, rather than trying to integrate all relevant functionality into one
multimedia development program, it is advantageous to provide the develop-
ers with a variety of relatively independent programs for the different tasks
involved in the development: independent in the sense that the developer

3See for example sections 2 and 3 in Rob Philips: Producing Interactive Multimedia
Computer-Based Learning Projects. Computer Graphics, newsletter of ACM SIGGRAPH,
Volume 28, number 1, February 1994, pages 20-24.

39

can use, for instance, the video digitizing program independently without
bothering about the existence of the video editing program, let alone all the
other tools needed in a project.

Integration between the tools is important: first, it is crucial that the tools
can operate on the same media formats (or at least that conversions exist);
second, a similar interface for the tools can ease the use of the different tools
at different times during development. Note that integration in this sense
does not conflict with the independence of tools as described in the previous
paragraph.

2.4 Requirements for tools

Experience with different multimedia development tools4 reveals that the
following properties of such tools are desirable:

1. Immediate interpretation

It has been found very useful to have the opportunity at any time
during development to ‘press a button’ and see the program run. In
some phases this is used very often, so a need to compile and link the
program before execution would be a hindrance to development. Is this
any different from other program development? Yes; the need is greater
in multimedia development than in other program development. In
multimedia development, often the interface look is developed in a more
experimental fashion. This may include experimental development of
the content. In traditional program development, content is part of
the data, not the program itself, and is therefore not provided by the
developers. A screen layout can be evaluated to some extent without
running the program. The distinction between program and content is
seldom used in stored multimedia; here the development team provides
both the media data and the code. In case of an animated interface,
you have to see it run to evaluate it.

2. Speed and efficiency

Development efficiency dictates the need for interpretation as described

4Mainly Macromedia Director, HyperCard and SuperCard.

40

above. At the same time, some multimedia systems are CPU intensive,
e.g. in digital video playback or in having multiple elements continu-
ously responding to mouse movements. Such systems will take advan-
tage of a good compiler allowing them to run more smoothly. Ideally,
both interpretation and compilation should be available. In cases where
the execution speed is essential to the experience, the developer will of
course have to compile the program to get the right impression of how
it will run.

3. Strong typing

Cases are made for and against strong typing in experimental devel-
opment. Multimedia development, experimental as it often is, is no
different. In the work on Talaria, it has been found that with typeless,
undeclared variables it is very easy to make mistakes that a type check-
ing facility could very easily have found. Unfortunately, most scripting
languages are typeless.

4. Flexibility

While a tool metaphor is helpful for some time, developers very of-
ten find themselves wanting to do things that do not fit within the
metaphor. One example is the developer building a metaphor in the
multimedia system that is different from the tool’s metaphor. Tools are
thus needed that allow programmers to go beyond the tool’s primary
intention. Common ways to do this are (1) adding scripts (2) access-
ing code written in a different programming language, e.g., C. While
a script language epically offers good support for the same metaphor
as the tool as a whole, it may at the same time be general enough to
allow the determined programmer to obtain what he or she wants. For
a script language to give the full flexibility it would have to be a full
programming language. At the same time, all the media used in the
multimedia program must be accessible from the script language. The
next chapter discusses programming in multimedia development and
the need for it.

5. Integration of code and media data

In the work on Talaria, it was found very convenient to have elements
of the presentation and the code guiding their behaviour (e.g., their re-
action to mouse clicks) together. For instance, HyperCard allows code

41

(scripts) to be attached to PICTs, cards, buttons, texts and Quick-
Time movies. An example of a poor design is Macromedia Director.
The script language Lingo is object based, that is, objects integrate
code and data. The important limitation is that the media data with
which Director works (primarily cast members) have to be stored sepa-
rately from any objects and therefore are not integrated with the code.
While at least in the object-oriented world there is nothing new in in-
tegrating code and data, having the data be all kinds of media is new.
The next section returns to the treatment of media data.

6. Structuring facilities

The basic need for structure in code and data is no different in multi-
media programs and other programs. Some multimedia programs con-
tain hundreds or thousands of images, sounds or video clips. However,
tools for developing multimedia presentations often lack structuring fa-
cilities. While relational databases solve many data structuring prob-
lems in traditional programming, they are not suited for multimedia
data. A field in a relation (table) cannot contain a picture or a movie
segment. Techniques for searching multimedia databases are only be-
ginning to be developed. Also multimedia data often needs specialized
storage formats optimized for fast playback, which traditional relational
database management systems do not offer. Object-oriented databases
look more promising than relational databases.

2.5 Media data in multimedia

The media data make up a substantial majority of the data in multimedia
programs. The amount of media data in a stored multimedia program can
be large, not only measured in megabytes, but also perceived as large by
the user.5 Usually, only a few data are not media (e.g., counters and screen
coordinates).

As mentioned in the introduction, programming tools for multimedia must
be able to handle time-based data. Apple’s QuickTime is a good tool of today

5“A picture is worth a thousand words” (Chinese saying).

42

for handling time-based data from a programming language. QuickTime is
discussed more closely in chapter 4.

Typically in stored multimedia presentations, all the media data are prepared
in their final form beforehand. While often the order of the presentation and
sometimes also the positions or motions of certain elements are decided inter-
actively at runtime, the basic content seldom is. In traditional programming
terms, the data consist largely of constants, variables being used much less.

Therefore, the multimedia development team will need tools to create and
edit these ‘constants’; e.g. text editors, draw and paint programs, a scanner
and/or a digital camera, video digitizers and video editing programs, sound
recording and editing programs and animation programs. Furthermore these
tools will have to be integrated with the programming tools (if any), so that
the media can be edited after they have been integrated with the code as
described above.6

The above is not to say that the media in a multimedia program cannot be
variable. The use of more variables will probably contribute to innovations in
multimedia in the future. As mentioned in the introduction, virtual reality
and flight simulators are examples in which the media content is largely
generated at runtime.7

2.6 Summary of tool requirements

In this chapter the following requirements for tools for multimedia developers
have been identified: interpretation and compilation; strong typing; integra-
tion of code and media; facilities for structuring code as well as media, and
a media database; flexibility, that is, ways to go beyond the tools’ primary
intention and metaphor, e.g. using scripting; and tools for digitizing, creat-
ing and editing material in each medium including time-based media. The
tools should be separate in the sense that one can work with one of them
while ignoring the others, still integrated in the sense that they can work on

6One way to accomplish this in practice has been to have objects in the programming
language contain not the actual media data, but only a filename or other pointer to the
media. In this way, the media can still be edited independently.

7Also in non-stored multimedial e.g. computer-based video conferencing, the content
is variable.

43

the same materials, and in the sense that they have a similar user interface
where appropriate. Many, but not all of these requirements correspond to
requirements for programming tools for other fields.

While the above requirements for multimedia tools are very general, the
remainder of the thesis deals primarily with tools for specific purposes or
developers: Chapter 4 presents an object-oriented platform for multimedia
programmers. Chapters 5–9 discuss tools for building elastic stories in mul-
timedia. Finally in chapter 10, tools for hypermedia linking are discussed.

44

Chapter 3

The Need for Programming

This chapter discusses the role of programming in the development of stored
interactive multimedia, and the role of the programmer in the multimedia
development team.

Real-world multimedia developers often seek to avoid scripting or program-
ming, or at least limit the amount of it in the development process.1 For good
reasons; working with a tool with a graphical WYSIWYG and/or metaphor-
ical interface is often nicer and more productive. Furthermore, many people
with creative ideas or other valuable contributions to multimedia develop-
ment are not capable of computer programming. At the same time, some
of them find it is not satisfactory for them to have someone else—a com-
puter programmer—realize their ideas.2 That also makes experimentation
cumbersome. Is it a necessity that multimedia tools always require some
scripting or programming, at least as soon as the developer wants to go just
a little bit beyond the core of the tools intention and metaphor? If so, how
much scripting is necessary, or how far can we limit the requirement that the

1Obviously in this context ‘programming’ is defied as a process involving explicit algo-
rithms and/or data structures and perceived as difficult by the average multimedia author.

2This has even been compared to the imaginary situation that a painter had someone
else put the brush on the canvas for him or her. That would take away much of the
painter’s power over his or her work. At the same time, many artists do have people
realize their works for them. For instance, a playwright only writes his or her theatre
pieces; others instruct and play them. It is said that painter Rembrandt Harmenszoon
van Rijn (1606- 1669) and novelist Honoré de Balzac (1799-1850) also had people work on
their works for them.

45

author has to do scripting or programming?

An answer to these questions is found with Paul G. Brown3. Inspired by
the semiology of the American philosopher Charles Saunders Pierce, Paul
Brown makes the distinction between iconic and symbolic interfaces.4 The
modern graphical interfaces are highly (but not exclusively) iconic, consisting
of icons. Icons are simplified representations of real things, with which they
still have some similarity. Programming or scripting languages, in contrast,
are symbolic interfaces, characterized by the relation between the symbol
and its meaning being established by convention. It is in no way obvious
if you do not know it. Symbolic programming languages (still contrary to
iconic languages) press the user to become intimate with the inner workings
of the computer and thereby get a better understanding of its potential. This
understanding again can support creativity.

It is assumed that the reason we use symbolic languages at all is that they
allow us to do things we cannot do in purely iconic languages. (This thesis,
for example, is written in symbolic language. It could hardly have been
written in purely iconic language.) If this is to be believed, we can conclude
that a script or programming language will always give us power that one
cannot have from an iconic interface.5

This does not give the final answer to the question of how far we can go
without scripting, nor does the answer given include many nuances. Striv-
ing for powerful metaphorical tools is still worthwhile (like SuperCard and
Director). One way to obtain more power might be to provide a number of
different metaphors for the developer to choose from.

The above does however suggest that the multimedia developer who wants
to exploit the medium’s potential should learn programming. This is the

3Paul Brown: The Ethics and Aesthetics of the Image Interface. Presented at ASIS
Mid Year Meeting i993. Computer Graphics, newsletter of ACM SIGGRAPH, Volume 28,
number 1, February 1994, pages 28-30.

4Paul Brown includes a third kind of interface, the indexical interface, which is the rich
kind of interface used in virtual reality.

5Elmer Sandvad writes: “It is a well-known phrase that ‘a picture can tell more than
a thousand words’, but there exist also situations where a few words can tell more than
a thousand pictures.” Elmer Sandvad attributes the saying to Kristen Nygaard (personal
communication). The quotation is from Elmer Sandvad: Object-Oriented Development
— Integrating Analysis, Design and Implementation. PB–302. Computer Science Depart-
ment, Aarhus University 1990.

46

only way to gain full control over the work. As the ultimate consequence,
programming tools for non-professional programmers should be developed.

The alternative for the developer who does not want to learn programming
will be to let a programmer do some work on the realization of his or her
work.6

In practice it is very easy for multimedia developers to come in a situation
where they want to go beyond the core capabilities of their tools. When going
outside the core intention of the tool, scripting is often the way to realize one’s
ideas. Sometimes other methods are available that include using the tool in
an unnatural way that it was not meant for One may ask, if more powerful
non-programmer’s tools are developed, will it relieve the situation? This
is not likely. Rather, as in other areas, users’ expectations and developers’
ambitions will grow. The need for fully flexible tools will always dictate the
need to go beyond non-programmer’s tools.

For example, in the Talaria project, a travel metaphor was planned. Even
though this is probably the most often used metaphor in hypermedia, none
of the tools considered for the project offered direct support for the parts of
this metaphor, such as a map; it would have to be programmed ‘by hand’.
Had a tool with automatic map generation been found, the wish for a fisheye
view of the map (see section 10.2) might have rendered that tool useless.
This is not necessarily a criticism of the available tools. The generalization
of the observation is that each project has its own style and requirements, so
it is likely to go beyond what is offered by any specialized tool.

3.1 Conclusion

This chapter has argued that programming has its place in most and in the
most interesting multimedia development projects. The programming can
be carried out by creative multimedia developers having learned to program,
or by programmers in the traditional sense of the word. The choice would
depend on the degree of direct a control the creative multimedia author
wants over his or her work, and on his or her inclination towards learning to
program, among other factors.

6See footnote 2 on page 45.

47

On the background of this conclusion, the next chapter discusses program-
mers ’ tools for multimedia. That chapter presents Hejmdal, a platform for
the creation, editing and playback of time-based data. It also discusses
the use of Hejmdal as a basis for new tools for programmers and for non-
programmers. Furthermore it discusses the introduction of some new kinds
of interaction that could be developed using Hejmdal.

48

Chapter 4

Hejmdal: Object-oriented
Handling of Interactive Media

This chapter presents Hejmdal an object-oriented model for manipulation of
interactive, computer-based multimedia developed in the PhD study. Hejm-
dal supports interactive playback and editing of multimedia. The multimedia
documents, called movies, can consist of graphics, photographs, live video
and animations, and sounds. The interactive playback facilities are start
and stop playing, random positioning within a movie, and stepping a sin-
gle frame forward and backward. Movie segments can be interactively cut,
copied and pasted. Movies are stored in digital files, thus avoiding the need
for additional hardware during playback and editing.

Hejmdal is built on top of the Macintosh extension QuickTime from Apple
Computer. The movie document architecture is used by QuickTime, and is
a de-facto standard for documents that include time-based data. However,
movies cannot include interaction. The chapter suggests that a standard
document architecture should be developed that allows interaction to be
defined in the multimedia documents, not only in the application programs.

The motivation for building Hejmdal is the need for advanced tools for inter-
active multimedia mentioned in the thesis introduction. As mentioned there,
programming tools for multimedia must be able to handle time-based data.
QuickTime is a good present-day tool for handling time-based data from a
programming language. However, though objects can be clearly identified in

49

the movie metaphor1 there is no object orientation in the application pro-
grammer’s interface of QuickTime, and insufficient integration of code and
data. Hejmdal provides object-orientation. This chapter discusses the bene-
fits of using an object-oriented platform. With respect to integration of code
and data, there would be advantages of being able to store with the Quick-
Time movie code guiding its behaviour, e.g. other playback orders than the
default linear playback, or specification of interaction: response to mouse
clicks, etc.

The thesis introduction mentioned that ordinary computer programs include
more and more elements of multimedia, while multimedia presentations that
have their closest relatives in the media worlds are also appearing. It is
intended that it should be possible to use Hejmdal at both of these extremes:
for adding elements of multimedia to existing computer programs and for
assembling entire multimedia presentations. In addition, new multimedia
tools for both programmers and non-programmers can be built on Hejmdal.

This chapter is largely based on a previous workshop paper2.

The chapter first includes a section on the background and motivation for
Hejmdal. This section briefly describes QuickTime, upon which Hejmdal is
built, and MacEnv, of which Hejmdal is an extension. The section discusses
the need for tools for working with interactive multimedia.

The following section presents Hejmdal, the object-oriented platform for
working with interactive multimedia. It explains in detail how the movies
can be played, edited and saved in files using Hejmdal and goes through the
various classes in Hejmdal.

Then a section discusses the merits of Hejmdal. This discussion unveils
some benefits of using an object-oriented model: the object-oriented model
is simpler and clearer than QuickTime itself, and still more powerful with
respect to interaction.

The last section of the chapter describes further requirements for Hejmdal
and some future work in the field. Hejmdal may include better support for

1Most evidently, a movie object with part objects poster, preview and track.
2Ole Villumsen: ‘Hejmdal — an object-oriented platform for working with interactive

multimedia. In Third Eurographics Workshop on Object-Oriented Graphics Preprints,
Centre universitaire d’informatique, Université de Genève, October 1992, pages 467-
481.[110]

50

interaction in multimedia. Another idea is to have it support the import of
data from external devices and the compression of image and sound data.

4.1 Background

This section describes QuickTime, upon which Hejmdal is built, and MacEnv,
of which Hejmdal is an extension. Readers who know QuickTime can skip
subsection 4.1.1. Readers who know MacEnv can skip subsection 4.1.2.

4.1.1 QuickTime

This subsection briefly presents QuickTime. QuickTime is a software product
from Apple Computer Inc. for the Macintosh and Windows computers (also
licenced to Silicon Graphics Inc. for the Indy).

The central part of QuickTime is the movie, an architecture for multimedia
documents, and a toolbox for manipulation of movies, called the movie tool-
box. Movies contain time-based data, such as video, sound and animation.
(A movie can contain static graphics too; see subsection 4.2.6 Tracks and me-
dia, pages 62–63.) A movie is conceptually linear in time; it cannot contain
branches, loops or the like. Around the movie toolbox QuickTime includes
support for adding components. Components can provide functionality of dif-
ferent kinds, for instance image compression, or grabbing or digitizing data
from external sources.

The data in a movie can be multimedia or other types of time-based data.
Movies can be exchanged between application programs, even over the Mac-
intosh clipboard without problems. The QuickTime movie is virtually the
only architecture used for cross-platform distribution of digital video with
and without sound. QuickTime movie players are available for Macintosh,
Windows, Amiga and various Unix platforms. QuickTime movies are played
back without the use of additional hardware.

QuickTime is used to include elements of video, animation and sound in
more and more application programs. Popular Macintosh programs like Hy-
perCard, SuperCard, Macromedia Director and the drawing program Canvas

51

support QuickTime in various ways. QuickTime is distributed with the Mac-
intosh system software and with the application programs supporting it, so
very many Macintosh users have access to it.

A natural consequence of this development is a demand for tools for making
movies and integrating them in application programs. QuickTime can itself
be regarded as such a tool. Hejmdal is an object-oriented tool that can be
used for editing movies and integrating them in application programs. Since
the movie is a de facto standard architecture, a large amount of multimedia
material is already available for manipulation through Hejmdal, and more is
expected to come.

4.1.2 MacEnv

MacEnv is an existing object-oriented model built on the Macintosh tool-
box. It is a family of class libraries for writing application programs for the
Macintosh. MacEnv supports the building of an advanced graphical user
interface according to Apple’s user interface guidelines. Among other things
it includes support for interactive graphics.

One of the strengths of MacEnv is the ease with which the event handling
is conducted. MacEnv takes care of all the details of the Macintosh event
dispatching and handling. The MacEnv libraries essentially convert all Mac-
intosh event occurrences into invocations of special virtual procedures within
the appropriate user interface object (e.g. the one below the mouse pointer).
These virtual procedures are often called event patterns or simply events.
The application programmer only has to specialize3 these virtual procedures
(events) to specify the actions to be taken in response to user interaction.

The class hierarchy in the figure4 shows the most important MacEnv classes
and their subclass and superclass relations.

3‘further bind’ in the BETA terminology.
4The figure is redrawn from Mjølner BETA System. Macintosh Libraries. Mjølner

Informatics Report[83]. MIA 90-10(0.6). March 1992.

52

Figure 4.1: The most important MacEnv classes.

4.2 Hejmdal

This section presents Hejmdal5 as seen from the programmer using it.

Hejmdal is a class library that supports the playback, editing and creation
of multimedia consisting of videos, still pictures, sounds and animations.
Hejmdal, as well as MacEnv, is developed using the object-oriented language
BETA6. The central class in Hejmdal is movie.

In the following, Hejmdal is first presented by means of an example of how
to play back a QuickTime movie. The major classes of Hejmdal are then

5There is a tradition for assigning names from Nordic mythology to the tools and
libraries used with the BETA system. Hejmdal (also spelled Heimdal) is the whitest
of Gods, on guard on Bifrost, the rainbow. At Ragnarok—the twilight of the Gods—
he shall blow his horn, the Gjallarhorn, to call the Gods. Since Hejmdal combines the
colours of the rainbow with the sound of the horn, Lars Peter Abildskov and Paul Erik
Dahl gave his name to the class library that combines the colour video and graphics
with sound. References: H. Ellekilde (after A. Olrik): Heimdal. Entry in Salmonsens
konversationsleksikon. Anden udgave, Bind XI: Hasselmus-Hven (2nd edition, volume
XI). A/S J.H. Schultz Forlagsbog-handel 1921. Pages 149 − 150. (In Danish.)[40] Lars
Peter Abildskov & Paul Erik Dahl: Quick-Time. Unpublished project report, Department
of Computer Science, Aarhus University, December 15,199l. (In Danish.)[1]

6The reference on BETA is Ole Lehrmann Madsen, Birger Møller-Pedersen & Kristen
Nygaard: Object-Oriented Programming in the BETA Programming Language. Addison-
Wesley Publishing Company 1993.[77]

53

Figure 4.2: Hejmdal is an extension of MacEnv built on top of QuickTime.

presented in turn:

• Movie

• MovieFile

• MovieField

• MovieEditor

• Track, with subclasses soundTrack and videoTrack

• Media

Finally some further issues are presented:

• Poster and preview objects

• Movies on the clipboard

• Movies and resources

4.2.1 Playing a movie

Every application programmer using Hejmdal will probably want to play
back a movie. The movie will most often be retrieved from a file. To play a
movie from a file, instances of three Hejmdal classes are needed:

54

• movie: models a QuickTime movie.

• movieField: a field in a window in which a movie can be played7.

• movieFile: a file containing one or more movies.

The steps involved in retrieving and playing a movie are illustrated by the
following code example. In the example, one object is declared, an instance
of a specialization of the class movieField8. When the method open of the
object is called (as in the last line of the example), the field is first initialized
by the open method that applies to all movieFields, which then calls the
code that is special for this movieField’s open method (QTInit and the long
if statement).9 This code retrieves the movie and makes it ready for playing.

MacEnv
(# MyWindow: @window

(# type::< windowTypes.plain; (∗ a plain window . . . ∗)
hasClose::< trueObject; (∗ . . . with a close box ∗)
(∗ declare theField an instance of a specialization of)
∗ movieField (@ denotes an instance): ∗)

theField: @movieField
(# theMovie: @movie;

(∗ extend the definition of the open method thus: ∗)
open::<

(# theFile: @movieFile;
w,h,dummy1: @integer;
dummy2: @text;
boo,dummy3: @boolean;

do QTInit;
(if movieFileType -> theFile.getFile then

(∗ if the user selected a file. the -> operator is
∗ used for parameter passing and for assignment. ∗)

7More precisely stated, the video part of the movie is played in the field in the window,
and the audio part through the computer’s speaker.

8In BETA specialisation and instantiation can be done in one declaration. This is
useful when it is known in advance that only one instance of the specialisation will be
needed, which is often the case with interface objects.

9In BETA the method in the superclass (movieField) is in control of when to ‘call’ the
code of the specialisation in the subclass (the anonymous subclass that theField belongs
to). The INNER imperative in BETA is used for the ‘call’. In this respect BETA is
unlike C++ and Object Pascal, in which the method in the subclass (optionally) calls the
method in the superclass.

55

(∗ get the first movie from the file: ∗)
theFile.openRead
theFile.getFirstMovie -> (theMovie, dummy1, dummy2,

dummy3);
theFile.close:
theFile.name -> myWindow.title;
theMovie.getDisplaySize -> (w,h);
(∗ adjust the movie field’s size so that the
∗ movie + controller fit: ∗)

(w, h+16) -> size;
(∗ let the window be a bit bigger: ∗)
(w+40, h+56) -> myWindow.size;
(∗ position the movieFielf in the window: ∗)
(20,20) -> position;
(∗ enter a reference to the movie into the movie
∗ field: ∗)
theMovie[] -> contents;

if);
#) ; (∗ end extension of open ∗)
close::< (# do QTShutDown; #);

#) ; (∗ end theField ∗)
open::< (∗ extend the open method of the window: ∗)

(# do (100,150) -> position; theField.open #);
#); (∗ end myWindow ∗)

do myWindow.open;
#)

After the call theField.open in the fourth line from the bottom has been
completed, the movie can be played. The user can start playing the movie
by double-clicking in the movie field. Normally this will be the right way to
do it. Apple’s user interface guidelines state that the movie should not start
playing by itself. This could confuse the user, and she or he might lose the
first few seconds of the movie. A screen snapshot from a run of the above
program is shown in figure 4.4, page 61.

A movie field’s default handling of a double-click is to start playing the
movie. Similarly, a single click stops playing. This default behaviour con-
forms with Apple’s user interface guidelines; but it can still be overridden in
specializations of movieField if desired.

On this point, Hejmdal is reusing the general scheme for interface objects of
MacEnv; many of these have a default event handling, but it can always be
overridden in specializations.

56

Should the programmer wish to start playing the movie, this can be done by
calling the movieField method start.

The getFirstMovie operation used in the example is the most commonly
used operation for retrieving movies, because a file often contains only one
movie. Two other operations, getMovieById and getMovieByName, retrieve
a specified movie.

4.2.2 Movies in files

Movies are stored in files.10 As mentioned in the example, the class movieFile
models such files. The programmer using Hejmdal needs not be concerned
whether the files are stored on a hard disk, diskette, CD-ROM or elsewhere,
since QuickTime and the Macintosh operating system take care of this.

The following movieFile methods are defined for retrieving, saving and delet-
ing movies in files. Note that addMovie assigns a unique ID to the saved
movie and returns it. (This is called a resource ID or resID in the Macintosh
terminology.) In the method declarations, the enter and exit parts of each
method describe the in and out parameters respectively. The types of the
parameters are declared separately in the declaration part in the beginning
of each method.

getFirstMovie:
(∗ retrieves a movie from the movie file. Returns the movie,

∗ its resource id, its resource name, and a boolean indicating
∗ whether references from the movie to the media were changed
∗ during the retrieval.

∗)
(# newMovie: @movie;

theId: @integer;
newMovieName: @text;
dataRefWasChanged: @boolean;

do . . .
exit (newMovie, theId, newMovieName, dataRefWasChanged)
#);

getMovieById: (∗ retrieves a movie from the movie file. ∗)
(# theId: @integer;

10Note fot Machintosh judges: Movies are stored as resources of type ‘MooV’ in the
resource fork of a file

57

newMovie: @movie;
newMovieName: @text;
dataRefWasChanged: @boolean;

enter theId
do . . .
exit (newMovie, newMovieName, dataRefWasChanged)
#);

getMovieByName: (∗ retrieves a movie from the movie file. ∗)
(# theId: @integer;

theName: @movie;
newMovie: @text;
dataRefWasChanged: @boolean;

enter theName
do . . .
exit (newMovie, theId, dataRefWasChanged)
#);

updateMovie:
(∗ Overwrites an existing movie in this(movieFile).
(∗ Used for saving changes.
∗)
(# theMovie: @movie;

theId: @integer;
enter (theMovie, theId)
do . . .
#);

addMovie: (∗ adds a new movie to the movie file ∗)
(# theMovie: @movie;

theName: @text;
theId: @integer;

enter (theMovie, theName)
do . . .
exit theId (∗ the unique id given to the movie. ∗)
#);

removeMovie: (∗ deletes a movie resource from this(movieFile). ∗)
(# theId: @integer;
enter theId
do . . . ;
#)

There is a movieFile method getFile that presents the user with a dialogue
box in which the user can select a file to be opened. The dialogue box is

58

shown in figure 4.2.2. A similar dialogue for specifying the name of a file to
be created and its location in the directory hierarchy can be created using
the method putFile. The latter dialogue does not contain a file preview.

Figure 4.3: File dialogue with preview.

MovieFile also includes the methods openRead,openWrite,openReadWrite
and close for opening and closing the file. The method create creates a
new file, and delete deletes the file from the file system.

4.2.3 Movie fields

As shown in the example, a movie can be played back in a movieField. The
class movieField is a subclass (specialization) of the class windowItem, which
is defined in MacEnv. As the name suggests, every item in a window is a
windowItem. WindowItem has many other subclasses, including textField,
icon and different kinds of buttons, as shown in Figure 4.1 on page 52.
MovieField, as well as windowItem, is declared locally to the window class, so
an instance of movieField object can only be declared where it is meaningful:
as belonging in a window.

The following are the most important attributes and methods defined for
movieField:

• open: initializes the movieField.

59

• close: closes the movieField.

• content: sets and gets the movie in the movieField.

• start: starts playing the movie in the movieField.

• stop: stops playing.

• done: returns true if the movie is finished playing.

• rate: sets and gets the playback rate.

• goToBeginning: positions the movie at the start.

• goToEnd: positions the movie at the end.

• time: the position within the movie. Entering a value into time goes
to the specified position.

• playPreview: plays the movie’s preview (described below).

• previewMode: sets, clears and gets preview mode. In preview mode,
start will start playing the preview, not the movie itself.

• showPoster: displays the movie’s poster (described below).

• size: sets and gets the size of the movieField.

• position: sets and gets the position of the movieField within the
window.

• show: makes the movieField visible.

• hide: makes the movieField invisible.

• dragOutline: lets the user drag the movieField to another position.

• dragResize: lets the user resize the movieField by dragging a corner.

• eventHandler: defines how events (mouse clicks, etc.) are handled.
Can be specialized if the default event handling (as described above)
is not appropriate.

60

Figure 4.4: A window containing a
movie window. In cases where it is
field with a movie controller.

Of the mentioned attributes and
methods, the first two (open and
close) and the last seven (size
through eventHandler) are iherited
from windowItem, though most of
them are specialized in movieField.

The programmer can specify whether
the movie field is to have a movie con-
troller. A movie field with a movie
controller is shown in Figure 4.4. (In
the figure, the movie field does not fill
out the window. In cases where it is
the only item in the window, it often
will.) The controls on the controller
allow the user to turn the sound up
and down, start and stop playing, po-
sition randomly in the movie using the

slider, and step a single frame backward and forward.

4.2.4 Movie editors

The movieEditor classis a specialization of movieField. Besides playing
amovie, a movieEditor allows the user to do simple movie editing, namely
cutting, copying and pasting of movie segments. It also has an undo capa-
bility. To be more specific, when the user selects (clicks in) a movie editor, it
takes over the standard Macintosh Edit menu, so the undo, cut, copy, paste
and clear operations in the Edit menu directly affect the current selection of
the movie in the movie editor. The selection is made by holding down the
shift key while dragging the slider of the movie controller over the segment
of the movie to be selected.

The cut or copied movie segments are put on the Macintosh clipboard (also
called the scrap), so they can be transferred to and from other applications,
including applications that do not use Hejmdal (as long as they use Quick-
Time).

A movie editor can be locked. If it is locked, no changes can be made to the

61

movie in the editor, but it is still possible to copy a part of it and paste it in
somewhere else.

4.2.5 Time-based call-backs

A number of local classes11 in the movie class model different kinds of time-
based call-backs. These classes are subclasses of a common call-back class.
A call-back can be set up to be called when the movie reaches a specified
time during playback, when the movie time is changed (‘jumps’), or movie
rate is changed. The way to set up a call-back is to specialize and instantiate
the appropriate class and initialize the instance. At the appropriate time,
according to the specialization done, Hejmdal calls the call-back.12

4.2.6 Tracks and media

A movie consists of a number of tracks. Each track is either a sound track
or a video track. In Hejmdal these are modelled by the classes soundTrack

and videoTrack, which have a common abstract superclass track. Track,
soundTrack and videoTrack are local to movie. A track has not necessarily
the same duration as the movie. Each track has its own (possibly zero) offset
from the beginning of the movie and its own duration, as shown in the above
figure.

If there is more than one video track, they are layered according to their
priority attribute.

The tracks themselves do not contain the actual sound and video data.
Rather, they contain pointers to media, which are files or resources con-
taining the data. The list of pointers in a track is known as an edit list. The
relation between movie, track and media is depicted in the figure on page 63.

The Hejmdal class media models the media. Hejmdal supports the creation

11To be more precise these are local patterns, where a pattern can be a class or a
procedure.

12Here Hejmdal take advantage of the fact that the call-back can itself serve as a pro-
cedure. In certain other languages, a method in the call-back class would have to be
used.

62

Figure 4.5: Movie, track and media.

of new tracks and media, and the deletion of existing ones. Still pictures can
be included in a movie, since an entire video track may point to a single still
picture.

There are some advantages of separating the actual data from the movie. In
this way several movies can share the same audio and video data without
duplicating them. Moreover, the movie itself stays relatively small. This
makes it possible to transfer it over the Macintosh clipboard as described in
subsection 4.2.8.

4.2.7 Preview and poster

A movie has a preview and a poster.

A preview is a short sequence from the movie that should give a hint to the
content of the movie. In Hejmdal, the preview is a separate object inside
the movie with its own methods, but accessible from outside the movie. The
preview object has the attribute time, which sets and gets the preview’s

63

offset from the beginning of the movie and its duration.

Figure 4.6: Movie with preview and poster.

A poster is a single frame from the movie describing the movie. The poster

object of a movie has the attributes time and box and the method getPict.Time

sets and gets the poster time which selects the frame from the movie to be
used for the poster; box sets and gets the poster’s bounding rectangle; and
get getPict returns a picture of the poster (in PICT format).

It can be specified that a track is used in the movie’s preview or poster, but
not in the movie itself, or vice versa. In this way, a preview and poster can
be made that are not exact copies of a sequence and a frame from the movie.

4.2.8 Movies on the clipboard

MacEnv contains a model of the Macintosh clipboard, a clipboard object
with operations for putting and getting texts and pictures and for deter-
mining whether the clipboard currently contains a text object or a pic-
ture, respectively. Hejmdal enhances the clipboard by adding the attribute
movieContents that can be used for putting a movie on the clipboard and
getting a movie from it. (aMovie [] -> clipboard.movieContents trans-
fers both the movie and a picture in PICT format to the clipboard, the pic-
ture containing the current frame of the movie.) Hejmdal also provides the
method hasMovie for determining whether there is a movie on the clipboard.
These operations are also used by the above mentioned movieEditor.

64

4.2.9 Movies and resources

Movies are stored in what is known as resources in files. Without going
into a discussion on Macintosh resources and their many uses, it should
be mentioned that MacEnv includes a resource class to deal with these.
Hejmdal adds a new resource operation, getMovie, which returns the movie
in the resource, provided that it is a movie resource.

4.3 Discussion

This section discusses some aspects of the design of Hejmdal and argues that
the object-oriented model is simpler and clearer than the procedural model
of QuickTime. It also briefly describes the experiences with using Hejmdal
for different purposes.

Hejmdal is easier to use than QuickTime, especially for interaction. For
example, the programmer using QuickTime for displaying a movie has two
choices. He or she can specify in each program the response to a double-click
on a movie’s display, even if the response is always the same: to start playing
the movie. The alternative choice is using a movie controller, which takes
care of all events (mouse-clicks, etc.), but requires changing the event loop
of the program. In the case of adding elements of multimedia to an existing
program, this may be disadvantageous. In Hejmdal the result of double-
clicking on a movie’s display is specified only once, and every programmer can
use it without thinking about it. At the same time this supports user interface
consistency across QuickTime applications. If not otherwise specified, the
same user action produces the same result each time: the result specified in
Apple’s user interface guidelines. This holds true for movie fields with and
without the movie controller, and for movie editors. This is so mainly because
in the object-oriented model it is natural and easy to specify within a class
of interface objects the responses to different user actions. In a procedural
model, it is more complicated.

Hejmdal (but not QuickTime) provides a clear distinction between a field in
a window and the contents of that field. MovieField is the field, and a movie

can be displayed and edited in it. In this respect too, Hejmdal is consistent
with MacEnv; in MacEnv a text can be displayed and edited in a textField.

65

Similarly a picture (in PICT format) can be shown in a pictureField.

Hejmdal uses QuickTime’s IDS and names for movies in a file, thereby avoid-
ing the need for sequential reading and writing of movies in a file. This also
has the advantage of making a clear distinction between the operation of sav-
ing a new movie (addMovie operation) and that of overwriting an existing
one (updateMovie operation).

Clarity is enhanced by using local poster and preview objects in a movie,
which are accessible from outside the movie through their specified interface.
At the same time, this interface protects the internals of the poster and
preview objects from improper access.

It is concluded from the above that the object-oriented model of Hejmdal is
simple and clear compared to the procedural model of QuickTime, and yet
more powerful. The power and simplicity of Hejmdal can also be illustrated
bv the code example given earlier in the chapter.

4.3.1 Use of Hejmdal

Hejmdal has been used to include movies as one of the media in the Macintosh
version of Devise Hypermedia system (DHM) beside text and graphic.13

This is one example of using Hejmdal to add elements of multimedia to an
existing application. The original work was done by Kaj Grønbæk and the
author. Later, while the author was in USA, three students built a larger
extension to implement time-based anchors in movie nodes in DHM. (A time-
based anchor in a movie is defined by a start time and a duration.) Except
for an initial introduction to Hejmdal, they used it without any assistance
beside the documentation. They reported that they had no problems using
Hejmdal for the task.

In a multimedia course in the Institute of Information and Media Science
at Aarhus University, the author converted a multimedia presentation from
SuperCard to BETA using Hejmdal. The report written for the course con-
cluded that Hejmdal was well suited for assembling such presentations. The

13On Devise Hypermedia, see for instance Kaj Grønbæk, Jens A. Hem, Ole L. Madsen
& Lennert Sloth[48]: Designing Dexter-based Cooperative Hypermedia Systems. In Hy-
pertext ‘93 Proceedings. Fifth ACM Conference on Hypertext Proceedings. ACM 1993.
Pages 25–38.

66

BETA implementation gave efficiency improvements which made the presen-
tation look nicer. Using the persistent store in the Mjølner BETA system a
database was built that was structured better than the database in the Su-
perCard implementation. This database contained pointers to the relevant
QuickTime movies in the form of file names.

The uses of Hejmdal reported above suggest that Hejmdal is useful both
for adding more media to existing computer programs and for assembling
presentations from scratch, as long as the material is available as QuickTime
movies.

4.4 Further requirements and future work

In the introduction, page 26, it was argued that interactive multimedia can
be more useful than non-interactive multimedia. Since interactive computer-
based multimedia are often needed, the most important future development
of Hejmdal will be that of including different kinds of interaction. Hejmdal
today supports two kinds of interaction: interactive movie playback and
interactive movie editing (cut-copy-paste). Some ideas for different kinds of
interaction are described in this section.

Hejmdal should be an object-oriented model of all of QuickTime. As de-
scribed in this chapter, it models the central part of QuickTime, the movie
toolbox. The further requirements are briefly sketched below.

Having Hejmdal cover the functionality of QuickTime would mean including
(most importantly) the following kinds of interaction:

• Interaction through pointing to specific (possibly moving) objects in
the movie. This could be realized through the dynamic definition of
areas in the movie that are sensitive to mouse clicks. Fortunately,
QuickTime 2.0 supports this through inclusion of hit tracks in a movie,
so it should be practicable to include it in Hejmdal.

• Interactive capture of video and sound from external sources (e.g. video
camera, video cassette player, laser disc player and microphone).

• Interactive panning and zooming of the video or animation track(s)

67

of a movie, while the whole picture is not visible at the same time.
The scroller class of MacEnv combined with QuickTime’s possibility of
scaling the image could realize this.

As described in subsection 4.1.1 QuickTime, page 51, QuickTime, besides the
movie toolbox, supports image compression and the addition of components.
Hejmdal covers the functionality of the movie toolbox, and as it is devel-
oped it should cover image compression and components too. This implies
that object-oriented models will be designed for the compression manager
of QuickTime, and for the component manager including each of the seven
possible component types.

MacEnv has a successor called Lidskjalv or GUIEnv, a family of class libraries
for building graphical user interfaces across different platforms: Macintosh,
Windows and X. Hejmdal should be ported to Lidskjalv and should be im-
plemented on other platforms where QuickTime is available: Windows and
possibly the Indy.

4.4.1 On the fly editing

Interactive editing while the movie is playing should be enhanced, so that it
is not limited to the cut-copy-paste editing possibilities already in Hejmdal.
Rather, it should be possible to fade the movie in and out, make special
effects when changing from one movie to another, and use filters. It should
be possible to define and realize all of this while the movie is playing. At a
click of a button, the current frame should dissolve or fade to an arbitrary
frame in the same or another movie, or the new movie should slide in from
the side, or the old one out.14

In implementing this, one could take advantage of the mechanism in Quick-
Time to set the degree of transparency of a single video track in a movie. In
the following it is assumed that each QuickTime movie to be played consists
of a single video track. This assumption makes the explanation easier. The
idea obviously also works with more tracks.

First a new movie is created. This will be the one that is actually playing all

14The movie editing program Premiere from Adobe can use many such special effects
when making transitions from one clip to another; but not on the fly.

68

the time. To show other movies, the tracks from them are copied into this
one. First the track is copied from the movie to be shown first; or if it is not
to play from the beginning, only the segment from the starting point to the
end is copied.

When a jump using a cross dissolve is wanted, the new track (could be the
same as the old track) is copied into the playing movie. Only the segment
from where watching should start to the end is copied. It is given an offset
equal to the time of the playing movie so it starts immediately. The new track
is layered behind the old one. Then gradually, while the movie is playing,
the old track is made increasingly transparent, to make the new one fade in.
When it is completely visible, the old track can be deleted. (Alternatively,
the new track can be layered in front of the old one and made completely
transparent from the start, then gradually less transparent.)

QuickTime might have performance problems, given it is treated as sketched.
It cannot be known in advance whether poor playback quality due to effi-
ciency problems will result. Finding out requires trying it.

Sliding movies in or out can be done in a similar way; instead of gradually
adjusting transparency, location and clipping is gradually changed.

Sound tracks and other kinds of tracks introduce a new level of complication,
but are probably manageable. The old sound track is faded out by repeatedly
decreasing the volume, and at the same time the new one is faded in.

4.4.2 Defining interaction in the documents

A movie is conceptually linear in time, and the natural way to play it will
be from the beginning to the end. A consequence is that the movie cannot
itself include interaction. Hejmdal will allow the above kinds of interaction
to be defined in application program manipulating movies.

However, a standard multimedia architecture should allow interaction to be
defined in the documents. For the kind of multimedia presentations used for
instance in museums and education, this will be the natural place to define
it, since these are sometimes closer related to traditional media than to tradi-
tional computer application programs. You may also say that an interactive
multimedia document resembles a program more than a traditional docu-

69

ment. Hence the program displaying the multimedia document gets the role
of an interpreter.

Fortunately, standard document architectures that include interaction exist.
Among them are HyTime15 and MHEG. The latter is still under development.

4.5 Conclusion

In the preceding sections a suggestion has been given of an object-oriented
platform or class library for manipulating multimedia on a computer. The
platform has good support for playback of multimedia consisting of still pic-
tures, videos, animations and sounds. It has some support for editing, but
only little support for the creation of new multimedia documents. Hejmdal
can be used for a range of applications, from those adding a few elements of
animation or sound to an existing application to the ‘pure’ multimedia appli-
cation programs. Hejmdal has the advantage of using a proposed standard
document architecture, the QuickTime movie.

It has been pointed out that interaction is very useful in multimedia, so a
platform for working with multimedia should support the creation of inter-
active multimedia. It has further been argued that it should be possible to
define interaction in the multimedia documents, not only in the application
programs using them. However, QuickTime movies lack this possibility.

The object-oriented model of Hejmdal is found to be simple, clear and pow-
erful, without loss of flexibility compared to the underlying QuickTime.

Further development of Hejmdal will enhance the possibilities of defining in-
teraction with multimedia. Furthermore, development of support for import
and compression of image and sound data will make it reilistic to use Hejm-
dal for the creation of multimedia presentations, including creation of the
material.

15On HyTime see SGML SIGhyper Newsletter[98]. An Occasional Publication of the
Standard Generalized Markup Language (SGML) Users’ Group’s Special Interest Group
on Hypertext and Multimedia (SIGhyper). Volume 1, Number 1, October 1991.

70

Chapter 5

Theory of Narration

The purpose of this chapter is to lay the ground for the exploration of Petri
nets as a tool for interactive story telling presented in the following chapters.
The basis has the form of narratology, a theory of narration. The purpose is
to get an understanding of what a narrative (a story) is, which in turn will
be used to develop a model of a narrative of sufficient quality to be used in
the work in following chapters. Especially in the context of story construc-
tion, which is the subject of the exploration in the following chapters, it is
highly relevant to look at concepts and tools developed to analyse narratives.
It is assumed that the same concepts and tools are useful in synthesis and
construction of stories, and thus can serve as a good inspiration for comput-
erized tool support. In addition, they can provide an understanding of what
a story is and the requirements for tools for building computer-based stories.

Many theories of narration exist, most of them in the form of general litera-
ture theories. This chapter briefly sketches five common theories. It argues
why the New Criticism is chosen as the theory on which the work with Petri
nets for elastic story telling is based. Thereafter, the extended layer model
from New Criticism is presented in greater detail.

5.1 Choice of theory

Some of the better known literature theories are:

71

1. New Criticism

2. Structuralist narratology and semiotics

3. Marxist literature criticism

4. Impressionist literature criticism

5. Deconstruction

5.1.1 New Criticism

New Criticism, or Anglo-Saxon New Criticism,1 holds that a literary work is
an autonomous unit and that it would thus be misleading to supplement text
reading, e.g., with studies of the life of the author or the historic background
of the text.2 New Criticism rejects the idea that form and content should be
distinct notions and considers them inextricably connected. Instead it uses
the pair of material and structure. According to New Criticism, literature
is a branch of art the material of which is language. The use of language in
literature is claimed to be fundamentally different from its everyday use. New

1New Criticism in its narrow sense is a movement in the Southern States of the USA
after World War I, though its members polemicize against each other and disclaim con-
nection with the movement. In its broader sense, New Criticism is a current evolving
along with modem literature, receiving impulses from many sides, most notably in USA
and England, and having consequences all over the Western world. The first main work
of the development of New Criticism was ‘The Sacred Wood’ from 1920, by American-
born English poet Thomas Stearns Eliot (1888-1965)[39]. The last one was ‘Theory of
Literature’ from 1949, although Rene Wellek[113] (born 1903) did not consider himself
belonging to New Criticism. Other main characters of New Criticism are Ivor Armstrong
Richards (1893–1979), William Empson (1906–1984), John Crowe Ransom (1888–1974),
Allen Tate (1899–1979), Cleanth Brooks (born 1906), Richard Palmer Blackmur (1904–
1965), Kenneth Burke (born 1897) and possibly Yvor Winters (1900-1968). Source: Jo-
han Fjord Jensen: Den ny kritik. Berlingske Forlag 1962.2nd printing Munksgards forlag
1966. Reprinted with an epilogue by the author: Kimzere 1989. (In Danish.)[61] Other
references: T.S. Eliot: The sacred wood. Essays on poetry and criticism. 1920. 7th
edition, reprinted: Methuen 1960.[39] Rene Wellek & Austin Warren: Theory of Litera-
ture. Third Edition. (‘New revised edition’.) A Harvest Book. Harcourt, Brace & World,
Inc.1962.[113]

2Finn Brandt-Pedersen and Anni Bonn-Paulsen: Metode bogen. Analysemetoder til
litteizre tekster. Nogleforlaget Aps. 1980. (In Danish.)[24] New Criticism is treated on
pages 9–34.

72

Criticism says that the literary work has its own life, also in the experience of
its creator3. The literary work is concerned with universal human problems
like life, death, love, hate and deceit. The quality of a work lies in being
convincing (credible) to the reader. There is one correct reading of a work,
but no authority to decide which. The reader can only rely on his or her own
judgement4. Finn Brandt-Pedersen and Anni Rønn-Poulsen5 give two text
models belonging to New Criticism; the general layer model and the extended
layer model for epic texts. The layer model defines eight layers in a text,
starting with the graphical layer and ending with the statement of the text.6

The extended layer model is concerned with five layers: composition, narrator
issues, fiction, language issues, and finally summary and interpretation. The
extended layer model will be further discussed in section 5.3, pages 79–88.

3This is expressed in many places. An example is this quotation about what T.S. Eliot
calls ‘automatic writing’: ‘ . . . ; but he to whom it happens assuredly has the sensation of
being a vehicle rather than a maker.’ From T.S. Eliot: Selected Essays. Third enlarged
edition April 1951. Faber and Faber Limited. Reprinted July 1972. Page 405.[38]

4In other words ‘Thereby the work, the text itself, becomes the highest authority, the
final court of apical in all questions regarding the correct understanding of the text.’ ‘That
the text is the highest authority can also be expressed as the reader is the highest authority.
Each individual reader. One cannot experience art on others’ authority.’ (Quotations from
Finn Brandt-Pedersen: Tekstlæsning. Gyldendal 1967. 5th printing 1974. Pages 7 and
8–9. My translations from Danish.)[23]

5Previously referenced work, [24].
6The number and kinds of layers are discussed by Finn Brandt-Pedersen [24], pages

17–23.

73

5.1.2 Structuralist narratology

Figure 5.1: Example of a model from structuralist narratology: the contract
model.7 When breaching the contract (which may be informal), the main
character is expelled from society into the outside space. Here, rules are dif-
ferent; magic may take place, for example. Through a long and cumbersome
process (often through three tests; the qualifying, the decisive and the glori-
fying test) the main character shows that he (she?) deserves re-admittance
into society (often as a hero). Hereby the contract is finally re-established.8

Structuralist narratology9 and semiotics are two out of several subdivisions of
French structuralist research10. Structuralist narratology gives three models

7The figure is translated and redrawn from Finn Brandt-Pedersen and Anni Rønn-
Paulsen[24], page 49.

8Finn Brandt-Pedersen and Anni Rønn-Paulsen[24], page 49–50. Algirdas Julien
Greimas & Joseph Courtés:[46] Semiotik. Sprogteoretisk ordbog. Aarhus universitetsfor-
lag 1988. Danish version of Semiotique. Dictionnaire raisonné de la théorie du language.
Hachette 1979. Entries narrativt skema, kontrakt, prøve, kvalificerende prøve, decisiv
prøve and glorificerende prøve (narrative schema, contract, test, qualifying test, decisive
test and glorifying test).

9Structuralist narratology was developed in France in the 1960s. It has two origins:
first linguistics, founded by Ferdinand Saussure (1857–1915), next the Russian formalism,
especially the work done by Vladimir Propp at the end of the 1920s. Structuralism as
such originates as a language theory from the beginning of the 20th century, according to
Pi1 Dahlerup: Dekonstruktion — 90’ernes litteraturteori. Gyldendal 1991. (In Danish.)
Page 27.[32]

10Some prominent structuralist researchers in France in the 1960s are Claude Lévi-

74

of a story: the static actant model, the dynamic contract model and the static
s or square model containing the dynamic butterfly route11. As an example,
the contract model is sketched in the figure on the previous page.

5.1.3 Marxist literature criticism

Marxist literature criticism12 is a sub-area of Marxist research. According
to Marxism, nothing should be seen separately from its social and historical
connections. In Marxism, there really is only one research field, namely the
entire society in its historical development. A key point in Marxism is that
the ruling thoughts are the ruling classes’ thoughts; the proletariat’s con-
sciousness is dominated by norms that serve the rulers’ interests, not their
own. This phenomenon is known as false consciousness. Literature can on
one hand cement a false or on the other hand promote a true consciousness,
an awakening. A number of models and tools are used by Marxists in lit-
erature criticism. As an example, Györg Lukács (1888-1971) developed the
concept of realism, which denotes a positive quality of a literary work. The
criterion is whether the work blurs or promotes an understanding of society.
There are two requirements: First, there is the requirement of broadness
and totality of society. Rather than describing only situations that may be
more interesting, the text should include all of work life, leisure time, fam-
ily life, etc. Second, the main characters’ personalities should be influenced
by essential contemporary problems in society. Fulfilling these requirements
and making talented observations will lead a writer to the victory of realism,
Györg Lukács writes13. Realism is in some sense in opposition to naturalism;
naturalism shows detached images of the world while realism shows coher-
ence.

Strauss, Roland Barthes and Algirdas Julien Greimas. John Chr. Jørgensen also re-
gards New Criticism as a kind of ‘formal structuralism’. John Chr. Jørgensen: Litterær
metodelære. Metoder i dansk litteraturforskning efter 1870. 2. udgave (2nd edition).
Borgen 1974.[63]

11Finn Brandt-Pedersen and Anni Rønn-Poulsen, [24], pages 35–69. Algirdas Julien
Greimas and Joseph Courtés, [46].

12Finn Brandt-Pedersen and Anni Rønn-Paulsen [24], pages 71–111.
13Finn Brandt Pedersen and Anni Rønn-Paulsen,[24], page 85.

75

5.1.4 Impressionist literature criticism

Impressionist literature criticism is the lack of method or model, the spon-
taneous evaluation. The individual experience of whether the text touches
or fascinates and the associations that the reader derives from the text are
essential.14

5.1.5 Deconstruction

Deconstruction, taken in a broad sense, has four points15:

1. The meaning of the text is not in the text, but only results from the
reader working with it16. The literary experience is a reader’s meeting
with him or herself, not with something new and different. The reader
is present in the text in many ways, ranging from explicit address to for
instance comparisons with something the reader (supposedly) knows17.
The reader in the text is, however, different from the physical reader,
just as the narrator in the text is not the same as the author.

2. Deconstruction gets its name from deconstructing the unambiguous
contrasts held by structuralism (briefly presented above). Deconstruc-
tion claims that such contrasts are artificially bound together by sup-
pressing incidental circumstances that do not fit with the contrast18.
In reality, each side of a contrast holds the other side inside itself.

3. Paul de Man19 worked with a deconstructive theory of rhetoric and

14Finn Brandt-Pedersen and Anni Rønn-Paulsen, previously referenced work[24], pages
113-121.

15The account of deconstruction is based entirely on Pil Dahlerup, previously referenced
work[32], from which other references have been taken.

16Jane P. Tompkins (editor): Reader-Response Criticism.[105] John Hopkins University
Press, Baltimore and London (1980) 1984.

17Gerald Prince: Introduction to the Study of the Narratee. In Jane P. Tompkins[105],
previously referenced work.

18Jacques Derrida: De la grammatologie I: L’ecriture avant la lettre. Collection critique
1979 (original version 1967)[35].

19Paul de Man 1919–1983, former nazi, is the thinker of the Yale school.

76

with allegories.20 He deconstructs romanticism by claiming it is filled
with allegories rather than symbols, as it is usually said to be21.

4. There are a number of feminist decontructionist movements. Broadly
taken, they tend to move from feminist research to gender research,
from empiricism to theory and from reality to semiotics, especially the
signs for man and woman22.

5.1.6 Choice of theory

Among the above theories, New Criticism is chosen as the theory to be used
in the following work with interactive stories, for a number of reasons:

1. While most of the theories are general literature theories that do not
concern themselves specifically with narration, New Criticism contains
a text model especially suited for epic, that is narrative texts; the
extended layer model.

2. While most of the theories reach beyond the narrative itself (e.g., Marx-
ism into society as a whole), New Criticism explicitly regards a text as
an autonomous unit. In this way, it suits well the computer scientific
tradition of studying objects separately.

3. Several of the concepts in the extended layer model seem naturally
applicable, not only to analysis of stories, but also to story construction,
which is essential here.

Many multimedia systems (e.g., museum systems) do refer beyond them-
selves. This is not relevant, though. New Criticism will be used for the
narrative aspects of multimedia systems, which supposedly are the same
even if the multimedia system also is more than a piece of fiction.

20A symbol has a double meaning: a concrete meaning and a symbolic or metaphorical
meaning. An allegory has only the latter. A more precise definition of a symbol is given
on page 85.

21Paul de Man: The Rhetorics of Romanticism. Columbia University Press 1984[79].
22Pil Dahlerup[32].

77

5.2 New Criticism

The basis and ideas of New Criticism were presented above. This section
and the next present New Criticism’s tools for analysis and evaluation.

For New Criticism, close reading of the literary work is a key idea, as opposed
to a study of the author’s letters, contemporary cultural movements or other
objects. The literary quality depends on the consequence with which the
details have been organized into the whole and the purpose of the text. The
purpose is the establishment of a statement. Two aspects are evaluated:

• the essentialness of the statement that the text formulates; and

• the precise and consequent use of means of expression to establish that
statement; the aesthetic evaluation.

Finn Brandt-Pedersen argues that there is a close relation between the two23.

The layer model is used to analyse the organization of a text24. The model
consists of eight layers. On each layer, the organization of the entire text can
be studied. The lavers are:

1. The graphical layer: visual appearance, for instance size of paragraphs.

2. The sound layer: metrically organized rhythm, rhymes, onomatopoeia.

3. The semantic unit layer: the single words and short word connections,
including metaphorical meanings, associations, leitmotifs and symbols.

4. The syntactical layer: lengths and complexities of sentences, whether
sentences are complete or incomplete, and closer to written or spoken
language.

5. The plane structure layer: whether longer sections of the text (possibly
the entire text) can be read on two or more planes, e.g., a real and a
symbolic plane.

23Finn Brandt-Pedersen Tekstlæsning. Gyldendal 1967 (5th printing 1974), pages 85–
96[23].

24Finn Brandt-Pedersen; the referenced work[23].

78

6. The big elements layer: how the details combine to greater units such
as persons, environments, phases of action and problem-presentations.

7. The narrator attitude layer.

8. The statement of the text.

In analysis, it is considered a good idea to start out from the obvious ob-
servations, e.g., where the text surprises or breaches norms and at sudden
changes, for example, in style. The observations made on each layer should
all contribute to the final layer, the statement.

5.3 The extended layer model

The extended layer model supplements the layer model. It contains five
layers. This section presents these layers. The presentation will be based on
Finn Brandt-Pedersen and Anni Rønn-Paulsen25. Since the extended layer
model was developed for analysis of non-interactive, spoken or written textual
stories, its application to interactive and non-textual stories, especially stories
in stored, computer-based multimedia, will be discussed.26

Where appropriate, how to interpret the concepts in this new context will be
discussed. The quality of the resulting implicit model of non-textual stories
lies not so much in being true to New Criticism as in being useful in the work
on elastic stories presented in the following chapters.

The five layers of the extended layer model are:

1. Composition

25Previously referenced work, pages 23 and 155–169[24].
26Christian Metz the founder of film semiotics, would have claimed that one cannot

take a model from one medium and apply it to works in another medium. However, in
this chapter this is found a perfectly meanngful thing to do. Christian Metz’s warning
is taken only to mean that one cannot expect that the resulting model covers the new
medium well. For this reason, it will later be supplemented with observations from elastic
stories and with considerations about the specific multimedia user interface in which the
realization of elastic stories is envisioned. For a presentation of Christian Metz’s ideas
in Danish, see Palle Schantz Lauridsen: Christian Metz’ filmsemiotik[69]. In Sekvens —
filmvidenskabelig årbog 1984. Københavns Universitet. Institut for Filmvidenskab.

79

Sections, sequences, suspense curves.

2. Narrator issues

(a) Type: first person narrator

‘visible’ third person narrator

concealed third person narrator

(b) Point of view, placing, personal technique.

(c) Forms of presentation

• scenic: dialogue, situation narrative, compressed narrative
(with time sequence);

• panoramic: compressed narrative (without time sequence),
description, information, commentary, reflection.

(d) Narrated time/narrative time.

(e) Postulate/demonstration.

3. Fiction

Characters, environments, problem-presentation.

4. Language issues

Characterization of persons or environments through language. Sym-
bols, images (metaphors), leitmotifs, etc.

5. Summary and interpretation.

The concepts will be presented in the same order as in the above model, with
a few exceptions. Explanations of the concepts of the model will be provided
where deemed necessary, that is under items 1, 2 and 4. Thus, the model
summary above serves as a rough ‘table of contents’ for this section.

5.3.1 Composition

According to the extended layer model, a story consists of sections (item 1.
in the model). This holds true for both textual and non-textual stories. For
instance, a movie may consist of sequences that are built from scenes which

80

are composed from shots. In non-interactive stories, the sections are ordered
linearly, which is often not true for interactive stories.

Sequences are found in many media (texts, plays, films, slide shows, sounds)
while others lack them (pictures, sculptures). Interactive media often have
other ordering schemes besides linear sequences.

It is an open question whether it is possible and feasible to build suspense
curves in interactive media. Jørgen Bang argues that the great potential of
interactive computer fiction is in what he calls circular narration, in which
the suspense curve has many tops rather than one climax27. For discussions of
suspense curves, Jørgen Bang refers to Birgitte Hesselaa28 and Peter Harms
Larsen29.

5.3.2 Narrator issues

The narrator of a story (item 2.a.; not to be confused with the author) can
be either a first person or a third person narrator. A first person narrator
is a narrator who is at the same time one of the persons in the story. A
third person narrator is not present in the story. A third person narrator
can be ‘visible’ or concealed. A ‘visible’ third person narrator is a third
person narrator who reasons about the events in the story, e.g., by comments,
evaluation or explanations. (However, the narrator is not so visible as the
persons in the story.)

A ‘visible’ narrator (whether first or third person) is much less common in
movies and cartoons than in textual stories. It may not become widespread
in computer-based multimedia either. On the other hand, in non-textual
media, non-fiction may need a ‘visible’ narrator more than fiction, as a way
to introduce text in a natural way.30

27Jørgen Bang: The meaning of plot and narrative. In Peter Bogh Andersen, Berit
Holmqvist & Jens F. Jensen (editors): The computer as medium. Cambridge University
Press 1993[9]. Pages 209–221.

28Birgitte Hesselaa: Kan detektiver synge? In Kritik 85, pages 41–58. Gyldendal
1988.[56] (In Danish.)

29Peter Harms Larsen: Faktion - som udtryksmiddel. Danskkererforeningen and For-
laget Amanda 1990.[68] (In Danish.)

30For a contemporary example of a first person narrator in a non-fiction cartoon, see
Claus Deleuran: Illustreret Danmarkshistorie for Folket. Volume 1–8. Ekstrabladets forlag

81

In non-textual media, there is no technical difference between a ‘visible’ nar-
rator and any other person in the story: any person visible or audible may,
depending on the contents of the media, serve as a narrator. Therefore,
there is no need for separate tool support for first and ‘visible’ third person
narrators.

The narrator’s placing (item 2.b.) is the place in the story from which he
or she reports. In movies, the narrator’s placing is roughly the same as the
placing of the camera(s) and microphone(s). As in textual stories, the placing
may be with one of the characters. Two common examples:

• The camera may look over the head or shoulder of a person to show
the viewers what that person sees, thereby taking the place of that
person.31

• Using the 180◦ rule, one shot may look at a person, the next shot show
what that person sees.32

The point of view is more subjective. Typically, the point of view will, if
present, be either with one of the persons in the story or with the narrator (if
‘visible’). One possible way to establish a point of view is through personal
technique, see below. (Also the placing may of course be with one of the
persons.)

Personal technique is used when a narrator, without directly stating it, con-
veys a person’s experience of the events of the story rather than an objective

1988- 1994[34]. (In Danish.) (This narrator is depicted on the front page of the thesis.)
Microsoft Bob may be seen as an example of a computer-based first person narrator.

31Dan Nissen and Anne Jerslev[88] write in a film analysis: ‘The camera tilts to Paul,
and the angle of view of the room, seeing Johnny and Hans, tends to be as Paul sees
it.’ Translation by Helen Gray and the thesis author from Dan Nissen & Anne Jerslev:
Film- og TV-analyse. In Ib Brokner Christiansen & Else Lutzhoft (editors)[88]: Billeder
i bevægelse. Fakta og fortolkninger. Foreningen af filmlærere i gymnasiet og HF and
Dansklaererforeningen (FFS) 1984. Page 162.

32“ . . . the rules for doing so [identifying the spectator with the camera] have been
assimilated to the dominant conventions of filmmaking to such an extent that they appear
natural and inevitable. Among these unquestioned assumptions are the following: . . . 2)
the 180◦ rule, ensuring that the spectator always finds the same characters in the same part
of the screen, i.e., matching ‘screen space and narrative space’ . . . ” Robert Lapsley and
Michael Westlake: Film Theory: An Introduction. Manchester University Press 1988[67].
Pages 140–41.

82

account. Example: ‘That darn door bell rang again. Was his life a farce?
Was he to be split between two eternally ringing bells? The door bell and
the telephone? . . . ’33. Personal technique differs from a ‘visible’ third person
narrator in that the ‘visible’ narrator conveys his or her own reflections and
opinions, not those of one of the characters in the story. In other words, with
a ‘visible’ narrator the point of view is with the narrator rather than with
one of the persons. The two techniques can of course be combined, in which
case the point of view will shift back and forth.

In movies, a point of view can for instance be established using what is known
as a subjective camera. Rather than showing a realistic image of something,
a subjective camera shows a distorted image of what things look like through
some person’s eyes or in that person’s mind34. E.g., an object that frightens
the person may be shown bigger than life. A similar use in still and moving
pictures in multimedia is imaginable. One may say that subjective camera
mimics personal technique.

Narrated time (item 2.d.) is the time that passes in the story. Narrating
time is the time it takes to narrate the story.

The following paragraphs go through the different forms of presentation
(item 2.c.) as though they were clearly distinct. In real stories, mixtures
and middle forms often occur.

In a written text, a dialogue is usually between two persons, and no other
information than the content of the lines35 is given (not even the names;
it is tacitly assumed that every second line belongs to each person). In
other media, more than two persons can be involved in a conversation, face
expressions can be given, etc. In a movie, cutting back and forth between the
persons as they speak is often used. In a dialogue or conversation, narrated

33Translation by the thesis author’s from Finn Brandt-Pedersen and Anni Rønn-
Paulsen[24], reviously referenced work.

34‘We not only see what the character sees, but also how he sees it.’ (Emphasis is
original.) Edward Branigan: Point of View in the Cinema. A Theory of Narration and
Subjectivity in Classical Film. Foreword by David Bordwell. Mouton Publishers 1984[25].
Page 6.

35In this and the next chapters ‘line’ consistently refers to a person saying a coherent
text. Hence ‘line’ is sometimes used where one would expect ‘text’, ‘line of text’ or even
‘speech’. ‘Line’ is used to distinguish from ‘speech’, which is used to refer to the sound of
the line. Obviously, the line in this sense can be longer than one text line.

83

time and narrating time are nearly if not completely identical.

Situation narrative is a sequence of a narrative in which a series of events is
described in detail, such that the reader is to some extent able to visualize
it, almost like a sequence of a film. Narrated and narrating time are close to
being identical, or at least there is an illusion that they are.

In a compressed narrative with time sequence, a sequence of events is sum-
marized without all the details. The events are reported at a much faster
pace than they happened. In a radio play, movie or multimedia system, a
similar effect can be obtained using frequent cutting.

The forms of presentation presented so far (dialogue, situation narrative and
compressed narrative with time sequence) are referred to as scenic, since
they can be directly staged as scenes in a play or a movie. As an exception,
the narrative of a stream of consciousness is also referred to as scenic. The
scenic forms of presentation constitute the epic genre in its strict sense. All
of them (or variants of them) are commonly found in media other than text
(e.g., film) and are clearly suited for multimedia.

The non-scenic forms of presentation are presented in the following. They
are collectively referred to as panoramic (second bullet in item 2.c.).

Here is an example of compressed narrative without time sequence: ‘The
following weeks, Søren spent the afternoon and evening at Kirsten’s place
nearly every day. Sometimes they did their homework, sometimes they just
had tea. The few moments he still had to be with his parents, they asked no
unpleasant questions.’36 Presumably, a compressed narrative without time
sequence is well suited for telling about situations that last a while and events
that are repeated in narrated time. The very different time specifications in
the example are typical for this form of presentation.

Description, information, commentary and reflection are different kinds of
insertions from the narrator. All of them break the time sequence of the
narrative.

Description may be said to be often replaced by still or moving pictures of
persons, places, etc. in non-text media, including multimedia.

36Translated from Finn Brandt-Pedersen and Anni Rønn-Paulsen[24], previously refer-
enced work, page 162.

84

Except for this substitute for description, the panoramic forms of presenta-
tion in media other than text require the narrator to become more or less
‘visible’, which happens less often in non-text media. They can of course
be used within spoken or written text which may be part of the presenta-
tion. For example, one person may be the author’s mouthpiece and give
the author’s description, information, commentary or reflection in his or her
lines. Note that strictly speaking, such lines would still count as situation
narrative, not as a panoramic form of presentation.

5.3.3 Language issues

Persons or environments can be characterized through language (item 4).
A person can be characterized either through his or her own language or
through the language used by the narrator when speaking about the person
in question. In movies, a person or his or her relation to the surroundings can
be characterized through camera angles. In operas, persons are sometimes
characterized through the musical style37. These and possibly other options
are available in multimedia.

A symbol is to be read on two planes: a real plane, and a symbolic plane
where it serves as a metaphor for something else. A symbol is recurrent in the
entire text or a larger section of it. For instance, if a lover in a love story grows
roses, the statements in the text about why the roses sometimes flourish and
sometimes do not, may be intended to be read as statements about the love
affair. Symbols are used in both textual and non-textual media, e.g., movies.
For example, in some movies the weather is used as a symbol in a number of
scenes’ sunshine may symbolize joy, rain sadness (tears), thunder anger or a
threat, and so on. It seems, however, that symbols in movies are often local
to a single scene, contrary to the definition just given.38

An image is similar to a symbol; but it is not to be taken literally on the real
plane. Here is an example: ‘It is irresponsible to keep silent in a furiously

37The opera Fidelio by Ludwig van Beethoven is the first known example of this.
38For instance in a scene in the movie ‘The Piano’, the husband is lurking outside the

door while his wife is with the neighbour. A dog comes and licks his hand. This can
be interpreted as a symbol of what the neighbour is doing under the wife’s skirts. No
symbolic value of the dog has been noticed elsewhere in the movie. Hence this seems to
be a ‘local symbol’.

85

boiling world where whistle after whistle dies down’.39 While there were roses
being grown in the love story and rain falling in the movie, there are no kettle
whistles in this quotation. They are mere metaphors for alarms. An image,
as opposed to a symbol, may be purely local. The use of images in pictorial
media is rare, but is sometimes seen. The same is expected for multimedia.
An example of an image in a movie will be mentioned. In the Swedish movie
“Jag är med barn” (I am pregnant, c. 1980), an iron bar door in a jail closes
in front of the main character when he promises to move in together with his
girlfriend, who has just become pregnant. This is an image of cohabitation
as a prison.40 The image recurs with some elaboration throughout the movie.
With some uses of images, it is made explicit that the image is not to be
taken literally. One might expect that this would have to be the case always,
or the image would be taken as a symbol instead. If the two examples were
to be taken at face value, then there would be kettle whistles in the former
and a jail cell in the latter. When they are not perceived this way, it is
because it does not make sense in the context to take them literally; so the
reader, listener or viewer is forced to find another interpretation (or ignore
the phenomenon).

A leitmotif41 is a recurrent motif used to symbolize for instance a person,
a setting (atmosphere) or an event42. Leitmotifs were first discussed with
music. They are also used for instance in movies43. In television, the intro-
ductory sequence to each part of a series, especially a signature tune, can be
a leitmotif. The difference between a leitmotif and a symbol is that the sym-
bol bears some resemblance to or similarity with that which it symbolizes.
In a multimedia system, a visible object or a sound, e.g., a piece of music,
could serve as a leitmotif.

39Benny Andersen here quoted from Finn Brandt-Pedersen and Anni Rønn-Paulsen,
previously referenced work[24], page 155, my translation.

40A Humprey Bogart-like figure also appears, which suggests that the idea has been
taken in part from Woody Allen’s film ‘Play It Again, Sam’ (1973); but ‘Jag är med barn’
takes it somewhat further.

41German for ‘leading motif’.
42Gyldendals Tibinds Leksikon[49], sjette bind (volume 6), kve-mum. Gyldendal 1978.

(In Danish.), entry on ledemotiv, page 98.
43Dan Nissen and Anne Jerslev [88] in the previously quoted work, page 187, give an

example where the same sounds (a clock, birds and the wind) are used as symbols in some
parts of a movie, and as a leitmotif in other parts of it. A visual leitmotif is imaginable;
but no example has been found in the study.

86

5.4 Discussion

This chapter, after giving sketches of five common literature theories has
argued why the extended layer model from the New Criticism has been chosen
as the model of a story on which the work with elastic stories is to be based.
That model has been explained with emphasis on the composition and the
narrator and language issues. The application of the model to stories in
media other than text has been found meaningful. Such an application has,
however, turned out not always to be non-trivial and has therefore been
discussed where it was relevant. The resulting ‘extended layer model for
non-textual stories’ describes the structure of such stories.

A distinction has to be made between two kinds of structure: Some of the
structure is explicit in the story, other structure is not. Going back to the
layer model (not the extended layer model), the first layers (the graphical
layer, the syntactical layer and partly the sound layer) are immediately vis-
ible in the text. The later layers (especially the plane structure layer, the
big elements layer, the narrator attitude layer and the statement) are only
accessible through understanding the content of the text. In the extended
layer model, the two kinds of structure are mixed. Many of the concepts are
concerned with the kind of structure that is only recognizable through the
content of the story.44

The intention of the following chapters is to provide tool support for the two
kinds of structure in two different ways: the tool should directly support
the building of the immediately visible structure. It should also support the
building of the content of the story, but should leave the responsibility for
the structure in that content to the author.

The extended layer model for non-textual stories lays a basis for the work in
the next chapter, in which a new model specifically covering elastic stories
in computer-based multimedia will be built. That model will rely on the
extended layer model as presented here. The understanding gathered in the
work presented in this chapter will influence the new model, where it will
appear as requirements for tool support for elastic stories. The new model
will explicitly cover those concepts in the extended layer model that are

44A semiotician would say that some of the structure is in the expression of the text,
other structure is in its content.

87

concerned with the immediately visible structure of an elastic story. It will
in turn be used as a basis for developing tool support for elastic story writing,
in the form of Petri nets.

88

Chapter 6

A Model of Elastic Stories

This chapter describes the kinds of stories intended to be told using Coloured
Petri Nets. It does so by building a model of elastic stories in multimedia,
consisting of a number of concepts. This model forms the basis of the work
presented in the following chapter, in which each concept will be translated
to a segment of a Petri net.

First, section 6.1 explains what an elastic story is.

For the sake of the study, only one style of multimedia interface is under
consideration for elastic story telling. This multimedia interface has a big,
scrollable background picture with moveable objects on it, with additional
windows for pictures and video, and includes sound. It is hoped that the
results obtained will be extendible to multimedia with other interfaces. The
user interface is presented in section 6.2.

The model of elastic stories in computer-based multimedia follows in section
6.3. The set of concepts making up the model is based on the theory presented
in the previous chapter, on the idea of elastic systems, and on the style of user
interface used in the work. It is intended that the set of concepts in the model
should cover what can be conceived as the basic elements of elastic stories
today. One should bear two things in mind: First, the model is restricted
to the style of interface described here. Second, future multimedia authors
may, and probably will, invent new concepts.

89

6.1 Elastic stories

Intuitively, an elastic story is an interactive story in which the reader can try
to influence the course of events, without any guarantee that he or she will
succeed every time. The harder she or he tries, the greater is the probability
that the user will succeed. Figuratively, it should be like pulling a rubber
band. Elasticity is probably even more prominent from the author’s point of
view. The author may for instance—still figuratively—tap the user’s shoulder
and say ‘look here, I have got something to show you’. The user may follow
(‘let the elastic pull him or her’) or instead look at something else (‘pull in
another direction’). To write an elastic story, the author should put an effort
into creating an interesting story, which among other things requires some
structure1.

A system that is used to tell an elastic story is a kind of elastic system2. An
elastic computer system in turn is a kind of elastic medium. Elastic systems
were invented by Peter Bøgh Andersen in his quest for computer rhetoric and
aesthetics.3 Elastic systems form a middle ground between user-controlled
and developer-controlled systems, the two paradigms traditionally used in
multimedia and other computer systems.

A user-controlled system is a passive system; nothing happens until the user
does something. Examples include traditional database systems, hypermedia

1Peter Bøgh Andersen, Jens W. Johansen, Jakob A. Mikkelsen & Morten Sams: Inter-
aktive tekster. In an anthology from Odense Universitetsforlag, in press. (In Danish.)[10]

2Three references Peter Bøgh Andersen: Vector Spaces as the Basic Part of Interactive
Systems: Towards a Computer Semiotics. In Patricia Baird (editor): Hypermedia, Volume
4, number 1,1992. Taylor Graham.[8] Peter Bøgh Andersen: Katastrophen und Computer.
In Roland Posner (journal editor), Martin Warnke & Peter Bøgh Andersen (guest editors):
Zeitschrift für Semiotik, Band 16, Heft 1–2. Stauffenburg verlag 1994. Pages 29–50.[5]
Peter Bøgh Andersen, Jens W. Johansen, Jakob A. Mikkelsen & Morten Sams, previously
referenced work[10].

3Peter Bøgh Andersen attributes this use of the term ‘elastic’ to Hans Peter Brøndmo
and Glorianna Davenport. However, the referenced paper by the latter authors does not
define the term ‘elastic’. The system it describes, the Elastic Charles, is not elastic in the
sense in which the term is used here. Peter Bøgh Andersen: Vector Spaces, previously
referenced work, subsection 4.4, page 74.[8] Hans Peter Brøndmo & Glorianna Davenport:
Creating and viewing the Elastic Charles: a hypermedia journal. In Ray McAleese and
Catherine Green (editors): Hypertext: State of the Art. Papers from UK Human Interface
Interactive Learning Systems SIG conference on hypertext, Hypertext II, University of
York, 1989. Intellect, Oxford, England, 1990.[26]

90

systems, operating system shells and modern GUI programs and tools. Using
a user-controlled system can be effective if the user has a specific purpose. If
not, such systems are usually boring, and there is a great risk of becoming
‘lost in hyperspace’, except in very small systems4.

As extreme examples, a lump of clay and a pile of blank sheets are media that
are user-controlled to an extent that makes them uninteresting in themselves
(the term ‘user-controlled’ is used for lack of a better one to denote the
opposition to ‘author-controlled’, even though the author is also a kind of
user).

As the other extreme, traditional slide shows and movie films and their com-
puterized counterparts are examples of developer-controlled systems. Devel-
oper-controlled systems usually are not interactive. They can be, for ex-
ample certain courseware (programmed teaching) and question-and-answer
interface5. In developer-controlled systems, it is relatively easy for the au-
thor to use timing as an effect and build suspense curves, thus adding to the
attraction of the system.

Figure 6.1: Elastic media fill the gap between user-controlled and author-
controlled media. Putting the different media on a scale like this is of course
an oversimplification. Firstly, users can exercise different kinds of control over
different media. Hence it is usually open to interpretation which of two media
(for instance a drawing program and a lump of clay) is more user-controlled.
Secondly, the same medium (especially a computer program) may behave in
a more user-controlled way at one time and a more author-controlled way at
another time.

4About being lost in hyperspace, see, for instance, Edwards, Deborah M., & Lynda
Hardman: ‘Lost in Hyperspace’: Cognitive Mapping and Navigation in a Hypertext En-
vironment. In Ray McAleese (editor): Hypertext: theory into practice, Ablex Publishing
Corporation, New Jersey, and intellect books, Oxford, 1989. Pages 105–125.[37]

5Question-and-answer interfaces are defined in Peter Beyer et al.: Brugervenlige EDB-
systemer. Teknisk Forlag A/S 1988. (In Danish.) Pages 73 and 77.[17]

91

Elastic systems give both the author and the user some control, but neither
of them unconstrained power over the course of events. One aspect of elastic
systems, as a contrast to ‘rigid’ or ‘hard’ author-controlled systems, is that
it should not be possible for the user to pull so hard that the system breaks
down and gives no (or decidedly erroneous) results. Any user input should
be interpreted as well as possible.

Peter Bøgh Andersen writes about an elastic relationship between user and
systems designer:

“ . . . They [interactive media] do have an artistic form, but this
form is elastic. It is designed to be manipulated within the limits
set by the designer.

One of the benefits of the vector concept is that it allows the
designer to work with a continuous scale of elasticity, ranging from
a ‘hard’ form where the author is in control (e.g. the Mystery of
the Razor of the museum system), to a ‘soft’ form where the
reader rules supreme (the browsing part). However, it is the
fine nuances in between that are most interesting in interactive
systems (the History of Interpretation).

The systems we have designed by means of the vector concept
feel elastic in a very concrete way, so the vectors can probably be
seen as one way of realizing this aesthetics of elasticity.”6

Later he adds:

“The notion of elasticity applies to interaction in general: . . .
The [the interactive system’s] form should denote exactly that
which yields to or resists user interaction. An elastic relationship
between user and designer is relevant in all teaching systems and
process control systems. In both cases, there is an agent that
sometimes should be allowed to control user’s options: the author
of a teaching system, because he may want to present longer
coherent information to the user, and the author of the process

6Peter Bøgh Andersen: Vector Spaces, previously referenced work, subsection 4.4, pages
74–75.[8]

92

control system, because it needs to send a warning about a critical
state.”7

It should be noted that although the author and the user of an elastic story
both experience that they are sharing power, it is the author who decides
how much power to give to the user. A good author should know how much
and which power to give the user for the user to have a good experience.

Elastic systems are not well explored, so it remains to be seen whether they
give the best (or the worst) of both worlds or something entirely new. It
can be argued that if computer-based multimedia contains a potential for
something radically new (as is often claimed), the new is to be found in the
area of elastic systems; purely user-controlled and purely author-controlled
systems will tend to be mere repetitions of the kinds of systems we already
know.

6.2 User interface

In the study of Petri Nets for interactive story telling, concern is restricted to
the user interface described in this section. The interface is one that is easy
for the reader (user) to use without prerequisites; typically one that would
be used in a museum setting where users cannot be expected to be trained in
computer use in advance and are not motivated to spend much time learning
it. Most of the ideas used in the interface originate from the Wodan’s Eye
project, though some of them were later changed in that project. Also some
of them have been changed here, for instance to make them more general.

The basic element of the user interface is a big background picture, which is
typically considerably larger than the computer monitor.8 The background
picture is provided by the author. Part of the background picture is visible

7Peter Bøgh Andersen: Katastrophen und Computer, previously referenced work, pages
29-30. The translation from German is inspired by a draft in English made available from
Peter Bøgh Andersen.[5]

8Examples where this has been used are found in Peter Bøgh Andersen: Vector Spaces,
previously referenced work[8], and in Bjørn Laursen: Tegning og Kognition. VENUS
Report No. 6. Department of Information and Media Science, University of Aarhus,
1990.[70]

93

through a window on the screen. The user can navigate (pan) freely over
the picture.9 Panning can also happen from program control, as we shall see
later.

In the background picture a number of characters and objects are visible.
More precisely, they are visible if within the window. The user can move
characters and objects across the background at any time. They can also be
moved from program control.

Each character or object can have a number of postures if the author provides
a number of different drawings of the same character or object. At most one
of them can be visible at a time. The character or object can also be made
invisible from program control. The author specifies the character or object’s
initial posture, and whether it is initially visible.

A number of windows containing still pictures can be opened from program
control. They will typically hold close-ups of items from the background.
This is useful for studying details of items.

Similarly, a number of windows showing live video segments with or without
sound can be opened. When no video is playing in a window, it is closed
(not visible).

Finally, sounds can be played through the computer’s speaker. A number of
sounds can be played at the same time.

The following conditions can be tested from within a program:

• whether a specified object or area of the background picture is visible
in the window. The object may be a character or a moveable object.
The area can be any fixed part of the background picture (e.g., a house
or a road).

• whether a set of specified objects and areas are all visible and beside
each other (e.g., whether the maximum distance between any two of
them is below some threshold). The objects and areas are the same as
in the previous item.

(The latter is a generalization of the former.)

9E.g. using a spotlight, see Peter Bøgh Andersen: Vector Spaces, previously referenced
work.[8]

94

6.2.1 An action

In what follows, an action is taken to mean an atomic action performed on
the user interface from program control. All the actions are what in chapter
4 were called time-based, which implies that they each have a duration.
Possible actions are:

• Moving an actor (a character or an object) on the background picture.
The author provides a target co-ordinate set for the movement, either
relative to the background or relative to the current position of the same
or another actor. The movement is animated, so the user experiences
a linear sliding from the original to the target position.

• Moving the user’s view of the big background picture. This is also
known as a panning. As with moving an actor, a linear sliding to
the new position is performed. The author provides either a target
coordinate set or the name of an actor that is to become visible by the
panning. Panning can be regarded as moving the user’s eye over the
background picture.

• Playing a designated sound segment (a speech, an effect sound or some
music).

• Playing a video sequence in a separate window.

• Displaying a picture in the close-up window for an amount of time.
Displaying a picture can be seen as a special case of playing a video
sequence in which the video has only one frame in it and thus does not
move.

• Changing the posture of a character or object. The change can be
fading or animated. The author decides the duration. If a sudden
change is desired, a zero duration can be specified. Animation requires
that intermediate postures are provided.

• Making a character or object visible or invisible. Again, a fading can
be used, and the duration can be zero if desired.

When talking about the author above, this can refer to any persons involved
in the development of a multimedia program.

95

6.3 Concepts: story structure and require-

ments for tools

This section defines a model of elastic stories in multimedia as consisting of
the following concepts:

• An event (not related to a MacEnv event described in section 4.1.2)

• A thread or story line

• Parallelism

• Synchronization

– Inter-event synchronization, including a generalization

– Sub-event synchronization

– A resumption

– Intra-event synchronization

• A branching and a connection

– A fork (a kind of branching)

– A join (the corresponding kind of connection)

– A choice (another kind of branching)

– A merging (the corresponding kind of connection)

• Non-determinism

• A pause

The reader will notice that not all the elements of multimedia narratives
as found in the extended layer model have direct counterparts in the above
model. One should remember that many of the concepts in the extended
layer model, including for instance all the language issues, depend entirely
on the content of the presentation, and hence are the sole responsibility of
the author. Multimedia authoring tools should support the building of the
content that the author wants to create rather than giving direct support for
individual language issues. Therefore the latter are not explicit parts of the
model presented in this section.

96

6.3.1 An event

An event is a set of actions that are meant to happen at the same time.
Popularly speaking, an event is a way to order actions beside each other in
time. When an event happens, all the actions happen. They will normally
be executed simultaneously. (We shall see later that this is no requirement.)
Since actions take time, the execution of an event extends over some amount
of time.

Example: One line of a story can be represented by an event consisting of
two actions: moving the view to the character speaking so she or he is visible
(if she or he was not already), and at the same time playing the relevant
speech.

6.3.2 A thread

According to the extended layer model, a story is composed of sections and
sequences. Sequences are realized through threads, also called story lines. A
thread is a linear sequence of events and other threads making up a piece of a
story. It follows that threads can be nested. A system of nested threads can
model an arbitrarily deep hierarchy of sections, subsections and sequences.
A thread in which the events are lines10 may model a dialogue. Similarly,
the other scenic forms of presentation in the extended layer model can be
modelled by threads. Popularly speaking, a thread is a way to order events
after each other in time.

Example: If a coherent discourse in a story is not affected by interaction, it
will be naturally represented as one thread, one sequence of events.

6.3.3 Parallelism

It was noted in subsection 5.3.1 (page 80) that in interactive media, sections
need not be ordered linearly. To overcome linear ordering and to be able to
build interesting plots, an author may let several threads take place in paral-

10Lines or speeches or text. This chapter reserves ‘speech’ for describing the sound of a
line; therefore ‘lines’ is used here.

97

lel. Parallel threads form the antithesis to linear ordering in that the former
may exist with no ordering between them at all (the following subsections
will, however, present ways to introduce a degree of ordering).

Also in linear stories, sequences may happen in parallel in narrated time,
though they are usually told in some order in narrating time. In linear
stories, the author specifies the exact order of the sequences in narrating time,
the exact points where cutting occurs, etc. Specifying the story in parallel
threads relieves the author from having to specify when the switching (cross-
cutting) occurs; the system (often helped by user interaction) takes care of
this.

Examples: A story may switch back and forth between describing the actions
of the villain and the actions of the victim; actions that happen in parallel
until the two finally meet. By modelling the story as two parallel threads,
the author is relieved from specifying when the cross-cutting is to happen.

As a different example, in a multimedia system it may also simply be that
there is more than one story to tell. Let us assume there is a story to tell
about each of a set of the objects on the background. Each story may be
started when the object becomes visible in the window to the background
picture. When a number of stories have been started, they go on in parallel.

6.3.4 Synchronization

When dealing with parallel threads, the author will sometimes want to im-
pose weaker or stronger synchronization between the threads; in other cases
she or he will not want to synchronize them at all. In case synchronization is
needed, it may be done between events between actions from different events,
or inside one event. The three kinds of synchronization are described in the
next three subsections, where examples are also given. The different kinds
of synchronization can be combined in the same story.

6.3.5 Inter-event synchronization

Synchronization on the coarse level, between events, is called inter-event
synchronization. It should be possible to specify that an event only happens

98

after another specified event has happened, or only after a specified number
out of a set of specified events have happened.

Examples: The author may prohibit the villain from entering the victim’s
house until he or she has reached a certain point in her thread.

A good way to introduce abstract ideas is by means of examples. A multi-
media author may take advantage of this fact for instance in the following
way: After the user has met three examples of items that the Vikings bought
or sold (or both), the system may offer some general information on trade in
the Viking age. After four or five examples have been met, some more general
information may be added. In general, if a presentation contains a number
of examples of some general idea, the system may introduce the abstraction
explicitly after the user has met some of the examples. An event serving
this purpose is called a generalization. Inter-event synchronization makes
sure that the generalization is activated only after the specified number of
examples have been met.

6.3.6 Sub-event synchronization

It should be possible for the author to specify synchronization between ac-
tions of different events. In general, the author can specify classes of actions
that cannot occur concurrently; then the system should ensure that only one
action from each such class is executed at a time.

Examples: It may be desirable to avoid playing speeches from multiple con-
current events on top of each other, since the result could be incomprehensi-
ble. Sub-event synchronization could also be used to avoid playing two pieces
of music at the same time, since this would sound ugly. An author may for
instance specify that at any given time, at most one speech, at most one
piece of music, and any number of effect sounds can be played.

Also two or more actions moving the same object or character over the back-
ground should be synchronized using sub-event synchronization. (Moving
different objects can happen concurrently.) The same holds true for parings,
since the background cannot be paced in two different directions at the same
time.

99

6.3.7 A resumption

A way is needed to help the user to return mentally to a thread once it
has been delayed by sub-event or inter-event synchronization with events in
other parallel threads. This is done using a supplementary thread, called
a resumption; this is only executed if a certain amount of time has elapsed
after the previous event in the original thread. If no or little time has elapsed
(below some threshold), the resumption is skipped.

One may ask where to insert resumptions in threads. Having them every-
where is clearly impractical; for instance, there is hardly any point in having
resumptions inside resumptions. A first answer is that an author may insert
them where threads are interrupted in practice and the thread is not eas-
ily picked up after the interrupt. Subsection 11.1.1 discusses more radical
solutions to the question.

Example: Here is a simple dialogue that is coherent if told without interrupts:

A: How are your swords?

B: They are the best swords money can buy.

A: Where do you get them from?

B: We buy them in the Netherlands.

However, consider the case where other threads take over the user’s awareness
in the middle. In this case, two lines can be added to the dialogue using a
resumption, e.g., like this:

A: How are your swords?

B: They are the best swords money can buy.

(Twenty seconds of events from other threads, not related to swords)

A: Those swords . . .

B: Yes?

A: Where do vou get them from?

B: We buy them in the Netherlands.

100

6.3.8 Intra-event synchronization

The introduction of sub-event synchronization raises tne question: given that
one action of an event (say, the speech) is delayed by the sub-event synchro-
nization mechanism, should the other actions of the same event await it?
Ideally, the author should be allowed to specify whether she or he requires
all the actions to start at the same time or not. Such a requirement, if
specified, imposes synchronization on the fine level, inside one event. It is
therefore called intra-event synchronization.

Examples: In an event consisting of playing a speech and showing a close-up
of the object described by the speech, the author may not want the close-
up to appear before the speech starts. As a different example, in an event
consisting of panning to a person and playing a speech by that person, the
author may prefer that the panning starts as early as possible, even though
the speech may be delayed by sub-event synchronization with other speeches.

6.3.9 A branching

In subsection 5.3.1 on composition (page 80), it was noted that interactive
media often have other ordering schemes besides linear sequences. Thus, an
interactive story can branch in two ways. The two kinds of branching are
called a fork and a choice, respectively. They are described in the following
subsections, where examples are also given. After a branching, the resulting
threads may later meet again and be connected into one.

6.3.10 A fork

A fork is the kind of branching where one story line or thread of the story
branches into two or more parallel story lines or threads. You may say that
a fork is a kind of branching where all directions are taken.

Example: Consider the old story about the three sons who leave the home
in three different directions. In the beginning the sons are at home, and the
story is most conveniently told as one thread. At the point where they leave,
a branching happens into three threads.

101

6.3.11 A join

A join is the opposite of a fork; a set of specified parallel threads are merged
into one. The execution of the one thread after the join can only continue
when all the threads are completed up to the join. Popularly speaking, the
threads ‘wait for each other’. Note that since a set of threads can exist from
the start of a story, a join is possible between threads that do not stem from
a previous fork.

Examples: If the three sons mentioned in the previous subsection meet again,
a join happens. The remainder of the story cannot start until all three threads
have arrived at the join. As another example, when the villain and the victim
mentioned under parallelism meet, a join happens between threads that may
have been separate from the outset.

6.3.12 A choice

At a certain point, there is a set of possible directions the story can take.
Typically, the choice of direction will depend on user activity, for instance
whether some object in the interface is visible in the view or not. As was the
case with a fork, the branching may be described as one story line branching
into two or more. The difference is that the choice is the kind of branching
where exactly one direction is taken11. If exactly two threads result from a
choice, they can be talked about as alternative threads.

Example: Assume that the author has three different stories to tell about
three different objects located in different places in the background picture.
Also assume that one person occurs in all three stories, so that it is not
meaningful to tell more than one of them at a time. The author would
realize this by building the three stories into one that starts with a choice
among the three threads. The choice of thread could depend on which of the
three objects was (or first became) visible in the interface. In this way, the
user would effectively be allowed to decide.

11In an early example of an interactive story, ‘Dage med Diam’, the interaction is realised
by user-controlled choices. (This interactive story is published in a book, not in comput-
erized form.) Svend Åge Madsen: Dage med Diam eller Livet om natten. Gyldendal
1972.[78] (In Danish.)

102

6.3.13 A merging

After a choice, the threads may lead into completely different directions and
thus to different endings of the story. Alternatively, the choice may be local
and the story continue as one thread after a while. For the purpose of the
latter possibility, a merging is needed. As a middle ground, some of the
threads resulting from the choice may merge, while others stay separate. It
may also be that a merging between threads not stemming from a previous
choice could be meaningful. A merging is different from a join in that no
waiting takes place.

Examples: In the above example, the three threads may merge again in the
end and then return control to the choice at the beginning, realizing a loop
where one of the stories is told in each cycle.

As a different example, say that the plot of a story (or just the plot of one
of the threads of the story) requires that a person gets killed, but it does
not matter whether he or she gets shot or stabbed. If both versions are
interesting, the author may provide a choice between them. After the person
is killed, the two resulting threads are merged back into one, so the story can
go on in the same way in both cases.

6.3.14 Non-determinism

To enhance the non-linearity of interactive media discussed earlier, the author
may make a choice non-deterministic. Using non-deterministic branching, if
a story is told more than once, the outcome may be different, even if user
actions are the same every time. A random choice realizes this.

Examples: In the above loop, say that two of the three relevant objects can be
visible at the same time. Then there would be two threads to choose from. A
random choice can solve the conflict. As another example, in Wodan’s Eye,
a multimedia system in the Viking age museum in Ribe12, variants of the

12Wodan’s Eye is a multimedia system recently installed in the Viking age museum in
Ribe, Denmark. The Wodan’s Eye project is described in two reports: Helle Juel An-
dersson, Lars Andersen, Berit Holmqvist, Bjørn Laursen, Peter Bøgh Andersen & Stig
Jensen: Ødins 0je. Rapport 1. Department of Information and Media Science, Aarhus
University and The Antiquarian Collection in Ribe. (Undated, approximately 1993.)[13]

103

same story are built using choices and subsequent mergings. A person may
for instance choose to accept or reject Christianity in different variants of
the same story. Non-determinism may be a way to choose different variants
each time the story is told.

6.3.15 A pause

A pause in a thread can encourage user activity. The first time the user sees
an object, something is told about it, but not all there is to tell. Every time
the user returns and looks at the object, new information is given13. A way
is needed to specify that an event in a thread can only take place after some
interface object has been invisible and becomes visible.

A pause can also be less than this, by only waiting for an object to be visible
or invisible. More precisely, three kinds of pauses exist:

1. A pause that blocks a thread until some object has been invisible and
becomes visible. ‘Visible’ means inside the user’s view of the back-
ground.

2. A pause that blocks a thread until some object is invisible. If it is
already invisible, no blocking happens.

3. A pause that blocks a thread until some object is visible. If the object
is already visible, no blocking happens.

A pause of the first kind is equivalent to the sequence of one pause of the
second kind and one of the third kind. Since the first kind is expected to be
the common one, it is convenient to regard this as one pause, not two.

Example: In the above loop, one of the threads may be concerned with some
swords visible in a Viking ship. To encourage the user to explore other parts

Helle Juel Andersson, Lars Andersen, Berit Holmqvist, Bjørn Laursen, Peter Bøgh An-
dersen, Stig Jensen, Thomas Østergaard, Evert B. Hassink & Steffen Sacher: Odins Øje.
Rapport 2. Department of Information and Media Science, Aarhus University and The
Antiquarian Collection in Ribe. (Undated, approximately 1994.) [14](The reports contain
contributions in Swedish, Danish and English.)

13Peter Bøgh Andersen, Jens W. Johansen, Jakob A. Mikkelsen & Morten Sams,[10]
previously referenced work.

104

of the ship too, the sword story may only continue if the user moves away
from the swords and back at intervals dictated by the author. More precisely,
the author inserts pauses at specific points in the thread. Events after a pause
may add to and elaborate on information given before the pause.

6.4 Discussion and summary

6.4.1 Comparison with programming terms

For a reader with a background in programming, a comparison with pro-
gramming language concepts may clarify some of the concepts defined in the
previous subsections, or just reassure the reader that he or she has under-
stood them the way they are intended.

You may say that an event corresponds to a statement in a computer pro-
gram. A story line or thread corresponds to a subroutine containing a se-
quence of statements in an ordinary program. Having threads inside other
threads is a kind of modularization. Parallelism is the same as in concur-
rent programming. There is however one difference: In most concurrent
programming languages, there is only one thread executing from the start.
An interactive story can conceptually contain a set of threads all active from
the start. A fork and a join are similar to respectively a fork and a join in
a parallel program14. A choice is like a case branching in a programming
language. Thus, conditional execution is possible using a choice between one
non-empty and one empty thread.

6.4.2 Summary

This chapter first presented the concept of an elastic story. It then presented
the style of user interface for elastic stories that will be used in the work
in this and the following chapters. The greater part of the chapter was the
definition of a set of concepts making up a model of elastic stories in the

14See for instance David A. Watt [112] (with contributions by Willis Findlay and John
Hughes): Programking Language Concepts and Paradigms. Prentice Hall. Chapter nine:
Concurrency, by William Findlay. Page 170.

105

described interface. This model is based on three pillars: the extended layer
model from the previous chapter, the idea of elastic stories, and the user
interface.

106

Chapter 7

Elastic Stories in Petri Nets

This chapter develops translations of the concepts from the previous chap-
ter into Petri net representations. The reader will remember that chapter
6 developed a set of concepts to cover elastic stories in a certain style of
multimedia user interface. That set of concepts relied on the user interface,
on the idea of an elastic story and on the extended layer model, as applied
to non-textual stories in chapter 5. The purpose of translating to Petri nets
is two-fold: to give a more precise semantics of the concepts and to present
the idea that Petri nets are well suited for implementing them. The former is
done here. Complete implementation, however, requires an underlying sys-
tem that executes the Petri net, including handling the multimedia interface.
Today programs exist that can execute Petri nets; but they do not have mul-
timedia capabilities. This chapter demonstrates how to uses the program
Design/CPN from Meta Software to implement and run elastic stories using
Coloured Petri Nets (CPN), but currently without multimedia. Design/CPN
also has limited facilities for input. It is hoped that these limitations will
be removed in the future. No problems are foreseen in developing Petri nets
programs that can handle a multimedia user interface required to realize the
ideas developed in this chapter.

This chapter and the next assume familiarity with Coloured Petri Nets at
least corresponding to chapters 1 and 6 in the first volume of Kurt Jensen’s
work ‘Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical

107

Use.’1

In some cases, the translation of a concept to a Petri nets is straightforward
and therefore presented in a terse manner. Other cases need a more detailed
explanation.

The presentation is illustrated by examples of Petri nets throughout In those
examples, the nets look as they would in a real situation, except that guards
and code regions are most often given in pseudo-code. For implementation
using Design/CPN, the guards and code regions would have to be written in
CPN/ML, an extension to Standard ML.

Many of the concepts do not require that the Petri nets used are Coloured
Petri Nets. In other words, most of the tokens, places and arcs in the nets
have type unit, the type of the token that carries no data (the ‘plain’ or
‘colourless’ token, popularly speaking). In the Petri net diagrams shown in
this chapter, arc inscriptions that evaluate to one token of type unit will be
left out.

In the Petri nets, ML functions are used freely in code regions, guards and arc
expressions. Some of these functions are not functions in the mathematical
sense of the word, yielding at most one output for a given input (e.g., ML
functions that deal with the user interface or real time). This means that the
nets do not satisfy the formal definition of Petri net2. This is not a problem
since the intention of using Petri nets is not the application of the formal
analysis tools offered by formal Petri nets.

The concepts will be presented in a bottom-up order, starting with an action
and event. The rest of the concepts will be presented in the same order as
in the previous chapter, except that intra-event synchronization is presented
before resumptions.

1Kurt Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume I: Basic Concepts. EATCS Monographs on Theoretical Computer Science.
Springer-Verlag 1992[62].

2E.g., Kurt Jensen, [62], pages 70 and 107-108.

108

7.1 An action

Two transitions in a Petri net are used for dealing with an action: one for
starting it, and one marking its termination. The figure on the next page
shows the scheme.

A token on the place ‘Playing’ in the middle represents the action being
executed. The transaction starting the action puts a token on the place.
It has a code region with some code to initiate the execution of the action.
The transaction representing the termination of the action removes the token
again. It has a guard attached to it preventing it from firing before the action
is finished.

There is a deliberate asymmetry in the scheme: the code in the transition
starting the action is in a code region, while the code of the transition rep-
resenting its termination is in a guard. This is due to the conditions: the
net controls when the action starts. It does not control its duration, hence
not when it stops (in which case a code region with a stop-playing statement
would have been required).

Figure 7.1: Executing an action, e.g., playing a sound, is done using two
transitions with a place between them in the Petri net.3

3The program Design/CPN has been used to produce the Petri net diagrams used as
figures in chapters 7–9 and appendix A. Colour sets are left out from the diagrams; it
should be possible to infer them from the context. Hence, the topmost place in this figure
has a colour set of sound names, while the other places have type unit. As mentioned,
where no arc inscriptions are present, one token from the colour set unit is assumed.

109

Often the transition starting the action, and possibly sometimes the one
representing its termination, will need some data about the action, e.g., the
name of the sound to be played, or the name of the actor to be moved and
its new co-ordinates. The author provides such data as colours on a token
on a separate place. In the figure the topmost place is used for this. The
data is given in the form of an initial marking of that place. The initial
marking shown in the figure could be the name of a speech. me transaction
starting the action takes the coloured token and returns it to the same place
for future use. In case the termination transition needs data, it is passed on
the token on the Playing place.

Section 7.6 will elaborate on the implementation just given of an action.

7.2 An event

The behaviour of an event is described on a separate subpage in a hierarchical
Petri net. The subpage contains representations of the actions contained in
the event. Since the actions are to be executed in parallel, a transition
(labelled ‘Distribute’ in the figure) distributes one token to each action. In
the end, one transition (labelled ‘Collect’) takes the tokens coming out of
each transaction and marks the conclusion of the entire event. An example
is shown on the next page.

Often the author will want the actions of the event to be synchronized. Sec-
tion 7.7 will introduce intra-event synchronization into the implementation
of an event just shown.

110

Figure 7.2: An event consisting of three actions: playing a speech (top),
panning to person A (middle) and a showing a close-up picture (bottom).4

4In the figure it is assumed that the close-up picture shown, like the other actions, has
a built-in duration, so it makes sense to test whether it is ‘done’. This conforms with the
earlier note that showing a picture can be seen as a special case of showing a digital video,
which obviously has a duration. In case the assumption breaks, the author will have to
specify a duration for which to show the picture. This is done in two steps: (1) The guard
is changed from [done showing] to a condition specifying that the appropriate time has
elapsed. This involves using the tod() function to generate a ‘time stamp’ on the token
placed on the place ‘Showing close-up’. The tod() function Ed time stamps are presented
in section 7.8. (2) A code region is added to the same transition to actively close (hide)
the picture.

111

7.3 A thread

A thread is represented by a linear sequence of sub-pages, separated by places,
as shown in the topmost figure on the next page5 This marking is not present
if the thread is part of another thread. The label ‘HS’ (hierarchy substitu-
tion). Each subpage can be an event, as described above, or contain its own
thread. In the example in figure 7.3, the underlined text W under the first
place denotes the initial marking of the net: one token is placed on that place
so the thread executes from the start.6 under each box means that the box
stands for a subpage rather than a transition.

Figure 7.3: A thread is represented by a linear sequence of sub-pages.

7.4 Parallelism

Parallel threads are represented by different sequences of events. If no syn-
chronization is required, the threads are completely independent:

5Throughout the chapter, threads are drawn with thick lies, everything else with thin
lines.

6W is really a shorthand for 1‘W: the multiset having exactly one element, W, in it.
The declaration color E = with W is assumed, that is, W denotes a token of type unit.

112

Figure 7.4: Three parallel threads.

Most often in a practical situation, each thread would be drawn on its own
page (often a prime page), to enhance modularity.

7.5 Inter-event synchronization

This section describes how to implement inter-event synchronization, includ-
ing generalizations.

As an introduction, an over-simplified solution to inter-event synchronization
is given first in the figure on the previous page: a place is inserted between
the two events to be synchronized. The event to occur first puts a token
on that place. The event to occur afterwards takes the token and puts it
back. In this way, if the thread containing the second event is executed more
than once, it is still recorded that the first event has happened, so the thread
can continue. The inserted place is called a synchronization place in the
following. Intuitively, one might expect this solution to be sufficient: as long

113

as there is no token on the inserted place, the second event cannot occur.

Figure 7.5: The intuitive idea used for inter-event synchronization: a syn-
chronization place is inserted between events A and B so that event B can
only occur after event A has occurred. The idea is further developed in
figures 7.6–7.8.

A number of changes are made to the scheme. The scheme would require
changes to be made inside events A and B. To avoid this, extra transitions
are inserted. One transition is inserted after event A to put a token on the
synchronization place. To avoid blurring the picture of the original thread
with these synchronization details, event A and the inserted transition are
moved to a separate subpage (called A’ in figure 7.6 and shown in figure 7.7).
Similarly, on a separate subpage B’, a transition is inserted before event B to
inspect the token on the synchronization place. Finally, the synchronization
place is replaced by a global fusion set. This makes the same conceptual
place accessible from within both subpages A’ and B’. In figures 7.7 and 7.8,
the members of the fusion set are marked FG for ‘fusion global’.

114

Figure 7.6: Inter-event synchronization: In the original threads, the events
A and B are replaced by subpages A’ and B’. The contents of A’ and B’ are
shown in figures 7.7 and 7.8, respectively.

Figure 7.7: The contents of A’ from figure 7.6: after event A a transition is
inserted that puts a token on the synchronization place. The synchronization
place is a a global fusion place (ABSynch in the example).

In case the author will not allow B to happen more than once after A has
occurred only once, the transition preceding B can ‘keep’ the token instead
of returning it to the synchronization place ABSynch, as shown in figure 7.9.

115

Figure 7.8: The contents of B’ from figure 7.6: a transition inserted before
B takes a token from the synchronization place. If no token is present, the
thread is blocked.

This option represents a higher degree of flexibility in the Petri net than in
the concept of synchronization as presented earlier.

Figure 7.9: Alterna-
tive contents of B’
which only allows B to
occur once after each
time A has occurred.

It may be obvious that if a number of events (say,
B1, B2, and B3) are each allowed to occur after A has
occurred, each of them can be handled as B in the
foregoing. The case where B is only allowed to hap-
pen after a number of other events (say, A1, A2 and
A3) have all occurred is treated as a generalization,
see below. If B is allowed after some event(s), and
some event(s) are only allowed after textsfB, transi-
tions should be inserted both before and after B in
B’, to handle all the synchronization.

7.5.1 A generalization

The solution to a generalization is presented in the
two figures 7.10 and 7.11. The idea is the same as
used for other interevent synchronization above: a
global fusion place is used for the synchronization.

116

Figure 7.10: Each example used in a generalization is moved to a separate
subpage on which it is succeeded by a transition that places a coloured token
on the synchronization place, the colour representing the example that has
just been presented.

Each example is handled in the same manner as the event A above, with one
difference: a coloured token is placed on the synchronization place (g in the
figures), each example using a unique colour. The synchronization place has
the colour set

color allExamples = int with 1..max declare ms;

The ‘declare ms’ in the declaration has the effect of creating a multiset with
the same name as the colour set, having one instance of each colour in it.
Each generalization takes a multiset of tokens from that place, as shown in
figure 7.11. A generalization to occur after, say, two examples is given this
guard [requireDiff 2 ex] where ex is the multiset of tokens taken from the
synchronization place and the function requireDiff is declared like this:

fun requireDiff n ex = (size ex >= n)

andalso (ex <<= allExamples);

<<= denotes the subset relation between multisets. The guard given above
ensures that the generalization only happens if ex has at least two elements

117

Figure 7.11: A generalization G1 over a number of examples can only be
triggered after at least two of the examples have occurred, its continuation
G2 not until three of them have. The generalization is an example of inter-
event synchronization.

in it and the elements are different, and hence two different examples have
occurred. Similarly, the second generalization in the figure (G2) needs a
multiset with at least three different elements.

The scheme obviously generalizes to any number of subsequent generaliza-
tions (not only two as shown here).

At any time, the place g contains as many tokens of each colour as there
have occurred instances of the corresponding examples. This is ensured by
connecting an arc from the transition inserted after each example to a place
in the same fusion set. A transition before each generalization takes from g
a multiset of different tokens corresponding to the number of examples the

118

Figure 7.12: Generalizations G1 and G2 can occur in any order.7

author requires before triggering that generalization. It returns the same
multiset to g.8

If the order of generalizations is of no significance, they need not be part of
the same thread, as they were in figure 7.11. The diagram in the figure on
the previous page shows how the thread can be split.

An ML programmer will of course be able to specify other and more complex
conditions on the set of examples to occur before a given generalization.
This might be useful, for instance if some of the examples say more than
others. As a different example, if the author assumes that repetition promotes
understanding, he or she may not want to require that the examples be all
different. In that case, he or she can change the guards on generalizations
to [size ex >= n], where n is the number of examples required. The result is
that each example is counted as many times as it has occurred.

7In figure 7.12 G2 can occur before G1, since it is not guaranteed that G1 will happen
immediately once there are two different tokens on the place g.

8Returning the tokens is only necessary in the case of more than one generalization using
the same place, as in figure 7.11. However, for the sake of modifiability, it is recommended
to make it a habit to do so.

119

7.6 Sub-event synchronization

Figure 7.13: A ‘speak module’. A fusion place with initially one token on it
ensures that only one speech is played at a time.

To prevent more than one speech from playing at a time, the action handling
scheme presented in section 7.1 and figure 7.1 is extended as shown in the
next figure. The ‘speak module’ plays the role of a monitor in concurrent
programming. It is conveniently located on its own page, as indicated by
the port nodes to the left and right in the figure. The speak module would
be used as shown in figure 7.14. In figure 7.13, the idea is that a global
fusion set NotSpeak contains one tokeninitially, representing that no one is
speaking. Metaphorically, one can imagine a resource, a single speech channel
represented by a token. One can then think of the place as the shelf where
the speech channel belongs when not in use. To play a speech, the module
takes that token (the speech channel resource) and moves it onto the place
‘Speaking’, thus ensuring that no one else can start speaking. On completion
of the speech, the token is returned, thus allowing another speech to start.
For the time being, the NotSpeak fusion set could be a page fusion set. We
shall see in the next section why a global fusion set is preferable. (The place
‘Speaking’ is not technically necessary, but is included for readability and
consistence with the metaphor.)

120

Figure 7.14: Use of the speak
module in figure 7.13 from within
an event is straightforward. The
name of the speech is provided as
the colour of the token on the top
place.

To indicate which speech is to be played,
the author provides on a separate place
a token the colour of which is the name
of the sound (e.g., file name, as a text
string).

The author builds a duplicate of the
speak module for each class of actions
that should not or cannot happen simul-
taneously (music playing, panning, ac-
tor movement, etc.). The modules work
independently, so actions using different
modules (e.g., a speech and a piece of
music) can play simultaneously. Actions
that use the same module cannot (e.g.,
two pieces of music). For actions not in-
volved in sub-event synchronization (e.g., effect sounds) the scheme in figure
7.1 is used unaltered, which will allow more than one such action to happen
at a time.

7.7 Intra-event synchronization

Ensuring that a set of actions are executed at the same time requires one
transition with a code region that starts all the actions. In figure 7.15 on
the next page is depicted an event with three synchronized actions: one is
playing a speech, one is panning and one shows a close-up. In this example,
all three actions are made to happen at the same time. The principle could
also be used to synchronize only some of the actions in the same event. The
author can even build groups of actions, where actions in the same group
are synchronized with each other, but not with actions in other groups or
outside the groups. This is done with one starting transition for each group
plus one starting transition for each action not belonging to a group.

It should be mentioned that there is no guarantee against starvation. Say
that some events in the system pan, but do not speak, while others speak,
but do not pan. A combination of such events may keep the event shown
here from ever starting execution. In an elastic story, this is probably no big

121

Figure 7.15: An event with intra-event synchronization. The code region of
a single transition starts all the actions.

problem, assuming that the events that do get executed are also interesting
for the user.

In the figure, there is no ‘dispatcher’ transition distributing tokens to each
action, corresponding to the distribute transition of figure 7.2 (page 111).
When all actions are synchronized to start simultaneously, that transition
would have no job to do and is therefore omitted. The collect transition
(taking the token coming out of each action and marking the conclusion of
the entire event) is still present.

122

7.8 A resumption

The way to build a resumption in Petri nets differs slightly depending on
whether the purpose is modelling or execution. In this section it is assumed
that the purpose is the implementation of the elastic story in a computer
system.

The next figure shows how a resumption is built into a thread. The example
is the one given in subsection 6.3.7. The resumption starts and ends on the
place in the original thread where the resumption is needed.

Figure 7.16: The flow of a resumption. The resumption (the two events to
the right) is only executed when needed.

In this way, the thread can be executed with or without the resumption,
depending on the time constraints described in subsection 6.3.7. In the ex-
ample, a threshold of 15 seconds is chosen. The author can substitute any

123

positive number instead of 15.

The resumption brings into the narrative an element of real time; it is acti-
vated when some amount of real time elapses without the thread advancing.
To deal with real time, the function tod in CPN ML is used. tod (abbre-
viation of ‘time of day’) returns the number of seconds elapsed since 0.00
GMT January 1, 1970, according to the operating system clock on the host
computer.9 (The inaccuracy arising from the fact that only whole seconds
are counted, is probably acceptable.)

One use of tod is to produce on the place r a token with a ‘time stamp’: a
token the colour of which is a time value (an integer) denoting the time when
the token was produced by a transition, i.e. the time when the previous event
was completed (‘They . . . ’ in the example).

Most of the arc inscriptions in the figure are on arcs connected to substitution
transitions. Such inscriptions have no formal semantics. To have effect, they
are assigned to the corresponding arcs on the subpages (from and to port
nodes). They are only repeated for readability here on the page containing
the substitution transitions.

The way to ensure that the first event of the resumption is only executed
if the specified number of seconds have elapsed, is shown in figure 7.16: a
transition with a guard requiring the time now to be greater than 15 seconds
after the completion of the previous event. It is worth noting that with
Design/CPN, a guard is only evaluated when the content of an input place
is changed, i.e. not necessarily immediately before the transition fires. If
the guard evaluates to true, there is no problem; more time elapsing before
the transition fires will not make the guard false, i.e. the transition can only
fire when it should. However, if the guard evaluates to false (a probable
outcome immediately after the preceding event), the lack of re-evaluation
might prevent the transition from firing even after so much time has elapsed
that the guard is true. The solution to this problem will be presented shortly.

9Readers who know about Petri nets with time may wonder if these are not the solution.
For implementation purposes they are not, since there is no correspondence between real
time and the model time (or simulated time) used in Petri nets with time. For specification,
Petri nets with time lack the possibility of stating that a transition must fire before a
certain time (if at all). For specification, the Hierarchical Time Stream Petri Net formalism
is a good candidate; see section 9.3, from page 163.

124

To ensure that the first transition after the resumption (‘Where . . . ’ in the
example) is only executed if within the time threshold, a more complicated
construction is necessary. It would not suffice to insert a transition with the
guard [tod() < t+l5] (the logical negation of the guard used before), for two
reasons:

1. As just mentioned, a guard is only evaluated when the content of an
input place is changed. The guard is likely to evaluate to true, after
which arbitrarily long time can pass before the transition fires.

2. After the firing of the guarded transition, arbitrarily long time can
elapse before the event ‘Where . . . ’ happens.

Instead, the problem is solved inside the first event after the resumption
(‘Where . . . ’). Figure 7.17 shows a possible implementation of ‘Where . . . ’.

Figure 7.17: The first event after the resumption. If the time now is more
than a specified amount (here 15 seconds) later than the time when the
previous event was completed, the time stamped token is returned to the
place r and nothing else happens.

In the figure, t is a time value, n is the name of a speech, and p designates
an object in the background picture: the object to be made visible by the
panning. The output arcs of the first transition (here the Distribute transi-
tion) have inscriptions. In case the event can start (the time now is within 15
seconds from the previous event), the Distribute transition behaves exactly

125

as described earlier: it delivers tokens to its output places to the right of it.
In the opposite case (too long time has elapsed), it does not deliver any to-
kens to the rest of the event, but instead returns the input token to the place
r without changing the time stamp. This in turn provokes a re-evaluation
of the resumption’s guard [tod() >= t+15], which now evaluates to true,
so the resumption can be executed instead.10 Strictly speaking, the solu-
tion presented so far does not guarantee that the user experiences the event
starting within 15 seconds from either the previous event or the resumption.
This is so because some time may elapse after the Distribute transition has
fired before the speech or panning starts. The solution to this problem is
the application of intra-event synchronization as presented in the previous
section. Thus the transition starting all the actions in figure 7.15 is to be
modified so that if too much time has elapsed, it does nothing except return
the time stamped token to the input place. This is a little more tricky than
with the Distribute transition because this transition also has other input
arcs. The code region cannot directly calculate the inputs, since it would
then be impossible to determine whether the transition was enabled before it
had fired. Instead, the n1, p and n2 arcs can be left unchanged, since taking
a token and putting it back does no harm. For the tokens from the places
NotSpeak and NotPan, these are taken unconditionally, but arcs are added
to put them back on the same places if too much time has elapsed. The if
statement in the code region calculates the output on these extra arcs. In
this way, it is ensured that it is consistent both with the other output arcs
and with any action of the transition. If not too much time has elapsed, to-
kens are delivered to the places Speaking and Panning as before. The above
implementation may loop. If the token returned after the resumption grows
more than 15 seconds old, the resumption will be executed again. This may
be desirable to some extent, but probably not indefinitely. The looping could
easily be avoided by a small change in the scheme. The cost would be that
more than 15 seconds might elapse between the completion of the last event
of the resumption and the begin-ning of the following event (‘Where . . . ’),
in which case the point in having the resumption would be partially missed.
Therefore, the possibility of looping is preferred. The looping reflects a real-
istic dialogue: a person may repeatedly try to return to a subject, but never

10It would have been safer and more readable to have the Distribute transition calculate
all its outputs in a code region rather than on each output arc separately. In this case,
the if statement would occur only once instead of three times.

126

succeed for long enough for the treatment of that subject to continue.

7.9 A fork

Figure 7.18: A fork is real-
ized by two or more output
arcs from a transition.

A fork is realized by a transition with two or
more output arcs from it. When firing, the
transition produces two or more tokens, one
for each thread active after the fork. See the
figure to the left.

The fork transition plays a role quite similar to
the initial ‘distribute’ transition of an event.

7.10 A join

Figure 7.19: A join: two
or more input arcs to a
transition.

Perhaps not surprisingly, a join is realized by a
transition with more than one input arc to it, as
shown to the right.

Since the transition cannot fire until there is a
token on each input place, the resulting thread
(under the transition in the figure) does not con-
tinue until all threads are complete up to the join.
The threads ‘wait for each other’.

The join transition has a role similar to the final
‘collect’ transition of an event.

127

7.11 A choice and a merging

A choice and a merging are established by connecting more than one output
and input arc respectively, to a place. Extra transitions are added to the
choice to carry guards. The figure below shows a choice (top) and a merging
(bottom). The choice depicted is the one from the example in subsection
6.3.12.

Figure 7.20: A choice and a subsequent merging. A choice, as opposed to
a fork, is realized by several output arcs from a place. A similar difference
exists between a join and a merging.

If exactly one of the guards is true, that determines which thread is chosen.
So if the author wants a deterministic choice, she or he will obviously have to
construct the guards in a way so that only one is true at a time. If none of

128

the guarded transitions are enabled (none of the guards are true) the story
will not continue until one of the guards becomes true. If the author wants
to avoid such blocking, she or he will make sure that there is always one true
guard.11

If only one thread leads to the place c in figure 7.20, and that thread is only
executed once, only one token ends up on the place. Once one of the threads
leading on from the place starts executing, that token is taken. It is thereby
ensured that only one of the threads is chosen.

If all the threads resulting from the choice are eventually merged (as in the
example in figure 7.20), and execution is not blocked forever at a point in
the chosen thread, exactly one token will eventually reach the merging place
(m in the figure).12

All the threads need not be involved in the subsequent merging. There may
be no merging at all; or only some of the threads may be merged; or there
may be a number of subsequent mergings, gradually merging some or all the
threads into one. Figure 7.21 shows a different example from the previous
one. (Guards are given as ‘[G11]’, etc.)

7.12 Non-determinism

It should be clear from the previous section that a non-deterministic choice
is one where more than one guard can be true at a time. In that case, the
Petri net formalism does not define which of the transitions will fire. The
Design/CPN program used in the experiments described in chapter 8 makes
a choice at random in such situations.

11An obvious way to ensure this will be to include an ‘otherwise’ guard: one that is the
negation of the disjunction of the other guards, e.g. [not (go orelse g2 orelse g3)].

12This argument depends on the events behaving according to their definition. It is
possible to build a Petri net where the argument does not hold.

129

Figure 7.21: Two choices and two mergings.

7.13 A pause

A pause of the kind that blocks a thread until some object has been invisible
and becomes visible, is realized by two subsequent transitions with logically
opposite guards. See the figure. The example shown is taken from subsection
6.3.15.

A pause that waits for an object to become invisible or visible consists of
only one of the two transitions shown in the figure.

130

Figure 7.22: A pause is two guarded transitions.

7.14 Conclusion

This chapter has presented the Petri net descriptions of the concepts de-
veloped in the previous chapter as a model of elastic multimedia stories.
Most of the concepts have very simple and straightforward Petri net im-
plementations: an event, a thread, parallelism, a fork, a join, a choice, a
merging, non-determinism and a pause. The implementations of an action
and the different kinds of synchronization are slightly less simple, yet still
not complicated. Only the implementation of a resumption turned out to be
awkward.

The representations of some of the concepts, especially the resumption but
the intra-event synchronization too, are probably so complicated that most
multimedia authors with no background in programming will not want to deal
with them. At the same time, all the concepts (including the basic structure
of a resumption on the top-most level) are probably simple enough that many
multimedia authors will not have any considerable difficulty learning to work
with them, as long as they are not required to work out all the details.

To conclude, Petri nets have proven well suited for describing the concepts
developed in the previous chapter as a model of elastic multimedia stories.

In the introduction (chapter 1), two ways to go from here were mentioned:

1. Petri nets may be used in an informal way in a multimedia project and
a Petri net programmer be hired to formalize and refine them into nets
that work as the formal descriptions Petri nets are intended to be.

2. A syntactic layer may be defined on top of the Petri nets that is easier
to use and specifically targeted towards describing elastic stories. In
this case, the Petri net constructs given in this chapter can be used to
give a precise semantics for the new syntactic layer.

131

Considering the foregoing, both of these look promising.

This chapter has concluded the theoretical part of the work on story telling.
In chapters 5 through 7, four models of stories have been presented, each one
building on the previous one:

1. The extended layer model of a story forms the basis of chapter 5.

2. In the presentation of the extended layer model in chapter 5, it was dis-
cussed how it applies or can be modified to apply to non-textual stories,
especially elastic and other interactive stories in computer-based multi-
media. This implicitly described what can be called the extended layer
model for interactive computer-based multimedia.

3. Based on and inspired in part by the extended layer model for interac-
tive computer-based multimedia, a model of elastic stories in computer-
based multimedia, in the form of a set of concepts covering such stories,
was developed and presented in chapter 6.

4. Finally, here in chapter 7 it was shown how an elastic story described in
this model could be modelled in Petri nets. This means that (a subset
of) the Petri net formalism can be a model of elastic stories.

The next chapter presents some empirical work; it will build and run small
elastic stories in Petri nets using the implementations developed in this chap-
ter.

132

Chapter 8

Experiments with Elastic
Stories in Coloured Petri Nets

This chapter presents the experiments conducted with Coloured Petri Nets
for elastic story telling.

The purposes of the experiments are:

1. To demonstrate that Petri nets used for interactive story telling work
as described in the previous chapter.

2. To gain a first experience with building interactive stories in Petri nets.
To find out how well and how naturally they support the process.

3. To further evaluate the need for a syntactic (‘sugar’) layer on top of
the Petri nets.

Three stories are described in Petri nets in this chapter:

1. A narrative from Wodan’s Eye1, called ‘Kristendom’ (Christianity).
This narrative illustrates and tests the use of a thread, a choice and a
merging, and non-determinism.

1For references on the Wodan’s Eye project, see footnote 13 on page 103,

133

2. A narrative inspired by Wodan’s Eye, called ‘Swords, Iron and Mill-
stones’. This narrative uses parallelism, fork and join, a pause and a
generalization.

3. A second version of the same narrative, including only swords and iron,
to investigate the use of the three different kinds of synchronization.

In the next section, some general information is given about the setting
in which the experiments were carried out. After that, each experiment is
given its own section. With the first experiment, a summary of the process of
building the Petri net is given, along with some observations about how the
tools supported the process. With the following stories, such observations are
only made where they contribute something new. A final section discusses
what can be learnt from the experiments.

8.1 Setting

The program Design/CPN for Macintosh computers has been used for the
experiments. Design/CPN supports the construction, modification, syntax
check, interactive and automatic simulation, and formal analysis of Coloured
Petri Nets. All except the formal analysis tools in Design/CPN are used in
the experiments.

Design/CPN has the graphics capabilities needed for Petri nets. Unfortu-
nately, it does not have multimedia capabilities. Therefore, all output from
the experiments is text. Also, because of Design/CPN’s limited interaction
capabilities, the user input has a different format from the description in
section 6.2 on user interface (pages 93–94). With each experiment, ways of
overcoming the limitations are discussed, so the experiments are valuable
despite the altered user interface.

134

8.2 Thread, choice, merging and non-determi-

nism

This section describes how a narrative named ‘Kristendom’ from the Wodan’s
Eye project was transformed into a Coloured Petri Net, and the results of
that experiment.

8.2.1 The story

The narrative is taken from a draft written by Helle Juel Andersson. The
draft was made available in the form of a word processor document with
up to four text columns to describe up to four alternative threads in the
story. The printed pages of the document were glued together into a 70
centimetres long piece to make the overall linear structure of the narrative
clearer. The story is in Danish.2 The corresponding Coloured Petri Net and
sample output from it are shown in appendix A, pages 221–225.

A summary of the story will be given. Torsten is the main character. At the
beginning of the story, king Harold Bluetooth orders the Danes to become
Christians. After a choice, Torsten either rejects Christianity in one thread,
or accepts it in the other. If he rejects Christianity, he fights king Harold,
either in an open fight or by trying to kill him in a fire (new choice). In either
case he fails, and is sentenced at the thingstead (moot) to be either executed
or outlawed. If Torsten accepts Christianity, he chooses between marking by
the sign of the cross (a precursor for baptism) and baptism proper. The two
threads from the last choice merge, and Snorri tells about the law imposed by
the king. In the end, all the threads merge, and Snorri talks about outlawry.

8.2.2 Input and output

This subsection discusses how input and output were designed to ensure full
value of the experiment in spite of them being different from their planned

2Since the draft is written in old Danish to resemble the way people talked in the Viking
age, an attempt to give it a fair interpretation in English was given up early. However,
appendix A gives a translation into English of the output from the net.

135

format in the multimedia system.

In the imagined multimedia system, user input to the story would consist
of panning over the background picture, which makes different persons and
objects visible and invisible, possibly combined with moving persons and
objects, for instance to make persons meet each other. User actions can occur
in parallel with transitions in the Petri net. Design/CPN does not support
this style of input. Fortunately, a more primitive fashion was found to be
sufficient for the experiment. On a page, ellipses are drawn that represent
the characters of the story. At user-controlled choices, the thread brings the
window containing this page forward and awaits the user selecting (clicking
on) one of the ellipses. The guards in the branching test which character
(ellipse) was selected. The idea is that selecting a character corresponds
to stating that the character would be visible in the planned multimedia
interface (possibly together with other characters). This gives the user as
much control over the story as the multimedia version would. The exact
conditions (guards) used with choices were invented for the experiment, since
they were not given in the draft.

Output from the narrative consists mainly of lines. In a multimedia system,
these should be played as sound, possibly combined with other effects, for
example as discussed in subsection 6.3.1 page 97. For the experiment, pure
text output is chosen. Before the story starts, the Petri net creates a new
net page containing a text field for the output. (This allows the output from
several runs to be easily compared.) Each event in the story (line or other
event) is represented by a single transition appending an appropriate text
line to the text field on the designated page. The text is scrolled so that the
newly appended text always appears at the bottom of the page. In this way,
it is easy for the user to follow the story in the text field. Representing each
event by a single transition rather than a subpage implies that the execution
of each event does not take any considerable duration. Since the subject
of this experiment is the higher-level concepts of the thread, the choice and
the merging and non-determinism, this limitation has no implications for
the value of the experiment. In a few cases, the text output was combined
with a panning to and marking of characters speaking in the input window3.
However, this was hardly noticed because the text field was much more con-

3This was done using the ShowActor function declared at the bottom of the global
declaration node shown on page 209.

136

spicuous. (The fact that Design/CPN blinks the text field at each change
probably contributed to this.) Furthermore, marking the character speaking
only repeated information already given in the text rather than adding some-
thing new. It was found that this extra feature added only little to the value
of the experiment. In any case, it constituted a poor substitute for the true
multimedia user interface described earlier. Therefore, it was not explored
further.

8.2.3 The process

It was noted that the structure of the story was evident from the draft. It
was clear that the Petri net would directly reflect this structure. Some ten
events (transitions) were drawn first, including places and arcs to connect
them. In this process, the first choices were built too. Then modularization
was commenced. For instance, the page which now appears as ‘Intro#6’ was
separated from what is now page ‘Kristen#5’. See the top of figure A.5,
page 213. Design/CPN gives good support for modularization after the net
or part of it has been constructed. During the construction of the rest of
the net, modularization was done in parallel with drawing the net. After
most of the net had been constructed, colour sets were added to places and
inscriptions to arcs.

The colour set assigned to most places was the type unit (the type of the
token carrying no data), and the most common arc inscription was a token
of this type. Since this is so in typical elastic stories, it would be practical
for the building of these if places had this type as their default colour set
when they were created, and arcs a default inscription evaluating to one such
token.

After colour sets and arc inscriptions had been added, it was time for the
first trial run. Code regions for writing text to the report window were added
later. It turned out to be necessary to add an initialization transition outside
the story to set up the report page. With Design/CPN’s modularization
facilities, this was an easy task. The result is shown in figure A.4, page 209.
Finally, guards and interaction were added at choices. Adding these at the
end seems to model the way the story was originally written, since the draft
did not give them.

137

8.2.4 Style

Deliberate variations in style in the Petri net were introduced as part of
the experiment. The two most prominent examples are discussed in this
subsection.

In figure A.5, page 213, different ways to modularize were tried for the two
alternative threads. In retrospect, the modularization to the left in the figure,
in which the entire thread between the choice and the merging is described
on a separate net page, is preferred.

In figure A.6, page 213, among other places, each transition representing a
line, is named with the beginning of the text in boldface. In most other
places, there are no transition names. Since the entire lines of the transitions
are visible in the mentioned figure too, the names seem superfluous if not
disturbing. However, in a final multimedia system, the lines are to be rep-
resented on subpages. They will be stored as digital sound, not text. Under
such circumstances, the names in boldface will probably be helpful.

8.2.5 Results

Text output from one run of the Coloured Petri Net is given on pages 221–
225 of appendix A, with English translation. The net works as expected: it
produces a coherent narrative following one of the tracks through the original
elastic story. Because of an error4 in Design/CPN, the Danish letters æ, ø
and å, and e with an accent (é) do not come through in the text output.

Non-determinism works. In two successive runs, Torsten was selected on the
scene at each choice. In the first run, the story took the track to the right
at the first choice, on page ‘Kristen#5’, then to the right again on page
‘Torstens#15’, so Torsten ended up being baptized. In the second run, the
story again took to the right the first time, but then to the left on page
‘Torstens#15’, so Torsten only got marked by the sign of the cross this time.

On the other hand, in this elastic story the user can control all the choices.
For instance, to have Torsten reject Christianity, meet the king in an open

4This may have been originally introduced as a feature: characters outside the seven
bits ASCII values are removed to avoid unexpected effects of such characters.

138

fight, and be sentenced to outlawry, the user can select Fortaeller (narrator),
Gisle and Bisp (Bishop) Leofdag at successive choices. This has been tried,
and worked as described. The sample output given in appendix A stems from
this run. (Of course, the normal user does not know in advance the outcome
of each selection.)

The net described shows that the concepts of a thread, a choice, a merging
and non-determinism can be brought to work in a Petri net in a practical
situation. A thorough testing of the Petri net designed to find all or most pos-
sible errors, has not been conducted. The Petri net has proved a convenient
tool for describing the narrative. Design/CPN supported the bottom-up de-
velopment of the first part well: the net was drawn first, then separated into
different pages. It supported just as well the top-down development of the
rest of the net: each page was created before it was filled. In a stepwise
manner, the net was refined with colour sets and arc inscriptions, code re-
gions and finally guards. It is believed that this procedure resembles the way
the story was originally written. It is noted that when it comes to the dy-
namic splitting of threads into alternative threads by creation of choices and
mergings, Petri nets and Design/CPN offer greater flexibility than a word
processor. The Petri net formalism lends itself well to the authoring process
in which the structure of the story (with choices and mergings) is created
before the guards (conditions) to be used with the mergings are specified. It
furthermore offers a natural way to describe guards, while in a word proces-
sor, the author would be forced into to inventing one. It is concluded that
Design/CPN supports the authoring process well. It might even have been
an advantage to use it for the Kristendom story in Wodan’s Eye, even though
the story was later to be manually translated into a different notation. In
this case, the author would only have had to learn the basic building blocks:
places, transitions, arcs and pages. She could have left out the details and
more complex parts, like the interaction and the programming of guards.

8.3 Parallelism, fork, join, pause and gener-

alization

Parallelism is tried in a second elastic story, Swords, Iron and Millstones.

139

8.3.1 The story

The inspiration for the story comes from the Wodan’s Eye project. The scene
of the story is the interior of a merchant’s ship. In the multimedia system
this scene would of course be depicted in the background picture. Different
merchandise is visible in different places in the ship: swords, raw iron and
millstones. (In Wodan’s Eye there are more than three different pieces of
merchandise on board the ship.) There is a thread to be told about the
swords once the user navigates to their location on the background picture.
Similarly, there are threads about the raw iron and the millstones. These
three threads are allowed to take place in parallel, since no thread requires
knowledge from any of the others. However, as in the example of subsection
6.3.15, the entire sword thread should not pass by once the user finds the
swords. Rather, to encourage exploration, only part of it is told at first. To
get the next piece of it, the user has to navigate away from the swords and
back to them (possibly over to the millstones or the iron, but this is not a
requirement). The same strategy is used in the iron and millstone threads.
In the present form, each piece of each thread is simply a text string that
identifies it. This is boring as a story, but good enough for testing the
implementation. In this story, the text strings are in English.

To try a fork and a join, the story is given an introduction to happen before
the parallel threads start, and a conclusion to take place once they all have
ended. After the introduction, a fork generates the three threads. In the
end, the three threads meet in a join, after which the conclusion takes place.
Pauses are used to block the continuation of each thread after each part of
it. The net also contains a thread of two generalizations. The first general-
ization is triggered when the story has talked about two different pieces of
merchandise, the second one after three different pieces.

The Coloured Petri Net implementing ‘Swords, Iron and Millstones’ is given
on pages 228–240 of appendix A.

8.3.2 Input and output

As in the previous story, output is written to a text field in a designated
report window.

140

Handling of user input is a bit more subtle, but has been carefully designed
to gain full value of the experiment in spite of this detail being different from
the imagined multimedia system. The input style used in this experiment is
the same as in the previous one. More precisely, input consists of selecting
among four circles, Swords, Iron, Millstones and None, in a window modelling
the background picture with the ship in the imagined multimedia system.
‘None’ corresponds to navigating away from either of the three items without
navigating to any of the other ones. The selected item is recorded on a
token on the global fusion place ‘LastSel’. Since three threads depend on
the scrolling of the background, it was decided not to build user input into
any of the threads. Instead, a separate loop in the net repeatedly takes the
token from the place ‘LastSel’ and asks the user to select again (figure A.37,
page 238). Finally, the join transition removes the token to stop the loop.
This scheme allows an implementation of a pause that closely models the
Petri net implementation given earlier (figure 7.22 page 130): the thread
is first blocked until a condition is met (an object is invisible), then until
the opposite condition is met (the object is visible). The conditions are
under user control. Because of the way Petri nets work, the user cannot
choose freely when to ‘navigate’ to a new piece of merchandise. The Petri
net decides itself whether to fire a transition representing a part of the story
or the transition asking the user for input. However, since only one piece of
information is given before the user is required to move away from the item,
this will never mean that any thread runs for longer than it can under the
multimedia interface described earlier. In other words, it does not subtract
from the user’s power over the course of events.

8.3.3 Results

Here is a sample run of the Petri net. Lines preceded by ‘Output:’ contain
what the Petri net wrote to the report window. Lines preceded by ‘Input:’
give the item in the ship window on which the user clicked.

141

Output: Introduction
Input: Swords, Swords, Swords
Output: Swords, first info
Input: Iron, Iron, Iron
Output: Iron, first info
Output: Two kinds of merchandise mentioned
Input: Millstones, Millstones, Millstones
Output: Millstones, first info
Output: Three kinds of merchandise mentioned
Input: Iron, Iron
Output: Iron, second info
Input: Iron, Swords, Swords, Swords
Output: Swords, second info
Input: Iron, Iron
Output: Iron, third info
Input: Iron, Millstones, Millstones, Millstones
Output: Millstones, second info
Input: Iron, Swords, Swords
Output: Swords, third info
Input: Iron, Millstones, Millstones, Millstones
Output: Millstones, third info
Input: Iron
Output: Conclusion

In the current form, the net asks for user input relatively frequently. In the
above run, an attempt to compensate for this has been made in repeating
the clicks on the same merchandise, modelling the situation where the user
does not navigate to another part of the ship. In the multimedia interface
described earlier, there will be no problem, since selection is replaced by
navigation over the background picture outside the Petri net’s control.

Using the Petri net it is possible to get more than one piece of the same
thread in a row, even without resorting to clicking on ‘None’. Here is an
example:

142

Output: Introduction
Input: Swords, Iron
Output: Swords, first info
Input: Swords
Output: Iron, first info
Input: Iron, Iron
Output: Two kinds of merchandise mentioned
Input: Iron, Iron, Iron, Millstones, Iron
Output: Millstones, first info
Input: Millstones, Millstones
Output: Three kinds of merchandise mentioned
Output: Iron, second info
Input: Iron, Iron, Iron, Swords, Iron, Iron
Output: Iron, third info
Input: Millstones, Millstones, Millstones
Output: Millstones, second info
Input: Iron, Iron, Iron, Millstones, Millstones
Output: Millstones, third info
Input: Iron, Swords, Swords, Swords
Output: Swords, second info
Input: Iron, Iron, Swords, Swords
Output: Swords, third info
Input: Iron
Output: Conclusion

The last half of the output from this run consists of two pieces in a row
from the iron thread, then two pieces from the millstone thread, finally two
pieces from the sword thread before the conclusion. This can happen because
clicking on an item does not guarantee that a piece of the corresponding
thread is told. This is due to the way Petri nets work, and is in good keeping
with the idea of an elastic story.

8.4 Synchronization and resumption

A second version of the elastic story about swords, iron and millstones is
used for the last experiment, an experiment with two kinds of synchronization

143

(intra-event and sub-event synchronization) and with resumptions. The third
kind of synchronization, inter-event synchronization, was tried in the form of
generalizations in the previous experiment.

8.4.1 The story

The new version of the story has only two threads; the millstone thread
is omitted. Each thread consists of two events, numbered 1 and 2, plus a
resumption consisting of one event to be inserted between the two if too long
time elapses between them. This sums up to six events. Each event consists
of two actions: playing a speech and panning to the person speaking. In two
of the events, intra-event synchronization is used to force the two actions to
start at the same time. Sub-event synchronization was used throughout to
ensure that only one speech could occur at the time, and only one panning
could occur at a time.

8.4.2 Input and output

Since user input is sufficiently explored in the first two experiments, there
is no interaction in this version of the story. Output from the experiment
consists of trace statements from many of the transitions, so it can be known
when actions start and finish.

8.4.3 Results

Twenty-five runs were made. Output from one run was:

Start swords 1
Speak done swords 1
Speak start Iron 1
Pan done swords 1
Pan start Iron
Speak done
Speak start Swords 2
Pan done

144

Pan start Swords
Speak done
Pan done
Pan start Iron
Speak start Iron resumption
Speak done
Pan done
Start iron 2
Speak done iron 2
Pan done iron 2

Seven of the runs gave output identical to the listing above. It is not easy to
get an overview of the run from it. For this reason, a graphical presentation
of the same information is given in the figure on the next page. The figure
shows the order of speech and pan actions.

The times actions started and ended have not been recorded.5 Only the
order is shown in the figure.

Some of the runs are described in appendix A, using the same graphical
notation for the output. There was surprisingly little variation in the results.
With one exception, the same events occurred in the same order in all the
runs. With interaction added, much more variation is expected.

5This might have been done either with a watch while the story was running, or by
having the transitions time-stamp the trace output.

145

Figure 8.1: The order of speech and pan actions in a sample run of the second
version of the ‘Swords and Iron’ story. The time progresses from left to right.
The figure shows the order of the starts and ends of speeches and pannings.
‘SW’ refers to the sword thread, ‘Ir’ to the iron thread. ‘IrRes’ means the
event in the resumption of the iron thread. There is no ‘scale’; no information
about the duration of actions or spaces between them should be inferred. The
vertical lines connecting pairs of actions (for instance, the speech and panning
of the event ‘Sw1’) denote that intra-event synchronization was used to make
the two actions start at the same time.

The exceptional run is graphically presented here:

Figure 8.2: In one run, the two resumptions were repeated four and five times
respectively.

The almost endless repetitions of the two resumptions are conspicuous. The
viewer may take them as a joke at first. When they continue, he or she will
probably think that the system is in error and it has entered an infinite loop.
At that point the system surprises again in that it finally escapes the loop.

It was noted that in the above run and one other run, the line ‘Start iron 2’
was missing from the output. To understand how this can happen, see the
transition that produced this line in all other runs in figure A.50, page 251.
The arc inscriptions of the transition are evaluated at the time when it is

146

decided that the transition can fire. The code region is not executed until
it actually fires. Then, due to the elapsed real time, the condition in the if
statement may evaluate to false, so the WriteHistory function is not called.
As discussed in the second last paragraph of section 7.8 (page 126), the way
to repair the situation is to have the code region calculate all the inputs and
outputs of the transition.

Sub-event synchronization works; in all the runs, after an action is started,
there is a ‘Speak done’ or a ‘Pan done’ respectively each time before the next
action of the same kind starts. This fact implies that no two speeches nor
two pannings overlap.

Resumptions seem to work as expected. A resumption is never executed im-
mediately after the first event in the same thread. If the thread is interrupted
by the other thread, the resumption sometimes occurs —presumably if the
duration of the interrupt is long enough.

8.5 Summary of experiments

In the experiments, each concept from section 6.3 has been implemented in
an elastic story in a Petri net. One error in the realization of a resumption
was found, and a correction was shown. Apart from this, the nets behaved
correctly. This confirms that elastic stories as presented in chapter 6 can be
described as Petri nets.

It has been argued that Petri nets fit the authoring process well. Apparently
the steps involved in building the Kristendom Petri net were performed in
an order that resembled the way the original elastic story had been written.
It has been observed that Petri nets lend themselves to different working
styles such as top-down and bottom-up, and to incremental development.
It has been suggested that Petri nets would even be a flexible tool for the
multimedia author who does not want to deal with the intricate details of
Petri nets such as the programming of guards. To conclude, the experiments
indicate that the Petri net formalism is a convenient tool for the author of
elastic stories in multimedia.

The Petri nets resulting from the experiments seem to confirm what was
suggested in the conclusion of the previous chapter. On the one hand, the

147

greater part of the diagrams are so simple that a multimedia author could
build them without any training in the formal side of Petri nets. On the
other hand, the diagrams contain a few intimate details (specifically, guards)
that would require either a simpler syntax for the multimedia author to work
with, or a specialized Petri net programmer to complete the details of certain
diagram pages.

148

Chapter 9

Related Work on Elastic Story
Telling and on Petri Nets

The work on elastic story telling presented in chapters 5–8 was inspired
by Peter Bøgh Andersen and his colleagues at Institute of Information and
Media Science at Aarhus University. The work of Peter Bøgh Andersen was
introduced in section 6.1. More relevant work is summarized in the next
section, and comparisons with the work in this thesis are made.

Two groups of researchers have worked with Petri nets in connection with
multimedia or hypermedia: David Stotts and Richard Furuta have developed
the Trellis hypermedia model. Patrick Sénac, Michel Diaz, Roberto Willrich
and Pierre de Saqui-Sannes have developed and worked with Hierarchical
Time Stream Petri Nets. Though the works of these authors are not very
closely related to the work presented in this thesis, they are treated in the
following sections.

9.1 The work of Peter Bøgh Andersen on in-

teractive narratives

This section presents the interactive stories work of Peter Bøgh Andersen and
colleagues. Over the years, Peter Bøgh Andersen has worked with different

149

formal bases for interactive narratives: vectors1, catastrophe theory2 and
most lately a home-grown system of events that have forces, triggers and
operations3. This system will be described in more detail shortly.

A key point in Peter Bøgh Andersen’s work with interactive stories was first
published in 1992:4

‘The basic theory of interactive narratives that emerged during
this work is that the author should not see himself as writing a
narrative but a world! This world is designed in such a way that
there is a good chance for the reader to experience exciting and
touching stories if he acts in the world.’

In Wodan’s Eye, Peter Bøgh Andersen specified each interactive story by a
set of narratives5. A narrative contains a coherent discourse. Each narrative
consists of events. At any time during presentation, a set of the events are
designated current events. The start events are the set of events that are
current from the start. The narratives in a story are executed in parallel.

Each event is described by means of the following fields:

Name and pressure, A name, A Pressure
Triggers Forces, Force trigger, . . . , Force trigger

Screen, Screen trigger, . . . , Screen trigger
Success Media, Media operation, . . . , Media operation

Forces, Force operation, . . . , Force operation
Continuity, Continuity operation, . . . , Continuity operation

1Peter Bøgh Andersen, the quoted work[4].
2Peter Bøgh Andersen: Katastrophen und Computer. In Roland Posner (journal ed-

itor), Martin Wamke & Peter Bøgh Andersen (guest editors): Zeitschrift fur Semiotik,
Band 16, Heft 1-2. Stauffenburg verlag 1994. Pages 29-50.[5] (In German.)

3Peter Bøgh Andersen: Narratives. Unpublished working paper, September 1994. Part
of the paper appears in Peter Bøgh Andersen: Medien — Kunst — Computer/Hyperkult I-
IV. In an anthology edited by Wolfgang Coy, Georg-Christoph Tholen and Martin Wamke,
forthcoming[7] (in German).

4Peter Bøgh Andersen Vector Spaces as the Basic Part of Interactive Systems: Towards
a Computer Semiotics. In Patricia Baird (editor): Hypermedia, Volume 4, number 1,1992.
Taylor Graham.[8] Page 55.

5The description is based on the working paper ‘Narratives’[7], see earlier footnote.
The final Wodan’s Eye system differs from this description on some points.

150

Failure Media, Media operation, . . . , Media operation
Forces, Force operation, . . . , Force operation
Continuity, Continuity operation, . . . , Continuity operation

The name is used for referring to the event from other events. The pressure,
also called the force, is used to schedule multiple current events; the one with
the highest value is executed. This can be thought of as the most topical
or current event. Execution of an event consists of first evaluating all its
triggers, then either the success or the failure part, depending on whether all
the triggers were true. There are four kinds of triggers:

• Force trigger: whether the force of a specified event is less then, equal
to or greater than a specified value. In practice, the event is often ‘me’,
the event having the trigger.

• Screen trigger: whether a specified object is visible in the user’s view.

• Random trigger: true with the probability 1/n, where n is supplied by
the author.

• Time trigger: whether a specified event has never happened, is under
execution, or has completed, or whether it started or ended at least a
specified number of seconds ago.

Triggers in the same event are implicitly connected by conjunctions (‘ands’);
there are no or or not operations.

Possible operations in the success and failure parts are:

• Media operation: show a close-up picture, play a sound or pan to an
object. In the last case, it is specified whether the object triggers the
relevant screen triggers (that is, triggering can be suppressed).

• Force operation: increase or decrease the force of a specified event with
a specified value, or set it to a specified value.

• Continuity operation: add and remove specified events from the set of
current events, or replace the entire set with a specified new set. If an
event is part of a thread (as defined earlier), a common set of continuity

151

operations will be -me, +next or simply =next, where next is the next
event in the thread.

Peter Bøgh Andersen demonstrates how to build the following rhetorical
structures using events:

• Fork: the same as a fork in chapter 6.

• Choice: the same as a choice in chapter 6.

• Generalization: the same as a generalization in chapter 6.

• Object characterization: The system gives different information about
an object each time the user looks at it, as described in subsections
6.3.15 and 8.3.1.

• Object association: A thread starts the first time an object is seen, and
continues whenever there is a place in the conversation.

• Parenthesis: A parenthetical event in a thread is only played if the user
has the prerequisite in terms of another event. If not, the parenthesis
is left out and the thread continues.

• Escalation: The system gives the user gradually stronger hints about
doing something; if the user does not do it, the system does it itself in
the end.

As an example of an escalation, the sound of a captured slave crying for help
invites the user to find the slave and hear his story. If the user ignores the
cry, then at some point the system will take the user to where the slave is.

Some of the rhetorical structures require the use of dummy events for holding
what corresponds to global variables in their force field. Note that this is the
only field that is ever changed during the presentation.

The distribution of events into separate narratives serves as a modularization.
This is convenient for the author. For comparison, hierarchical Petri nets
allow for a modularization in which each module can again be modularized
to any level, which is much more flexible.

152

The structure of an event with a success and a failure part seems to be a way
to have two events in one. In many of Peter Bøgh Andersen’s examples, one
of the parts is empty. It would probably be a better and more natural design
to allow or and not operations on triggers and do away with the failure part.
Also the words ‘success’ and ‘failure’ are value-laden in a way that does not
always reflect their use. Possibly it would be better to find more neutral
words.

The possibility of replacing the entire set of current events in a narrative, is
a dangerous convenience. While an event is local in its nature, this facility
globally kills all current events. The facility is unnecessary, since replacing
the set can be done by removing unwanted events and adding the new ones.
Killing the unwanted events by name has the advantage that other threads
can later be added to the narrative without risking being killed unintention-
ally by an event that replaces the set of current events. For example, if
the event culture is followed by a choice between events plyndring, langvejs
and tungeting6, Peter Bøgh Andersen prescribes the following continuities in
culture and langvejs :

Culture continuity: = plyndring langvejs tungeting

Langvejs continuity: = kendtil7 The conti-

nuity of langvejs kills the events plyndring and tungeting so that the choice
does not work as a fork. The same effect can be obtained with the following
continuities:

Culture continuity: - me, + plyndring langvejs tungeting

Langvejs continuity: - plyndring langvejs tungeting, + kendtil

This solution is safer, as described.

The global replacement of all current events using the equal sign may be
warranted in one case, though. If a story consists of phases, each one with a
complicated content, the equal sign can be used to go to the next phase. In
this case, killing each event from the earlier phase by name (using the minus
sign) could be dangerous; it would be easy to forget one of the events.

6For the sake of completeness, the event names translate to plundering, fromfaraway
and heavythings, respectively.

7Kendtil translates to knowof.

153

Figure 9.1: The prerequisite of
a parenthesis is ‘wrapped’ on its
own page with a transition that
changes the marking of the syn-
chronization place to fulfilled.

Compared to Peter Bøgh Andersen’s no-
tation, Petri nets have the advantage that
the structure of the narrative in terms
of threads, forks, choices, etc., and the
location of each event in this structure,
are more clearly visible. The Petri net
description is probably more natural in
this respect, since an event’s position in
a thread is more than a local attribute of
the event.

Of the seven rhetorical structures used by
Peter Bøgh Andersen, chapters 7 and 8
have described how to build the first four
in Petri nets (fork, choice, generalization
and object characterization). The follow-
ing paragraphs will sketch the building of
the remaining three (object association,
parenthesis and escalation).

154

Figure 9.2: The parenthesis is ‘wrapped’
on a separate page with a choice and
two transitions that control the choice.
If the prerequisite is not fulfilled, the
token on the synchronization place is
unfulfilled and the transition to the left
cannot fire. In this situation, the one to
the right fires, which makes the thread
continue without the parenthesis. By con-
trast, if the token is fulfilled, only the
left route can be chosen, including the
parenthesis.

It is relatively easy to build an
object association in a Petri net:
the first event in the thread has a
guard that requires the object to
be visible. The remaining events
do not have guards.

The two figures 9.1 and 9.2 de-
scribe a parenthesis, as defined
on page 152. The idea is related
to the idea behind the implemen-
tation of inter-event synchro-
nization. With a parenthesis,
the synchronization place always
holds one token, the value of
the token depending on whether
the event containing the prereq-
uisite has vet been played. In
the figures, the initial value is
unfulfilled, which is changed
to fulfilled when the prereq-
uisite has been met.

An escalation is shown in figure
9.3. The idea is that each hint
can run in a loop, and intermedi-
ate transitions bring the token on
from one hint to the next. The
escalation shown has two hints.
It can be generalized to any num-
ber of hints, as long as each place
beside a hint has an output tran-
sition that can bring the token to

the start of the story (here the slave story) if the slave becomes visible. The
story itself is depicted as a single event in the figure; usually it will be a
thread consisting of a number of events.

In Wodan’s Eye, the user can in some cases interrupt an event after it has
started. Say that a thread is concerned with an object on the background.

155

Figure 9.3: An escalation. The transition at the top produces a time stamped
token. The first hint can repeat until the user finds the slave, at which point
the transition to the left can start the slave story (bottom). If the user does
not find the slave within two minutes (120 seconds), a guarded transition
brings the time stamped token down to the place beside the second hint,
which can now execute repeatedly. When the user sees the slave or after a
total of five minutes (300 seconds), the next transition fires and starts the
slave story.

The thread will typically begin with a pause waiting for the object to become
visible and then a panning (homing) that brings the object to the middle of
the view (window). If the user disrupts this panning by panning in a different
direction, the thread does not start at all, but waits for the object to be
visible again later. This functionality goes across the concept of separate
events organized in a thread; but it gives the user extra control in a situation
where the author will often want to give that to the user.

A second version of an escalation, called a counterpoint, is described by
Peter Bøgh Andersen, Jens Johansen, Jakob Mikkelsen and Morten Sams in

156

‘Interaktive tekster’.8 In the beginning of Wodan’s Eye, the user’s alter ego
Adso does not understand that the ‘barbaric’ Vikings can have knowledge
and insight. As he learns more about them, he gains more respect. The
system keeps a counter (a force in a dummy event) to represent the amount
of respect due to the Viking’s knowledge. However, with the increasing
respect, the Viking’s slave gets more aggressive, as do his cries and protests.
This can be done in a Coloured Petri Net too. A global variable keeping
track of the respect can be kept on a token in a global fusion place.

‘Interaktive tekster’ describes interactive texts. It uses the extended text
concept, as it is called: a text is coherent and meaningful collection of signs.
‘Text’ does not refer to words and characters alone; the text may be multi-
media. The text is called interactive only if user actions can influence the
course of the text and these actions can be interpreted within the universe of
the text (e.g., moving the hero to the right in a video game, but not turning
to a different page in a book).9

The latter condition does not seem a clear one; it is open to interpretation
in many cases. As an example, consider a hypertext reader who points to
and clicks on an element of the text (be it a word or a picture), which brings
the reader to a different section (node) of the hypertext. On one hand, you
may argue that pointing is a way to indicate that that concept (within the
universe of the text) is the one in which the reader is interested and on which
she or he wants more detail, so the hypertext is an interactive text. On the
other hand, assuming that clicking on a symbol is not part of the universe
of the text, you may argue that this is merely navigation to a different node,
navigation also not being within the universe of the text, so the hypertext is
not an interactive text.

8Peter Bøgh Andersen Jens W. Johansen, Jakob A. Mikkelsen & Morten Sams: Inter-
aktive tekster. In an anthology from Odense Universitetsforlag, in press.[10] (In Danish.)

9A similar definition is found in Peter Bøgh Andersen: Interaktive værker. En katastro-
feteoretisk tilgang. In Per Aage Brandt and others (editors): Almen semiotik nr. 5. Tema:
Computersemiotik Psykosemiotik. Aarhus Universitetsforlag 1992. Pages 89–112.[4] (In
Danish.) The concept defined therein is called an interactive work. Peter Bøgh Andersen
has touched on the distinction of whether user actions can be interpreted within the world
of the text even earlier. In Vector Spaces ([8], page 55) he writes: “Clicking a button is a
meta-action that is not part of the story, and even if the button is disguised as a tree in
the landscape, it remains just as much ‘meta’ — who has ever heard of a story in which
tapping on a tree is an important and meaningful part of the narrative?”

157

‘Interaktive tekster’ describes two ways to build an interactive text:
Disorder in order and order in disorder. Going the former way, the author
can start out from order or cosmos in the form of a complete coherent text,
and create chaos by introducing interaction and non-determinism. The other
way is to start out from a chaotic universe of ‘concurrent’ events (a ‘narrative
protoplasm’), and gradually induce local order, e.g., in the form of dialogues,
causal relations between events, etc. The paper argues that the latter is the
better way for a number of reasons:

1. It resembles all other known creative processes: the artist is giving form
to a given substance (be it stone or language).

2. It is more natural than disorder in order. Creating disorder in a finished
text is compared to producing a jig saw puzzle. It leaves the reader
to reconstruct the correct text for no purpose, since the author could
have given it to him or her from the outset.

3. With order in disorder, the experiments are real; the author may not
know better than the user in advance what will be the exact outcome of
a given user action. It is a way to produce surprises for both designers
and users.

The Petri net formalism is flexible enough to allow the author to go either
way. It even allows the author to describe the narrative on the right level of
order from the outset, rather than work from one extreme (complete chaos
or complete order) towards the other. The individual thread is in order lo-
cally and can be created so; but parallel threads can exist in a ‘disorderly’
space with no unnecessary ordering between them. his is probably an even
more natural way to describe the interactive narrative than order in disor-
der. Furthermore, this way of using Petri nets still gives plenty of room for
surprises for both author and reader. For example, the repeated resump-
tions described in figure 8.2 above were a surprise for the author. It should
be noted that the above does not necessarily mean that the author gets the
amount of chaos right from the start. At some times during authoring, he
or she may be inducing more order into the narrative, while trying at other
times to increase the amount of chaos.

158

9.2 Trellis

This section describes a very different related work, the work on Trellis by P.
David Stotts and Richard Furuta.10 Trellis is a formal model of hypermedia
based on Petri nets. In Trellis, each place in the Petri net can be associated
with a hypermedia node or content element. Each transition is associated
with a link. Firing is controlled from a button. The user traverses the link
by pressing the button. That is, a link is directed and goes from a number
of source nodes to a number of destination nodes. The button controlling
link traversal is only enabled when the transition is, that is, when all source
nodes of the link are displayed.

10See for instance the following two references: P. David Stotts & Richard Furuta: Petri-
Net-Based Hypertext: Document Structure with Browsing Semantics. ACM Transactions
on Information Systems, Volume 7, Number 1, January 1989,[101] pages 3–29. P. David
Stotts & Richard Furuta: The Trellis Hypertext Project. Position paper for Petri net
models and CSCW Workshop. In Computer-Supported Cooperative Work, Petri Nets
and Related Formalisms. A one-day workshop, Chicago, June 22, 1993, Proceedings,[102]
pages 1–12.

159

Figure 9.4: Petri net of a
hypermedia document with
two separate concurrent
browsing paths, after David
Stotts and Richard Furuta.
The example corresponds
to an elastic story with two
subsequent pairs of parallel
threads.

Thus, Trellis separates content and link struc-
ture. The link structure is defined by the Petri
net. The content is defined by a mapping from
places to content elements. The mapping may
be partial; that is, not all places are required
to have a corresponding content element. A
content element may be another Trellis hyper-
media document, so a hierarchical system of
hypermedia documents can be built.

Trellis allows for separate concurrent brows-
ing paths which work much as the threads
presented in chapter 6. Concurrent browsing
paths are two or more sequences of content el-
ements displayed at the same time. They can
exist from the start or be created by a link with
more than one destination node. They may or
may not be coalesced again in the end, just as
threads may or may not meet in a join. David
Stotts and Richard Furuta describe one kind of
synchronization of concurrent paths: the com-
bination of a join and a new fork. This is a
stronger synchronization than inter-event syn-
chronization; it requires both paths to be at a
certain point at exactly the same time. Figure
9.4 shows an example of concurrent browsing
paths.

David Stotts and Richard Furuta show how to
build tailored versions of the same hyperme-
dia document, with different access restrictions
for different readers, by providing different ini-
tial markings. A simplified example is given in
the figure to the right. Petri net analysis tools
make a number of analyses of Trellis hypermedia possible. Among other
things, analyses may determine:

1. The maximum number of nodes open at any one time—the display
complexity of the hypermedia document. (David Stotts and Richard

160

Furuta show how to calculate the maximum number of marked places
over all states. Since not all places need to be associated with content
elements, this is not the same as the maximum number of open nodes.
However, the algorithm can be easily modified to find the latter.)

2. The reachability of each place, given an initial marking. This can be
used to verify that the access restrictions for some users are enforced.

3. Whether the browsing can terminate by reaching a state where no
transitions are enabled.

Figure 9.5: Petri net for a
hypermedia document with
access restrictions. With an
initial marking of s1 only, a
user can access s1 and s3,
but not s2. A user with un-
limited access to the doc-
ument will have an initial
marking where both s1 and
s4 are marked. (s4 is not
mapped to any content el-
ement.)

Building a hierarchical system of hypermedia
documents, as described above, makes modular
analysis possible; each hypermedia document
can be analysed separately.

David Stotts and Richard Furuta have con-
structed two prototype hypermedia systems,
αTrellis and later χTrellis, both based on Trel-
lis.

It is interesting that David Stotts and Richard
Furuta build the hierarchy by substituting sub-
nets for places, while Coloured Petri Nets sub-
stitute subnets (pages) for transitions. The
original hierarchy paper11 describes both pos-
sibilities, though the details of substitution
places are more elaborate than in the version
used by David Stotts and Richard Furuta.

This difference has implications; a conse-
quent difference between Trellis and the use of
Coloured Petri Nets presented in this thesis is
that in Trellis, the content is associated with
places, while on the higher level of the nets

11Peter Huber, Kurt Jensen & Robert M. Shapiro: Hierarchies in Coloured Petri Nets.
In G. Rozenberg (editor): Advances in Petri Nets 1990. Lecture Notes in Computer Science
vol. 483, Springer Verlag 1991, pages 313–341. Also in Kurt Jensen and G. Rozenberg
(editors): High-level Petri Nets. Theory and Application. Springer Verlag 1991[58], pages
215–243.

161

presented in this thesis, content is associated with (substitution) transitions.
The reason for this is the need for a hierarchy: the content is associated with
the kind of node that allows substitution. On the bottom level, for instance
inside the speak module in figure 7.13, the content is associated with the
place in the sense that the speech lasts for as long as the token is on the
place ‘Playing’.

In traditional hypermedia, links may have two or more endpoints. Each end-
point may serve as source or destination or both. However, David Stotts
and Richard Furuta’s notion that all source nodes of a link must be dis-
played before the user can follow the link, seems an unnatural and unusual
restriction.

This restriction is clearly reflected in the example Petri nets provided by
David Stotts and Richard Furuta in their papers; links with more than one
source are only used with concurrent browsing paths, where all source nodes
will eventually be displayed during browsing. Furthermore, the concurrent
paths in the examples are short (one or two content elements) and few, so it
is not difficult to find the way to the end. David Stotts and Richard Furuta
occasionally link into the middle of a set of concurrent browsing paths; a link
links to one node in each path. However, it would be easy for an author doing
this to forget one of the paths. If this happens, a reader reaching the point of
coalescence will experience a dead end, since not all paths reach that point.
Alternatively, an author seeking to avoid such dead ends may provide several
destinations for unnecessarily many links, or avoid links with multiple source
nodes. The unavoidable result of such strategies will be a mess of too many
open nodes at the same time. David Stotts and Richard Furuta sometimes
solve this problem with ‘done links’, that is, ‘links’ with no destination. Such
a ‘link’ simply removes its source node(s) from the display.

It might be argued that the same problems might occur with the use of
Petri nets for elastic stories. However, in the concepts underlying this use,
there is nothing that invites for linking into the middle of parallel threads.
Furthermore, a new syntactic layer over the Petri nets, as discussed in chapter
11, may provide the ultimate solution by prohibiting such linking completely.

As another point of criticism, it is unnatural and probably unsafe to apply
access control to links rather than nodes. Adding new links could easily
circumvent access control unintentionally. A Petri net analysis would discover

162

the hole, as stated above; but it relies on the author remembering to perform
the analysis and close-read the result.

A final criticism: Even maps of hypermedia documents can get confused.
To judge from the examples provided by David Stotts and Richard Furuta,
a Petri net of a hypermedia document with many links very quickly gets
almost unreadable. A hierarchy of hypermedia documents may help to some
extent, but at the price of limiting the possible links, since a link cannot link
nodes in different documents in the hierarchy.

9.3 Hierarchical Time Stream Petri Nets

Patrick Sénac and Michel Diaz have developed Hierarchical Time Stream
Petri Nets (HTSPN).12 HTSPN, an extension to Petri nets, is a formal model
of multimedia and hypermedia capturing both media synchronization and
linking. (Michel Diaz and Patrick Sénac call linking logical synchronization
while synchronization is called temporal synchronization.) The following pre-
sentation is deliberately informal. It is hoped that it gives the impression
of a notation the syntax and semantics of which can be fully formalized.
The reader seeking the formal presentation of HTSPN should read the works
referenced in the footnotes.

HTSPN are hierarchical in the same way as Trellis nets; it can be specified
that an entire subnetwork (similar to a page in CPN) is to be substituted for
a single place on the higher level. The HTSPN hypermedia model consists
of three layers:

• the link synchronization layer, describing links;

• the composite synchronization layer, describing multimedia svnchro-
nization;

• the atomic synchronization layer, describing playback of individual
atoms.

12The following presentation is mainly based on Patrick Sénac, Roberto Willrich &
Michel Diaz: Hypermedia Synchronization Modelling: A Case Study. In Ed-media 95
World Conference on Educational Multimedia and Hypermedia Proceedings.[97] 1995.

163

Figure 9.6: Example multimedia presentation from Patrick Sénac and Michel
Diaz. ti represents a title. tx1 and tx2 represent successive texts, i1 an image
to be shown concurrently with the two texts, i2 another image to follow
the first and the texts, and v a voice to accompany the texts and images
throughout. The time inscriptions in square brackets give the minimum, the
nominal and the maximum duration of the presentation of each element. The
two transitions with multiple inputs are assigned the strong-or and weak-and
firing rules respectively. These are explained in the text.

Figure 9.6 shows an example of a page from the composite synchronization
layer (the middle layer) of a HTSPN.13 The page represents a non-interactive
excerpt (a composite) of a multimedia presentation. First, a title is presented,
represented by place ti. The arc leaving ti has the inscription [2,4,7], meaning
that the presentation of the title has a nominal duration of four seconds, but
can have any duration between two and seven seconds. In this way, the model
takes variations in durations or jitter into account. Such temporal variations
occur if retrieval or playback of the media takes shorter or longer time than
expected, a realistic possibility in asynchronous, distributed systems. Varia-
tions can also be specified to introduce flexibility in scheduling, or to allow an
incomplete or imprecise specification in early stages of a modelling process.14

The interval from two to seven seconds after the start of the title is called
the temporal validity of the output arc from ti. The transition following ti
(having only one input arc) is firable within this interval, which means that

13The example has been taken from Michel Diaz & Patrick Sénac: Time Stream Petri
Nets. A Model for Timed Multimedia Information. In Robert Valette (editor): Application
and Theory of Petri Nets 1994. 15th International Conference, Proceedings. [96]Springer-
Verlag 1994.

14Patrick Sénact personal communication.

164

can only fire within it, and it must fire no later than the end of it.

After the title, three items are presented in parallel: a text in tx1, an image
in i1, and a voice comment in v. The voice comment lasts for the rest of
the presentation. A new text in tx2 replaces the first after nominally five
seconds. After another nominal five seconds, a new image in i2 replaces both
the text and the first image.

In the example, it is assumed that there is a redundancy between the first
image (i1) and the second text (tx2), so when the first of them finishes, they
can both leave the scene for the next image. To this end, the transition
marking the change (having two input arcs) is associated with a firing rule
named ‘strong-or’. Under this rule the transition is firable after the first input
arc becomes temporally valid and until the temporal validity of any input
arc ends. For example, if the arc from tx2 is temporally valid from time 12
to 17 (measured from the beginning of the presentation), and the arc from
i1 is from 11 to 21, then the ‘strong-or’ transition is firable between times 11
and 17. There is one exception, though: a transition is only firable when it
is enabled. Therefore, if a ‘strong-or’ transition becomes enabled only after
one of the temporal validity intervals has ended, it must fire immediately; it
is only firable in the same moment.

A second firing rule is also used with one of the transitions in the example:
the ‘weak-and’ firing rule. Its semantics are the opposite of ‘strong-or’; the
transition is firable from the moment all input arcs are temporally valid until
the last one ceases to be (on the condition that it is enabled during this
interval).

For a transition with exactly one input arc, the firing rule is irrelevant; the
transition will be firable during the temporal validity of the arc. For a tran-
sition with no input arcs, firability is undefined.

Thus, arcs from places to transitions (but not from transitions to places) in
the HTSPN formalism, are timed arcs. A timed arc has an inscription of
the form [x,n,y], where three numbers in the brackets denote the minimum,
nominal and maximum duration, respectively. The nominal duration has no
formal semantics and can be replaced by ‘�’ if it is unknown. An untimed
arc can be realized using the inscription [0,� ,∞], which is also the default.

Patrick Sénac and Michel Diaz introduce nine different firing rules to handle

165

the situations where transitions have several input arcs. For each such tran-
sition, the author chooses one of the nine firing rules. The nine firing rules
form a pattern. For the beginning of the firability interval, the author can
choose among three points in time:

1. The time when the first input arc becomes temporally valid.

2. The time when the last input arc becomes temporally valid.

3. The time when a designated master input arc becomes temporally valid.

(Due to the dynamics of the formalism, the order in which arcs become
temporally valid is not always statically decidable.) Similarly the author
chooses among three points for the end of the firability interval:

1. The time when the first temporal validity interval ends.

2. The time when the last temporal validity interval ends.

3. The time when the temporal validity interval of the designated master
input arc ends.

Firability starts when the following
temporal validity interval starts:
Earliest Latest Master

Firability ends Earliest strong-or and strong-
when master

the following Latest or weak-and weak-
temporal master
validity Master or-master and-master master

interval ends:

Table 9.1. The nine firing rules for HTSPN.

(The order in which temporal validity intervals end is not statically decidable
and can be different from the order in which they started.) The combination
of a start and an end time defines the firing rule as shown in the table on
the previous page.

Two modifications are applied to the firability interval found above:

166

1. If the transition is not enabled at the start of the firability interval
found, the start time is set to the time when the transition becomes
enabled. If the transition is never enabled, it is never firable.

2. If the end of the firability interval lies before the beginning, it is set to
the same as the beginning. In this case, the firability is a single point
in time, at which the transition must fire.

Perhaps having nine firing rules is more than sufficient. Not more than three
or four of them are used in the examples presented by Patrick Sénac and
colleagues.

The link synchronization layer (the top layer) of a HTSPN specifies hyper-
links in the same way as in Trellis. The time inscriptions in a natural way
introduce timed links, an idea already presented by David Stotts and Richard
Furuta in 1989.15 For instance, a sole input arc to a link transition with the
arc inscription [7, ∗, 30] describes a link that is only available after seven
seconds and is followed automatically if the user does nothing for 30 seconds.

Patrick Sénac and colleagues do not describe the bottom layer, the atomic
synchronization layer in detail.

Ongoing work by Patrick Sénac and colleagues includes further verification
and analysis techniques for HTSPN and automatic generation of MHEG
documents from HTSPNs.16

Patrick Sénac, Roberto Willrich and Michel Diaz describe a case study. One
simplified module from a computer aided learning program used by Airbus
Training for pilot and maintenance staff training, was modelled in HTSPN.

The following methodology was used:

1. use of the HTSPN for logical and temporal synchronization of hyper-
media documents;

15Petri-Net-Based Hypertext, previously mentioned work, page 26.[58]
16Patrick Sénac Pierre de Saqui-Sannes & Roberto Willrich: Hierarchical Time Stream

Petri Net: a Model for Hypermedia Systems. In Giorgio De Michelis & Michel Diaz
(editors): Application and Theory of Petri Nets 1995. 16th International Conference,
Turin, Italy, June 26-30,1995, Proceedings. Lecture Notes in Computer Science vol. 935,
Springer Verlag 1995, pages 451–70[97].

167

2. verification of the modelled multimedia scenarios, in order to check time
inconsistencies; also logical properties can be verified; if any errors are
found then go to 1.;

3. simulation and analysis of the HTSPN specification to verify the be-
havioural correctness of the presentation;

4. design of the run-time system, using the validated HTSPN resulting
from 3.

Patrick Sénac, Roberto Willrich and Michel Diaz report that HTSPN was
sufficiently powerful and expressive for modelling the entire simplified mod-
ule. It was easy and quick to build the model. HTSPN was used for a full
and accurate simulation of the module.

Patrick Sénac, Roberto Willrich and Michel Diaz claim that the methodology
can reduce design errors significantly. They do not report any errors caught
during the modelling of the training module.

It should be noted that Patrick Senac, Michel Diaz and colleagues take the
opposite approach to synchronization than QuickTime, presented in section
4.1.1. QuickTime makes sure that the playback duration is fixed and leaves
out some of the data if needed. HTSPN are meant to model the playback
of all the data and take into account that the exact duration is not known.
HTSPN require that the upper and lower bounds on the duration can be
given. It is probably safe to assume that in some cases, such bounds can be
given, in others, they cannot. The HTSPN approach has the advantage of
being more realistic in a distributed, asynchronous system, while the more
perfect synchronization in QuickTime is sometimes desired, for instance for
lip synchronization and for dance with music. (Even these would probably
allow slight time inaccuracies.17)

The use of timed arcs as in HTSPN can make the Petri net representation
of a resumption, as presented in section 7.8, considerably simpler. In figure
7.16 page 123, the arc from r to the beginning of the resumption is given the
inscription [15,15,15]. This serves a double purpose: First the resumption
cannot start before 15 seconds have elapsed. Second, after exactly 15 seconds,

17For inaccurate lip synchronization, Patrick Sénac refers to Steinmetz: Human percep-
tion of multimedia synchronization. IBM technical report No. 43.9310[100].

168

the token is removed from the place r, making sure that the thread does not
continue without the resumption after this time. The arc from r to the
following event in the original thread does not need a time inscription, and
the changes to that event (shown in figure 7.17) are now superfluous. Two
facts should be noted, though:

1. This use of the HTSPN formalism does not use HTSPN’s capabilities
for imperfect timing (jitter). A simpler Petri net extension than HT-
SPN could serve the same purpose.

2. For the HTSPN solution to be used for implementation, it is necessary
that executable code can be generated from the HTSPN, for instance
MHEG code as discussed above.

Table 9.1 may give the impression that the HTSPN formalism is complete
in terms of the types of synchronization that can be specified. However,
some kinds of synchronization that authors may realistically want cannot be
specified in a HTSPN:

1. Two different masters, so that the firability interval is from the begin-
ning of the temporal validity of one master to the end of the temporal
validity of the other master.

2. Any reference to the beginning or ending of the second, third, second
last, third last, etc., temporal validity interval. For instance, a transi-
tion is firable whenever at least two input arcs are temporally valid.

3. Any kind of averaging.

The first of these can be modelled by a ‘weak-master’ or ‘or-master’ firing
rule in a HTSPN. Each of number 2. and 3. can be modelled by an ‘or’
firing rule. In each case, a very inaccurate model results; synchronization
information is lost.

As Patrick Sénac, Roberto Willrich and Michel Diaz mention, analyses of a
HTSPN can catch many synchronization errors in a design. To judge the
usefulness of this opportunity, a couple of open questions remain: 1. Do
hypermedia designers often make synchronization errors? 2. If they do, are
these errors caught as easily with other (and maybe less formal) methods, or
do they often pass unnoticed?

169

9.4 Summary

This chapter has presented works by other authors related to the work pre-
sented in the previous chapters on the use of Petri nets for elastic story
telling. Many observations were made, only the most important ones being
summarized here.

It was observed that Petri nets had no problems modelling the rhetorical
structures used by Peter Bøgh Andersen in the Wodan’s Eye project.

The Trellis hypermedia model inspired the observation that the content el-
ements of a presentation are associated with the kind of nodes (places or
transitions) that allow for hierarchy substitution: places in Trellis, but tran-
sitions in CPN. It may or may not be more natural to associate content with
places.

As a final observation, the timed arcs and firing rules in HTSPN are useful
for multimedia synchronization, not only in traditional hypermedia systems,
but also in elastic stories.

170

Chapter 10

Repertory Grids for
Hypermedia Navigation

10.1 Introduction

This chapter describes Talaria1, a hypermedia training and reference tool for
health care providers managing patients with cancer pain, being built at the
Fred Hutchinson Cancer Research Center (FHCRC) in Seattle, USA. The
work covered in this chapter has been previously published in a conference
article2.

The clinical practice guideline on cancer pain relief, released by the Agency
for Health Care Policy and Research (AHCPR) in 1994, formally defines
much of the content of Talaria3. The purpose of the program mirrors that of
the practice guideline: to improve the management of pain in patients with
cancer by informing physicians, nurses and other health care providers about

1The Talaria were the winged sandals of Mercury, messenger to the Gods
2David Madigan, C. Richard Chapman, Jonathan Gavrin, Ole Villumsen & John Boose:

Repertory Hypergrids: An Application to Clinical Practice Guidelines. In European Con-
ference on Hypermedia Technology 1994 Proceedings. ACM Press 1994.[76] Pages 117–125.

3Jacox, A., Carr, D.B., Payne, R., et al. Management of Cancer Pain. Clinical Practice
Guideline No. 9. AHCPR Publication No. 94-0592. Rockville, MD. Agency for Health
Care Policy and Research, U.S. Department of Health and Human Services, Public Health
Service, March 1994.[60]

171

current therapeutic options and principles.

As discussed in the thesis introduction (subsection 1.3.1 pages 32–34), it is
often advantageous to use multimedia and hypermedia in combination. For
this reason, it has been found interesting to include in the thesis this chapter
on hypermedia. Talaria uses both hypermedia and multimedia to overcome
the problems associated with booklet-based clinical practice guidelines.

This chapter describes the development of a novel hypermedia linking scheme
to meet Talaria’s requirements (many other asbects of Talaria, such as its
user interface, will be considered in detail during its development at Fred
Hutchinson Cancer Research Center over the coming two years). The linking
scheme implicitly constructs links between nodes by assigning each node a
location in a ‘context space’. A node links to another node if they are close
in context space.

Focusing on hypermedia linking, this chapter places itself near the user-
controlled extreme of the scale shown in figure 6.1 on page 91. Ultimately,
Talaria will include more author-controlled parts too, in the form of guided
tours, and possibly elastic guided tours.

To evaluate the effectiveness of the approach to linking a protocol analysis
was conducted. The results suggest that the linking scheme is effective and
overcomes many of the difficulties associated with large hyper-linked docu-
ments.

A sketch of the problem domain is given first.

10.1.1 Cancer pain and the AHCPR guideline

Pain is a pernicious force that increasingly threatens the functional capabil-
ity and psychological well-being of the cancer patient as disease progresses.
Because of unrelieved pain, many patients spend the last weeks, months or
even years of their lives with needless discomfort and disability4. Tragically,
the extensive suffering caused by cancer pain is largely unnecessary. Gains
in knowledge about pain and its control and technological advances in pain
management now enable informed physicians to relieve up to 90% of cancer

4Bonica, J.J. “Cancer pain”, The Management of Pain. Lea and Febiger, Malvem, PA,
second edition,[18] 1990.

172

pain5. However, many patients get inadequate relief because of underuse of
treatment resources. This largely stems from a lack of knowledge amongst
caregivers. Talaria, like the AHCPR guideline on cancer pain, addresses this
obstacle.

The AHCPR defines clinical practice guidelines as ‘systematically developed
statements to assist practitioner and patient decisions about appropriate
health care for specific clinical circumstances’. The AHCPR sponsors pri-
vate sector panels, composed of experts from relevant disciplines, to develop
these guidelines to reduce clinical uncertainty and improve patient outcomes.
The cancer pain guideline is a 260-page, paperback booklet consisting of
text, tables, and figures. It addresses pain assessment, the psychological
and physiological impact of cancer pain, interventions for the treatment of
cancer pain including pharmacological, psycho-social and procedurally based
interventions, and a variety of special topics. The target audience for the
guideline extends to patients (both adults and children), patients’ families
and clinicians at all levels.

Clinical practice guidelines of non-federal origin have proliferated in recent
years. The American Medical Association alone offers 1, 300 different guide-
lines. The AHCPR estimates that over 10, 000 guidelines have been devel-
oped in the history of medical practice. While the cancer pain guideline is
the immediate focus of this chapter, the development of a general purpose
methodology is intended.

5Two references Levy M.H. “Pain management in advanced cancer”, Semin Oncol.,
12, pages 394–410,[71]1985. Portenoy, R.K. “Cancer pain: epidemiology and syndromes”,
Cancer. 63, pages 2298–2307,[91] 1989.

173

10.1.2 Talaria objective and requirements

Much anecdotal evidence exists that guidelines impact practice patterns min-
imally6. More formal studies such as those of Grilli et al.7, Lomas et al.8,
and Ford et al.9 report similar findings. The objective of Talaria is to ren-
der guidelines in a more useful form. The paper-based guidelines have many
deficiencies and these largely define the requirements for Talaria:10

• Booklet guidelines have little depth and provide no support for users
in specific specialities who want explanations of concepts, mechanisms
and procedures.

• Booklet guidelines cannot demonstrate procedurally based interven-
tions.

• Booklet guidelines lack the facility to implement an instructional strat-
egy and provide no feedback to the reader.

• Booklet guidelines provide minimal support for practical day-to-day
problems such as drug dose calculations, or dose conversions across
routes of delivery.

• While guidelines in booklet form facilitate distribution, such booklets
typically get absorbed into the mound of literature accumulated by
every health care provider.

6Gardner E “Putting guidelines into practice”, Modern Healthcare, pages 24–36,[44]
1992.

7Grilli R., Alexanian A., Apolone, G., Marsoin, S., Nicolucci, A., Torri, V., Compag-
nucci, M., and DiMambro, EI et al. “The impact of cancer treatment guidelines on actual
practice in Italian general hospitals: The case of ovarian cancer”, Annals of Oncology, 1,
pages 112–118,[47] 1991.

8Lomas J Anderson, G., Dominick-Pierre, K., Vayda, E., Enkin, M., and Hannah, W.
“Do practice guidelines guide practice: The effect of a consensus statement on the practice
of physicians”, New England Journal of Medicine, 321, pages 1306–1311,[72] 1989.

9Ford, L., Hunter, C., Diehr, P., Frelick, R., and Yates, J. “Effects of patient man-
agement guidelines on physician practice guidelines: the Community Hospital Oncology
Program experience”, Journal of Clinical Pharmacology, 5, pages 504–511,[41] 1987.

10Two references: Cook P. “An encyclopedia publisher’s perspective, Interactive Multi-
media”, Apple Computer, Inc., Microsoft Press,[31] 1988. Madigan, D., and C.R. Chap-
man: Multimedia tools for cancer pain education. In C. Ghaoui and R. Rada (editors):
Medical Multimedia, Intellect 1995,[75] pages 121–136.

174

• Booklet guidelines provide little motivation for clinicians to learn new
information.

• Booklet guidelines provide little support for patient-clinician commu-
nication.

Booklet guidelines do, however, provide an effective browsing tool and a key
requirement is to emulate this ability.

Hypermedia can support browsing as well as address the above deficiencies.
However, in large hypermedia documents, manual creation and maintenance
of links prove difficult11. Each time the document acquires a new node, the
author must examine all the existing nodes to determine what new links are
required. Tuning links to optimize performance presents similar difficulties.
The cancer pain guideline has 136 sections, 18 tables, and a variety of sup-
porting material. Furthermore, the guideline is evolving: the AHCPR plans
to issue new editions every two or three years. A linking scheme is required
that does not demand hand-creation and maintenance of each link.

There have been only a few reports on efforts to evaluate the effectiveness
of hypermedia applications formally; evaluation is central to the approach
presented here.

11Six references: Bernstein, M., Bolter, J.D., Joyce, M., and Mylonas, E. “Architec-
tures for volatile hypertext”, Hypertext 91: Proceedings of the Third ACM Conference on
Hypertext, ACM Press, pages 243–260,[16] 1991. Canter, D., Rivers, R., and Storrs, G.
“Characterising user navigation through complex data structures”, Behaviours and infor-
mation Technology, 4, pages 93–102,[28] 1985. Tang, H., Bardn, R., and Clifton, C. “A
new learning environment based on hypertext and its techniques”, Advanced Research on
Computers in Education, R. Lewis and S. Otsuki (editors), North-Holland, pages 119–
127,[103] 1991. Lucarella, D., Parisotto, S, and Zanzi, A. “MORE: Multimedia object
retrieval environment”, Hypertext ’93: Proceedings of the Fifth ACM Conference on Hy-
pertext, Seattle, pages 39–50,[73] 1993. Tompa, F.W., Blake, G.E., and Raymond, D.R.
“Hypertext by link-resolving components”, Hypertext ’93: Proceedings of the Fifth ACM
Conference on Hypertext, Seattle, pages 118–130, [104]1993. Utting, K. and Yankelovich,
N. “Context and orientation in hypermedia networks”, ACM Transactions on lnformation
Systems, 7, pages 58–84,[108] 1989.

175

10.1.3 Overview of the chapter

Section 10.2 describes current ideas about the navigation environment as
experienced by the user, and guided tours and other learning aids beside
hyperlinks. Section 10.3 describes repertory grids and the developed linking
scheme. Section 10.4 describes the use of the linking scheme in Talaria.
Section 10.5 presents an evaluation of aspects of the scheme. The final section
describes current activities and future directions.

10.2 Navigation and the travel metaphor

Talaria’s interface design derives principally from the concept of a Learn-
ing Support Environment (LSE) developed and implemented by Hammond
and co-worker12. A similar approach characterizes the Hyperties system of
Morariu and Schneiderman13 and Marchionini and Schneiderman14. An LSE
provides the learner with a set of tools to support exploration of, or instruc-
tion in, some field of knowledge. The tools include both aids for accessing
information and for learning15. A travel metaphor structures the naviga-
tion tools and provides the user with an intuitive context mechanism. Each
screen display, be it text, animation sequence, image, movie or a combination,
represents a place to visit. The various access facilities represent the ways
and means of travelling around. Two explicit forms of navigation through
the materials reflect the extremes of user-controlled (learner-controlled) and
author-controlled access, as these terms were used in section 6.1, pages 90–91.

12Hammond N V “Hypermedia and learning: who guides whom?” Computer assisted
learning-ICCAL 89, H. Maurer (editor), Springer-Verlag, pages 167–181,[52]1989. Ham-
mond, Nick V. and Allinson, Lesley J. “Travels around a learning support environment:
rambling, orienteering or tutoring?”, CHI ’88 Conference Proceedings: Human Factors in
Computer Systems, Special Issue of the SIGCHI Bulletin, Elliot Soloway, Douglas Frye
and Sylvia B. Sheppard (editors), ACM Press, pages 269–273,[53]1988.

13Morariu, J. and Schneiderman, B. “Design and research on the interactive encyclope-
dia system (TIES)” Proceedings of the 29th Conference of the Association for the Devel-
opment of Computer-based Instructional Systems, pages 19–21,[85] 1986.

14Marchionini, G. and Schneiderman, B. “Finding facts and browsing knowledge in
hypertext systems”, IEEE Computer, 21,[80] 1988.

15Madigan and Chapman, previously mentioned work (footnote 10, page 174).

176

The forms are go-it-alone travel and guided tours16.

The notion of elasticity, as defined in section 6.1, could be made useful in
guided tours too, yielding what might be called ‘elastic guided tours’. An
elastic guided tour, rather than being a linear tour, would itself be an elas-
tic story, with possibility of parallelism and branchings. If the ‘passenger’
remained inactive, the tour would find a way through; but if not, it would
allow the user to choose a way.

Elasticity could be applied to go-it-alone travel too, thus completely softening
the transition between the two extremes. Maybe some links could ‘pull more
than others’. Also, one link can be followed automatically if the user does
nothing for a while. For the latter facility not to be annoying, there would
probably have to be a way for the user to specify staying in the same place, so
he or she can be allowed to study a node for as long as desired. Peter Bøgh
Andersen, David Stotts and Richard Furuta, and Patrick Sénac, Roberto
Willrich and Michel Diaz give examples where it would be useful for the
system to move along if the user does not do so.17

As Halasz18 indicated, navigational tools alone are not sufficient. The metaphor
encompasses a range of access facilities along with the navigation tools: maps
give users ‘bird’s eye’ views of the material available and they can zoom in on
any chosen node. An index provides a mechanism for keyword-based access.
Ultimately both the maps and the index in Talaria could adapt to individual
users’ needs. Ichimura and Matsushita19 suggest that maps may be problem-
atic: it is hard to generate maps that communicate effectively the contents of
the nodes. A combination of fisheye views20 and pop-up node summaries may
alleviate this problem. These are considered for implementation in Talaria.

16Trigg R “Guided tours and tabletops: Tools for communicating in a hypertext envi-
ronmint”, ACM Transactions on Office information Systems, 6, pages 398–414,[106] 1988.

17See for instance Patrick Sénac, Roberto Willrich & Michel Diaz: Hypermedia Syn-
chronization Modelling: A Case Study. In Ed-media 95 World Conference on Educational
Multimedia and Hypermedia Proceedings.[96] 1995.

18Halasz F “Reflections on NoteCards: Seven issues for the next generation of hyper-
media systems”, Communications of the ACM, 31, pages 836–852,[50] 1988.

19Ichimura S and Matsushita, Y. “Another dimension to hypermedia access”, Hypertext
’93: Proceedings of the Fifth ACM Conference on Hypertext, Seattle, pages 63–72,[59]
1993.

20See, for example Noik E G “Exploring large hyperdocuments: Fisheye views of nested
networks”, Hypertext ’93: Proceedings of the Fifth ACM Conference on Hypertext, Seattle,
pages 192–199,[89] 1993.

177

10.3 An implicit linking scheme

Kibby and Mayes21 suggested a linking scheme that obviates the need for
explicit links (although it does not preclude explicit links). The work pre-
sented in this chapter has focused on extending their ideas, linking them to
recent progress in ‘knowledge acquisition’, and evaluating their effectiveness.
The fundamental idea is to assign independently to each node a location in
a high-dimensional ‘context space’. Nodes that are close together form a
‘neighbourhood’ and link implicitly since they share a similar context. The
author or the user defines the neighbourhood as the nodes within a certain
distance of the current node, or as the nearest n nodes. Talaria currently
adopts the latter approach and typically chooses n to be between 10 and 30
to yield a manageable neighbourhood size. Tudhope, Taylor and Beynon-
Davies include a review of works on implicit linking in hypermedia based on
similarity22.

The decisive advantage of this scheme is modularity: an author can link a
new or modified node to its associated nodes simply by rating it against each
of a number of ‘traits’, thereby eliminating the requirement to examine all
existing nodes.

10.3.1 Repertory grids

The context of each node is defined with a high-dimensional trait vector. Each
element of a trait vector is a number representing the strength of association
between the node and the corresponding trait23. For example, in the cancer
pain guideline, section 3.3.2 (Dosage Titration) rated a 6 on ‘Drug’ and a 2
on ‘Pain assessment’ on a scale from 1 to 6. Every node is scored against
every trait. Nodes that have similar ratings on a large number of traits will

21Kibby, M.R. and Mayes, J.T. “Towards intelligent hypertext”, Hypertext; theory into
practice, R. McAleese (editor), Ablex Publishing Corporation, New Jersey, and intellect
books, Oxford, pages 164–172,[65] 1989.

22Douglas Tudhope, Carl Taylor & Paul Beynon-Davies: Navigation via Similarity in
Hypermedia and Information Retrieval. In Rainer Kuhlen & Marc Rittberger (editors):
Hypertext-Information Retrieval-Multimedia (HIM’95). HIM’95 conference proceedings.
UVK Universitätsverlag Konstanz GmbH 1995.[107]

23Called feature or attribute in Kibby and Mayes, previously mentioned work[65].

178

be relatively near each other in the space spanned by the traits and will thus
be implicitly linked. Nodes that have rather different trait vectors will be far
apart in this context space, and will not link to each other.

Sections
Traits 2.3.1 2.3.2 T4 2.3.3 2.3.4 2.3.5
Pain assessment 2 2 1 1 1 1
Barriers to pain management 1 1 1 1 1 1
Bone 6 5 5 2 2 1
Central nervous system 3 6 6 4 1 1
Skin 1 1 1 1 4 5

Table 10.1. A repertory grid with five traits and six sections
of the draft AHCPR cancer pain guideline. Here a 6-level rating scale is in use.

Table 10.1 shows a sample of trait vectors and corresponding traits for six
nodes of the AHCPR Cancer Pain Guideline. (Here nodes are equated with
sections, tables and figures in the guideline. In the future, it will be desirable
to redo the chunking of the guideline into nodes24.) Boose25 referred to such
a table as a ‘repertory grid’. No work is believed to have been previously
published on repertory grids in the hypermedia context.

For the rating, Kibby and Mayes26 suggest a binary scheme; according to
them, it is easy for authors to specify. They base their approach on the human
memory models of Hintzman27, who uses a three-point scale (−1 0 1). Waltz
and Pollack28, and later Gallant29, present an essentially identical approach,
but in the context of natural language recognition. They adopted 4-point and
5-point scales respectively. Boose et al.30 in yet another context discussed the

24The chapters and sections of the guideline are written by different authors with differ-
ent writing styles and different criteria for dividing a section into subsections. Currently
node sizes vary between 10 lines and several pages, which is not always ideal. The trans-
lation into other media than text is likely to reveal new requirements on chunking.

25Boose, J. H. Expertise Transfer for Expert System Design.[20] Elsevier, New York,
1986.

26Previously referenced work[65].
27Hintzman, D. L. “Schema Abstraction in a multiple-trace memory model”, Psych Rev,

93, 4, pages 411–428,[57] 1986.
28Waltz, D. L. and Pollack, J.B. “Massively parallel parsing: a strongly interactive

model of natural language interpretation”, Cognitive Science, 9, pages 51–74, 1985[111].
29Gallant, S. I. “A practical approach for representing context and for performing word

sense disambiguation using neural networks”, Neural Computation, 3, pages 293–309,[43]
1991.

30Boose, J. H., Shema, D.B., and Bradshaw, J.M. “Recent progress in AQUINAS: a

179

advantages and disadvantages of various nominal, ordinal, and continuous
rating scales and suggested different scales for different traits. Anderson
uses a 7-point scale31. Initially Talaria used a binary rating scale, but soon
adopted a six point rating scale, as shown in table 10.2. The analysis by
Madigan, Chapman, Gavrin, Villumsen & Boose suggests that a finer rating
scale gives more useful links in the end.

Rating Operational definition
6 Node is precisely concerned with this trait
5 Trait is a secondary topic in the node
4 More than a passing reference; less than a secondary topic
3 Explicit passing reference
2 Implicit passing reference
1 No mention implicit or otherwise

Table 10.2. The 6-level rating system.
A precise definition is critical for consistency in the rating.

The next two subsections discuss the construction of repertory grids.

10.3.2 Triadic elicitation of traits

From where do the traits come? Waltz and Pollack32 suggest that traits
‘should be chosen on the basis of first principles to correspond to the major
distinctions humans make about situations in the world.’ This rather gen-
eral advice was found to be difficult to implement in practice. Fortunately,
Boose and his colleagues33 provided a formal methodology and software tools
(MacQuinas and Dart) for identifying and analysing traits. They based their

knowledge acquisition workbench”, Knowledge Acquisition, 1, pages 185–214,[22] 1989.
31Anderson, N. “Medical center: a modular hypermedia approach to program design”,

In: Sociomedia: Multimedia, Hypermedia, and the Social Construction of Knowledge, E.
Barrett (editor), MIT Press, Cambridge, pages 369–389,[12] 1992.

32Previously referenced work[111].
33Boose J H “A knowledge acquisition program for expert systems based on personal con-

struct psychology”, International Journal of Man-Machine Studies 23, pages 495–525,[19]
1985. See also the two previously referenced works by Boose and by Boose, Shema &
Bradshaw respectively.

180

approach on Kelly’s personal construct theory34.

In MacQuinas, an ‘expert’ first lists the possible solutions to a problem such
as a medical diagnosis (the solutions in that case would be diagnostic cate-
gories). These correspond to nodes. Next, the expert specifies a collection of
traits as follows: MacQuinas presents the solutions three at a time and asks
the expert to identify what feature best distinguishes any one solution from
the others. Kelly suggested these triads for efficiently identifying minimal
sets of traits. Once the expert has identified the traits, he or she rates each
solution against each trait to create the repertory grid.

34Kelly, G. A. The Psychology of Personal Constructs. New York: Norton,[64] 1955.

181

10.3.3 Grid analysis tools

Figure 10.1: 34 MDS 2-Dimensional view
of context space. This shows 18 sections
from the AHCPR Cancer Pain Guideline.
The plot has a similarity with the spatial-
ized text plots of Marshall and Shipman35.

MacQuinas contains a wealth
of tools for analysing repertory
grids, including trait implica-
tion graphs, trait and node clus-
ter analyses, principal compo-
nents analysis, hierarchical or-
ganization of traits and nodes,
‘laddering tools’ for expanding
and contracting traits, and tools
for combining the trait-spaces
of multiple experts. Boose et
al.36 describe many of these
techniques for analysing reper-
tory grids. Cluster analysis was
found to be particularly use-
ful for identifying poorly dis-
criminated nodes and redundant
traits.

Multidimensional scaling (MDS)
provides an approximate three-
dimensional projection of the
nodes. Brushing and spinning
tools are used to visualize the
nodes in 3-D. Figure 10.1 shows a two-dimensional projection of 18 of the
sections in the cancer pain guideline. This shows the relative location of the
18 nodes in a two-dimensional projection of context space.

34All figures in this chapter are taken from the original ECHT conference paper (hence
they use American spelling).

35Marshall, C. C. and Shipman, F.M. “Searching for the missing link: Discovering
implicit structure in spatial hypertext”, Hypertext ’93: Proceedings of the Fifth ACM
Conference on Hypertext, Seattle, pages 217–230,[81] 1993.

36Boose, Shema & Bradshaw, previously referenced work[22].

182

10.4 Implementing the scheme for the cancer

pain guideline

Using a single physician expert (JG37), a repertory grid for the complete
AHCPR guideline with 29 traits and 136 nodes has been constructed. The
sections and subsections of the guideline define the nodes.

10.4.1 Traits

Triadic elicitation of traits proceeded as follows: First, the expert selected
20 sections from the guideline to be representative of the material in the
guideline. Next, random sets of three were selected from this set of 20 sec-
tions. For each triad, a single expert (again JG) identified a trait which ‘best
distinguished one of these from the other two.’ He endeavoured to choose
traits relevant for navigation. The procedure continued until five consecutive
triads failed to elicit a new trait. At this point 29 distinct traits had resulted.
Table 10.3 shows these.

37JG is a senior physician with 16 years clinical experience, half of which has focused
on cancer pain management.

183

Surgical Respiratory
Psychological Sedative
Education Ethics
Non-pharmacological management Diagnosis
Procedural pain Sleep
Analgesics Opioid analgesic
Adverse outcome Non-opioid analgesic
Pain assessment Family
Barriers to pain management Regulations
Bone Demographics
Central nervous system Anaesthesia
Skin Indications
Treatment modalities Mechanisms of pain
Monitoring patients Mechanisms of pain relief
Drug

Table 10.3. The 29 traits used for the AHCPR
Cancer Pain Guideline.

Some traits are specializations of others. For example, ‘Opioid analgesic’ is
a special case of ‘Analgesics’. Currently all traits are treated on an equal
footing. Alternative approaches are being investigated.

10.4.2 Rating procedure and grid analysis

The rating of the 136 nodes against the 29 traits required approximately 80
man-hours. To ensure consistency and accuracy, it is essential to have at
least two people participating—the expert and a knowledge engineer.

Careful rating proved worthwhile: a randomly selected 20 sections were re-
scored more than one month after the initial rating and never differed by
more than one on the six-point scale. The key to such consistency is a
clearly defined rating scale (table 10.2) and unambiguous trait descriptions.
The complete grid is available from the author.

Grid analysis addresses two questions: Are all the elicited traits needed? Are
they sufficient? The former question can be addressed with an analysis of
the grid as discussed in the subsection 10.3.3 Grid analysis tools above and

184

subsection 10.5.4 Trait deletion below. However, the latter question requires
dynamic analysis: do the links defined by the grid correspond to the links
users make when using the guideline to address cancer pain management
tasks? Such an analysis is now described.

10.5 Evaluation

10.5.1 Evaluation methodology

Figure 10.2: Linkplots for the 136 nodes in Talaria. Each dot represents a
link. The plot to the left uses a neighbourhood size of 16 nodes while the
right plot uses 30 nodes. The nodes are numbered in the order in which they
appear in the cancer pain guideline. The rectangular structures in the plots
reveal the chapter structure of the book. Note the linking scheme makes
many links between nodes in different chapters in the guideline.

From the repertory grid, a matrix of all the distances between any two nodes
is produced. The linkplots of Bernstein et al.38 provide an insightful method
for viewing the links implied by this matrix for different neigh-bourhood
sizes; see figure 10.2 on the page 185.

38Bernstein, Bolter, Joyce and Mylonas [16].

185

In earlier pilot work, several potential users of Talaria assessed a sample
of such distances. These distances were compared with those suggested by
the repertory grid. The correspondence was close although the task seemed
contrived. Ultimately it is intended to compare competing repertory grids
with various distance metrics and trait and node weighting schemes on the
basis of user performance in locating information in the hypermedia tool.
Nielsen39 described several hypermedia usability tests. Initially however,
rather than confound the linkage analysis with software-specific issues such
as interface design, a protocol analysis was conducted40 using the guideline
booklet itself.

Four cancer pain management tasks from the case studies prepared by the
Wisconsin State Cancer Pain Initiative were selected. These case studies are
prototypical of cancer pain management problems; instructional workshops
throughout the USA use them.

Six subjects participated in the analysis: a senior pain service physician, a
primary care internist, a senior pain service nurse, a pain service resident
physician, a family practitioner, and a paediatric nurse practitioner. The
subjects used the guideline booklet to address the four tasks. They were
instructed to ‘describe as fully as possible your thoughts as you browse the
guidelines for the information you seek to address each task.’ The subjects’
use of the book was recorded throughout. The video recording was used for
subsequent clarification. The sessions ranged from 45 to 90 minutes.

When a subject, while addressing a single task, successively visited two sec-
tions that both contributed to the task, that was deemed to be a link. This
definition of a link is simple and close to being objectively decidable. The
subjects visited 24 distinct nodes and made from one to eight links, for a
total of 30 links. Among these were 25 distinct links, since some of them
were each made by 2 or 3 of the subjects. In the future it is intended to add
more open-ended tasks to explore other nodes in the book.

39Nielsen, J. Hypertext and Hypermedia. New York: Academic Press, 1990.[87]
40See for example the references in Boose, J.H. “Knowledge acquisition tools, meth-

ods, and mediating representations” H. Motoda, R. Mizoguchi, J. Boose, B. Gaines (ed-
itors), Knowledge Acquisition for Knowledge-Based Systems, Proceedings from JKAW’90
(The First Japanese Knowledge Acquisition for Knowledge-Based Systems Workshop) IOS
Press, Amsterdam, and Ohmsha, Ltd., Tokyo,[21] 1991.

186

10.5.2 Evaluation of linking scheme

For each of the links made by the subjects, the Euclidean distance from the
source of the link to all the nodes in the document was calculated (other
distance metrics are discussed below). The rank order of the destination of
the link then was calculated. For example, a subject made a link from section
7.4 (Substance Abusers) to section 1.5.1 (Legal Regulation of Opioids). The
distances from section 7.4 to all the other nodes were rank ordered. Section
1.5.1 was the fifth nearest. Thus the link from 7.4 to 1.5.1 would be assigned
a rank order of five.

Clearly it is preferable to have the destination of each link in the neighbour-
hood of its source. Equally, to minimize cognitive overload, small neighbour-
hood sizes are wanted.41 Taken together, the rank order of the links made
by the subjects is required to be as small as possible. Figure 10.3 shows a
plot of the rank orders of the 30 links.

As the figure shows, Talaria requires a neighbourhood size of at least 28 to
capture all the links made by the subjects in the protocol analysis. A neigh-
bourhood size of 17 captures 24 of the 30 links or 80 % of them42. Thus for
a range of tasks and users, the repertory grid, with a manageable neighbour-
hood size, is shown to capture the links made by the subjects. Counting only
the 25 distinct links, results are very close to the same; a neighbour-hood
size of 17 still captures 80 % of the links, and one of 28 all of them.

Had the links—theoretically—been created at random then with a neigh-
bourhood size of 20, 20/135 ≈ 15% of the links could have been expected to
be captured, since each node can potentially link to each of the 135 other
nodes. So the evaluation clearly shows that link creation is far from random.

If the links made by the subjects are taken to be useful links that should be
in Talaria, it is obvious that the above evaluation gives some measure on the

41Jeff Conklin Hypertext: An Introduction and Survey, IEEE Computer, vol. 20 no. 9,
pages 17–41, September 1987[30].

42The original conference paper reported that a neighbourhood size of 16 did this. The
deviation is due to the fact that two nodes have exactly the same distance from section
3.3.2 of the guideline, the two ranking 16th and 17th in distance. Hence it is not defined
which of them would be included in a neighbourhood of size 16. In the thesis, conservative
judgements have been made throughout, requiring a neighbourhood big enough to include
all nodes that have the same or a smaller distance than the destination node in question.

187

Figure 10.3: Plot of the percentage of the links made by the users in the
protocol analysis against neighbourhood size. Ideally, small neighbourhoods
would capture most or all of the links made by the subjects. A neighbourhood
of size n includes the n nearest nodes.

quality of the linking scheme. Had the linking scheme captured only a few of
the links, it would have indicated a poor scheme. In comparing variants of the
scheme, this form of evaluation can give a hint about which variant is best.
On the other hand, it would probably be a bad idea to maximize uncritically
the number of subject-made links captured, by weighting the traits or making
other adjustments, since it might be at the cost of eliminating other links
that were perhaps just as useful in other situations.

10.5.3 Distance metric evaluation

Euclidean distance represents what is, perhaps, the most natural distance
metric. However, Madigan, Chapman, Gavrin, Villumsen & Boose43 carry
out a detailed investigation of six different metrics in addition to Euclidean
distance, including two that were invented for Talaria. The results show that
Euclidean distance is the best of the seven metrics, while ‘American City’

43Previously mentioned article.cite76

188

distance and the Pearson correlation coefficient squared (known as R2) are
also good. American City block distance is defined as the sum of the absolute
pairwise differences44.

Two of the best metrics, American City and Euclidean, are well-known spe-
cial cases of p-norms45. In other words, both can be described as taking
the absolute pairwise differences to some power p, summing the results, and
taking the pth root of the sum, with p = 1 for American City distance and
p = 2 for Euclidean. A p-norm with p lying between 1 and 2 turns out to
perform not much differently from Euclidean, except for the maximum (the
most distant links): with p = 1.6, a neighbourhood size of 23 now captures
all the links, which is a noticeable improvement over Euclidean distance’s 28.

10.5.4 Trait deletion

It is felt that the trait set used is not ideal. Maybe a user does not desire to
navigate from a node concerned with the adverse outcome of one treatment
to one on an adverse outcome of a completely different treatment. One
might speculate that traits such as Adverse outcome, Treatment modalities,
Indications, Anaesthesia and Skin may sometimes lead the user to irrelevant
rather than helpful nodes. A completely different question is whether it
is advantageous to have traits that are specializations of other traits, as
discussed in the last paragraph of subsection 10.4.1.

Some experiments were performed to see how the linking scheme would be-
have with fewer than all 29 traits.

First, the trait Analgesics was removed since it is nothing but a generic term
for two other traits, Opioid analgesic and Non-opioid analgesic, and hence
does not seem to provide additional information about the nodes. Perfor-
mance got slightly worse, measured by the links made by the subjects: it now
requires a neighbourhood size of 23 to capture 90 % of the links (using either

44Popularly speaking, the American City distance is the travelling distance between two
points in an American city, in which the streets are orthogonal, generalized to more than
2 dimensions.

45p-norms are treated in many textbooks. See, for instance, page 53 in Gene H. Golub
& Charles F. Van Loan: Matrix Computations. Second edition. The Johns Hopkins
University Press 1989[45].

189

Euclidean distance or the p-norm with p = 1.6). This may suggest that it is
a good idea to keep traits that are generalizations of other traits. Alterna-
tively, the two specializations just need higher weights in the repertory grid.
Certainly, no hard conclusions can be drawn from this simple observation.

Instead, four traits were deleted that were suspected of generation of confus-
ing rather than useful links: Adverse outcome, Treatment modalities, Anaes-
thesia and Indications. An interesting result occurred. Most links got closer.
Using the 1.6-norm, the average rank dropped from 11.44 to 10.4. One
would immediately consider this an improvement and a confirmation of the
suspicion. However, the upper percentiles and the maximum got worse. To
capture 90 % of the links, a neighbourhood size of 24 is now needed (23 if
using the square of the Pearson correlation coefficient). To conclude, while
the four traits may have generated confusing links, some of them must also
have helped generate some helpful ones.

Entering the ground of uncritical optimization, it was found that deleting
seven of the traits: Adverse outcome, Central nervous system, Skin, Treat-
ment modalities, Family, Demographics and Mechanisms of pain, improves
performance. Using the 1.6-norm, a neighbourhood size of 16 now captures
all 25 of the links made by the subjects and a neighbourhood size of 13
captures 23 of the links (92 %). As discussed earlier, this result does not
necessarily indicate that the mentioned traits should be eliminated. For ex-
ample, since the guideline makes distinctions based on mechanisms of pain,
it is easy to imagine that this trait may be useful in some situations, even
though it does not seem that it was in the 4 tasks that the subjects per-
formed. The result does confirm that a critical review of the need for each
trait may turn some of them useless and result in better performance of the
repertory grid. Testing the grid on a broader range of tasks may clarify the
question.

10.6 Discussion and conclusion

10.6.1 Discussion

An implicit linking scheme has been proposed and used to develop a hy-
permedia implementation of the AHCPR cancer pain guideline. A protocol

190

analysis suggests that the scheme captures efficiently the links made by users
of the guideline. Clinical practice guidelines must be current; hypermedia has
much to offer here.

Currently many extensions to the basic scheme are being explored:

• The scheme does not preclude having a small number of additional
author- or user-specified explicit links. Users may annotate the guide-
line too.

• The inter-node distance provides a mechanism for implementing a scaled
rather than binary link. Salton et al.46 make a similar proposal, but
in the context of text retrieval. This may implement some elasticity, a
little author control: some links may ‘pull’ more than others. In par-
ticular, it may be used as a guide to which link to follow if the user
does not choose one, as discussed in section 10.2.

• Chang’s HieNet by default creates a link between the smallest pair of
nodes in a neighbourhood.47 This notion of parsimony may be useful
in the guideline context.

• Currently the links in Talaria are untyped and connect entire nodes.
Generalizations of this may be explored in the future.

10.6.2 Summary

This chapter has sketched a learning support environment based on Ham-
mond and Allinson’s travel metaphor. The environment consists of a hyper-
media database with map, index, guided tours and go-it-alone hypermedia
navigation. Especially in a learning environment, the balance between user
and author control may be critical. Therefore, the guided tours may be elas-
tic. As basis for the hypermedia navigation, a novel linking scheme has been
developed based on repertory grids. The linking scheme provides for a scaled

46Salton, G., Allan, J., and Buckley, C. “Automatic structuring and retrieval of large
text files”, Communications of the ACM, 37, pages 97–108, 1994[93].

47Chang, D. T. “HieNet: A user-centered approach for automatic link generation”,
Hypertext 93: Proceedins of the Fifih ACM Conference on Hypertext, Seattle, pages l45–
158, 1993.[29]

191

rather than a binary link, which makes elasticity possible in the navigation
too: the closest link is the one that attracts most strongly. An initial eval-
uation of the linking scheme was performed, using the case of the cancer
pain guideline and comparing with the results of a protocol analysis of users
using the guideline. Results were satisfactory and suggested that a further
refinement of the repertory grid is possible.

192

Chapter 11

Conclusion

This thesis has explored tools for development of stored, interactive multi-
media. General multimedia tool requirements have been identified, and tools
and techniques have been developed for specific purposes and developers. The
largest part of the thesis is concerned with Petri nets as a tool for building
elastic stories in multimedia. Other parts present repertory grids for semi-
automatic generation and maintenance of links in hypermedia documents,
and Hejmdal, an object-oriented multimedia tool for programmers.

11.1 Petri nets for elastic story telling

The use of Petri nets for elastic story telling has been explored. Elastic
systems used for elastic story telling form a soft middle ground between
author- controlled and user-controlled systems. An elastic system is neither
hard like a book or a sculpture nor completely yielding to the user like wet
clay or blank paper.

First, a model of elastic stories was developed, based on the extended layer
model from New Criticism. Petri nets are found to be well suited for the
elastic story telling, since most of the concepts in the model have very simple
and straightforward descriptions in Petri nets. Also the rhetoric structures
used by Peter Bøgh Andersen in the Wodan’s Eye project are not difficult
to mimic in Petri nets. They include a parenthesis, an escalation and a

193

counterpoint.

Petri nets can be used today to describe elastic stories formally. Once Petri
net tools with multimedia capabilities become available, it will also be pos-
sible to use them for implementing elastic stories in computers. Work is
going on in this direction: As mentioned in section 9.3, Patrick Sénac and
colleagues work on automatic generation of MHEG documents from HT-
SPNs. In the Devise project, Design/CPN is being integrated with Devise
Hypermedia (DHM), which will allow the former to access the latter.

Experiments indicate that Petri nets fit authoring processes well, and that
Design/CPN is a flexible and natural tool for authoring of elastic stories. In
the future, empirical studies with real multimedia authors should be carried
out to determine how well Petri nets suit such authors.

11.1.1 Problems, solutions and further possibilities

A tool built around a new syntactic layer on top of Petri nets may be more
realistically usable for authors than Petri nets themselves, especially when
it comes to resumptions. Such a tool is discussed in the next subsection.
The following subsection discusses the need for giving different priorities to
threads or events, as with the force or pressure used by Peter Bøgh Andersen.
A further subsection is concerned with the possibility of using Petri nets for
describing a wider class of multimedia: fully user-controlled and fully author-
controlled multimedia systems, besides elastic systems.

A tool with a new syntactic layer

Most multimedia authors probably will not want to work out the finer details
of a Petri net used for an elastic story. One possibility is to create a new
syntax on top of the Petri nets. The new notation should reflect the concepts
in the model of elstic stories still better than Petri nets. While most concepts
have simple and natural Petri net representations, the resumption would
benefit from a much simpler representation.

A new syntactic layer should probably still be graphical, to give a clear
representation of the structure of an elastic story with forks, choices, etc. A

194

tool should make it possible to edit and run elastic stories described in the
new notation. The Petri net descriptions given in the thesis would serve as
definitions of the semantics of the new notation. The execution of elastic
stories described in the new syntax could be implemented by translation to
Petri nets or by other means.

There are some possible advantages of a new tool desired specifically for
authors of elastic stories, in addition to being realistically learnable for such
authors:

1. Convenience. For example, when an elastic story is described as a
Petri net, the author is to assign a colour set to each place and an arc
inscription to each arc in the net. A specialized syntax can relieve the
author from this work.

2. Safety. More high-level specification can be allowed, thereby eliminat-
ing some error possibilities. For instance, a generalization in a Petri net
needs to take a set of tokens from a synchronization place and put the
same set of tokens back. The tokens represent the examples that have
happened previously and make the generalization meaningful. A guard
specifies the number of examples and (usually) that they all need to be
different. A new notation may require just the number of examples to
be specified, thereby eliminating the possibility of making errors in the
guard or forgetting to return the tokens from the generalization. (This
increases both convenience and safety.)

3. Clarity. In many instances, extra transitions are needed in a Petri
net to accomplish seemingly small effects, specifically in inter-event
synchronization and in pauses. A new notation can hide this need
from the author. For instance, it may allow (what corresponds to)
guards to be applied directly to events.

The design of such a new syntactic layer is not trivial. Specifically, many
trade-offs are expected between safety, ease of use, and natural representa-
tions of the author’s concepts on one hand, and the flexibility and generality
offered by Petri nets on the other. As a very simple example, two variants
of inter-event synchronization have been presented: one in which the second
event can happen arbitrarily many times after the first; and one in which it
can only happen as many times as the first. In a notation in which inter-event

195

synchronization has its own representation, supporting two variants would
be an extra complication. It is not clear a priori whether the increased
flexibility is worth this extra complication.

Many multimedia authors find that it is neither satisfying nor productive
to have someone else—a computer programmer—make their ideas reality.
While Petri nets may allow authors to work directly on implementation,
most authors will probably require a Petri net programmer to complete the
nets, which makes experimentation more complicated. A new tool built on
top of the nets may allow the author to build and experiment with elastic
stories without such assistance.

A tool built around new syntactic layer may not be considered a program-
mer’s tool; it is hoped that it would be easier to use. The syntax would,
however, be largely symbolic rather than iconic, as these words were used
in chapter 3. There would still be a need for a multimedia author to spend
time learning the syntax and semantics before he or she could use the tool.

Finally, if such a syntactic layer turns out to be as easy to use as it is hoped,
it will make it easier for a user to ‘change sides’ and become an author, or
just start modifying the story he or she is reading.

Topicality

Although generally the Petri net formalism serves the purpose of describing
elastic stories well, two problems with resumptions have been revealed: no
method has yet been devised for deciding where to insert resumptions; and
resumptions may loop (the latter may not be considered a problem). Ideally,
one would not want the resumption to commence until it is known that the
thread can continue immediately after the resumption. Peter Bøgh Andersen
has solved similar problems by assigning a force or pressure to events: the
higher the pressure, the higher is the probability that the event in question
is the next event to happen, in case there are multiple current (enabled)
events (see page 150). This solution may also be a good one in the model of
elastic stories used in this thesis: if a given event makes sure that the next
event is the most topical (current) event, the only risk of the thread being
interrupted is when the next event is not enabled due to a pause or inter-event
synchronization. Thus, resumptions are needed exactly before events after

196

pauses and before events that can be delayed by inter-event synchronization.
Furthermore, if the last event of a resumption makes the next event in the
original thread the most topical one, the thread will continue immediately
after the resumption. This prevents looping.

Implementing a general topicality (currency) of events in Petri nets is possi-
ble, but very cumbersome and awkward. The problem is that in a Petri net
with multiple enabled transitions, there is no control of which transition fires
first. In other words, there is no way of giving transitions different priority.
This means that describing an elastic story with a topicality of each event
entirely in Petri nets is probably not worthwhile.

There is another possibility, theoretically. Given that a new notation is built
on top of Petri nets as described above, the semantics of this notation could
be founded on Petri nets for the most of it, but additionally be required to
respect topicality. This means that executing an elastic story requires that
the execution conforms with the Petri nets given in chapter 7, but there
is an additional requirement that in case of multiple enabled events, the
most topical one is executed. Note that the additional requirement does not
conflict with the Petri net semantics; it only strengthens it.

As an alternative, topicality can be assigned to entire threads rather than
to individual events. This would be more manageable in Petri nets. If this
alternative is chosen, a Petri net describing an elastic story would contain a
central topicality management module. All threads that use central resources
such as the virtual speech channel are controlled by this module, and exactly
one is allowed to be active at a time. Additional threads that do not use
the central resources and thus do not interfere with resumptions, can be al-
lowed to be active at all times (for example, threads that handle background
sounds). When the active thread reaches a point where it cannot continue
because of a pause or inter-event synchronization, it gives control back to
the topicality manager, which activates a new thread—the one that now has
the greatest topicality. The topicality manager thus has a role similar to the
process manager in a multitasking system.

Petri nets for a wider class of interactive stories

This thesis has argued that Petri nets are well suited for elastic stories. It may

197

be interesting to ask how well Petri nets would work for more user-controlled
and for more author-controlled systems. Answering this question will give a
hint as to whether to use Petri nets for systems containing user-controlled
and author-controlled as well as elastic parts.

David Stotts and Richard Furuta have successfully used Petri nets for hy-
permedia with a greater degree of user control than in elastic stories. A
purely author-controlled presentation could be built in a Petri net with only
a single thread. This resembles the use of HTSPN on the composite syn-
chronization layer, except for the timing information in HTSPN. These ob-
servations suggest that Petri nets easily span the range from user-controlled
to author-controlled multimedia.

11.1.2 Future work

The most important future direction of the research on Petri nets for elastic
story telling will be the development of a new syntactic layer on top of the
Petri nets, as described above.

Another important thing to do is practical testing of Petri nets with real
multimedia authors.

The use of Petri nets with other styles of user interface is yet to be explored.
Of the concepts in the model of an elastic story in chapter 6, only very few
rely directly on the style of user interface presented in the same chapter:
pauses and choices rely on the kinds of tests that are possible; the kinds of
actions that can be in an event depend on the user interface too. Another
style of user interface would still allow pauses, choices and actions. Only the
situation waited for in a pause and the ways of specifying the thread followed
after a choice would be different, as would the kinds of actions. It would be
interesting to explore the use of Petri nets with user interfaces where these
three concepts were different; for example, hypermedia-like interfaces where
a typical action would be to go to another node.

In the use of CPN presented, all user input is mediated to the net via guards
that can be true or false. It will be worth investigating whether in-put on a
continuous rather than binary form would be useful. As a simple example of
the use of continuous input, the sound volume of the slave’s cries (see pages

198

152—153 and 155—157) could depend on the distance between the user and
the slave.

Finally, ways to let the user interrupt the system’s pannings and character
movements, as in the Wodan’s Eye system (see page 157), may be explored.

11.1.3 Petri nets for elastic story telling: Summary

Elastic stories in multimedia may have a great potential still to be explored.
Current multimedia authoring tools only indirectly and poorly support the
authoring of elastic stories. This thesis argues that Petri nets form a better
basis for building interactive stories, since they model the concepts found
in elastic stories more directly than other tools. Some practical experiments
confirm this, and suggest that Petri nets constitute a natural tool for working
with elastic stories. Empiric studies in the form of realistic experiments with
real-world multimedia authors using Petri nets would further explore this
hvpothesis.

11.2 An object-oriented programmer’s plat-

form for multimedia

Hejmdal is an object-oriented class library for the interactive creation, editing
and playback of multimedia. Hejmdal was originally developed as a platform
to be used for the remainder of the thesis work. It has been used for de-
veloping movie nodes in the Macintosh version of DHM. When the latter is
integrated with Design/ CPN, it will be possible to use DHM (and thus in-
directly Hejmdal) to add multimedia to elastic stories described in Petri nets
with Design/CPN, thus overcoming a current limitation in the use of Petri
nets for elastic stories. At the same time, Hejmdal may take part in meeting
the increasing demand for programmer’s tools for multimedia. Hejmdal was
also seriously considered for use in the Talaria project.

Hejmdal has good support for playback of multimedia consisting of still pic-
tures, videos, animations and sounds. It has some support for editing, and
a little support for the creation of new multimedia documents. Hejmdal

199

can be used for a range of applications, from those adding a few elements
of animation or sound to an existing application to the ‘pure’ multimedia
application programs. Hejmdal is built on QuickTime. It was found that
Hejmdal provided a clear, object-oriented model and that it was easier to
use than QuickTime, especially for interaction, without loss of power and
flexibility.

It has further been argued that it should be possible to define interaction in
the multimedia documents, not only in the application programs using them.

11.3 Repertory grids for hypermedia linking

Talaria is a multimedia reference tool on cancer pain management for health
care providers, being built at Fred Hutchinson Cancer Research Center.

A novel hypermedia linking scheme based on repertory grids has been de-
veloped for Talaria. The scheme performs automatic or implicit linking of
nodes in the learning support environment, based on the distance between
nodes in a context space. The location of each node in context space is de-
fined by a trait vector assigned to the node by the author or another expert
in collaboration with a knowledge engineer. The traits are found by triadic
trait elicitation, that is, an expert repeatedly looks at three random nodes
and identifies the feature that best distinguishes one of them from the two
others. A six-point rating scale for scoring each node against each trait has
been invented and described to ensure consistent rating. An evaluation of
the linking scheme was performed, based on a protocol analysis. Within a
neighbourhood size of 20 nodes, the linking scheme captured 93 % of the
links made by the users in the protocol analysis. The evaluation further
suggested that the six-point rating scale provided better performance than
binary rating, and that refinement of the repertory grid may lead to improved
performance.

The notion of elasticity is relevant in the learning support environment. Since
the linking scheme is based on distance, it may support elasticity: the clos-
est neighbour may perform the strongest attraction. The learning support
envirnment may also contain elastic guided tours.

200

11.4 General multimedia tool requirements

During the work on Talaria, a number of observations about requirements
for multimedia tools were made:

• Editors are needed for each medium used in the multimedia (text,
graphics, sound, video, animation).

• Editors should allow the importing (and digitizing, of course) of ana-
logue material, as well as on-line creation and editing of digital material.
The editing tools should be separate (allowing you to use only one at a
time), yet integrated with each other (sharing the same material) and
with the programming environment (if any; allowing the media to be
integrated with code).

• Conventional database technology seems insufficient for building a well-
structured media database.

• The need for interpretative execution of the program during develop-
ment is found to be even greater in multimedia than in other fields. At
the same time it is advantageous also to have a compiler.

Furthermore, the following requirements are found to be little or no different
from the requirements for programmer’s tools in other fields: strong typing;
integration of code and media data; and facilities for structuring of data and
code.

The need for programming in multimedia development was investigated.
Many multimedia developers seek to avoid or limit programming in the devel-
opment process. However, based on Paul Brown[27] and indirectly on Charles
Saunders Pierce, it was argued that symbolic languages, such as program-
ming languages, press the author to get better acquainted with the computer
and the inner workings of it, which promotes a better understanding of its
potential and invites for better exploitation of the computer’s possibilities
and the author’s creativity. Here, symbolic languages are seen as a contrast
to iconic languages, in which language elements bear some resemblance with
that which they signify. The argument of Paul Brown was confirmed by ob-
servations from Talaria and other projects. Scripting or programming has
its place in most and the most interesting multimedia development projects.

201

Therefore, the multi-media developer who wants to exploit the computer’s
potential and his or her own creativity should learn programming.

On this background, Hejmdal is developed as a programmer’s tool and is
purely symbolic. The other tools studied and developed in the thesis are also
rather symbolic than iconic. The repertory grids used in Talaria are purely
symbolic. Petri nets are graphical and symbolic; they are traditionally a
programmer’s tool. A new notation built on top of Petri nets to reflect the
model of elastic stories will have to be mostly symbolic. Probably icons
can be drawn for threads and forks, but probably not for events, choices,
synchronization, pauses and resumptions.

11.5 Summary

The main results of this thesis are:

• General tool requirements for multimedia development correspond to
requirements for tools for system development in other fields. In addi-
tion, multimedia development puts demands on editors for importing,
creation and editing material in the various media used in the multi-
media.

• Programming has its place in most multimedia projects, and specifically
in the most interesting of them.

• Hejmdal, the object-oriented class library for handling of interactive,
time-based multimedia documents in the form of QuickTime movies,
has been developed. The object-oriented model of Hejmdal is found to
be simple, clear and powerful, without loss of flexibility compared to
the underlying QuickTime.

• Petri nets form a better basis for building elastic stories than currently
available multimedia tools, as the former model the concepts found in
elastic stories more directly than other tools. Petri nets can probably
be advantageously used for describing systems in the range from purely
user-controlled to purely author-controlled svstems. A new and more
author-friendly syntactic layer on top of Petri nets will probably be

202

still better. The introduction of topicality in elastic stories will also
constitute an improvement.

• Repertory grids have been shown to form a workable basis for semi-
automatic linking of hypermedia documents.

203

204

Appendix A

Petri Net Experiments

This is the ‘code appendix’. It contains the Petri nets built during the
experiments reported in chapter 8, and in some cases also examples of output
from the nets.

A.1 Kristendom (Christianity)

The Petri net

A summary of the elastic story told in this net is given on page 135. Readers
who do not understand Danish should be able to follow the tracks by means
of the figure captions.

In the net, the interested reader can study the following details: The scene,
modelling the background picture with the characters is shown in figure A.3.
By clicking on a character, the user models the situation where that character
is visible in the view of the background. his gives as much control over the
story as the multimedia version would.

Initialization happens in the code region in figure A.4. Here the report page
for text output is set up. The WriteHistory function, defined in the global
declaration node in figure A.2 and called from events throughout the net,
brings this page to the front and appends a line of text to it.

205

The net is modularized into relatively small unit for readability. In some
cases modularization was done after the construction of page contents; for
instance, page Intro#6 (figure A.6) was separated from page Kristen#5 (figure
A.5) after the net elements on the former page and the surrounding elements
on the latter had been drawn. This posed no problems.

0Pages in a Coloured Petri Net are designated by page name and page number, sep-
arated by ‘#’. Thus ‘Hierarchy#1’ denotes the page named ‘Hierarchy’, having number
1.

206

Figure A.1: Page ‘Hierarchy#1’ 0, the page hierarchy page: overview of the
pages in the net.

207

Figure A.2: Page ‘Globale#2’, containing the global declarations.

208

Figure A.3: Page ‘Scene#3’, the scene with five actors. The scene is used for
marking actors when they speak and for user input. The box at the bottom
containing SML code is for use during construction and modification of the
net.

Figure A.4: Page ‘Historie#4’. The highest level view of the Petri net; the
only prime page of the net. The topmost transition is for initialisation, while
the entire story is contained in the subpage at the bottom (page ‘Kristen#5’.)

209

Figure A.5: Page ‘Kristen#5’. Overview of the story, with the choice between
reject (left) and accept (right) of Christianity. Probably a better modular-
ization would have been obtained if the choice to the right had had its own
subpage, as the left one has.

210

Figure A.6: Page ‘Intro#6’. Introduction to the story.

211

Figure A.7: Page ‘Krig#7’. Torsten rejects Christianity and pays the price.
The choice at the top is between trying to kill the king in a fire (left) and
meeting him in an open fight (right). The choice at the bottom is between
execution and outlawry

212

Figure A.8: Page ‘Rival#8’.

213

Figure A.9: Page ‘Ild#9’. (Ild means fire).

214

Figure A.10: Page ‘Kamp#10’ (fight).

215

Figure A.11: Page ‘Ulykke#11’.

Figure A.12: Page ‘Tingsted#12’.

216

Figure A.13: Page ‘Halshug#13’ (execution).

217

Figure A.14: Page ‘Fredloes#14’ (outlaw).

218

Figure A.15: Page ‘Torstens#15’. Torsten accepts Christianity, eighter by
being marked by the sign of the cross (left), or by baptism (right).

219

Figure A.16: Page ‘Daab#16’. (D̊ab means baptism.)

220

Figure A.17: Page ‘Primsign#17’. (The ‘primsignelse’ was a precursor of
baptism in which one was marked by the sign of the cross.

Sample output from the net

The text in this subsection is copied unchanged from the report page gener-
ated by the above Petri net. Only formatting has been added.

Gisle: Hvor stor lyst har du, fostbroder, til at tage ved den nye tro?

Torsten: Ingen; thi mig tykkes deres skik bldagtig.

Fortller: Da Harald Bltand omkring r 950 officielt gjorde danerne kristne,
havde den nye tro allerede lnge vret kendt. Sledes havde Ansgar p
et tidspunkt imellem 854 og 57 fet lov at bygge en kirke i Abe. De
fleste accepterede den nye tro der blev dem plagt; der var jo altid
plads til n til blandt de i forvejen mange guder.

Men enkelte havde svrt ved at bje sig.

Fortller: Bedre blev det ikke af at det var kongen, som Torstens rival

221

Thorgrim jo havde allieret sig med, der p dette ting var den store
fortaler for kristendommen.

Torsten: Jeg vi1 ikke lade mig kue af nogen s lnge jeg kan st p mine fdder
og bruge mine vben. Det synes mig fejt at tages som et lam af folden
eller rv af flden. Det synes mig langt bedre kr nr en mand skal d, frst
at udfre noget som lnge efter kan mindes. ‘F dr, frnde dr, selv dr
man ogs; men ryet dr aldrig for den der har skaffet sig et godt.’

Gisle: Hvad vi1 du gre?

Torsten: ‘rle skal op, hvem andens liv eller eje agter at rane. Sjldent
vanker lr til liggende ulv eller sejr til sovende mand.’ En kamp vil
vise hvem kongen er.

Gisle: Det er modigt gjort; men kongens mnd er dine langt overlegne. Som
min fostbroder kan du dog regne med min sttte.

(Svrdkamp/larm)
Gisle: Lykken stod os ikke bi. Det gr nu her, som det hedder med et

gammelt ord, at det er vanskeligt at kmpe mod sin skbne.

Torsten: Ja, det er sandt, og derved er intet at gre, fostbroder.

Fortller: Sledes mtte Torsten p tingstedet modtage den dom som efter hans
opfattelse skbnen nu engang havde tiltnkt ham.

Ark: P tingstedet blev tvister mellem frie mnd afgjort.

Snorri: Bla. bla. dmmes hermed til fredlshed.

Snorri: Den fredlse skal forfje sig med niddingsord p sig. Er han dmt til at
flygte bort, br han dog frst adsprges om han helst vi1 gribe flugten
over land eller hav. Dersom han nu er en udlnding og vlger at betro
sig til havet, skal hirdmndenes fuldtallige skare ledsage ham til den
nrmeste strandbred og der skulle de forskaffe ham en bd med sejl og
rer samt et sekar og et fyrstl, hvormed man slr ild af flint, og en kse,
og s skulle de byde ham at srge for sig selv. Nr dette er gjort, er de

222

forpligtede til at vente p strandbredden indtil enten, hvis han sejler
afsted for sejl, vinden har fyldt sejlets bug og bragt det bort fra
tilskuernes jne, eller hvis vestenvindens gunst ikke hjlper ham, og
han slr blgerne med rerne, da indtil han har bragt dem rerne ud af
sigte.

Snorri: Hvis han vlger skovens tykning, er de underkastet denne
bindende lovbestemmelse, at hvo som helst af dem der senere mder
ham og blot har n mand eller t vben mere med sig end han og
desuagtet ikke gr ls p ham, han skal rammes af den samme
soningsstrafstab, og derhos have det vanrende benvnelses ord,
nemlig niddingsord, p sig.

Snorri: Den af jer som trder p sluttet forlig og hugger i tilsagt fred, han skal
vre stadig flakkende som jaget ulv, s vides som mnd jager ulve.
Han skal drives lngere bort end kristne mnd sger kirke; hedenske
mnd bloter hov; ild brnder op; Jord bliver grn; sn kalder p mor; og
mor fostrer sn; mennesker tnder ild; skibe sejler; skjold blinker; sol
skinner; sne lgger sig; finne str p ski; fyr vokser; falk flyver den
vrlange dag, med stiv br under begge vinger.

English translation of the sample output

Gisle: How much do vou want to follow the new faith, sworn brother1?

Torsten: Not at all; I find their customs feeble.

Narrator: By the time that Harold Bluetooth officialy made the Danes
Christians in about year 950, Christianity had been known for a long
time. Ansgar had been allowed to build a church in Ribe some time
between 854 and 857. Most people accepted the new faith — there
was always room for another god amongst the many they already
had.

But a few people had difficulty submitting.

Narrator: What made it worse was that the king, with whom Torsten’s

223

rival Thorgrim had allied himself, was the greatest advocate of
Christianity at this thing2

Torsten: No one shall force me to submit as long as I can stand and I have
my weapons. I feel it is cowardly to be taken like a lamb from a pen
or a fox from a trap. When a man must die, it is better for him to
carry out something that can be long remembered. ‘Cattle die, kinsmen
die, you yourself die; but a good reputation never dies.’

Gisle: What will you do?

Torsten: ‘You must rise early to steal someone’s life or property. Seldom is
there food for a resting wolf or victory for a sleeping man.’ A fight
will show what kind of man the king is.

Gisle: That is bravely done; but the king’s men are far superior to yours. As
my sworn brother, though, you can depend on my support.

(Sword fight/noise.)
Gisle: Fortune did not aid us. It now happens as the old saying goes: it’s

difficult to fight against your fate.

Torsten: Yes, that’s true, and there’s nothing to be done about that, brother.

Narrator: So Torsten was to receive the sentence which he believed fate
had decreed for him, at the thingstead3.

Ark: At the thingstead, disputes between free men were settled.

Snorri: (Blah-blah) is hereby sentenced to be outlawed.

Snorri: The outlaw shall leave with words of condemnation on him. If he
is sentenced to flee, he must choose flight over land or sea. If he is a
foreigner and chooses the sea, the full troop of housecarls4 shall
accompany him to the nearest seashore and procure for him a boat
with sail and oars, a bailer, a steel to strike a light from flint and an
axe. Then they should bid him to take care of himself. When this is
done, they should stay on the shore until, if he is using the sails, the

224

wind has filled the sails and taken them from sight, or if there is no
west wind and he rows, until the oars are out of sight.

Snorri: If he chooses the depths of the forest, they are subject to this
binding provision, that if anyone should later meet him, even if he
has only one man or weapon more than he has and still doesn’t
attack him, then he shall be given the same punishment and also
have the words of condemnation on him.

Snorri: He who tramples on concluded reconciliation and cuts up the
promised peace shall roam as unceasingly as the hunted wolf, as
widely as men hunt wolves. He shall be driven farther away than
Christian men seek church; heathen men offer sacrifice in the high
place; fire burns; the Earth becomes green; a son calls for his mother;
and a mother breeds a son; a human lights a fire; ships sail; a shield
twinkles; the sun shines; snow falls; a Finn skis; a pine tree grows;
the falcon flies the long spring day with a stiff, fair wind under its
wings.

A.2 Swords, iron and millstones, first version

The following 21 figures show the Coloured Petri Net of the story ‘Swords,
Iron and Millstones’.

The loop in figure A.2 repeatedly prompts the user for a selection of a visible
item—or ‘None’ if no item is visible. The loop runs from when the fork
transition puts a token on the place ‘LastSel’ in figure A.2 until the join
transition in figure A.2 removes it again.

225

Figure A.18: Hierarchy#1.

226

Figure A.19: Globals#2.

227

Figure A.20: Ship#3.

Figure A.21: All#4.

228

Figure A.22: Story#5.

229

Figure A.23: Fork#6.

230

Figure A.24: Swords#7.

231

Figure A.25: Iron#8.

232

Figure A.26: Millstone#9.

233

Figure A.27: Join#10.

Figure A.28: SwVis#11.

234

Figure A.29: SwInvis#12.

235

Figure A.30: SwFirst#13.

Figure A.31: IronVis#14.

Figure A.32: IronInvs#15.

236

Figure A.33: IrFirst#16.

237

Figure A.34: MSVis#17.

Figure A.35: MSInvis#18.

Figure A.36: MSFirst#19.

238

Figure A.37: Repeat#20.

239

Figure A.38: Generali#21.

A.3 Swords and iron, second version

This section first shows the pages of the Petri net realizing the second version
of the swords and iron story. Graphical representations of the output from
three of the runs follow.

The global declaration node from the Petri net is too big to fit on a page of
this appendix. Instead, the text of the node is given between the figures over
this and the next pages.

color E = with W;

var e:E;

color realTime = int;

var t: realTime;

globref ReportNode = 0;

globref ReportPage = 0;

fun WriteHistory st

= (DSText_Append {obj=(!ReportNode),text=stA^"\O13"};

DSUI_Redraw (!ReportNode);

DSUI_Align {obj= (!ReportNode), aligntype=ALN_BB,

240

refl=(!ReportPage), ref2=0};

DSUI_Redraw (!ReportNode));

color Merchandise = with Iron | Swords | Millstones | NoMerc declare

mkst_col;

var m:Merchandise;

color soundName = string with " ". . "\tilde" and 1-31;

var n: soundName;

Figure A.39: Hierarchy#1. The pages at the bottom contain text output
from 23 of the runs.

color duration = int;

color soundspec = record nn:soundName * dd:duration;

var s: soundspee;

241

color panSpec = record mm:Merchandise * dd:duration;

var p:panSpec;

val Scene = 6;

fun GetObject Iron = 91

| GetObject Swords = 13

| GetObject Millstones = 12

| GetObject NoMerc = 1330;

fun GetMerchandise 91 = Iron

| GetMerchandise 13 = Swords

| GetMerchandise 12 = Millstones

| GetMerchandise 1330 = NoMerc;

fun BringSceneToFront ()

= (DSUI_MakePageVisible{page=Scene,front=true};

DSStr_SetCurPage Scene);

fun UserSelectedMerchandise()

= (BringSceneToFront();

GetMerchandise (DSUI_SelectObject{objtype=NODE TYPE,

override=false}));

fun IndicateActor merc

= DSStr_SetCurObject(GetObject mere);

fun GiveMessage merc

= DSUI_SetStatusBarMessage (mkst_col’Merchandise mere);

fun ShowActor merc

= (BringSceneToFront ();

GiveMessage merc;

IndicateActor merc);

242

Figure A.40: Ship#3.

Figure A.41: All#4.

243

Figure A.42: Stories#5.

244

Figure A.43: Swords#6.

245

Figure A.44: Iron#7.

246

Figure A.45: Sw1#8.

247

Figure A.46: SwResump#9.

Figure A.47: Sw2#10.

248

Figure A.48: Ir1#11.

Figure A.49: IrResump#12.

249

Figure A.50: Ir2#13. This construction turned out to be the culpit when the
text line ‘Start Iron 2’ was missing completely from the output. Instead of
the if statements on almost all its input and output arcs, the if statement in
the code region should control which tokens are delivered when the transition
fires. Tokens from input places can be taken unconditionally; it only requires
that output arcs are added to put them back in the case where they should
not have been taken.

250

Figure A.51: SpeakMdl#14.

Figure A.52: PanMdl#15.

Graphical representation of output from the net

The figure at the bottom of this page and the two figures on the next page
show output from three runs of the Petri net just shown. The way to read
the figures is explained in subsection 8.4.3, pages 144–146. The variations
between the runs are small.

251

Figure A.53: .

Figure A.54: .

Figure A.55: .

252

Bibliography

[] (In the ordering of authors, ø is alphabetized as o.)

[1] Abildskov, Lars Peter, & Paul Erik Dahl: QuickTime. Unpub-
lished project report, Department of Computer Science, Aarhus
University, December 15, 1991. (In Danish.)

[2] Akscyn, Robert M., Donald L. McCracken and Elise A. Yoder:
KMS: A Distributed Hypermedia System for Managing Knowledge
in Organizations. In Communications of the ACM, vol. 31 No. 7,
July 1988.

[3] Andersen, Peter Bøgh: A Theory of Computer Semiotics. Semi-
otic approaches to construction and assessment of computer sys-
tems. Cambridge series on Human-Computer Interaction, Cam-
bridge University Press 1990.

[4] Andersen, Peter Bøgh: Interaktive væker. En katastrofeteoretisk
tilgang. In Per Aage Brandt and others (editors): Almen semiotik
nr. 5. Tema: Computersemiotik Psykosemiotik. Aarhus Univer-
sitetsforlag 1992. Pages 89–112. (In Danish.)

[5] Andersen, Peter Bøgh: Katastrophen und Computer. In Roland
Posner (journal editor), Martin Warnke & Peter Bøgh Andersen
(guest editors): Zeitschrift für Semiotik, Band 16, Heft 1–2. Stauf-
fenburg verlag 1994. Pages 29–50. (In German.)

[6] Andersen, Peter Bøgh: Medien — Kunst — Computer/Hyperkult
I–IV. In an antology edited by Wolfgang Coy, Georg-Christoph
Tholen and Martin Warnke, forthcoming (in German).

253

[7] Andersen, Peter Bøgh: Narratives. Unpublished working paper,
September 1994. Part of the paper appears as section 5 in Peter
Bøgh Andersen: Medien — Kunst — Computer/ Hyperkult I–IV,
see above.

[8] Andersen, Peter Bøgh: Vector Spaces as the Basic Part of Inter-
active Systems: Towards a Computer Semiotics. In Patricia Baird
(editor): Hypermedia, Volume 4, number 1, 1992. Taylor Graham.
Pages 53–76.

[9] Andersen, Peter Bøgh, Berit Holmqvist, & Jens F. Jensen (ed-
itors): The computer as medium. Cambridge University Press
1993.

[10] Andersen, Peter Bøgh, Jens W. Johansen, Jacob A. Mikkelsen &
Morten Sams: Interaktive tekster. In an anthology from Odense
Universitetsforlag, in press. (In Danish.)

[11] Andersen, Peter Bøgh & Peter Øhrstrøm: Hypertid. WPCS–92–9,
Working Papers in Cognitive Science and HCI, Centre for Cogni-
tive Informatics, Risø National Laboratory, Roskilde University.
(In Danish.)

[12] Anderson, N. “Medical center: a modular hypermedia approach to
program design”, In: Sociomedia: Multimedia, Hypermedia, and
the Social Construction of Knowledge, E. Barrett (editor), MIT
Press, Cambridge, pages 369–389, 1992.

[13] Andersson, Helle Juel, Lars Andersen, Berit Holmqvist, Bjørn
Laursen, Peter Bøgh Andersen & Stig Jensen: Odins Øje. Rap-
port 1. Department of Information and Media Science, Aarhus
University and The Antiquarian Collection in Ribe. (Undated, ap-
proximately 1993. Partly in Danish, partly in English.)

[14] Andersson, Helle Juel, Lars Andersen, Berit Holmqvist, Bjørn
Laursen, Peter Bøgh Andersen, Stig Jensen, Thomas Østergaard,
Evert B. Hassink & Steffen Sacher: Odins Øje. Rapport 2. De-
partment of Information and Media Science, Aarhus University
and The Antiquarian Collection in Ribe. (Undated, approximately
1994. Contains contributions in Swedish, Danish and English.)

254

[15] Balasubramanian, V. Hypermedia issues and Applications, A
State-of-the-Art Review, Independent Research Report as part of
Ph.D. Program, Graduate School of Management, Rutgers Uni-
versity, December 1993.

[16] Bernstein, M., J.D. Bolter, M. Joyce, and E. Mylonas “Archi-
tectures for volatile hypertext”, Hypertext 91: Proceedings of the
Third ACM Conference on Hypertext, ACM Press, pages 243–260,
1991.

[17] Beyer, Peter, et al.: Brugervenlige EDB-systemer. Teknisk Forlag
A/S 1988. (In Danish.)

[18] Bonica, J.J. “Cancer pain”, The Management of Pain. Lea and
Febiger, Malvem, PA, second edition, 1990.

[19] Boose, J.H. “A knowledge acquisition program for expert systems
based on personal construct psychology”, International Journal of
Man-Machine Studies 23, pages 495–525, 1985.

[20] Boose, J.H. Expertise Transfer for Expert System Design. Elsevier,
New York, 1986.

[21] Boose, J.H. “Knowledge acquisition tools, methods, and medi-
ating representations” H. Motoda, R. Mizoguchi, J. Boose, B.
Gaines (editors), Knowledge Acquisition for Knowledge-Based Sys-
tems, Proceedings from JKAW’90 (The First Japanese Knowledge
Acquisition for Knowledge-Based Systems Workshop). IOS Press,
Amsterdam, and Ohmsha, Ltd., Tokyo, 1991.

[22] Boose, J.H., D.B. Shema and J.M. Bradshaw “Recent progress
in AQUINAS: a knowledge acquisition workbench”, Knowledge
Acquisition, 1, pages 185–214, 1989.

[23] Brandt-Pedersen, Finn: Tekstlæsning. Gyldendal 1967. (5th print-
ing 1974. In Danish.)

[24] Brandt-Pedersen, Finn, and Anni Rønn-Paulsen: Metode bogen.
Analysemetoder til litterære tekster. Nøgleforlaget Aps. 1980. (In
Danish.)

255

[25] Branigan, Edward: Point of View in the Cinema. A Theory of
Narration and Subjectivity in Classical Film. Foreword by David
Bordwell. Mouton Publishers 1984.

[26] Brøndmo, Hans Peter, & Glorianna Davenport: Creating and
viewing the Elastic Charles: a hypermedia journal. In Ray
McAleese and Catherine Green (editors): Hypertext: State of
the Art. Papers from UK Human Interface Interactive Learning
Systems SIG conference on hypertext, Hypertext II, University of
York, 1989. Intellect, Oxford, England, 1990.

[27] Brown, Paul: The Ethics and Aesthetics of the Image Interface.
Presented at ASIS Mid Year Meeting 1993. Computer Graphics,
newsletter of ACM SIGGRAPH, Volume 28, number 1, February
1994, pages 28–30.

[28] Canter, D., R. Rivers and G. Storrs “Characterising user naviga-
tion through complex data structures”, Behaviours and informa-
tion Technology, 4, pages 93–102, 1985.

[29] Chang, D.T. “HieNet: A user-centered approach for automatic
link generation”, Hypertext 93: Proceedings of the Fifth ACM Con-
ference on Hypertext, Seattle, pages 145–158, 1993.

[30] Conklin, Jeff: Hypertext: An Introduction and Survey, IEEE
Computer, vol. 20 no. 9, pages 17–41, September 1987.

[31] Cook, P. “An encyclopedia publisher’s perspective, Interactive
Multimedia”, Apple Computer, Inc., Microsoft Press, 1988.

[32] Dahlerup, Pil: Dekonstruktion — 90’ernes litteraturteori. Gylden-
dal 1991. (In Danish.)

[33] Davenport, Glorianna: Bridging Across Content and Tools. Com-
puter Graphics, newsletter of ACM SIGGRAPH, Volume 28, num-
ber 1, February 1994, pages 31–32.

[34] Deleuran, Claus: Illustreret Danmarkshistorie for Folket. Volume
1–8. Ekstrabladets forlag 1988–1994. (In Danish.)

256

[35] Derrida, Jacques: De la grammatologie I: L’écriture avant la lettre.
Collection critique 1979. (Original version 1967.)

English version: Of grammatology. Translated by Gayatri Chakra-
vorty Spivak. The Johns Hopkins University Press 1982.

Danish version: Om grammatologi. Dansk oversættelse ved Lars
Bonnevie og Per Aage Brandt. Arena 1970.

[36] Diaz, Michel, & Patrick Sénac: Time Stream Petri Nets. A Model
for Timed Multimedia Information. In Robert Valette (editor):
Application and Theory of Petri Nets 1994. 15th International
Conference, Proceedings. Springer-Verlag 1994.

[37] Edwards, Deborah M., & Lynda Hardman: ‘Lost in Hyperspace’:
Cognitive Mapping and Navigation in a Hypertext Environment.
In Ray McAleese (editor): Hypertext: theory into practice, Ablex
Publishing Corporation, New Jersey, and intellect books, Oxford,
1989. Pages 105–125.

[38] Eliot, T.S.: Selected Essays. Third enlarged edition April 1951.
Faber and Faber Limited. Reprinted July 1972.

[39] Eliot, T.S.: The sacred wood. Essays on poetry and criticism.
1920. 7th edition, reprinted: Methuen 1960.

[40] Ellekilde, H., (after A. Olrik): Heimdal. Entry in Salmonsens kon-
versationsleksikon. Anden udgave, Bind XI: Hasselmus-Hven (2nd
edition, volume XI). A/S J.H. Schultz Forlagsboghandel 1921.
Pages 149–150. (In Danish.)

[41] Ford, L., C. Hunter, P. Diehr, R. Frelick and J. Yates “Effects of
patient management guidelines on physician practice guidelines:
the Community Hospital Oncology Program experience”, Journal
of Clinical Pharmacology, 5, pages 504–511, 1987.

[42] Fowler, H.W.: A dictionary of modem English usage. Second edi-
tion, revised by Sir Ernest Gowers. Oxford at the Clarendon Press
1965.

257

[43] Gallant, S.I. “A practical approach for representing context and
for performing word sense disambiguation using neural networks”,
Neural Computation, 3, pages 293–309, 1991.

[44] Gardner, E. “Putting guidelines into practice”, Modern Health-
care, pages 24–36, 1992.

[45] Golub, Gene H., & Charles F. Van Loan: Matrix Computations.
Second edition. The Johns Hopkins University Press 1989.

[46] Greimas, Algirdas Julien, & Joseph Courtés: Semiotik. Sprogteo-
retisk ordbog. Aarhus universitetsforlag 1988. In Danish.

Original French version: Semiotique. Dictionnaire raisonné de la
théorie du language. Hachette 1979.

English version: Semiotics and language: an analytical dictionary.
Transl. by Larry Crist . . . (et al.). Indiana University Press 1982.

Spanish version: Semiotica: diccionario razonado de la teoria del
lenguaje. Version espanola de Enrique Ballon Aguirre y Hermis
Campodonico Carrion. Gredos 1982.

[47] Grilli, R., A. Alexanian, G. Apolone, S. Marsoin, A. Nicolucci,
V. Torri, M. Compagnucci, E. DiMarnbro et al. “The impact of
cancer treatment guidelines on actual practice in Italian general
hospitals: The case of ovarian cancer”, Annals of Oncology, 1,
pages 112–118,1991.

[48] Grønbæk, Kaj, Jens A. Hem, Ole L. Madsen & Lennert Sloth:
Designing Dexter-based Cooperative Hypermedia Systems. In Hy-
pertext ’93 Proceedings. Fifth ACM Conference on Hypertext Pro-
ceedings. ACM 1993. Pages 25–38.

[49] Gyldendals Tibinds Leksikon, sjette bind (volume 6), kve-mum.
Gyldendal 1978. (In Danish.)

[50] Halasz, F. “Reflections on NoteCards: Seven issues for the next
generation of hypermedia systems”, Communications of the ACM,
31, pages 836–852, 1988.

258

[51] Halasz, F., & M. Schwartz: The Dexter Hypertext Reference
Model. In Communications of ACM, vol. 37 no. 2, pages 30–39.
1994.

[52] Hammond, N.V. “Hypermedia and learning: who guides whom?”
Computer assisted learning—ICCAL 89, H. Maurer (editor),
Springer-Verlag, pages 167–181, 1989.

[53] Hammond, Nick V., and Lesley J. Allinson “Travels around
a learning support environment: rambling, orienteering or tu-
toring?”, CHI ’88 Conference Proceedings: Human Factors in
Computer Systems, Special Issue of the SIGCHI Bulletin, Elliot
Soloway, Douglas Frye and Sylvia B. Sheppard (editors), ACM
Press, pages 269–273, 1988.

[54] Hansen, Carsten, Torsten B. Hagemann, Dag A. Helstad: Valhall
— et projekt om multi-medier i objektorienteret programmering.
Unpublished master’s thesis, Department of Computer Science,
Arhus University, December 14, 1992. (Partly in Danish, partly in
Norwegian.)

[55] Hart, Horace: Hart’s Rules for Compositors and Readers at the
University Press, Oxford. Thirty-eighth edition, completely re-
vised. Oxford University Press 1978.

[56] Hesselaa, Birgitte: Kan detektiver synge? In Kritik 85, pages
41–58. Gyldendal 1988. (In Danish.)

[57] Hintzman, D.L. “Schema Abstraction in a multiple-trace memory
model”, Psych Rev, 93, 4, pages 411–428, 1986.

[58] Huber, Peter, Kurt Jensen & Robert M. Shapiro: Hierarchies in
Coloured Petri Nets. In G. Rozenberg (editor): Advances in Petri
Nets 1990. Lecture Notes in Computer Science vol. 483, Springer
Verlag 1991, pages 313–341. (Also in Kurt Jensen and G. Rozen-
berg (editors): High-level Petri Nets. Theory and Application.
Springer Verlag 1991, pages 215–243.)

[59] Ichimura, S, and Y. Matsushita “Another dimension to hyperme-
dia access”, Hypertext ’93: Proceedings of the Fifth ACM Confer-
ence on Hypertext, Seattle, pages 63–72, 1993.

259

[60] Jacox, A., D.B. Carr, R. Payne et al. Management of Cancer Pain.
Clinical Practice Guideline No. 9. AHCPR Publication No. 94-
0592. Rockville, MD. Agency for Health Care Policy and Research,
U.S. Department of Health and Human Services, Public Health
Service, March 1994.

[61] Jensen, Johan Fjord: Den ny kritik. Berlingske Forlag 1962. 2nd
printing Munksg̊ards forlag 1966. Reprinted with an epilogue by
the author: Kimære 1989. (In Danish.)

[62] Jensen, Kurt: Coloured Petri Nets. Basic Concepts, Analysis
Methods and Practical Use. Volume I: Basic Concepts. EATCS
Monographs on Theoretical Computer Science, Springer-Verlag,
1992.

[63] Jørgensen, John Chr.: Litterær metodelære. Metoder i dansk lit-
teraturforskning efter 1870. 2. udgave (2nd edition). Borgen 1974.

[64] Kelly, G.A. The Psychology of Personal Constructs. New York:
Norton, 1955.

[65] Kibby, M.R., and J.T. Mayes “Towards intelligent hypertext”, Hy-
pertext: theory into practice, R. McAleese (editor), Ablex Publish-
ing Corporation, New Jersey, and intellect books, Oxford, pages
164–172, 1989.

[66] Kiffer, Mary E. (associate editor): Current Biography. Cumulated
Index 1940–1985. The H.W. Wilson Company, New York 1986.

[67] Lapsley, Robert, and Michael Westlake: Film Theory: An In-
troduction. Manchester University Press 1988. Reprinted approx-
imately 1994.

[68] Larsen, Peter Harms: Faktion — som udtryksmiddel. Dansklær-
erforeningen and Forlaget Amanda 1990. (In Danish.)

[69] Lauridsen, Palle Schantz: Christian Metz’ filmsemiotik. In
Sekvens — filmvidenskabelig årbog 1984. Københavns Universitet.
Institut for Filmvidenskab. (In Danish.)

260

[70] Laursen, Bjørn: Tegning og Kognition. VENUS Report No. 6. De-
partment of Information and Media Science, University of Aarhus,
1990.

[71] Levy, M.H. “Pain management in advanced cancer”, Semin On-
col., 12, pages 394–410, 1985.

[72] Lomas, J., G. Anderson, K. Dominick-Pierre, E. Vayda, M. Enkin
and W. Hannah “Do practice guidelines guide practice: The ef-
fect of a consensus statement on the practice of physicians”, New
England Journal of Medicine, 321, pages 1306–1311, 1989.

[73] Lucarella, D., S. Parisotto and A. Zanzi “MORE: Multimedia ob-
ject retrieval environment”, Hypertext ’93: Proceedings of the Fifth
ACM Conference on Hypertext, Seattle, pages 39–50, 1993.

[74] Maartmann-Moe, Erling: Multimedia. Universitetsforlaget, Oslo
1991. (In Norwegian.)

[75] Madigan, D., and C.R. Chapman: Multimedia tools for cancer
pain education. In C. Ghaoui and R. Rada (editors): Medical
Multimedia, Intellect 1995, pages 121–136.

[76] Madigan, David, C. Richard Chapman, Jonathan Gavrin, Ole Vil-
lumsen & John Boose: Repertory Hypergrids: An Application
to Clinical Practice Guidelines. In European Conference on Hy-
permedia Technology 1994 Proceedings. ACM Press 1994. Pages
117–125.

[77] Madsen, Ole Lehrmann, Birger Møller-Pedersen & Kristen Ny-
gaard: Object-Oriented Programming in the BETA Programming
Language. Addison-Wesley Publishing Company 1993

[78] Madsen, Svend Åge: Dage med Diam eller Livet om natten.
Gyldendal 1972. (In Danish. New paperback edition available.)

[79] de Man, Paul: The Rhetorics of Romanticism. Columbia Univer-
sity Press 1984.

[80] Marchionini, G. and B. Schneiderman “Finding facts and browsing
knowledge in hypertext systems”, IEEE Computer, 21, 1988.

261

[81] Marshall, C.C. and F.M. Shipman “Searching for the missing link:
Discovering implict structure in spatial hypertext”, Hypertext ’93:
Proceedings of the Fifth ACM Conference on Hypertext, Seattle,
pages 217–230, 1993.

[82] Mjølner BETA System. MacEnv Tutorial. Mjølner Informatics Re-
port. MIA 91-18(0.2). March 1992.

[83] Mjølner BETA System. Macintosh Libraries. Mjølner Informatics
Report. MIA 90-10(0.6). March 1992.

[84] Monaco, James: How to read a Film. The Art, Technology, Lan-
guage, History, and Theory of Film and Media. Revised Edition.
With diagrams by David Lindroth. Oxford University Press 1981.

[85] Morariu, J., and B. Schneiderman “Design and research on the
interactive encyclopedia system (TIES)” Proceedings of the 29th
Conference of the Association for the Development of Computer-
based instructional Systems, pages 19–21, 1986.

[86] Nelson, Theodor H.: Getting It Out of Our System. In G.
Schechter (editor): Information Retrieval: A Critical Review.
Thompson Books 1967.

[87] Nielsen, J. Hypertext and Hypermedia. New York: Academic Press,
1990.

[88] Nissen, Dan, & Anne Jerslev: Film- og TV-analyse. In Ib Brøkner
Christiansen & Else Lützhøft (editors): Billeder i bevægelse. Fakta
og fortolkninger. Foreningen af filmlærere i gymnasiet og HF and
Dansklærerforeningen (FFS) 1984. Pages 145–240. (In Danish.)

[89] Noik, E.G. “Exploring large hyperdocuments: Fisheye views of
nested networks”, Hypertext ’93: Proceedings of the Fifth ACM
Conference on Hypertext, Seattle, pages 192–199, 1993.

[90] Philips, Rob: Producing Interactive Multimedia Computer-Based
Learning Projects. Computer Graphics, newsletter of ACM SIG-
GRAPH, Volume 28, number 1, February 1994, pages 20–24.

262

[91] Portenoy, R.K. “Cancer pain: epidemiology and syndromes”, Can-
cer. 63, pages 2298–2307, 1989.

[92] QuickTime Developer’s Guide. Draft. Developer Technical Publi-
cations, Apple Computer, Inc. 1991.

[93] Salton, G., J. Allan and C. Buckley “Automatic structuring and
retrieval of large text files”, Communications of the ACM, 37,
pages 97–108, 1994.

[94] Sandvad, Elmer: Object-Oriented Development — Integrating
Analysis, Design and Implementation. PB–302. Computer Science
Department, Aarhus University 1990.

[95] Schank, Roger, & Chip Cleary: Engines for Education. Lawrence
Erlbaum Associates 1995. CD-ROM version for Macintosh avail-
able. WWW version: http://www.ils.nwu.edu/∼e for e/.

[96] Sénac, Patrick, Roberto Willrich & Michel Diaz: Hypermedia Syn-
chronization Modelling: A Case Study. In Ed-media 95 World
Conference on Educational Multimedia and Hypermedia Pro-
ceedings. 1995. A postscript version is available on WWW at
http://hyperg.iicm.tu-graz.ac.at/edmedia apers ps, under
Diaz. Proceedings also available on a CD-ROM.

[97] Sénac, Patrick, Pierre de Saqui-Sannes & Roberto Willrich: Hier-
archical Time Stream Petri Net: a Model for Hypermedia Systems.
In Giorgio De Michelis & Michel Diaz (editors): Application and
Theory of Petri Nets 1995. 16th International Conference, Turin,
Italy, June 26–30,1995, Proceedings. Lecture Notes in Computer
Science vol. 935, Springer Verlag 1995, pages 451–70.

[98] SGML SIGhyper Newsletter. An Occasional Publication of the
Standard Generalized Markup Language (SGML) Users’ Group’s
Special Interest Group on Hypertext and Multimedia (SIGhyper).
Volume 1, Number 1, October 1991.

[99] Sheplock, G.J., P.S. Thomas and E.M. Camporesi “An interactive
computer program for teaching regional anesthesia”, Anesthesiol-
ogy Review, 20, pages 53–59, 1993.

263

[100] Steinmetz: Human perception of multimedia synchronization.
IBM technical report No. 43.9310.

[101] Stotts, P. David, & Richard Furuta: Petri-Net-Based Hypertext:
Document Structure with Browsing Semantics. ACM Transactions
on Information Systems, Volume 7, Number 1, January 1989,
pages 3–29.

[102] Stotts, P. David, & Richard Furuta: The Trellis Hypertext
Project. Position paper for Petri net models and CSCW Work-
shop. In Computer-Supported Cooperative Work, Petri Nets and
Related Formalisms. A one-day workshop, Chicago, June 22,1993,
Proceedings, pages 1–12.

[103] Tang, H., R. Bardn and C. Clifton “A new learning environment
based on hypertext and its techniques”, Advanced Research on
Computers in Education, R. Lewis and S. Otsuki (editors), North-
Holland, pages 119–127, 1991.

[104] Tompa, F.W., G.E. Blake and D.R. Raymond “Hypertext by link-
resolving components”, Hypertext ’93: Proceedings of the Fifth
ACM Conference on Hypertext, Seattle, pages 118–130, 1993.

[105] Tompkins, Jane P. (editor): Reader-Response Criticism. John
Hopkins University Press, Baltimore and London (1980) 1984.

[106] Trigg, R. “Guided tours and tabletops: Tools for communicating
in a hypertext environment”, ACM Transactions on Office Infor-
mation Systems, 6, pages 398–414, 1988.

[107] Tudhope, Douglas, Carl Taylor & Paul Beynon-Davies: Navi-
gation via Similarity in Hypermedia and Information Retrieval.
In Rainer Kuhlen & Marc Rittberger (editors): Hypertext-
Information Retrieval-Multimedia (HIM’95). HIM’95 conference
proceedings. UVK Universitätsverlag Konstanz GmbH 1995.

[108] Utting, K. and N. Yankelovich “Context and orientation in hyper-
media networks”, ACM Transactions on information Systems, 7,
pages 58–84, 1989.

264

[109] Vaughan, Tay: Multimedia: Making It Work. Second edition.
Macromedia/Osbome McGraw-Hill 1994.

[110] Villumsen, Ole: Hejmdal — an object-oriented platform for work-
ing with interactive multimedia. In Third Eurographics Work-
shop on Object-Oriented Graphics Preprints, Centre universitaire
d’informatique, Université de Genève, October 1992, pages 467–
481.

[111] Waltz, D.L. and J.B. Pollack “Massively parallel parsing: a
strongly interactive model of natural language interpretation”,
Cognitive Science, 9, pages 51–74, 1985.

[112] Watt, David A. (with contributions by William Findlay and John
Hughes): Programming Language Concepts and Paradigms. Pren-
tice Hall.

[113] Wellek, René, & Austin Warren: Theory of Literature. Third Edi-
tion. (“New revised edition”.) A Harvest Book. Harcourt, Brace
& World, Inc. 1962.

Danish edition: Rene Wellek & Austin Warren: Litteraturteori.
Munksgaard 1964.

[114] Who was who. A cumulated index 1897–1990. A & C Black, Lon-
don 1991.

265

